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1. Monetary policy advice

1.1. Determinacy. A fundamental issue in the evaluation of alternative monetary

policy rules is the question of whether a proposed policy rule is associated with a determi-

nate equilibrium or not. Starting with the work of Sargent and Wallace (1975), it has been

shown that certain types of policy rules may be associated with large sets of rational ex-

pectations equilibria (REE) and that some of these equilibria may involve fluctuations in

variables like inflation and real output due solely to self-fulfilling expectations. Such rules

and the associated equilibria arguably ought to be avoided if one wishes to stabilize these

variables.1 Perhaps disconcertingly, this problem appears to be particularly acute for pol-

icy rules which may otherwise seem to be fairly realistic in terms of actual central bank

behavior. For example, Clarida, Gali and Gertler (1998) have provided evidence which

suggests that monetary policy for the major industrialized countries since 1979 has been

forward-looking: Nominal interest rates are adjusted in response to anticipated inflation.

This empirical finding is somewhat puzzling in light of the fact that such forward-looking

rules are associated with equilibrium indeterminacy in many models (see, in particular,

Bernanke and Woodford (1997)). Similarly, in many models policy rules which call for the

monetary authority to respond aggressively to past values of endogenous variables (such

as the previous quarter’s deviations of inflation from a target level, or the output gap)

can be associated with explosive instability of rational expectations equilibrium. Yet at

the same time, such policy rules might also be viewed as fairly realistic in terms of ac-

tual central bank behavior in some contexts. Thus, at least two empirically relevant and

seemingly ordinary-looking classes of policy rules seem to be associated with important

theoretical problems.

These theoretical concerns impinge on the design of stabilization policy. Even aside

from broad modeling uncertainty, there is considerable sampling variability about the es-

timated parameters of a given model of the macroeconomy. When a candidate class of

policy rules may or may not generate indeterminacy, or explosive instability, depending

on the particular parameter values of the structural model and of the policy rule, it cre-

ates something of a minefield for policy design.2 One might, for instance, recommend a

particular rule on the basis that it would generate a determinate rational expectations

1Some of the authors that discuss this issue most recently include Bernanke and Woodford (1997),
Carlstrom and Fuerst (2000), Christiano and Gust (1999), Clarida, Gali and Gertler (2000), McCallum
and Nelson (1999), Rotemberg and Woodford (1998, 1999), and Woodford (2003).

2 See, for example, the discussion in Christiano and Gust (1999).
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equilibrium, and that the targeted equilibrium would have desirable properties based on

other criteria, such as utility of the representative household in the model. And yet, in

reality, important parameters may lie (because of sampling variability alone) in a region

associated with indeterminacy of equilibrium, or with explosive instability. Actually im-

plementing the proposed rule could then lead to disastrous consequences. Thus, from the

perspective of the design of stabilization policy, one would greatly prefer to recommend

policy rules such that, even if the structural parameters actually take on values some-

what different from those that might be estimated, a determinate rational expectations

equilibrium is produced.

1.2. Learnability. Even when a determinate equilibrium exists, coordination on that

equilibrium cannot be assured if agents do not possess rational expectations at every point

in time. It therefore seems important to analyze these systems when agents must form

expectations concerning economic events using the actual data produced by the economy.

In general terms, the learning approach admits the possibility that expectations might

not initially be fully rational, and that, if economic agents make forecast errors and try

to correct them over time, the economy may or may not reach the REE asymptotically.

Thus, beyond showing that a particular policy rule reliably induces a determinate REE,

one needs to show the potential for agents to learn that equilibrium.3 In this paper,

we assume the agents of the model do not initially have rational expectations, and that

they instead form forecasts by using recursive learning algorithms–such as recursive least

squares–based on the data produced by the economy itself. We ask whether the agents in

such a world can learn the equilibria of the system induced by different classes of monetary

policy feedback rules. We use the criterion of expectational stability (a.k.a. E-stability)

to calculate whether rational expectations equilibria are stable under real time recursive

learning dynamics or not. The research of Evans and Honkapohja (2001) and Marcet

and Sargent (1989) has shown that the expectational stability of rational expectations

equilibrium governs local convergence of real time recursive learning algorithms in a wide

variety of macroeconomic models.

1.3. The benefits of monetary policy inertia. We conclude that it is important

to recommend to central banks those policy rules which have desirable determinacy and

3See Bullard and Mitra (2002) and Evans and Honkapohja (2003a,b).
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learnability properties, taking into consideration possible imprecision in our knowledge of

structural parameters. Our main finding is that a wide variety of monetary policy rules

are desirable in this sense provided the monetary authorities move cautiously in response

to unfolding events. This is true both from the point of view of determinacy and of

learnability of equilibrium. We model this caution, or inertia, on the part of the central

bank by allowing the contemporaneous interest rate to respond to the lagged interest rate

in the policy rule.

Inertia is a well-documented feature of central bank behavior in industrialized coun-

tries: Policymakers show a clear tendency to smooth out changes in nominal interest rates

in response to changes in economic conditions. Rudebusch (1995) has provided one statis-

tical analysis of this fact. More casually, actual policy moves are discussed among central

bankers and in the business press in industrialized countries as occurring as sequences of

adjustments in nominal interest rates in the same direction. This is so much the case, in

fact, that policy inertia has been the source of criticism of the efforts of central bankers,

as suggestions are sometimes made that policymakers have been unwilling to move far

enough or fast enough to respond effectively to incoming information about the economy.

Our study provides analytical support for the idea that monetary policy inertia en-

hances the prospects for equilibrium determinacy and learnability in the context of a

standard, small, forward-looking model which is currently the workhorse for the study

of monetary policy rules. More specifically, we consider two variants of monetary policy

feedback rules made famous by the seminal work of Taylor (1993, 1999a, 1999b). In one

case, the central bank is viewed as adjusting a short-term nominal interest rate in response

to deviations of past values of inflation and output from some target levels and, in order to

capture interest rate smoothing, we also include a response to the deviation of the lagged

interest rate from some target level. We call this the lagged data specification. Our second

specification calls for the policymakers to react to forecasts of inflation deviations and the

output gap, in addition to the lagged interest rate, and we call this the forward-looking

specification.4

In previous studies it has been observed that there are important determinacy prob-

lems with both of these rules in the absence of inertia (see Bernanke and Woodford (1997),

Bullard and Mitra (2002), Rotemberg and Woodford (1999), and Woodford (2003)). We

4We consider only these two classes of rules due to space constraints. We do discuss the robustness of
our results to a wider class of rules when appropriate.
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find that by placing a sufficiently large weight on lagged interest rate deviations in each

of these classes of policy rules, the policy authorities can mitigate the threats of indeter-

minacy or explosive instability, and that this is one of the primary benefits of monetary

policy inertia. We also argue that policy inertia actually promotes learnability of rational

expectations equilibrium. Our contribution is to provide analytical results to this effect

and to highlight some of the intuition behind them.

1.4. Recent related literature. Our results suggest why other, non-inertial types

of policies might leave the economy vulnerable to unexpected dynamics, and hence why

central banks might willingly adopt inertial behavior. Recently, several very different

theories have been proposed as to why policy inertia might be observed, for instance

Woodford (1999), Caplin and Leahy (1996), and Sack (1998). Our results are probably

best viewed as complementary to these theories.

Bullard and Mitra (2002) study the determinacy and learnability of simple monetary

policy rules, that is, of policy rules which only respond to inflation and output deviations,

but not to lagged interest rate deviations, and so do not comment on the question of

monetary policy inertia. Evans and Honkapohja (2003a) analyze learnability in a simi-

lar model, and consider different ways of implementing optimal monetary policy under

discretion, which leads to non-inertial rules.5

The finding that interest-rate inertia is conducive to the existence of determinate

REE has been noted by Rotemberg and Woodford (1999), Woodford (2003), Benhabib,

Schmitt-Grohe, and Uribe (2003), and Carlstrom and Fuerst (2000). Our contribution

with regard to determinacy is to elaborate in greater detail the reasons for the numerical

findings in Rotemberg and Woodford (1999) and to show that the beneficial effects of

inertia are true for a wider class of policy rules than considered in Woodford (2003). In

addition, our results on determinacy are useful in understanding the effects of inertia on

learning dynamics. Benhabib, Schmitt-Grohe, and Uribe (2003) find support for super-

inertial interest rate policies in a somewhat different class of models where a supply side

channel of monetary policy transmission is emphasized. Carlstrom and Fuerst (2000)

consider models where the timing of money balances entering the utility function and the

nature of sticky price assumption along off-equilibrium paths is important. They find that

5Evans and Honkapohja (2003b) provide a survey of the recent literature on learnability and monetary
policy.
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inertial forward looking policies are subject to indeterminacy problems whereas backward

policies which react aggressively to past inflation can be associated with a determinate

equilibrium independently of the degree of inertia.

1.5. Organization. In the next section we present the model analyzed throughout

the paper. We also discuss the types of linear policy feedback rules we will use to organize

our analysis, and a calibrated case which we will occasionally employ. In the subsequent

sections, we present conditions for determinacy of equilibrium for the lagged and forward

looking policy rules. We then turn to the question of learnability of REE under our various

specifications. Section 5 considers the robustness of our results in Preston’s (2005a) model.

We conclude with a summary of our findings.

2. Environment

2.1. The model. We study a model developed by Woodford (2003) which we write

as

xt = Êtxt+1 − σ
³
rt − rnt − Êtπt+1

´
(1)

πt = κxt + βÊtπt+1 (2)

where xt is the output gap, πt is the period t inflation rate defined as the percentage change

in the price level from t− 1 to t, and rt is the nominal interest rate; each of the two latter
variables are expressed as a deviation from the long run level. Since we will also analyze

learning we use the notation Êtπt+1 and Êtxt+1 to denote the possibly nonrational private

sector expectations of inflation and output gap next period, respectively, whereas the same

notation without the hat symbol will denote rational expectations (RE) values.6 The

parameters σ, κ, and β ∈ (0, 1) are structural and assumed positive on economic grounds–
see Woodford (1999, 2003) for an interpretation of these constants. The “natural rate of

interest” rnt is an exogenous stochastic term that follows the process

rnt = ρrnt−1 + t (3)

where t is i.i.d. noise with variance σ2, and 0 ≤ ρ < 1 is a serial correlation parameter.

