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1. Introduction 

Research on exchange rate predictability has revealed a disconcerting pair of facts:  1) 

Exchange rate changes cannot be forecast with fundamentals at horizons of less than a year 

(Meese and Rogoff, 1983), and 2) Trend-following technical analysis—the use of past prices to 

make trading decisions—would have been profitable on dollar exchange rates over extended 

periods of time (Sweeney, 1986; Levich and Thomas,1993; Neely, Weller and Dittmar, 1997; 

Chang and Osler, 1999; LeBaron, 1999; Okunev and White, 2003; Olson, 2004).  Almost all of 

the technical rules studied have been variants of moving-average or filter rules, which provide 

buy-sell decisions, rather than rules derived from time series models, even though the latter could 

potentially provide much more information in the form of a full density forecast.  

Given that trend-following trading rules have shown excellent predictive content measured 

by the excess return standard, one naturally considers whether ARIMA or Markov models, the 

workhorses of univariate time series analysis, could imply this same predictive content.  

Dewachter (2001) argues that ARIMA models may have been suboptimal generators of trading 

signals.  Estimating an ARIMA model on data generated by a typical Markov model leads to the 

estimation of an ARIMA (1,0,2) in which the first AR and first MA coefficients nearly cancel, 

resulting in some loss of information.  Markov switching models explicitly estimate time-varying 

moments, naturally modeling exchange rate returns in a changing risk environment.  Such a 

model exploits the advantages of statistical techniques to construct trading rules. 

The use of Markov switching models to forecast and trade exchange rates at the daily 

frequency merges two distinct strands of the exchange rate prediction literature. The first strand 

attempts to forecast exchange rates out-of-sample with ARIMA models (e.g., see Neely, Weller, 
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and Dittmar, 1997).1  The second strand uses lower frequency Markov switching models to 

forecast exchange rates (Engel and Hamilton, 1990; Engel, 1994); this has enjoyed limited 

success.2  

We view our work as complementary to that of Dewachter (2001) and Clarida, Sarno, 

Taylor, and Valente (2003), who use elements of both threads in very different ways.  Dewachter 

(2001) constructs a Markov switching model that is able to produce simulated weekly data on 

which trend-following trading rules are successful.  Clarida, Sarno, Taylor, and Valente (2003) 

generate an exchange rate forecasting model from a regime-switching vector error correction 

model (VECM) using weekly term structure data on forward exchange rates. 

The risk-adjusted Markov trading rule returns exceed those of the ex ante best conventional 

technical trading rules considered for three of the four exchange rates.  The differences are not 

statistically significant, but the Markov rules have two marginal benefits:  1) a portfolio of 

Markov and conventional technical rules has better risk-adjusted performance than either 

individually; and 2) Markov rules appear to do better on recent data, on which conventional 

trading rules are no longer successful.  This is the best that can be expected; the noise in 

exchange rate returns makes it difficult to reject hypotheses of interest about trading rules.   

Neither the returns to our trading rule nor the trading rule positions show a simple 

relationship with observable macro fundamentals across either sample period.  But they may be 

                                                 
1 Taylor (1994) reports some success with ARIMA models in the 1978-87 period, and we are able to extend those 

results to obtain some success in our out-of-sample period.  These ARIMA rules are not as successful as the moving 

average or Markov rules studied here, however.  LeBaron (1992) generated some trading rule profits with an 

ARIMA(1,0,1) fitted to maximize trading rule profits by simulated method of moments.  This implies that 

nonlinearities are not strictly necessary to justify the profitability of moving average trading rules.  

2 Neely and Sarno (2002) review the literature on forecasting exchange rates with monetary fundamentals.  
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weakly related to higher moments of the data.  Our model assumes that returns interact with a 

changing risk environment (higher moments) and the data are consistent with this proposition.   

2. Methodology 

A.  The Markov switching models 

Let us first introduce some notation.  The exchange rate at date t  (USD per unit of foreign 

currency) is given by , while rt is the log of the deviation from uncovered interest parity, and 

the domestic (foreign) overnight interest rate is . 

tS

)( *
tt ii

      (1) )1ln()1ln(lnln *
11 ttttt iiSSr +−++−= ++

The premise of trading strategies is that deviations from uncovered interest parity (UIP) are 

predictable.  To create a rich structure for the expected deviation from UIP, we allow the 

conditional mean to be a function of three distinct Markov switching state variables.  We assume 

a student-t error distribution with nt degrees of freedom in the dependent variable r: 

tttr εµ += ,  ),,0(~ ttt hnmeantstudent =−ε ,  .  (2) 2>tn

The variance of such a student-t distribution is  

)2/(2 −= tttt nnhσ .        (3)  

The parameter ht is a scale parameter for the variance such that ( ) 2/1/ ttt hr µ−  is a standard 

student-t variable with nt degrees of freedom.  ht switches between high and low states, according 

to the realization of a binary variable, S1t, governed by the following first-order Markov process: 

( ttt ShShh 111 10 −+= )         (4) 

{ }1,01 ∈tS ,  ( ) 11 01|01 pSSP tt === − ,  ( ) 11 11|11 qSSP tt === − . 