2.2. Alternative policy rules. We close the system by supplementing equations

(1), (2), and (3), which represent the behavior of the private sector, with a policy rule

6See Section 5 for more discussion of the role of expectations in the model under a learning assumption.
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for setting the nominal interest rate representing the behavior of the monetary authority.

We stress that we view identification of classes of rules that reliably produce determinacy

and learnability as a prior exercise to locating an optimal rule according to some objective

function assigned to the central bank. Once we isolate the characteristics of rules that

reliably produce both determinacy and learnability, then one could go about finding an

optimal or best-performing rule from among the ones in this set.

Taylor (1993, 1999a) popularized the use of interest rate feedback rules that react to

information on output and inflation. Our first specification considers a case in which

interest rates are adjusted in response to last quarter’s observations on inflation and the

output gap. This is our lagged data specification for our interest rate equation

rt = ϕππt−1 + ϕxxt−1 + ϕrrt−1. (4)

This specification is considered operational by McCallum (1999) since it does not call for

the central bank to react to contemporaneous data on output and inflation deviations.

Our second specification assumes that the authorities set their interest rate instrument

in response to their forecasts of output gap and inflation, so that the policy rule itself

is forward-looking. Forward-looking rules have been found to describe well the actual

behavior of monetary policymakers in countries like Germany, Japan, and the U.S. since

1979, as documented by Clarida, Gali, and Gertler (1998). We consider a simple version

of this rule, namely7

rt = ϕπÊtπt+1 + ϕxÊtxt+1 + ϕrrt−1. (5)

In the next section, we consider the determinacy of REE, and then we follow that with a

section analyzing the learnability of equilibrium. We maintain the following assumptions

throughout the paper: ϕπ ≥ 0 and ϕx ≥ 0, with at least one strictly positive, ϕr > 0,

κ > 0, σ > 0, and 0 < β < 1. We sometimes illustrate our findings using Woodford’s

(1999) calibrated values, namely, β = .99, σ−1 = .157, κ = .024, and ρ = .35.

3. Inertia and determinacy

3.1. Lagged data in the policy rule. We start by considering the system when

the policymaker reacts to lagged values of inflation, output, and interest rate deviations.
7Similar interest rate rules also arise in the context of implementing optimal discretionary monetary

policies and nominal GDP targeting, see respectively Evans and Honkapohja (2003a) and Mitra (2003).
One interpretation for this rule is that both policymakers and private agents have homogeneous expecta-
tions and learning algorithms. Alternately, it may be that the central bank simply targets the predictions
of private sector forecasters. However, one can allow for some forms of heterogeneity in learning rules,
see Honkapohja and Mitra (2005a, 2005b).
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Non-inertial lagged data rules (that is, rules with ϕr = 0) can easily lead to non-existence

of locally unique stationary solutions. Indeed, Bullard and Mitra (2002) note that a

sufficiently aggressive response to inflation and output deviations invariably leads to such

a situation in quantitatively important portions of the parameter space.8 We now show

that this problem need not arise if the central bank displays sufficient inertia in setting

its interest rate.

In this case, our policy rule is given by equation (4), so that the complete system is

given by equations (1), (2), (3), and (4). If yt = (xt, πt, rt)0, then this system can be put

in the form Êtyt+1 = B1yt + ςrnt , where

B1 =

⎡⎣ 1 + β−1κσ −β−1σ σ

−β−1κ β−1 0
ϕx ϕπ ϕr

⎤⎦ . (6)

Since rt is predetermined while xt and πt are free, equilibrium is determinate if and only

if exactly one eigenvalue of B1 is inside the unit circle.9

Woodford (2003) provides necessary and sufficient conditions for determinacy of equi-

librium in such a system. The details of these calculations are given in Appendix A. The

following two conditions together are shown there to be necessary for determinacy

κ(ϕπ + ϕr − 1) + (1− β)ϕx > 0, (7)

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (8)

The condition (7) is precisely what Woodford (2001, 2003) calls the Taylor principle,

whereby in the event of a permanent one percent rise in inflation, the cumulative increase

in the nominal interest rate is more than one percent. However, the Taylor principle in

general is not sufficient for determinacy, because another necessary condition for determi-

nacy is condition (8). This proves the following result:

Proposition 1. Assume that κ(ϕπ+ϕr− 1)+ (1−β)ϕx > 0 for the inertial lagged data

interest rule (4). Then a necessary condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (9)

This proposition shows that the Taylor principle is not sufficient for determinacy, since

it is also necessary that the degree of inertia ϕr be large enough. If the central bank merely
8The interested reader can consult Figure 2 in that paper, or similarly Figure 2.15 of Rotemberg and

Woodford (1999). The analytical details for this result are in Proposition 11; see Appendix A.
9Our determinacy analysis follows the conventional practice of Blanchard and Kahn (1980).
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responds vigorously to inflation and output without displaying enough inertia, then the

condition for determinacy may be violated.

Appendix A also shows that a set of necessary and sufficient conditions required for

determinacy reduce to (7), (8), and

ϕr > 2− (1 + κσ)β−1. (10)

The right hand expression in (10) is less than 1 since κ > 0, σ > 0, and 0 < β < 1. These

conditions show that a large enough value of ϕr will always result in determinacy since

this contributes to satisfaction of all of the conditions (7), (8), and (10). A value of ϕr ≥ 1
always satisfies (7) and (10), so that if ϕr also satisfies condition (8), the conditions for

determinacy will be met. Hence, this proves:

Proposition 2. Assume that ϕr ≥ 1 for the inertial lagged data interest rule (4). Then
the necessary and sufficient condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (11)

The analytical results given above provide intuition for a number of results obtained in

more complicated forward-looking models. For instance, Rotemberg and Woodford (1999)

found that large values of ϕr tend to be associated with a unique equilibrium. This is

easily explained by conditions (7), (8), and (10) which are sufficient for a determinate

outcome. Values of ϕr ≥ 1 automatically satisfy condition (7), and condition (10) along
with small values of κ, such as the one employed by Rotemberg and Woodford (1999),

help to satisfy condition (8) easily. McCallum and Nelson (1999, pp. 34-35) found that

policy rules with large values of ϕπ or ϕx deliver dynamically stable (in their terminology)

results, so long as there is a sufficient level of monetary policy inertia. Their explanation

for this surprising finding was in terms of relatively small values of σ and κ, and can be

understood from our condition (8). Relatively small values of σ and κ mean that condition

(8) is likely to be easily satisfied.10

3.2. Forward-looking policy rule. With the forward-looking rule (5), we define

yt = (xt, πt, rt−1)
0 and put the system in the form Êtyt+1 = Byt + ςrnt , where

B = (1− ϕxσ)
−1

⎡⎣ 1− β−1κσ(ϕπ − 1) β−1σ(ϕπ − 1) σϕr
−β−1κ(1− ϕxσ) β−1(1− ϕxσ) 0

ϕx(1 + β−1κσ)− β−1κϕπ β−1(ϕπ − ϕxσ) ϕr

⎤⎦ . (12)

10Propositions 1 and 2 may give the impression that the Taylor principle is always necessary for deter-
minacy. However, this is not true. See Proposition 11 in Appendix A.
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Since rt−1 is pre-determined and xt, πt are free, equilibrium is determinate if and only if

exactly one eigenvalue of B is inside the unit circle. As shown in Bernanke and Woodford

(1997) and Bullard and Mitra (2002), a sufficiently aggressive response to inflation or

output leads to indeterminacy with the rule (5) when ϕr = 0. We now turn to showing

how this problem can be circumvented when policymakers adopt a sufficiently aggressive

response to the lagged interest rate.11

The first proposition shows that if the response to the output gap ϕx is not large,

then necessary conditions for determinacy are given by conditions (7) and (8). More

specifically,

Proposition 3. Assume that ϕx < 2σ−1 for the inertial forward looking policy rule (5).

Then conditions (7) and (8) are necessary for determinacy.12

This again shows that the Taylor principle in general is not sufficient for determinacy,

as a high degree of inertia is also necessary. In addition, we have

Proposition 4. Assume that ϕr ≥ 1 for the inertial forward looking policy rule (5).

Then the necessary and sufficient condition for determinacy is (8).

The same proposition was proved for rules responding to lagged data (Proposition

2). These results show that for given values of ϕπ and ϕx, a large enough value of ϕr is

invariably associated with determinacy.

3.3. Summary of the results on determinacy. We have seen the beneficial effects

of a large degree of inertia in promoting determinacy for the lagged data rule and the

forward looking rule. We stress that the same cannot be said for the response to infla-

tion or output in the interest rule–a response which is too aggressive with respect to

either of these variables may lead to problems of non-existence of stationary REE, or to

indeterminacy of REE. The tendency of policy inertia to help generate determinacy may

be an important reason why so much inertia is observed in the actual monetary policies

of industrialized countries. However, too much policy inertia may cause another type of

instability–that of the learning dynamics. We now turn to this topic.

11Woodford (2003) has considered the determinacy analysis of a variant of the forward rule where the
interest rate responds to expected inflation and the current output gap.
12To economize on space, we state this and the next propostion without proof. The proofs may be

obtained from the authors upon request.
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4. Inertia and learnability

4.1. Lagged data in the policy rule.

The system under learning. We now consider learning, beginning with the case

in which the policy authority responds to lagged data.13 In this case, the complete

system is given by equations (1), (2), (3), and (4). We analyze the expectational stability

of stationary minimum state variable (MSV) solutions (see McCallum (1983)). For the

analysis of learning, we need to compute the MSV solution and for this we need to

obtain a relationship between the current endogenous variables (and their lags) and future

expectations. This relationship is now obtained by first defining the vector of endogenous

variables, yt = (xt, πt, rt)0, and by putting our system in the form yt = ΩÊtyt+1+δyt−1+

κrnt where

Ω =

⎡⎣ 1 σ 0
κ β + κσ 0
0 0 0

⎤⎦ , (13)

δ =

⎡⎣ −σϕx −σϕπ −σϕr
−κσϕx −κσϕπ −κσϕr
ϕx ϕπ ϕr

⎤⎦ . (14)

The MSV solution for this model takes the form

yt = ā+ b̄yt−1 + c̄rnt (15)

with ā = 0, and with b̄ and c̄ given by

b̄ = (I − Ωb̄)−1δ, (16)

c̄ = (I − Ωb̄)−1(κ + ρΩc̄), (17)

provided the matrix (I − Ωb̄) is invertible. Equation (16) potentially yields multiple

solutions for b̄ and the determinate case corresponds to the situation when there is a

unique solution for b̄ with all eigenvalues inside the unit circle. For the analysis of learning,

we assume that agents have a perceived law of motion (PLM) of the form

yt = a+ byt−1 + crnt (18)

corresponding to the MSV solution. We then compute the following expectation (assuming

that the time t information set does not include yt)

Êtyt+1 = a+ bÊtyt + cρrnt = (I + b)a+ b2yt−1 + (bc+ cρ)rnt . (19)
13Our analysis of learning is standard and follows Evans and Honkapohja (2001), Chapter 10.
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Substituting these computed expectations into the model one obtains an actual law of

motion (ALM)

yt = (Ω+Ωb)a+ (Ωb
2 + δ)yt−1 + (Ωbc+Ωcρ+ κ)rnt . (20)

The mapping from the PLM to the ALM takes the form

T (a, b, c) = ([Ω+Ωb] a, Ωb2 + δ,Ωbc+Ωcρ+ κ). (21)

Expectational stability is then determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) . (22)

The fixed points of equation (22) give us the MSV solution (ā, b̄, c̄). We say that a

particular MSV solution (ā, b̄, c̄) is expectationally stable if the MSV fixed point of the

differential equation (22) is locally asymptotically stable at that point. Our system is in

a form where we can apply the results of Evans and Honkapohja (2001). It can then be

shown that for E -stability of any MSV solution, assuming that the time t information set

is (1, y0t−1, r
n
t )
0, the eigenvalues of the matrices

b̄0 ⊗ Ω+ I ⊗ Ωb̄− I, (23)

ρΩ+ Ωb̄− I, (24)

Ω+Ωb̄− I, (25)

need to have negative real parts (where I denotes a conformable identity matrix). If any

eigenvalue of the above matrices has a positive real part, then the MSV solution is not

E -stable. Even small expectational errors would tend to drive the system away from the

REE. We emphasize that the MSV solution for b̄ directly affects the E -stability conditions

and this is the key to understanding the results under learning.

A quantitative case. We illustrate regions of determinacy and E -stability for the

case when the policy authorities react to lagged data in Figure 1 where we have em-

ployed the baseline parameter values. Figure 1 contains three panels, the first of which

corresponds to the case where there is no policy inertia, so that ϕr = 0. The figure is

drawn in (ϕπ, ϕx) space, holding all other parameters at their baseline values. Vertical

lines in the figure denote parameter combinations that generate determinacy, and that

also generate local stability in the learning dynamics. Horizontal lines, on the other hand,
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Figure 1: With ϕr = 0, the region of the parameter space associated with both determinate and
learnable rational exepectations equilibria involves relatively small values for ϕx, and generally
ϕπ > 1. In the blank region, determinacy does not hold. When ϕr = .65, which is close to
empirical estimates in the literature, the region of the parameter space associated with determi-
nacy and learnability expands, relative to the no inertia case. For a large value of ϕr, such as
ϕr = 5 as shown here, much of the pictured (ϕπ, ϕx) space is associated with both determinacy
and learnability.

indicate parameter combinations that generate determinacy, but where the unique equi-

librium is unstable in the learning dynamics. In this and all figures, the blank region is

not associated with determinacy.

The ϕr = 0 portion of this figure illustrates that determinacy does not always imply

learnability. It also illustrates that Taylor-type rules which react aggressively to inflation,

but with little or no reaction to the output gap or the lagged interest rate, tend to be

associated with both determinacy and learnability. However, one concern regarding this

panel might be that parameter values within an empirically relevant range are sometimes

associated with equilibria which are not determinate, or which are determinate but not

learnable.

The second panel of Figure 1 illustrates how the situation is improved when the de-

gree of monetary policy inertia is increased from zero to ϕr = .65. This value is close to

estimates of the degree of policy inertia based on U.S. postwar data, such as Sack (1998).

In this case, the region of the (ϕπ, ϕx) space associated with both determinacy and learn-

ability of equilibrium has been enlarged. The region associated with determinate, but

unlearnable, rational expectations equilibria has been eliminated. This effect becomes
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even more pronounced in the third panel, where a very large value of ϕr is employed,

specifically, ϕr = 5. In this case, a much larger portion of the space is determinate and

learnable. We conclude that larger degrees of policy inertia enhance the prospects for

determinacy considerably, relative to the case where there is no policy inertia at all, in

this quantitative case. In addition, learnability does not appear to be jeopardized by large

degrees of policy inertia, as the determinate equilibria are also learnable, even when ϕr is

large.

Intuition and analytics. We now provide some intuition and analytics for the

phenomenon illustrated in Figure 1. We begin with a discussion of non-inertial, ϕr = 0,

policy rules. The triangular region in the left hand panel of Figure 1 shows that there are

determinate equilibria which are E -unstable in this case. We first provide intuition for

this phenomenon. When ϕr = 0, the reduced form model with the interest rate rule (4)

takes the form yt = ΩÊtyt+1 + δyt−1 + κrnt with

Ω =

∙
1 σ
κ κσ + β

¸
, δ =

∙
−ϕxσ −ϕπσ
−κϕxσ −κϕπσ

¸
, (26)

where yt = [xt, πt]
0. The MSV solution continues to take the form (15) with the same

solutions for ā (= 0), and b̄, c̄ given by (16) and (17). It is the feedback from lagged en-

dogenous variables (via b̄) in the stationary MSV solution that is the key to understanding

E -instability of determinate equilibria.

In matrix form, the MSV solution for b̄ is of the form

b̄ =

∙
bxx bxπ
bπx bππ

¸
, (27)

where bxπ = ϕπϕ
−1
x bxx, bπx = ϕxϕ

−1
π bππ (assuming ϕx, ϕπ > 0), and bxx and bππ can

be computed from equation (16); see Appendix B. Written explicitly, this MSV solution

takes the form

xt = bxxxt−1 + bxππt−1 + ... (28)

πt = bπxxt−1 + bπππt−1 + ... (29)

Here the three elipses denote terms involving shocks not needed for our analysis. We

conclude that b̄ in (27) is singular, and that |bxx + bππ| < 1 is required for stationarity of
the MSV solution b̄.
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We first provide an economic interpretation of E -stability. The nature of the MSV

solution is crucial for E -stability since we start the system not at the REE but from

within a small neighborhood of the REE of interest. If bxx and bππ are positive (so

that bxπ and bπx are positive as well), then the MSV solution (28)-(29) has a perverse

feature. This feature is that while an increase in either lagged output or inflation raises

the nominal interest rate, the increase in the nominal interest rate is not large enough (i.e.,

the real interest rate falls). Consequently, current output and inflation actually increase

which further enhances inflationary pressures if one starts away from the REE. If, on the

other hand, agents do have rational expectations, then their beliefs will exactly match

realizations and this equilibrium will be the unique one in this parameter range. It is only

when agents do not have RE to start with that there will be pressure to move further

away from these determinate REE owing to the perverse nature of the solution. Dynamics

along off-equilibrium paths is important for E -stability but not for determinacy.

We now turn to the analytical details behind E -stability. To examine what type of

MSV solutions can be E -stable, we first note that a necessary condition for E -stability is

that the eigenvalues of Ω+Ωb̄− I have negative real parts and for this, the determinant

of Ω+Ωb̄− I, given by

−bxx(1− β + κϕπϕ
−1
x )− bππ(κ+ ϕxϕ

−1
π )σ − κσ, (30)

must be positive. This shows that it is necessary for at least one of bxx or bππ to be

negative for E -stability since otherwise this determinant will be negative. In other words,

if both bxx and bππ are positive, the MSV solution will necessarily be E -unstable verifying

the economic intuition outlined above.

This is precisely what happens in the triangular determinate but E -unstable region

of Figure 1. This region corresponds to the violation of the Taylor principle and the

necessary and sufficient condition for determinacy in this case is given by condition (55)

in Proposition 11 (but with ϕr = 0 for this discussion). It can be easily checked that the

unique stationary solution for b̄ in this region involves bxx > 0 and bππ > 0 which makes

this solution E -unstable. As long as ϕr is sufficiently small, the existence of a determinate

equilibrium does not preclude a solution for b̄ with both bxx and bππ positive. As a result,

a triangular determinate but E -unstable region continues to exist for small ϕr; however

the size of this region shrinks as ϕr increases eventually being eliminated.

The determinate and E -stable region when ϕr = 0, on the other hand, satisfies the
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Taylor principle and it can be checked numerically that these regions are characterized

by MSV solutions where bxx and bππ (and hence bxπ and bπx) are all negative. In these

solutions, an increase in either lagged output or inflation increases both the nominal

and the real interest rate so that contemporaneous output and inflation fall pushing the

economy back towards the initial equilibrium even when agents start outside the REE

and are learning using recursive least squares.