Switching in ht scales the variance up and down without affecting the thickness of the tails or 

leptokurtic shape of the conditional density, thus we refer to h as the dispersion parameter.  
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Similarly, we allow for switching in the degrees of freedom, nt, as in Dueker (1997), which 

implies that the thickness of the tails of the conditional distribution varies across time.  Thus, 

three- or four- standard deviation shocks can be statistically a near-impossibility in some time 

periods and a reasonable possibility in other periods. Because the kurtosis of a student-t variable, 

which equals 3(n-2)/( n-4), has a one-to-one relationship with the degrees of freedom, we refer to 

n as the kurtosis parameter.  This kurtosis parameter is tied to a second binary variable, S2t, that 

follows a Markov process such that 

( ttt SnSnn 212 10 −+= )        (5) 

{ }1,02 ∈tS , ( ) 21 02|02 pSSP tt === − ,  ( ) 21 12|12 qSSP tt === − . 

The conditional mean, µt, is a function of the Markov state variables that govern switching in 

the dispersion and kurtosis.  A third Markov switching binary variable, S3t, provides yet another 

independent source of shifts in the expected return: 

tttt SSS 321 3210 µµµµµ +++=         (6) 

{ }1,03 ∈tS , ( ) 31 03|03 pSSP tt === − , ( ) 31 13|13 qSSP tt === − , 

where 1µ  and 2µ  reflect how the dispersion and kurtosis affect the mean return.  The three 

Markov states switch independently.3   

Christoffersen and Diebold (2003) demonstrate that serial dependence in higher 

moments, such as the variance and kurtosis, affects the expected sign of returns in the presence 

of a non-zero unconditional mean return.  This sign dependence creates predictability in the 

direction of returns.  Our model does not directly exploit this effect; instead, it exploits 

dependence between conditional moments to better estimate the conditional mean.   

                                                 
3 We also estimated a similar Markov model with 6 parameters in the mean, rather than 4.  Results from the 2 

models were very comparable.  
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For example, a rise in volatility can generate a change in conditional mean return through 

safe-haven effects.  Higher volatility causes investors to seek safe-haven currencies, like the 

dollar.  Decomposing volatility into both time-varying kurtosis and dispersion might improve our 

model’s ability to detect the type of risk response associated with safe-haven effects.  

In this vein, note that variation in the rate of information arrival affects the kurtosis of 

returns, whereas a shift in the marginal effect of a unit of information would affect the variance 

but not the kurtosis of returns.  Thus, these features of the forecast distribution tell us different 

things, and our model allows them to covary with the expected return in distinct ways.  

Although the model’s expected return—conditional on the state—takes on only (23=) 8 

different values, because we do not observe the Markov state variables, we must infer the 

probability of the current state and hence the expected return.  Therefore, the forecast conditional 

mean can take values from a continuum, not just a discrete number of values: 

[ ] ( ) ( ) ( ) 31211101 |13 |12|11| µµµµµ −−−− =+=+=+= tttttttt ISPISPISPIE . (7) 

The log-likelihood function for this model is 

( ) ( )( )( ) ( )( ) (
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where Γ is the gamma function and µt depends on the state variables, as in equation (6). 

Hamilton (1990) shows that the function to be maximized is the log of the expected likelihood or 

 )S3 , S2 ,S1|)L(rI|k   S3 j,  S2 i,  Prob(S1ln
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B.  The trading rule from the Markov switching model 

Although the model’s parameters were chosen to maximize the log-likelihood function rather 

than returns, the model’s trading performance is a more economically relevant measure of its fit 
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than any statistical measure.4  This section describes how the model generates trading decisions.   

A trading rule maps an information set (e.g., past exchange rates) to a binary variable, , 

that takes the value +1 for a long position in foreign exchange at time t and –1 for a short 

position.  Whereas traditional technical trading rules might use a moving average of prices, for 

example, to determine the trading signal, our likelihood-based approach can use the whole ex 

ante returns distribution to construct a trading signal.   

tz

A natural approach would be to have the trading rule go long if the expected deviation from 

uncovered interest parity, [ 1| −tt IE ]µ  from equation (7), is positive, and short otherwise.  

However, such a trading rule might generate large transactions costs by trading each time it 

predicts even a small non-zero return.  We alleviate this problem in two ways.  First, we use the 

expected return over eight days—rather than one—to make the trading decision.  Second, we 

require that the expected return exceed a threshold, called a “filter,” before we permit the rules to 

change position. Both techniques reduce trading frequency and accompanying transactions costs. 

The period of eight days over which to calculate the expected return was chosen based on a 

representative half-life of the conditional mean of staying in the same state, using the transition 

probabilities estimated with in-sample data.5  The average expected return over the eight-day 

                                                 
4 Attempts to choose parameters to directly maximize in-sample returns proved unsuccessful as the return function is 

not continuously differentiable.  Maximization methods—such as genetic algorithms—that work on non-

differentiable functions might be helpful, but the success of more conventional methods defers that for the future.   