When the policy rule involves ϕr > 0, the MSV solution b̄ takes the form

b̄ =

⎡⎣ bxx bxπ bxr
bπx bππ bπr
ϕx ϕπ ϕr

⎤⎦ (31)

with bxx = ϕxϕ
−1
r bxr, bxπ = ϕπϕ

−1
r bxr, bπx = ϕxϕ

−1
r bπr, and bππ = ϕπϕ

−1
r bπr; see

Appendix C. Consequently, once bxr and bπr are known, the remaining unknowns can be

determined from them numerically. Written explicitly the MSV solution is of the form

xt = bxxxt−1 + bxππt−1 + bxrrt−1 + ... (32)

πt = bπxxt−1 + bπππt−1 + bπrrt−1 + ... (33)

where the interest rate rule in the MSV solution is (4). A necessary condition for Ω+Ωb̄−I
to have eigenvalues with negative real parts (that is, for E -stability) is that a2, defined as

a2 = −[(1− β)ϕx + κϕπ]ϕ
−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr − κσ, (34)

be positive; see Appendix D for the details. This implies that at least one of bxr or bπr

must be negative for E -stability. This proves:

Proposition 5. A necessary condition for an MSV solution with the lagged data interest

rule (4) to be E-stable is that either bxr < 0 or bπr < 0.

Proposition 5 shows that any MSV solution with both bxr and bπr positive is E -

unstable regardless of the degree of inertia in the policy rule. The economic intuition

runs parallel to the case of the non-inertial, ϕr = 0, rule. E -stability rules out a perverse

(positive) effect of the lagged interest rate on contemporaneous output and inflation in the

MSV solution which is important for off-equilibrium dynamics. If agents are learning, then

this MSV solution should have the right properties to enable them to converge to the REE

of interest. If bxr and bπr are both strictly positive, then an increase in the interest rate

by the monetary authority (due to an increase in inflationary pressures in the economy)
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will be insufficiently large, actually raising future inflation and output further worsening

these inflationary pressures. This in turn would raise expectations of inflation and output

gap of private agents further increasing inflation and pushing the economy away from the

REE, even if initially agents had started from a small neighborhood of this REE.

We emphasize that this intuition is relevant for low levels of monetary policy inertia.

The situation changes markedly when the degree of inertia is large. It is easy to check

that two of the eigenvalues of b̄ in (31) at the MSV solution are zero and the third one is

given by ϕr +ϕxϕ
−1
r bxr +ϕπϕ

−1
r bπr. Existence of a stationary solution for b̄ is, therefore,

equivalent to the requirement that

−(1 + ϕr)ϕr < ϕxbxr + ϕπbπr < (1− ϕr)ϕr. (35)

Without any further calculations, the right hand inequality in (35) immediately demon-

strates that if ϕr ≥ 1, a necessary condition for stationarity is that at least one of bxr or
bπr (i.e., bxx or bππ) be negative. Hence, we have the following:

Proposition 6. Assume that ϕr ≥ 1. A necessary condition for an MSV solution with

the lagged data interest rule (4) to be stationary is that either bxr < 0 or bπr < 0.

In other words, a high degree of inertia precludes a stationary MSV solution with

both bxr and bπr positive. Earlier, we saw that for a small degree of inertia, determinate

equilibria with positive values of both bxr and bπr satisfying (35) existed. These solutions

were E -unstable by Proposition 5. We conclude that it is only with a high degree of

inertia that the necessary conditions for both determinacy and E -stability coincide.

Imposing more conditions in the high inertia case enables us to provide a necessary and

sufficient condition for E -stability below. One can check numerically that super-inertial

rules (that is, rules with ϕr ≥ 1) lead to determinate MSV solutions with both bxr and bπr
negative.14 Appendix D shows that if the degree of inertia is large enough, the necessary

and sufficient condition for E -stability simplifies to the one given in the following:

Proposition 7. Assume that ϕr ≥ 1 for the lagged interest rule (4) and consider a

stationary MSV solution (i.e., one satisfying (35)) with bxr < 0 and bπr < 0. Let σϕx +

14We are unable to prove this result analytically, that is, that ϕr ≥ 1 implies bxr < 0 and bπr < 0.
However, this can be easily checked numerically for plausible values of parameters (including the baseline
values in Table 1) and is the basis for Proposition 7 below.
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(β + κσ − 1)ϕπ ≥ 0 and

ϕ+r ≡ 2−1β−1[1 + β + κσ +
p
(1 + β + κσ)2 − 4β] > 1. (36)

Then if ϕr ≥Max{β+κσ, ϕ+r }, the necessary and sufficient condition for E-stability is15

−[(1− β)ϕx + κϕπ]ϕ
−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr > κσ. (37)

We stress that bxr < 0 and bπr < 0 per se do not suffice for condition (37) to be

satisfied. As it turns out, numerically, the determinate MSV solutions with super-inertial

rules satisfy condition (37) and all such solutions are E -stable. In other words, an increase

in interest rate should exert a strong dampening influence on inflation and output to reduce

inflationary pressures in the economy and enable a return to the REE of interest.

4.2. Forward expectations in the policy rule.

The system under learning. With forward expectations the complete system is

given by equations (1), (2), (3), and (5). We analyze E -stability of the MSV solution.

After defining the vector of endogenous variables, yt = (xt, πt, rt)0, we put our system in

the form yt = ΩÊtyt+1 + δyt−1 + κrnt , where Ω and δ are given by

Ω =

⎡⎣ σ(σ−1 − ϕx) σ(1− ϕπ) 0
κσ(σ−1 − ϕx) σ(κ+ βσ−1 − κϕπ) 0

ϕx ϕπ 0

⎤⎦ , (38)

δ =

⎡⎣ 0 0 −σϕr
0 0 −κσϕr
0 0 ϕr

⎤⎦ . (39)

The MSV solutions take the same form (15) as in the case of lagged data, and the analy-

sis of learning is also the same. Hence, assuming that the time t information set is

(1, y0t−1, r
n
t )
0, E -stability of any MSV solution requires that the eigenvalues of the matri-

ces (23), (24) and (25) have negative real parts.

A quantitative case. Figure 2 illustrates how, even for this case where the pol-

icymakers are reacting to expectations of future inflation deviations and output gaps,

policy inertia tends to enhance the prospects for determinacy and learnability of a REE.

For low values of ϕr, such as the value ϕr = 0.1 in the first panel, we again find that

15We note that β+κσ > 1, which suffices for σϕx+(β+κσ−1)ϕπ ≥ 0, is generally satisfied for plausible
values of structural parameters since the discount factor β is close to 1 (including the baseline values). In
addition, for the baseline values, ϕ+r = 1.48. We conjecture that the condition ϕr ≥ Max{β + κσ,ϕ+r }
can be weakened.
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Figure 2: For small values of ϕr, forward-looking policy rules generate determinacy and learn-
ability provided ϕπ > 1 and ϕx is sufficiently small. For ϕr = .65, a larger region of the
(ϕπ, ϕx) space pictured is associated with both determinacy and learnability. Large values of
ϕr generate relatively large regions of determinacy and learnability in (ϕπ, ϕx) space.

active Taylor-type rules with little or no reaction to other variables are associated with

both determinacy and learnability of equilibrium. However, the large region in the figure

which is not associated with determinacy might be enough to limit recommendations of

such rules because of uncertainty about parameter values. The second and third panels of

Figure 2 show that increased policy inertia can mitigate such concerns, creating a larger

region of determinacy, and in addition, that in these cases determinate equilibria are also

learnable.

Intuition and analytics. We now provide some intuition and analytics for the

phenomena illustrated in Figure 2. As before, it is the MSV solution for b̄ which is crucial

for E -stability. To gain further understanding, we first explore the type of stationary

solutions permissible. Since it is only the lagged interest rate which appears in the model,

the MSV solutions written explicitly take the form

xt = bxrt−1 + ..., (40)

πt = bπrt−1 + ..., (41)

rt = brrt−1 + ..., (42)
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where bx, bπ, and br are to be determined by solving the system of equations (16); see

Appendix E for details. Assuming that Det[I − Ωb̄] = 1− bxϕx − bπϕπ 6= 0, the solution
for br is given by

br = ϕr(1− bxϕx − bπϕπ)
−1. (43)

We first consider a necessary condition for an MSV solution to be E -stable which is proved

in Appendix F.

Proposition 8. A necessary condition for E-stability of the MSV solution, (40)-(42),

associated with the forward looking interest rule (5) is that bxϕx + bπϕπ < 1 (which is

equivalent to br > 0 by (43)).

Once again, E -stability imposes restrictions on the parameters involved in the MSV

solution, independently of the degree of inertia in the policy rule. In particular, it imposes

the restriction that a rise in the current interest rate should necessarily lead to a rise in

the future interest rate in the MSV solution. Intuitively, when br > 0, an (unexpected)

rise in inflationary pressures causes the interest rate to rise today, which in turn raises the

interest rate tomorrow. This rise creates downward pressure on aggregate demand and

inflation reducing the inflationary pressures and pushing the economy back towards the

REE. If instead br < 0, then the rise in the interest rate reduces the rate tomorrow and

raises the output gap or inflation (since at least one of bx or bπ must then be positive)

which worsens the inflationary pressures pushing the economy further away from the REE.

This intuition is similar to that associated with the lagged data rule.

As in the case of lagged data, we examine the type of MSV solutions that can be

stationary and compare them with the E -stability conditions. The following proposition

is proved in Appendix E.

Proposition 9. Assume that ϕr ≥ 1. The MSV solution, (40)-(42), associated with

the forward looking interest rule (5), is stationary if and only if either of the following

conditions hold:

bxϕx + bπϕπ > 1 + ϕr (which implies br < 0), (44)

bxϕx + bπϕπ < 1− ϕr (which implies br > 0). (45)

In other words, even with a high degree of inertia, a stationary MSV solution is a priori

compatible with either br < 0 or br > 0. Such a stationary MSV solution could either
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be in the determinate or indeterminate region of the parameter space. But as in the case

of lagged data, a stationary solution with br < 0 implies a perverse relation in the sense

explained above. Proposition 8 immediately shows that the stationary MSV solutions

possible under Proposition 9 when br < 0 are always E -unstable. Such solutions do exist

in the indeterminate region of the parameter space as will be shown below. Hence, the

only stationary MSV solutions which can be E -stable when ϕr ≥ 1 are the ones with

br > 0.

To gain further intuition, consider the case when ϕx = 0. Appendix E provides the

details in this case. The MSV solution(s) for bπ are then given by a cubic polynomial. A

negative solution for bπ exists (implying br > 0) which satisfies (83) when ϕr + ϕπ > 1.

Also, if condition (8) in Proposition 4 is violated (with ϕx = 0), then another stationary

solution for bπ exists that has bπ > 0 (implying br < 0) satisfying condition (82). The

latter solution is E -unstable by Proposition 8.

A determinate solution under the conditions given in Proposition 4 involves bπ < 0,

bx < 0, and 0 < br < 1. Super-inertial rules, therefore, cause the determinate REE to

have the property that a rise in the lagged interest rate of one percentage point causes

a rise in the current interest rate of less than one percent, that is, 0 < br < 1. In other

words, a high degree of inertia rules out the stationary MSV solutions with br < 0 that

would necessarily be E -unstable by Proposition 8, and instead only permits stationary

solutions with 0 < br < 1 which can be E -stable.

Appendix F shows that the determinate MSV solution is E -stable when ϕr is large

enough. First, we recall Proposition 4 which stated that if ϕr ≥ 1, then condition (8) is
necessary and sufficient for determinacy. In particular, Appendix F proves the following:

Proposition 10. Assume that ϕx = 0 and that the conditions in Proposition 4 for

determinacy hold i.e., that ϕr ≥ 1 and condition (8) holds for the forward rule (5).

Then if ϕr ≥Max{1, β + κσ}, the determinate equilibria are E-stable.

The intuition behind this result follows from our discussion. A high degree of inertia

forces the determinate MSV solution to have the property that bπ < 0, bx < 0, and

0 < br < 1 which results in E -stability.16

16When ϕx > 0, it is easy to check numerically that if the policy rule is super-inertial, then the
determinate solutions involve bπ < 0, bx < 0, and 0 < br < 1 which then implies E -stability of the
determinate MSV solution.
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4.3. Alternative policy rules. Increasing the degree of monetary policy inertia ap-

pears to also be associated with learnability of rational expectations equilibrium in our

setting. We considered only two types of (albeit plausible) interest rate rules primarily

because of space constraints. However, similar results extend to other rules not reported

here. In particular, this is true for rules responding to contemporaneous values of infla-

tion, output, and the lagged interest rate as well as to contemporaneous expectations of

inflation and output and the lagged interest rate–in either case, a high degree of inertia

results in E-stability of the determinate REE.17

5. The infinite horizon model

It has been standard in the learning literature since Marcet and Sarget (1989) to replace

rational expectations agents with adaptive learners. In this paper we follow this standard,

takingWoodford’s basic two equations for output and inflation under rational expectations

(RE) and replacing RE by arbitrary subjective expectations in equations (1) and (2).

Honkapohja, Mitra, and Evans (2003) call this the Euler equation approach and note that

only one period ahead forecasts of output and inflation matter. They discuss how the

Euler equation approach can be a plausible model of bounded rationality.

Recently, Preston (2005a,b) has argued for an alternative representation of Woodford’s

model under arbitrary subjective expectations. Preston derives the model under bounded

rationality starting at the individual household and firm levels and obtains equations for

agents’ consumption and price setting that depend on forecasts into the entire infinite

future; Honkapohja, Mitra, and Evans (2003) call this the infinite horizon approach.

This is an interesting contribution, and we now turn to a discussion of how our results

concerning inertia might be affected by taking this alternative viewpoint on bounded

rationality.

Preston (2005a) shows that his model can be reduced to the following two equations

for output and inflation

xt = Êt

( ∞X
T=t

βT−t[(1− β)xT+1 − σ(rT − πT+1) + rnT ]

)
, (46)

17As discussed in Evans and Honkapohja (2001), E -stability conditions are in general sensitive to
the information agents use in forming their forecasts. However, if we assume instead that agents use
contemporaneous values of inflation and output in forming their forecasts (which McCallum (1999) would
label non-operational, since such information is not normally available in actual economies), then a high
degree of inertia continues to result in E -stability of the determinate REE.



Determinacy, Learnability, and Monetary Policy Inertia 22

πt = κxt + Êt

( ∞X
T=t

(αβ)T−t[καβxT+1 + (1− α)βπT+1)]

)
. (47)

To these equations, one can adjoin an equation for the interest rate rule such as (4) or (5).

We will conduct our analysis for the model (46) and (47) using the forward looking rule,

(5), for illustrative purposes. For simplicity, we also assume that rnt is i.i.d. The MSV

solution for the model continues to be of the form (15). Agents estimate a linear model

yt = at + btyt−1 + ctr
n
t + t

as before, where yt = (xt, πt, rt)
0, t is the error term, and at, bt, and ct are estimated

from actual data. For the E -stability analysis, we may assume the estimated parameters

to be time independent so that the PLM continues to be of the form (18) where

a =

⎡⎣ ax
aπ
ar

⎤⎦ , b =
⎡⎣ 0 0 bx
0 0 bπ
0 0 br

⎤⎦ , c =
⎡⎣ cx

cπ
cr

⎤⎦ . (48)

Agents compute the forecasts required in (46) and (47) by the following formula (T ≥ t+1)

ÊtyT = (I − b)−1(I − bT−t+1)a+ bT−t+1yt−1 + bT−tcrnt . (49)

Using these forecasts, the ALM can be computed as

yt = Xa +Xbyt−1 +Xcr
n
t . (50)

where the coefficients in (50) are defined in Appendix G. The parameters a, b, c in the

PLM (18) are mapped into the parameters Xa,Xb, and Xc in the ALM (50) and the fixed

points of this map correspond to the MSV solution. The mapping from the PLM to the

ALM can be analyzed for E -stability as before.

There are two scenarios which can be considered as discussed in Preston (2005b). The

first scenario is where agents know the policy rule (5) and use this rule to form forecasts.

The output gap equation is then given by (117) and the whole system by (118) in Appendix

G. For the baseline Woodford parameters, the beneficial effects of inertia extend to the

infinite horizon model as in the Euler equation model. Large degrees of inertia in the

interest rule lead to determinacy and E -stability.

There is an alternative scenario which can be considered as discussed in Preston

(2005b). This is the case where agents do not know (understand) the interest rate rule

(5) and accordingly form forecasts of the interest rate from their PLM. The output gap
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equation in this case is given by (119) and the whole system by (120) in Appendix G. The

results now change dramatically. Inertia is no longer sufficient to guarantee E -stability.

One has E -instability even with large degrees of inertia. These results are similar in flavor

to those in Preston (2005b). He too finds that certain forecast-based interest rules lead to

E -stability when agents are endowed with knowledge of the policy rule and to E -instability

when agents do not have this knowledge. As Preston discusses in some detail, this points

to the virtues of transparency in policy formulation which has been emphasized in the

recent literature of monetary policy.

6. Conclusion

Two key issues for the evaluation of monetary policy rules are whether they induce a

determinate rational expectations equilibrium or not, and whether that equilibrium is

learnable or not. We provide analytical results which indicate how an increased degree of

interest rate smoothing may induce both determinacy and learnability of rational expec-

tations equilibrium in a widely-used model of monetary policy. This is true across both of

our specifications of monetary policy rules–a finding which we believe substantially alters

the evaluation of these rules. Consequently, neither of these classes of policy rules–which

might be considered particularly realistic in terms of actual central bank behavior–should

be deemed undesirable on account of determinacy or learnability questions, once policy

inertia is taken into account.
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7. Appendices

7.1. APPENDIX A (Determinacy with Lagged Data Rule) . Woodford (2003)

provides necessary and sufficient conditions for determinacy of the system under a lagged

data policy rule. Appendix C, Proposition C.2, in Woodford (2003) lists three possible

sets of (mutually disjoint) conditions in terms of the characteristic polynomial of B1 under

which determinacy obtains. Specifically, he shows that a 3 × 3 matrix has exactly one
eigenvalue inside the unit circle and the remaining two outside if and only if one of three

cases holds. The cases are labelled I, II, and III. We will apply these conditions to B1.

First, note that the characteristic polynomial of B1 (given in (6)), p(λ), is given by

p(λ) = λ3 +A2λ
2 +A1λ+A0 (51)

where A2 = −(1+β−1+β−1κσ+ϕr), A1 = β−1+(1+β−1+β−1κσ)ϕr−σϕx, and A0 =
β−1σ(κϕπ+ϕx−σ−1ϕr).We have p(1) = 1+A2+A1+A0 and p(−1) = −1+A2−A1+A0,
so that

p(1) = β−1σ[κ(ϕπ + ϕr − 1) + (1− β)ϕx], (52)

p(−1) = β−1σ[κ(ϕπ − ϕr − 1) + (1 + β)ϕx − 2σ−1(1 + β)(1 + ϕr)]. (53)

Conditions (C.13) and (C.14) in Woodford (2003) are necessary for both Cases II and III

(and they also rule out Case I). These two conditions are that p(1) > 0 and p(−1) < 0,

which reduce to (7) and (8) in the text. This proves Proposition 1.
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The conditions required for Case III of Woodford are (C.13), (C.14), and (C.17), i.e.,

|A2| > 3. The final condition corresponds to (10) since

|A2| = 1 + β−1 + β−1κσ + ϕr > 3 (54)

iff condition (10) holds. This supplies the details behind Proposition 2.

We also state a proposition (without proof) which provides the required conditions for

determinacy when the degree of inertia is low.