5 The average of the half-lives of the states varies across currencies and across the initial state.  We chose an eight-

day horizon as a representative value of the currency-specific averages.  The implied half-lives were calculated only 

with transition probabilities estimated from in-sample data.  Of course, the parametric model would allow us to 

choose currency-specific forecast horizons. 
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half-life is [∑
=

+

8

1

|8
1

k
tkt IE µ ]  .  We use this average expected return over eight days to avoid 

cases where the expected return the next day is large in absolute value but is not expected to last 

long before reversing.  The eight-day average ensures that expected returns are persistent before 

transactions costs are incurred. 

A complete trading rule includes a pair of filter sizes, f1 < f2, that determine when one 

actually changes position:  

[ ]

[ ]

otherwise.    1,                                
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 .   (10) 

For example, the first two conditional equations above say that, if the rule has a long position at 

t-1, it will only switch to a short position at t if the expected average exchange rate change from t 

to t + 8 is less than the size of the filter, f1.  If the expected average change in the exchange rate 

over the next 8 days is greater than or equal to f1, the rule will maintain a long position.6   

We chose filter sizes—given the parameters of the Markov switching model—to maximize 

the excess return, net of transactions costs, in the in-sample (1974-81) period.  Absolute filter 

sizes ranged from about 0.2 to 6.25 basis points.  The filter sizes were chosen under the 

assumption of fairly high transactions costs of 10 basis points per trade.  Such costs are about 

                                                 
6 Note that the inertia in Markov-rule positions generated by the filter could require the Markov rule to stay in a 

position in which it would be expected to lose (a little) money.  It might seem wise to permit the rules to move to a 

neutral position in such a situation.  This intuition ignores the fact that such moves incur transactions costs.  
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twice the size that even a small trader could obtain today but probably reflect those faced by such 

traders 20 years ago.  Conservative transaction costs reduce the danger of overfitting.  

C.  Excess return calculation 

The Markov switching rules switch between long and short positions in the foreign 

currency.  A long position in the foreign currency at date t means that the rule borrows dollars, 

converts them to foreign currency at the closing rate for date t, and earns the foreign overnight 

rate.  A short position borrows in the foreign currency to invest in U.S. dollars. The excess 

returns to long and short positions are closely approximated by ztrt+1, where zt is the trading 

indicator variable defined in equation (10), and rt+1 is the deviation from UIP, given by equation 

(1).  The cumulative excess return r for a trading rule giving signal zt at time t over the period 

from time zero to time T, conducting n trades, with transaction cost c, is as follows: 

ncrzr
T

t
tt −= ∑

=
+

1
1 .      (11) 

D. Economic performance measures: risk-adjusted excess returns 

The excess return criterion tells us nothing about the trade-off between risk and return.  This 

information is absolutely necessary to evaluate the rule.  The Sharpe ratio measures the expected 

excess return per unit of risk for a zero-investment strategy (Campbell, Lo, and MacKinlay, 

1997); it is the portfolio’s mean annual excess return over the return’s annual standard deviation.   

But the Sharpe ratio only describes the univariate risk associated with a trading strategy.  

Capital Asset Pricing Model (CAPM) theory tells us that the correlation of a portfolio’s return 

with that of the market should explain its excess return.  Therefore we look at Jensen’s (1968) α 

and the CAPM β from the following regression:   
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( ) [ ] tttttttt iPPczzIrz εβα ++−+=≠− +−+ )1ln()/ln( 111 ,    (12) 

where ztrt+1 is the signed return to the trading rule, ( )1−≠ tt zzI  takes the value one when a trade 

is made, zero otherwise, and [ )1ln()/ln( 1 ttt iPP ]+−+   is the excess return to the market.  Jensen’s 

(1968) α directly estimates the mean excess return that is uncorrelated with the market return.  If 

the intercept in (12)—α—is positive and significant, then the excess returns to the trading rule 

cannot be explained by correlation with market returns.  This study uses the Morgan Stanley 

Capital International World Index (MSCI) and the S&P 500 to proxy for the market portfolio. 

E.  Statistical performance measures 

To supplement the economic risk-adjusted return criterion, we also consider the performance 

of the model’s return predictions with respect to the mean-squared error (MSE), mean-absolute 

error (MAE), and percentage of correct sign predictions at forecast horizons of 1, 5, 10, and 20 

business days.  The benchmark for comparison is the in-sample mean return.  

3. The Data 

The exchange rate data consist of noon (New York time) buying rates for the German mark, 

euro, Japanese yen, British pound, and Swiss franc (DEM, EUR, JPY, GBP, and CHF) from the 

H.10 Federal Reserve Statistical Release.  Values for the EUR replace the DEM values after 

1998, but we refer to the spliced series as the DEM series for simplicity.  Exchange rates are 

expressed as USD per unit of foreign exchange.  The Bank for International Settlements (BIS) 

provides daily interest rate data, collected at 9:00 am GMT (4:00 am, New York time).   

To evaluate whether foreign exchange intervention or particular macroeconomic conditions 

were associated with the trading rule returns or the smoothed probabilities of regime states, we 

will use intervention data provided by central banks and monthly data from Haver Analytics on 

industrial production, interest rates, stock market indices, M2, and employment from the five 
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countries: United States, Germany, Japan, Switzerland, and the United Kingdom.  

Full summary statistics for the exchange rates are omitted here, but we have a few points to 

note: Two skewness statistics have inconsistent signs in the two subsample periods.  But all 

foreign exchange excess return series are strongly leptokurtic over the whole sample and the 

degree of excess kurtosis has likely decreased from the 1970s to the 1980s and 1990s.  

4. Estimation results 

A.  Estimation 

We estimate the Markov model using daily data from 1974 through 1981 (through 1982 for 

the yen/dollar rate).  The in-sample periods were chosen to minimize the in-sample cumulative 

deviation from UIP, in order to guard against a rule that would tend to be disproportionately long 

or short.  This reflects our prior belief that long-run expected deviations from UIP are probably 

close to zero for major currencies and that data that conform to this conviction are most likely to 

produce profitable rules.  We did not use any information about the out-of-sample period to 

choose the in-sample period.  Data from 1982 (1983 for the yen/dollar rate) through June 2005 

are reserved to evaluate trading rule performance over a long out-of-sample period.  Table 1 

shows the log-likelihoods and parameter values from each exchange rate’s best Markov model.   

Each day, the model’s predicted value for the exchange rate and a vector of filter sizes were 

used to map the data to a trading decision, using equation (10).  The best filter sizes were chosen 

to maximize the in-sample excess return, given the estimated parameters.7  Trading signals were 

then used to compute in- and out-of-sample trading return statistics.  

Table 2 shows the trading rule statistics.  The top rows show the filter sizes chosen on the 

basis of in-sample information.  The rest of the table shows the number of observations, the 

                                                 
7 The signs of the filters were not constrained.  
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annualized return, net of 10-basis-point transactions costs, in percentage terms, as well as the t-

statistic for that annual return, mean trades per year, the percentage of business days the trading 

rule was long in the foreign currency, the Sharpe ratio and CAPM βs using the Morgan Stanley 

Capital International World Index and the S&P 500 as the market portfolios.  The leftmost panel 

shows the in-sample results (1975-1981/82), the middle panel shows the full out-of-sample 

results (1982/83-2005:6) and the rightmost panel shows a 5-year subsample breakdown.  

The absolute filter sizes ranged from about 0.21 to 6.25 basis points.  (Expected returns are 

much less variable than actual returns.)  The largest filters were associated with the CHF. The in-

sample mean excess returns (leftmost panel of Table 2) were excellent but varied considerably 

among the 4 exchange rates, ranging from 10.30 to 16.80 percent per annum.  The rules traded 

between 1.5 and 9.65 times per year in the in-sample period and were long between 56 and 71 

percent of the time in the foreign currency.   

B.  Out-of-sample results 

Of course, good in-sample performance is not very interesting for its own sake.  The key 

issue is the out-of-sample risk-adjusted return of the rules.  The middle panel of Table 2 shows 

that the out-of-sample excess returns are much lower than the in-sample returns but still good, 

ranging from 1.08 percent for the GBP to 7.54 percent per annum for the JPY.  The average 

excess return over the four rates was 5.27 percent, a strong out-of-sample figure.  The returns to 

the rules—except for the GBP—are statistically different from zero at any reasonable level with 

Newey-West standard errors with a lag order of 5.  The rules trade 1.8 to 10.5 times per year in 

the out-of-sample period.  The CHF rule is most often long in the foreign currency, taking a long 

position 74 percent of the time.  The JPY rule is most often short in the foreign currency, taking 

a long position only 56.6 percent of the time. 
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Do the rules earn excess returns by taking on risk?  It appears not.  The risk-adjusted returns 

appear to be very attractive by any measure.  The out-of-sample Sharpe ratios range from 0.11 

(GBP) to 0.71 (JPY).  The CAPM βs are close to zero, mostly statistically insignificant and 

negative as often as positive.  There is no evidence that the rules take on excessive risk.  Only the 

β for the GBP excess return versus the MSCI world index (β1) is significantly positive.  

Several authors have speculated that the returns to technical rules have declined in the last 10 

or 15 years (Levich and Thomas, 1993; LeBaron, 2000; Okunev and White, 2003; Olson, 2004).  

Are the returns to these rules stable?  Have they declined recently?  We investigate this question 

in two ways:  1)  a subsample breakdown of returns;  2) graphs of rolling Sharpe ratios.   

The right-hand panel of Table 2 breaks down the mean returns by approximate 5-year 

subsamples.  While the 1982-1991 period was very profitable for the rules, there is no clear 

evidence that the results are unstable or that the returns have disappeared.  Mean returns over 

exchange rates are positive in all subsamples, including the most recent period, 2002-2005:6. 

Three of the four exchange rates have positive returns over the most recent subsample and the 

average over all four rates is a very respectable 5.11 percent.  The GBP has the worst subsample 

performance with two subperiods (out of five) with negative returns.  Of course, the high 

variability in exchange rate returns makes it difficult to see clear patterns.  

Figure 1 shows the time series of the one-year moving average of Sharpe ratios to each rule.  