Proposition 11. Assume that κ(ϕπ + ϕr − 1) + (1 − β)ϕx < 0 for the inertial lagged

data interest rule (4). Then the necessary and sufficient condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) < σ[κ(ϕπ − 1) + (1 + β)ϕx]. (55)

Note that condition (55) represents violation of condition (9) in Proposition 1. In

particular, it can be shown that if ϕr = 0, the necessary and sufficient condition for

determinacy is given by18

(1 + β)−1[κ(1− ϕπ) + 2(1 + β)σ−1] < ϕx < (1− β)−1κ(1− ϕπ). (56)

7.2. APPENDIX B (MSV Solution for Non-Inertial Lagged Data Rule). In

this case, assuming that D ≡ bxx(1 − βbππ) + (β + κσ)bππ + βbxπbπx + κbxπ + σbπx −
1 6= 0, the MSV parameter values are given by the solution to the equations bxx =

[(1 − βbππ)σϕx]D
−1, bxπ = [(1 − βbππ)σϕπ]D

−1, bπx = [(κ+ βbπx)σϕx]D
−1, and bππ =

[(κ+ βbπx)σϕπ]D
−1. These four equations yield bxπ = ϕπϕ

−1
x bxx and bπx = ϕxϕ

−1
π bππ so

that this system can be reduced to two (nonlinear) equations in two unknowns which can

be solved numerically. In general, there are three solutions for b̄ of which exactly one is

stationary in the determinate region.

7.3. APPENDIX C (MSV Solution for Inertial Lagged Data Rule). We now

consider the situation when ϕr > 0 in the lagged data rule. Assuming that I − Ωb̄ is
invertible, we solve the system b̄ = (I − Ωb̄)−1δ for the MSV solution, with b̄ a 3 × 3
matrix in this case. Using Mathematica, one can verify that the MSV b̄ solution takes

the form given in (31), with bxx = ϕxϕ
−1
r bxr, bxπ = ϕπϕ

−1
r bxr, bπx = ϕxϕ

−1
r bπr, and

18This explains the (triangular) determinate region in the left hand panel of Figure 1 involving values
of ϕπ < 1 which violates the Taylor principle.
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bππ = ϕπϕ
−1
r bπr. The two nonlinear equations determining bxr and bπr are given by

bxr = ϕr[bxrϕr + σ{bπr(βϕπ + ϕr)− ϕr}]E−1, (57)

bπr = ϕr[κϕr(bxr − σ) + bπr{κσϕr + β(ϕr − σϕx)}]E−1, (58)

where E ≡ ϕr − (κϕπ + ϕx)bxr − {βϕπ + σ(κϕπ + ϕx)}bπr.

7.4. APPENDIX D (E-stability of Inertial Lagged Data Rule)19 . The matrix

Ω + Ωb̄ − I has one eigenvalue of −1, and the remaining two are given by solutions to
η2 + ηa1 + a2 = 0, where

a1 = 1− β − κσ − ϕ−1r [(ϕx + κϕπ)bxr + {σϕx + (β + κσ)ϕπ}bπr], (59)

a2 = −[(1− β)ϕx + κϕπ]ϕ
−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr − κσ. (60)

Hence, the necessary and sufficient conditions for Ω + Ωb̄ − I to have eigenvalues with

negative real parts are that a1 > 0 and a2 > 0. We next look at the 9 × 9 matrix
b̄0 ⊗ Ω + I ⊗ Ωb̄ − I. Using Mathematica, one can verify that five of the eigenvalues are

−1 and two of the remaining four are given by solutions to

ϕ−1r [(ϕx + κϕπ)bxr + {σϕx + (β + κσ)ϕπ}bπr]− 1 = −β − κσ − a1, (61)

where the right-hand equality above uses the expression (59). We conclude that a1 > 0

implies that the eigenvalues (61) are negative, as required for E -stability. The final two

eigenvalues of b̄0 ⊗ Ω+ I ⊗ Ωb̄− I are given by the solution of η2 + ηc1 + c2 = 0, where

c1 = −ϕ−1r [bxr{(2 + β + κσ)ϕx + κϕπ} (62)

+bπr{σϕx + (1 + 2β + 2κσ)ϕπ}+ ϕr{(1 + β + κσ)ϕr − 2}], (63)

c2 = ϕ−2r [2β(ϕxbxr + ϕπbπr)
2 + 3β(ϕxbxr + ϕπbπr)ϕ

2
r

+ϕ2r{βϕ2r − (1 + β + κσ)ϕr + 1}− bxrϕr{κϕπ + (2 + β + κσ)ϕx} (64)

−bπrϕπ(1 + 2β + 2κσ)ϕr − σϕxϕrbπr]. (65)

For E -stability we require c1 > 0 and c2 > 0. We finally look at the matrix ρΩ+ Ωb̄− I

which has one eigenvalue equal to −1 and the remaining two given by the solutions to
19A Mathematica program which computes these E -stability conditions is available from the authors

on request.
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η2 + ηa1ρ + a2ρ = 0, where

a1ρ = 2− ρ(1 + β + κσ)− (ϕx + κϕπ)ϕ
−1
r bxr −

{σϕx + (β + κσ)ϕπ}ϕ−1r bπr (66)

= a1 + (1− ρ)(1 + β + κσ),

a2ρ = (1− ρ)(1− βρ)− ρκσ − {(1− βρ)ϕx + κϕπ}ϕ−1r bxr

−{σ(ϕx + κϕπ) + β(1− ρ)ϕπ}ϕ−1r bπr, (67)

and for E -stability we require both a1ρ > 0 and a2ρ > 0. The right hand equality in

(66) uses the expression for a1 from (59) which, therefore, shows that a1 > 0 implies

that a1ρ > 0 (since 0 < ρ < 1). In summary, the necessary and sufficient conditions for

E -stability given in (23), (24), and (25) reduce to the coefficients a1, a2, c1, c2, and a2ρ all

being positive.

Details for Proposition 7. We first note that

a1 − a2 = 1− β − βϕ−1r (ϕxbxr + ϕπbπr) > 1− β − βϕ−1r (1− ϕr)ϕr (68)

where the right hand inequality in (68) follows from the solution being stationary and

ϕr ≥ 1, i.e., (the right hand inequality in) condition (35). Hence, ϕr ≥ 1 implies that
a1 > a2 from (68) and hence a2 > 0 implies a1 > 0. Similarly, comparing term by term, it

can be checked that a2ρ > a2 since bxr < 0, bπr < 0 and 0 < ρ < 1. So a2 > 0 also implies

that a2ρ > 0. The required necessary and sufficient conditions for E -stability have now

reduced to a2 > 0, c1 > 0, and c2 > 0. We now examine c2. Since ϕr > 0, the sign of c2 is

determined by the expression within parentheses in (64). The first two terms within this

parentheses can be combined together as

2β(ϕxbxr +ϕπbπr)
2+3β(ϕxbxr +ϕπbπr)ϕ

2
r = β(ϕxbxr +ϕπbπr)[3ϕ

2
r +2(ϕxbxr +ϕπbπr)].

(69)

We show that the expression (69) is positive since each of the individual terms in paren-

theses on the right hand side of (69) is negative. The first term, β(ϕxbxr+ϕπbπr), in (69)

is negative by condition (35) when ϕr ≥ 1. The second term in (69) is also negative since

ϕxbxr + ϕπbπr < −
3

2
ϕ2r < (1− ϕr)ϕr, (70)

where the final inequality in (70) again uses (35). The inequalities bxr < 0 and bπr < 0

then imply that the final three terms within the parentheses in (64) are positive. Hence,
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a sufficient condition for c2 > 0 is that g(ϕr) ≡ βϕ2r − (1 + β + κσ)ϕr + 1 ≥ 0. Since
g(0) > 0 and g(1) < 0, g(ϕr) = 0 has two positive roots, one between 0 and 1, and the

other more than 1. The root exceeding one is given by

ϕ+r ≡ 2−1β−1[1 + β + κσ +
p
(1 + β + κσ)2 − 4β]. (71)

In addition, g(ϕr) > 0 for all ϕr > ϕ+r since g(∞) = ∞. This proves that c2 > 0 when

ϕr ≥ ϕ+r .

Now c1 > 0 iff the expression within the parentheses in (62) is negative. The first two

terms of this parentheses can be grouped together as

bxr{(2 + β + κσ)ϕx + κϕπ}+ bπr{σϕx + (1 + 2β + 2κσ)ϕπ} (72)

= (2 + β + κσ)(ϕxbxr + ϕπbπr) + (β + κσ − 1)ϕπbπr + σϕxbπr + κϕπbxr

< (2 + β + κσ)(1− ϕr)ϕr + [σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr

where the final inequality uses condition (35). Using this we can conclude the following

about the expression within the parentheses of c1

bxr{(2 + β + κσ)ϕx + κϕπ}+

bπr{σϕx + (1 + 2β + 2κσ)ϕπ}+ ϕr{(1 + β + κσ)ϕr − 2}

< (2 + β + κσ)(1− ϕr)ϕr +

[σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr + ϕr{(1 + β + κσ)ϕr − 2}

= ϕr(β + κσ − ϕr) + [σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr. (73)

If σϕx + (β + κσ − 1)ϕπ ≥ 0 and ϕr ≥ β + κσ, then the above expression is negative

provided bxr < 0 and bπr < 0. This proves that c1 > 0. The only remaining condition

required is a2 > 0 which is given in the proposition.