Although the out-of-sample Sharpe ratios are lower than the in-sample figures, there is no 

obvious break in the ratios.  Figure 1 tells a similar tale to that in the subsample breakdown in 

Table 2:  Sharpe ratios are usually positive, they showed some weakness in the 1990s but have 

rebounded lately.  Wald tests for structural breaks in the mean return in the middle of the out-of-

sample period (i.e., September 1993) fail to reject the null of no change at conventional levels for 

any of the four exchange rates.  The DEM series produced the largest t statistic: 1.58. In contrast, 
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the same Wald tests for the MA rules clearly reject the nulls of equal means for the GBP and 

CHF and marginally reject for the DEM (1.73). Full results are omitted for brevity.  

The conclusion that one cannot reject stability in the Markov returns appears to be more 

consistent with those of Okunev and White (2003) than Olson (2004).  Olson (2004) found that 

returns to trading rules that are reoptimized in rolling periods have been declining over time.  

Perhaps the apparent contradiction should not come as a surprise; the structure and 

reoptimization strategy of Olson’s rules is very different than those examined here.  Further, 

Olson’s sample period ended in 2000, prior to the most recent (and fairly profitable) subsample.   

How do the Markov trading rules compare to traditional technical trading rules?  To calculate 

results from traditional technical rules, we compute signals from double moving average (MA) 

and filter rules using the in-sample period of 1974-1981 (through 1982 for the JPY).8  We 

compute signals from all combinations of moving average (MA) rules with short moving 

averages from 1 to 9 days and long moving averages from 10 to 150 days (in increments of 5 

days).  We permit the moving average rules to have “bands of inactivity,” similar to those used 

by the Markov trading rule (equation (10)).  The MA band size and lag windows were chosen to 

maximize in-sample returns.  We compute signals from all combinations of filter rules with filter 

sizes of 0.5 to 3 percentage points (in increments of 0.5) and go back 5 days to find extrema.  

That is, we computed results for thousands of technical rules that are similar to those used in the 

literature, such as in Neely (1997).  We then found the best performing MA rule and filter rule 

for each currency in the in-sample period and calculated out-of-sample trading rule statistics.9   

Full results are omitted for brevity, but the technical rules do extremely well in the in-sample 

                                                 
8 These “filter rules” have no direct relation with the filters used in the Markov trading rule, despite the name.  

9 The mean out-of-sample returns to the conventional technical rules were remarkably insensitive to changes in the 

rule selection procedure such as elimination of the band, or using rolling or expanding in-sample periods.  
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period, as one might expect from the literature.  The moving average rules’ mean excess return 

was 14.5 percent over the four exchange rates and the filter rules had a 9.2 percent mean return.  

The MA and filter rules performance deteriorate in the out-of-sample period, but is still strong—

especially that of the MA rules.  The filter rules’ annual returns range from –3.1 percent to 3.6 

percent per annum and those of the MA rules from 3.41 percent to 5.94 percent.  The average 

annual return for the better performing MA rules is 4.32 percent.  These out-of-sample returns 

are somewhat lower than those found by Sweeney (1986) and Neely (1997) using shorter data 

samples.  But the overall MA returns are higher than those found by Olson (2004) who reports 

returns from dynamically reoptimized technical rules declining from 3 percent in the 1970s and 

1980s to about zero in the 1990s.  Indeed, the MA rules have a small negative mean return after 

1991.  Because the MA rules outperform the filter rules, this paper will concentrate on 

comparing the Markov rules to the better performing MA rules.  The Sharpe ratios and CAPM βs 

also show little evidence that the technical rules’ excess returns are compensation for bearing 

risk.  The Sharpe ratios are very good—those of the MA rules range from 0.32 to 0.56, averaging 

0.4—and the CAPM βs are small and insignificant.  In short, these results are consistent with 

those found previously for technical trading rules in foreign exchange markets (e.g., Neely, 

1997).  Technical trading rules make excess returns that cannot be explained by transactions 

costs or the usual risk adjustments.   

As good as the traditional technical rules’ performance is, however, the mean annual returns 

and risk-adjusted returns for the Markov trading rules are about 95 basis points better, on 

average, across the four exchange rates.  This advantage in net returns stems from the fact that 

the Markov rules trade much less often than the MA rules.  The MA rules trade 20 or 30 times a 

year, in contrast to the 2 to 11 times a year for the Markov rules.  The only case in which the 

double MA rules outperform the Markov rules—by 2.3 percentage points—is that of the GBP.  
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And the average Sharpe ratio for the Markov rules is 0.48, compared to 0.40 for the MA rules.   

We are reluctant to claim, however, that the Markov rules really improve on the MA rules.  

Tests of differences in mean returns are generally insignificant—though the JPY test has a p-

value of 0.065.  (Results omitted for brevity.)  The Markov rules do appear to have two 

important marginal benefits for investors, however: 1)  A portfolio rule actually outperforms 

either the Markov rules or the MA rules on a risk-adjusted basis; and 2)  The Markov rules (and 

the portfolio rules) are much more profitable than the MA rules in the most recent period.   