7.5. APPENDIX E (MSV Solution of Forward Rule). We first consider the

nature of the MSV solution. Equations (16) involve three equations in the three unknowns

bx, bπ, and br. Assuming that Det[I − Ωb̄] = 1 − bxϕx − bπϕπ 6= 0, the third equation

determines br once bx and bπ are known from the first two equations. The equation for br

is given by (43). The first two equations (which can be verified using Mathematica) are

bx = ϕr[bx + (bπ − 1)σ][1− bxϕx − bπϕπ]
−1, (74)

bπ = ϕr[κ(bx − σ) + (β + κσ)bπ][1− bxϕx − bπϕπ]
−1. (75)
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These two equations yield the following simultaneous system in bx and bπ:

ϕxb
2
x + (bπϕπ + ϕr − 1)bx + (bπ − 1)σϕr = 0, (76)

ϕπb
2
π + [bxϕx + (β + κσ)ϕr − 1]bπ + κϕr(bx − σ) = 0. (77)

One can solve for bx in terms of bπ from equation (77) which yields

bx = [κσϕr + {1− (β + κσ)ϕr}bπ − b2πϕπ](κϕr + bπϕx)
−1 (78)

and substituting equation (78) into equation (76) yields a (cubic) polynomial in bπ whose

roots yield the MSV solutions for bπ. Once bπ is determined, bx can be determined from

(78) and finally br from (43).

We next examine what type of MSV solutions can be stationary with the forward

rule. Stationarity requires that |br| < 1.20 We consider three mutually exclusive cases for
stationarity, namely

0 < bxϕx + bπϕπ < 1, (79)

bxϕx + bπϕπ > 1, (80)

bxϕx + bπϕπ < 0. (81)

Under case (79), stationarity is ruled out when ϕr ≥ 1 since br > 1 from (43). Case (80),

i.e., bxϕx + bπϕπ > 1, is permissible only when at least one of bx or bπ is positive (when

ϕx, ϕπ > 0) at the MSV solution. Furthermore, bxϕx + bπϕπ > 1 implies that br < 0 by

(43) and stationarity requires that

bxϕx + bπϕπ > 1 + ϕr (82)

Note that condition (82) cannot a priori be ruled out for a stationary MSV solution even

when ϕr ≥ 1. The final case, condition (81), is permissible only when at least one of bx
or bπ is negative at the MSV solution. In addition, bxϕx + bπϕπ < 0 implies that br > 0

from (43) and stationarity is equivalent to the requirement that

bxϕx + bπϕπ < 1− ϕr . (83)

These results are collected in Proposition 9.

20 In matrix form, the b̄ solution for the forward rule (5) has only zeros in the first two columns and the
third column has bx, bπ, and br , respectively. Hence, two of the eigenvalues of b̄ are 0 and the third is br.
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Details for the case when ϕx = 0. When ϕx = 0, we substitute (78) into (76)

and the cubic polynomial in bπ simplifies to

p(bπϕπ) ≡ (bπϕπ)3 + (bπϕπ)2d1 + (bπϕπ)d2 + d3 = 0 (84)

where d1 = (1+β+κσ)ϕr − 2, d2 = 1+βϕ2r − [1+β+κσ(ϕπ+1)]ϕr, and d3 = κσϕπϕr.

The characteristic polynomial, (84), evaluated at bπϕπ = (1− ϕr), yields

p(1− ϕr) = κσϕ2r(ϕr + ϕπ − 1) (85)

so that p(1 − ϕr) > 0 for all ϕr + ϕπ > 1. This means that there exists a negative root

bπ which satisfies (83) since p(−∞) = −∞. If the solution is determinate (say) under the
conditions given in Proposition 4, then this is also the uniquely stationary solution. On

the other hand, the characteristic polynomial, (84), evaluated at bπϕπ = (1 + ϕr), yields

p(1 + ϕr) = ϕ2r[{κσ + 2(1 + β)}ϕr + 2(1 + β)− κσ(ϕπ − 1)]. (86)

From (86), observe that p(1 + ϕr) < 0 when

{κσ + 2(1 + β)}ϕr + 2(1 + β) < κσ(ϕπ − 1), (87)

that is, precisely when condition (8) in Proposition 4 is violated (with ϕx = 0). This

shows that when ϕr + ϕπ > 1 and condition (87) is satisfied, there exist two stationary

solutions for bπ, one with bπ < 0 satisfying condition (83) and the other with bπ > 0

satisfying condition (82).

Note that equation (74) implies that

bx = br[bx + (bπ − 1)σ] (88)

which can be rearranged to give

bx(1− br) = σbr(bπ − 1). (89)

The inequality bπ < 0 implies that

0 < br = ϕr[1− bπϕπ]
−1 < 1 (90)

which in turn implies that bx < 0. We note that

bx = σϕr(1− bπ)[bπϕπ + ϕr − 1]−1. (91)
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7.6. APPENDIX F (E-stability of Forward Rule). We look at the three pairs

of matrices required for checking E -stability.21 We first start with the 9 × 9 matrix
b̄0 ⊗ Ω+ I ⊗ Ωb̄− I which must have eigenvalues with negative real parts for E -stability.

Using Mathematica, one can verify that five of the eigenvalues are −1 and two of the
remaining four are given by

bxϕx + bπϕπ − 1. (92)

A necessary condition for E -stability is, therefore, bxϕx + bπϕπ < 1 which is equivalent

to br > 0. This proves Proposition 8.

The final two eigenvalues of b̄0 ⊗ Ω + I ⊗ Ωb̄ − I are given by the solutions to the

characteristic polynomial η2 + ηc1 + c2 = 0, where

c1 = [(1− bxϕx − bπϕπ)
2 + (1− bxϕx − bπϕπ)− {1 + β − κσ(ϕπ − 1)− σϕx}ϕr]Xa;

Xa ≡ (1− bxϕx − bπϕπ)
−1; (93)

c2 = [(1− bxϕx − bπϕπ)
3 + βϕ2r + ϕrXr](1− bxϕx − bπϕπ)

−2; (94)

Xr ≡ bπ[bπϕπ(σϕx − ϕπ) + ϕπ{2 + β + κσ(1− ϕπ)− σϕx}− σϕx]

+bx[bxϕx{κϕπ − (β + κσ)ϕx}+ ϕx(1 + 2β + 2κσ − κσϕπ − σϕx)− κϕπ]

+bxbπ[κϕ
2
π + σϕ2x − (1 + β + κσ)ϕxϕπ]− 1− β + κσ(ϕπ − 1)− σϕx(βϕr − 1).

Necessary and sufficient conditions for the above polynomial to have negative real parts

are that c1 > 0 and c2 > 0.

For E -stability we also need the eigenvalues of Ω+Ωb̄− I to have negative real parts.

One eigenvalue of this matrix is −1 and the remaining two are given by the solutions to
the characteristic polynomial η2 + ηa1 + a2 = 0, where

a1 = (1− bπϕπ − bxϕx)− β + κσ(ϕπ − 1) + σϕx, (95)

a2 = bx[ϕx(β + κσ − 1)− κϕπ]− σϕxbπ (96)

+σ[κ(ϕπ − 1) + (1− β)ϕx].

The necessary and sufficient conditions for the above polynomial to have negative real

parts are that a1 > 0 and a2 > 0.

21A Mathematica program which computes these E -stability conditions is available from the authors
on request.
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Finally, one also needs the eigenvalues of ρΩ+Ωb̄− I to have negative real parts. One
eigenvalue of this matrix is −1 and the remaining two are given by the solutions to the
characteristic polynomial η2 + ηa1ρ + a2ρ = 0 where

a1ρ = (2− bπϕπ − bxϕx)− ρ[1 + β − κσ(ϕπ − 1)− σϕx], (97)

a2ρ = 1− ρ[1 + β − κσ(ϕπ − 1)− σϕx] + βρ2(1− σϕx) +

bx[ϕx{ρ(β + κσ)− 1}− ρκϕπ]− bπ[(1− ρ)ϕπ + ρσϕx], (98)

so that for E -stability one requires a1ρ > 0 and a2ρ > 0.

We conclude that the necessary and sufficient conditions for E -stability of any MSV

solution in the case of forward rules requires that all of the coefficients c1, c2, a1, a2, a1ρ,

and a2ρ are positive and that bxϕx + bπϕπ < 1.

Details for Proposition 10. We consider E -stability of the unique MSV solution

(when ϕx = 0) which exists under the conditions given in Proposition 4, i.e., when ϕr ≥ 1
and condition (8) is satisfied. As proved in Appendix E, this MSV solution has bπ < 0,

bx < 0, 0 < br < 1, and satisfies (83). Note that condition (83) implies that the eigenvalue

(92) is negative.

We first examine the coefficients c1, c2 in (93) and (94) involved in the eigenvalues of

b̄0 ⊗ Ω+ I ⊗ Ωb̄− I. Consider c1 in (93) first. Since bπ < 0, Xa ≡ (1− bπϕπ)
−1 > 0, and

E -stability requires the expression in parentheses of c1 to be positive. This expression

simplifies (when ϕx = 0) to

2 + (bπϕπ)
2 − 3bπϕπ − ϕr{1 + β − κσ(ϕπ − 1)}

> 2 + (ϕr − 1)2 + 3(ϕr − 1)− ϕr{1 + β − κσ(ϕπ − 1)}

= ϕ2r + ϕr − ϕr{1 + β − κσ(ϕπ − 1)} = ϕr[ϕr − β + κσ(ϕπ − 1)]. (99)

The first inequality above uses the fact that bπ satisfies (83), i.e., bπϕπ < 1−ϕr. Equation
(99) shows that ϕr ≥ β + κσ suffices to make c1 > 0 for all ϕπ > 0.

Next we turn to c2. Since (1 − bπϕπ)
−2 > 0 by bπ < 0, E -stability requires the

expression in parentheses of c2 in (94) to be positive. This expression simplifies, after



Determinacy, Learnability, and Monetary Policy Inertia 35

some manipulation, to (when ϕx = 0)

βϕ2r + (1− bπϕπ)
3 + (1− bπϕπ)ϕr[κϕπ(σ − bx) + bπϕπ − (1 + β + κσ)]

= βϕ2r + ϕ3rb
−3
r + ϕ2rb

−1
r [κϕπ(σ − bx) + bπϕπ − (1 + β + κσ)]

= ϕ2rb
−1
r [(ϕrb

−2
r − β)(1− br) + κσ(ϕπ − 1)− κϕπbx], (100)

where we have used the value of br = ϕr(1 − bπϕπ)
−1 at the MSV solution from (90)

and eliminated bπϕπ in the final line (100). If ϕπ ≥ 1, then c2 > 0 for all ϕr ≥ β since

0 < br < 1, and bx < 0.