The fact that the Markov and technical trading rules have very different trading frequencies 

indicates that the two types of rules are finding different sorts of trends and that combining them 

could improve over the univariate risk-return performance of either type, separately. 10  Table 3 

shows the results from a portfolio rule whose signals are made up of equal shares of Markov 

signals and MA rule signals.11  The returns and trades are the average of Markov and MA 

returns, of course, but the Sharpe ratios—the annual mean return over the annual standard 

deviation of returns—show the marginal contribution of the Markov rules.12  The Sharpe ratios 

for the portfolio rule are better than those of the MA rules in 3 of 4 cases and nearly as good in 

the GBP case.  (MA rule results are omitted for brevity.)  The average Sharpe ratio for the 

portfolio rules is 0.54, versus 0.48 for the Markov rules and 0.40 for the MA rules.  The 

improvement in Sharpe ratios is surely related to the imperfect correlation in the rule signals 

from the two models.  The Markov and MA models produce the same signals 74, 70, 66, and 55 

percent of the time for the DEM, JPY, CHF and GBP, respectively.  In addition to higher Sharpe 

                                                 
10 It is certainly possible, however, that different sorts of technical rules could closely approximate the Markov rules. 

11 A mean-variance optimal portfolio rule produced similar results to the equally weighted rule.  

12  A rule with a higher Sharpe ratio is superior to a second rule with a higher return because leverage can be 

increased on the former—with a commensurate increase in risk—to provide a superior return per unit of risk.   
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ratios, the right-hand panel of  Table 3 shows only 4 subsamples (of 20) of negative returns for 

the portfolio rules, compared to 5 negative subsamples for the Markov rules and 6 periods for the 

MA rules.  (MA subsample results are omitted for brevity.)  That is, the portfolio rules have the 

most robustly positive returns over subsamples; the Markov rules are second best.  This 

advantage of the Markov rules is shown most clearly in the most recent subsample (2002-

2005:6), where the Markov rules had a 5.11 percent return versus the –3.34 percent return for the 

MA rules.  Risk-averse technical traders would have been much better off combining the Markov 

rules and the MA rules for the last 23 years, rather than using the MA rules alone.   

To investigate whether the success of the Markov rules hinges on promptly entering the 

market when a trend is spotted, we recalculated the rules’ performance with lagged trading 

signals.  The results—omitted for brevity—show only a modest (0.8 percentage point) 

diminution in returns to the Markov rules from the contemporaneous signal results depicted in 

Table 2.  The MA rules suffer a larger (2 percentage point) loss in profitability.  The Markov 

rules exploit longer-term trends, not just returns immediately after a trade.   

C.  Statistical criteria 

Finally, we compare MSE and MAE for the Markov switching model to the naive constant 

return model at forecast horizons of 1, 5, 10, and 20 business days.  The ratios less than one in 

the upper panel of Table 4 show that the Markov model consistently forecasts better than the 

naive model, in-sample.  But this forecasting advantage fails to consistently carry over to the out-

of-sample period (bottom panel).  In the out-of-sample period, the constant return and Markov 

models provide nearly identical forecasts by the MSE and MAE criteria.  The Markov model 

probably does relatively better on the MAE criterion because the MSE is more influenced by 

extreme errors.  The fact that the Markov model predicts the sign of the return correctly supports 

this view.  The “% Right” is above 50 for every exchange rate, at all horizons, in both 
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subsamples, and significantly above 50 percent in 9 of 16 out-of-sample cases.  As one might 

expect from the return calculations, the CHF and GBP models have relatively weaker “% Right” 

out-of-sample forecasting performance.  In summary, the Markov model successfully predicts 

the sign of returns, despite its mixed performance on the MSE and MAE criteria.   

5. What Creates Trading Rule Returns? 

A. Discussion of the source of trading rule returns 

Perhaps the most important unsettled issue in studies of technical analysis is the source of the 

returns.  Technical analysts credit psychology for the success of their methods: Asset traders will 

tend to react the same way when confronted by the same conditions:  Past price patterns will 

predict future price patterns (Neely, 1997).  Economists have tried to explain the success of 

technical analysis with models of asymmetric information/sequential trading, behavioral finance 

induced biases, and intervention by government authorities (LeBaron, 1999; Szakmary and 

Mathur, 1997; Saacke, 2002; and Sapp, 2004).   

Although the full results are omitted for brevity, there appears to be no consistently 

significant relationship between the trading rule profits and/or probabilities of the state variables 

and the international differences in growth rates of macro-variables.  Further, there is no 

evidence that intervention causes trading rule returns.  Neely (2002) used high-frequency returns 

and intervention to show that the timing and direction of trading are inconsistent with the idea 

that central bank intervention generates technical trading rule profits.  

Although we cannot find a relation between trading rule returns/signals/states and 

observable macro variables, one might be able to find a relation between the excess returns and 

higher conditional moments of the return distribution.   
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B.  Excess returns and higher moments 

To investigate the source of the excess returns, we examine whether the interaction between 

returns and their conditional higher moments is important through both statistical tests and 

trading rule returns.  That is, does restricting the contribution of dispersion and kurtosis degrade 

the fit of the model and the trading rule returns?   

To test this, we maintain switching in the dispersion and kurtosis (so that the transition 

probabilities remain identified), but shut down the mean switching related to dispersion and 

kurtosis.  We can calculate likelihood ratio (LR) test statistics for these restrictions on the effect 

of the dispersion and kurtosis state variables on the mean:   

0: 1 =µdispersion   and  0: 2 =µkurtosis  

For each of the four currencies, the LR test statistic is significant at or near 5 percent for at least 

one of the two restrictions.  The smallest of each currency’s p-values are:  DEM 0.057 for mean 

switching tied only to dispersion, h; JPY 0.039 for mean switching tied only to kurtosis, n; CHF 

0.012 for mean switching tied only to h; GBP 0.060 for mean switching tied only to n.   

 In addition to the statistical evidence of fit, we calculate trading returns for Markov 

trading rules that prevent mean switching tied to dispersion and kurtosis.  Restricting the mean of 

the Markov model from using higher moments reduces overall mean annual returns by 1.5 

percentage points, to 3.77 percent.  The diminution in mean out-of-sample returns ranged from 

34 (CHF) to 272 (DEM) basis points for the four currencies. Sharpe ratios were 14 basis points 

lower, on average, for the restricted model.  The t statistics for differences in mean returns 

between models with 4 mean parameters versus 2 were 1.87, 0.85, 0.15, and 0.60 for the four 

exchange rates, using Newey-West standard errors.  The t statistic for the difference in the 

portfolio returns (over the 4 exchange rates) was 1.4.  The number of trades and the percentage 

long varied over currencies but was fairly comparable across models, overall. The signals from 
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the restricted model agreed with the signals from the unrestricted model 70 to 85 percent of the 

time.  In summary, the data are consistent with the hypothesis that using higher moments 

increases returns but the evidence is not conclusive.  

6. Conclusions 

This paper has used Markov switching models to create ex ante trading rules in the foreign 

exchange market.  Markov models generate statistically and economically significant out-of-

sample returns that are 95 basis points larger, on average, than those of conventional technical 

trading rules, and these returns appear to be fairly stable over time.  The Markov rules provide at 

least two marginal benefits over conventional MA rules.  An equally weighted portfolio rule of 

the Markov and MA rules provides a better risk-return trade-off than either alone.  In addition, 

the Markov rules are strongly superior to the MA rules on the most recent data, in which the MA 

rules’ profitability seems to have disappeared.   

The Markov switching models deliver strong out-of-sample portfolio returns, although they 

fail to outpredict a naive, constant-return benchmark by MSE and MAE criteria.  While the mean 

returns have diminished after 1991, tests reject structural breaks in Markov mean returns, which 

are still positive in every subsample, including the period from 2002 to 2005:6.  Thus, Markov 

rule returns have been more stable than those of the conventional MA rules.  

The ability of the Markov trading rules to identify trends in exchange rates might be linked to 

their use of information about higher moments.  The fact that in-sample LR tests always 

preferred linking either the distribution’s dispersion (scale of the variance) or kurtosis to the 

mean return supports this contention.  Restricting the mean of the Markov model from using 

higher moments reduces overall mean annual out-of-sample returns by 1.5 percentage points and 

Sharpe ratios by 14 basis points.  This suggests, but does not prove, that higher moments belong 
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in the expectations of the Markov trading rule.  The technical trading literature has not 

previously exploited higher moments in constructing rules.  

The use of econometric methodology, rather than technical rules, to make trading decisions 

has at least two potential advantages.  First, one can generate the entire multi-period distribution 

of exchange rate returns, enabling the risk-averse investor to better assess the risk-adjusted 

expected returns.  A second potential advantage of an econometric methodology is that the 

stability of the model structure—rather than the return moments—can be assessed in real time, 

enabling traders to change their trading rules with the structure of the data-generating process.  

This paper did not explore those advantages.   
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Table 1: Parameter values 
 

DEM JPY CHF GBP
S1 µ1 0.002 0.082 0.058 -0.030

h0 0.044 0.012 0.062 0.005
h1 0.313 0.258 0.419 0.154
p1 0.970 0.973 0.990 0.955
q1 0.977 0.987 0.992 0.988

S2 µ2 0.049 -0.006 0.131 0.012
1/n0 0.005 0.005 0.096 0.006
1/n1 0.301 0.359 0.370 0.465
p2 0.991 0.969 0.985 0.978
q2 0.995 0.989 0.974 0.986

S3 µ3 0.212 0.243 0.257 -0.283
p3 0.989 0.989 0.984 0.920
q3 0.998 0.995 0.997 0.995

µ0 -0.221 -0.228 -0.287 0.300

LL -1394.315 -1358.414 -1852.541 -1057.298  
 

Notes:  The table shows the estimated parameters and the log-likelihoods from the model 

described in equation (8), estimated over the in-sample period: 1974 through 1981 (through 1982 

for the USD/JPY rate). S1, S2, and S3 are the Markov state variables.  
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Table 2: Markov trading rule statistics 

DEM JPY CHF GBP
Filter 1 -0.0072 -0.0128 -0.0625 -0.0021
Filter 2 -0.0023 0.0211 0.0374 0.0369