We consider further the situation when ϕπ < 1. For this we substitute the value of bx

from (89) at the MSV solution in the final term of (100), i.e., −κϕπbx, and write this in
terms of br. Before doing this, we first note from (89) that

bx(1− br) = σbr(bπ − 1) = σbr(ϕ
−1
π − ϕrϕ

−1
π b−1r − 1) (101)

= σϕ−1π [br(1− ϕπ)− ϕr],

where we have manipulated br = ϕr(1 − bπϕπ)
−1 (obtained from (90)) to get the final

expression on the right hand side above in terms of br. Using (101), we finally obtain

−κϕπbx = κσ(1− br)
−1[(ϕπ − 1)br + ϕr]. (102)

Using (102), the expression within parentheses in (100) simplifies to

(ϕrb
−2
r − β)(1− br) + κσ(ϕπ − 1)− κϕπbx (103)

= (ϕrb
−2
r − β)(1− br) + κσ(ϕπ − 1) + κσ(1− br)

−1[(ϕπ − 1)br + ϕr]

= ϕr[κσ(1− br)
−1 + (1− br)b

−2
r ] + κσϕπ(1− br)

−1 − κσ(1− br)
−1 − β(1− br),

where the first two terms in the third line of (103) has grouped together terms involving

ϕr and ϕπ. Then c2 > 0 iff the expression in the third line of (103) is positive. This will

be so iff

ϕr[κσb
2
r + (1− br)

2](1− br)
−1b−2r > κσ(1− br)

−1 − κσϕπ(1− br)
−1 + β(1− br), (104)

that is, iff (after multiplying both sides of the above equation by (1− br)),

ϕr[κσb
2
r + (1− br)

2]b−2r > κσ(1− ϕπ) + β(1− br)
2, (105)

ϕr > [κσb
2
r(1− ϕπ) + βb2r(1− br)

2][κσb2r + (1− br)
2]−1. (106)
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Comparing the terms within the two parentheses in the right hand side of (106), the right

hand expression in (106) is less than 1 since 0 < β, br < 1 and ϕπ is assumed to be less

than 1. This proves that a sufficient condition for c2 > 0, for all ϕπ > 0, is ϕr ≥ 1.
We next turn to the eigenvalues of Ω+Ωb̄− I which need to have negative real parts.

When ϕx = 0, a1 and a2, defined in (95), and (96), reduce respectively to

a1 = 1− bπϕπ − β + κσ(ϕπ − 1), (107)

a2 = κσ(ϕπ − 1)− κϕπbx. (108)

We first examine a2. From (108), observe that a2 > 0 when ϕπ ≥ 1 since bx < 0 at the

MSV solution. We now prove that a2 > 0 even when ϕπ < 1. From (108), when ϕπ < 1,

a2 > 0 iff

−κϕπbx > κσ(1− ϕπ), (109)

that is, iff

κσ(1− br)
−1[(ϕπ − 1)br + ϕr] > κσ(1− ϕπ), (110)

where we have used (102) in (110). Inequality (110) is equivalent to

(1− br)
−1[ϕr(1− ϕπ)

−1 − br] > 1. (111)

Since ϕπ < 1 and ϕr ≥ 1, (111) is satisfied and hence, a2 > 0 for all ϕπ > 0.

We next turn to a1. From (107), a1 > 0 when ϕπ ≥ 1 since bπ < 0 at the MSV solution

and 0 < β < 1. We now prove that a1 > 0 even when ϕπ < 1. From (107), when ϕπ < 1,

a1 > 0 iff

1− bπϕπ > β + κσ(1− ϕπ), (112)

that is, iff

ϕr > [β + κσ(1− ϕπ)]br (113)

where in moving from (112) to (113), we have used the value of br in (90) above. From

(113), it is clear that since 0 < br < 1, a sufficient condition for a1 > 0 for all ϕπ > 0, is

that ϕr ≥ β + κσ.

Finally, we turn to the eigenvalues of ρΩ + Ωb̄ − I which need to have negative real

parts. The coefficient a1ρ, defined in (97), reduces to (when ϕx = 0)

a1ρ = 2− bπϕπ − ρ[1 + β − κσ(ϕπ − 1)] = 2− ρ(1 + β)− bπϕπ + ρκσ(ϕπ − 1) (114)
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which is positive when ϕπ ≥ 1 since 0 < β, ρ < 1 and bπ < 0 at the MSV solution. We

now show that a1ρ > 0 when ϕr ≥ β + κσ even when ϕπ < 1. For this note that we can

write a1ρ as

a1ρ = 2− bπϕπ − ρ[1 + β − κσ(ϕπ − 1)] = a1 + (1+ β)(1− ρ)− (1− ρ)κσ(ϕπ − 1) (115)

where we have used the expression of a1 from (107) in the right hand equality of (115).

From (115), and since 0 < ρ < 1, a1 > 0 implies that a1ρ > 0 when ϕπ < 1. Since it was

proved above that a1 > 0 when ϕr ≥ β + κσ, for all ϕπ > 0, it follows, therefore, that

a1ρ > 0 under the same condition.

We now turn to a2ρ, defined in (98), which simplifies (when ϕx = 0) to

a2ρ = 1− ρ[1 + β − κσ(ϕπ − 1)] + βρ2 − ρκϕπbx − (1− ρ)bπϕπ

= (1− ρ)(1− βρ)− (1− ρ)bπϕπ + ρ[κσ(ϕπ − 1)− κϕπbx]

= (1− ρ)(1− βρ)− (1− ρ)bπϕπ + ρa2, (116)

where we have used the value of a2 from (108). Since a2 > 0 was proved before (for all

ϕπ > 0 when ϕr ≥ 1), it follows from (116) that a2ρ > 0 also since 0 < β, ρ < 1, and

bπ < 0.

7.7. APPENDIX G (Details for the Infinite Horizon Model). We first consider

the scenario when agents know the form of the interest rate rule (5). Substituting this

known rule into the output gap equation (46) yields

xt = Êt

( ∞X
T=t

βT−t[(1− β − σϕx)xT+1 + σ(1− ϕπ)πT+1 − σϕrrT−1 + rnT ]

)
(117)

= −σϕr(rt−1 + βrt) +
∞X
T=t

βT−t[(1− β − σϕx)ÊtxT+1 + σ(1− ϕπ)ÊtπT+1 − σϕrÊtrT+1] + rnt

= −σϕrrt−1 − βσϕr(ϕπÊtπt+1 + ϕxÊtxt+1 + ϕrrt−1) +
∞X
T=t

βT−t[(1− β − σϕx)ÊtxT+1 + σ(1− ϕπ)ÊtπT+1 − σϕrÊtrT+1] + rnt

Substituting this value of xt into (47) yields the matrix system

yt =
∞X
T=t

(AT ÊtyT+1) +BδÊtyt+1 + Λyt−1 + χrnt , (118)
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AT =

⎡⎢⎢⎣
βT−t(1− β − σϕx) βT−tσ(1− ϕπ) −βT−tσϕr

βT−tκ(1− β − σϕx)+
(αβ)T−tκαβ

βT−tκσ(1− ϕπ)+
(αβ)T−t(1− α)β

−κσϕrβT−t

0 0 0

⎤⎥⎥⎦ ,
Bδ =

⎡⎣ −βσϕrϕx −βσϕrϕπ 0
−κβσϕrϕx −κβσϕrϕπ 0

ϕx ϕπ 0

⎤⎦ , Λ =
⎡⎣ 0 0 −σϕr(1 + βϕr)
0 0 −κσϕr(1 + βϕr)
0 0 ϕr

⎤⎦ , χ =
⎡⎣ 1

κ
0

⎤⎦ .
Substituting the forecasts (49) into (118) yields the ALM (50)

yt = Xa +Xbyt−1 +Xcr
n
t ;

Xa ≡ [
∞X
T=t

AT (I − b)−1(I − bT−t+2) +Bδ(I − b)−1(I − b2)]a,

Xb ≡
∞X
T=t

AT b
T−t+2 +Bδb

2 + Λ,

Xc ≡
∞X
T=t

AT b
T−t+1c+Bδbc+ χ.

The mapping from the PLM to the ALM can be analyzed for E -stability as before.

The second scenario is when the agents do not know the interest rate rule (5) so that

they have to use the PLM for the interest rate to form forecasts rather than the actual

rule (5). The equation for output is then

xt = −σ(ar + brrt−1+ crr
n
t ) +

( ∞X
T=t

βT−t[(1− β)ÊtxT+1 + σÊtπT+1 − σβÊtrT+1]

)
+ rnt

(119)

Substituting this value of xt into the (47) yields the system in this case

yt =
∞X
T=t

(AT ÊtyT+1) +Ba +BδÊtyt+1 + Λyt−1 + χrnt (120)

with the matrices

AT =

⎡⎣ βT−t(1− β) βT−tσ −βT−t+1σ
βT−tκ(1− β) + (αβ)T−tκαβ βT−tκσ + (αβ)T−t(1− α)β −κσβT−t+1

0 0 0

⎤⎦ ,
Ba =

⎡⎣ −σar
−κσar
0

⎤⎦ , Bδ =

⎡⎣ 0 0 0
0 0 0
ϕx ϕπ 0

⎤⎦ , Λ =
⎡⎣ 0 0 −σbr
0 0 −κσbr
0 0 ϕr

⎤⎦ , χ =
⎡⎣ 1− σcr

κ− κσcr
0

⎤⎦ .
Substituting the forecasts (49) into (120) yields an ALM of the form (50). The mapping

from the PLM to the ALM can be analyzed for E -stability as before.