 DEM  JPY  CHF  GBP  DEM  JPY  CHF  GBP DEM JPY CHF GBP
Return 10.30 16.80 12.04 11.85 6.42 7.54 6.06 1.08 1982-1986 9.58 12.78 10.88 1.30
t-stat 3.05 5.22 2.80 3.81 2.93 3.36 2.50 0.53 1987-1991 13.20 7.01 9.99 7.26
trades 9.65 5.23 1.50 1.75 10.52 7.78 2.00 1.83 1992-1996 -0.47 11.14 4.89 -6.98
% long 69.15 60.20 70.94 55.97 61.11 56.60 73.91 72.10 1997-2001 2.53 6.65 -2.84 -0.99
Sharpe 1.08 1.74 0.99 1.35 0.61 0.71 0.52 0.11 2002-2005:6 7.64 -1.66 7.99 6.47
Beta 1 NA NA NA NA -0.02 0.01 0.02 0.17
SE 1 NA NA NA NA (0.05) (0.05) (0.05) (0.04)
Beta 2 -0.08 0.03 -0.07 0.02 -0.09 -0.02 -0.08 0.02
SE 2 (0.07) (0.07) (0.08) (0.07) (0.04) (0.05) (0.05) (0.04)

In-Sample: 1974 - 1981 Out-of-Sample: 1982 - 2005:6 Subsample return breakdown

 

Notes:   The rows in each panel show the filter sizes (see equation (10)), the number of observations, the annualized return, net of 

transactions costs, in percentage terms, as well as the t statistic for that annual return, the mean number of trades per year, the 

percentage of business days the trading rule was long in the foreign currency, the Sharpe ratio and CAPM βs using the Morgan 

Stanley Capital International World Index and the S&P 500 as the market portfolios.  β1 is the CAPM beta of the trading rule portfolio 

with the MSCI world index and β2 is the analogous statistic for the S&P 500.  The leftmost panel shows the in-sample results (1974-

1981/82), the middle panel shows the full out-of-sample results (1982/83- June 2005) and the rightmost panel shows a subsample 

breakdowns of the mean return.  The initial subsample excludes 1982 for the JPY.  
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Table 3:  Tests of portfolio rules using equally weighted shares of the Markov trading rules and 

the best, ex ante moving average rules 

 
Out-of-Sample: 1982 - 2005:6

 DEM  JPY  CHF  GBP DEM JPY CHF GBP
Return 6.18 5.73 5.04 2.23 1982-1986 11.18 10.61 10.02 5.22
t-stat 3.29 2.86 2.57 1.42 1987-1991 12.86 7.99 9.95 11.16
trades 16.36 19.34 11.63 14.57 1992-1996 -1.35 6.94 2.88 -5.20
% long 42.36 38.18 44.30 38.77 1997-2001 3.33 5.07 0.21 -2.23
Sharpe 0.69 0.64 0.53 0.31 2002-2005:6 4.36 -3.96 0.91 2.22

5-year Subsample Returns

 
 
Notes:  The left-hand panel displays out-of-sample results for an equally weighted portfolio rule 

using Markov and MA signals.  The right-hand panel shows returns for the portfolio rule over 

subsamples.  See the Notes to Table 2 for row headers.  
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Table 4: Forecast statistics for the Markov switching models 
 

DEM JPY CHF GBP
MSE 1 0.992 0.990 0.996 0.999
MSE 5 0.978 0.947 0.992 0.993
MSE 10 0.968 0.952 0.994 0.989
MSE 20 0.968 0.955 0.998 0.991
MAE 1 0.995 0.993 0.995 0.997
MAE 5 0.992 0.985 0.992 0.995
MAE 10 0.988 0.988 0.994 0.993
MAE 20 0.986 0.993 0.997 0.992
%Right 1 53.37 55.06 53.32 54.67
%Right 5 53.37 54.92 54.22 54.12
%Right 10 52.02 54.84 52.32 53.77
%Right 20 51.42 53.06 50.87 53.37

 DEM  JPY  CHF  GBP
MSE 1 1.002 1.001 1.002 1.001
MSE 5 1.001 1.002 1.000 1.001
MSE 10 1.002 1.002 1.001 1.000
MSE 20 1.002 1.000 1.001 1.000
MAE 1 1.000 1.004 1.001 1.001
MAE 5 0.999 1.002 0.999 1.000
MAE 10 0.999 1.001 1.000 0.999
MAE 20 1.000 0.999 1.001 0.999
%Right 1 51.62 51.40 50.52 50.76
%Right 5 51.94 51.42 51.71 51.42
%Right 10 51.64 51.40 50.28 51.06
%Right 20 50.52 51.35 50.31 50.98

In-Sample

Out-of-Sample

 
 
Notes:  The top panel shows the number of observations and the ratios of in-sample MSE and 

MAE for the Markov switching model to the naive constant return model at forecast horizons of 

1, 5, 10, and 20 business days.  Ratios less than one indicate that the Markov model forecasts 

exchange rate returns better than the naive model.  The rows labeled “%Right 1” to “%Right 20” 

show the percentage of predictions of the return with the correct sign at the same horizons. The 

bottom panel shows the out-of-sample results. Asymptotic standard errors for the %Right 

statistics are ( ) =− Tpp /1 1.117% for the top panel and 0.65% for the bottom panel. 
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Figure 1:  One-year rolling Sharpe ratios  

 
 
Notes:  One-year rolling Sharpe ratios over the whole sample.  Vertical lines depict the break 

between in-sample and out-of-sample periods.  Horizontal lines denote zero.  
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