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ABSTRACT. Changes in the legal and technological environment in the U.S.
have created the possibility of private banknote issue, or its electronic equivalent.
We wish to understand the implications of this possibility for economic performance.
Accordingly, we construct and analyze a dynamic general equilibrium model in which
privately-issued liabilities may circulate, either by themselves, or alongside a stock
of outside money. In each case we provide results on the existence and multiplic-
ity of equilibria, and we characterize local dynamics in a neighborhood of a steady
state. Our results support Friedman’s (1960) idea that circulating private liabil-
ities are associated with endogenous (or “excess”) volatility. But implementing
Friedman’s (1960) advice—the government should ban private issuance of close cur-
rency substitutes—causes significant inefficiency in our model. And implementing
the polar opposite advice of Hayek (1976) and Fama (1980)—that the government
should withdraw from currency issuance altogether in the presence of circulating pri-
vate liabilities—also is often constrained-suboptimal in our economies. Instead, our
economies have both public and private circulating liabilities as part of an optimal
monetary arrangement. JEL classification numbers: ES3, Ej, E5.

* Any views expressed are those of the authors and do not necessarily reflect the views of the Federal
Reserve Bank of St. Louis or the Federal Reserve System. This paper is available on the world wide web
at www.stls.frb.org/research/econ/bullard/.
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1. INTRODUCTION
1.1. Overview. Two of the most basic questions in monetary economics are:

(1) Do we “need” the government to provide money, or can we rely on “the market”
to produce a well-functioning monetary arrangement?

(2) Does an efficient monetary system require a mix of private and government money,
or should the government be a monopoly provider of currency and close currency substi-
tutes?

Implicit in the wording of these questions are some very different views about the
private provision of currency. Clearly many economists believe that market mechanisms
work well, except where the creation of money is concerned. But some—perhaps most
prominently Hayek (1976) and Fama (1980)—have argued that, even with respect to
money, private market provision can produce desirable outcomes.

On the other hand, many economists have argued that not only should the government
print money, but that the government should have a monopoly on currency creation.
Friedman (1960), for example, argued passionately that allowing private provision of
close currency substitutes is a recipe for generating indeterminacy of equilibrium and
“excessive” volatility. Therefore, the government should be the sole issuer of circulating
liabilities, and the creation of currency substitutes should be carefully segregated from all
private credit market activity.

Somewhere between these views lies the real bills doctrine. This theory does not claim
that the government should necessarily leave all currency creation to the market. But
it does assert that the existence of safe, privately-issued circulating liabilities poses no
“threat” to economic well-being, and may actually be beneficial.

These three points of view form the core of most received monetary theory. Despite
centuries of debate among their adherents, however, a resolution of the differences among
them has never been achieved.! In addition, the monetary theory literature seems short
of formal frameworks for fully evaluating all of these issues.

Recent developments make it particularly important to rectify this situation. One is

1See Mints (1945) for a summary of the historical debates on these topics. Smith (1994) describes
some more modern exchanges.
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that all legal impediments to the creation of private banknotes—or their equivalents—
have been removed in the U.S. Another is that improvements in communication and
transactions technologies have made it feasible to issue electronic equivalents of private
banknotes. How will these developments affect the determination of the price level and
rates of return? Will they lead to increased economic volatility or generate indetermina-
cies? It seems important to have an apparatus for evaluating these issues.

Finally, it is now common to hear arguments that “e-cash,” the electronic equivalent
of private circulating liabilities, will ultimately displace outside money.? The views of
Hayek (1976) and his followers suggest that this would be a positive development. We

propose to provide a framework for evaluating all of these assertions.?

1.2. Model features. What features should such a framework have? First, in keeping
with discussions dating back to Smith (1776), monetary exchange is most interesting in
environments where trade is imperfectly coordinated. Thus, we should allow trade to
take place in a number of distinct markets, and also for the possibility that—at any
moment in time—there may be only limited scope for interaction among various markets.
Second, private liability issue is typically associated with credit transactions. There should
therefore be some scope for agents to borrow and lend. Finally, for agents’ liabilities to
circulate, the original recipients of these liabilities must want to consume at times when
they are unable to redeem them from the original issuers. This can easily be captured by
having agents trade with at least some other agents whom they will not meet again.

In keeping with these requirements, we construct a pure exchange economy with three-
period lived, overlapping generations. Following Townsend (1980, 1987), we assume there
are multiple locations where trade occurs. Spatial separation and limited communication
between these locations creates the decentralized setting that makes monetary exchange

most interesting. We also put a very specific structure on the pattern of agents’ meetings.

28ee Schreft (1997) for a discussion of current and historical thinking on this point.

3There is a substantial literature on private money creation. Examples include Townsend and Wallace
(1987), Williamson (1992, 1999), Champ, Smith, and Williamson (1996), Cavalcanti and Wallace (1999),
Burdett, Trejos and Wright (2000), and Smith and Weber (1999). But few of these papers analyze
whether government and private issuers “should” coexist, or whether the presence of private issuers leads
to a multiplicity of equilibria or to endogenous volatility. A model related to ours in an international
context is Fisher (1996).
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At each date, some young lenders are together with some young borrowers in each market.
There is an incentive to transfer resources from lenders to borrowers. However, our
assumptions on agents’ patterns of movement imply that, if a young lender and a young
borrower are together today, they will never meet again. Nevertheless, young lenders
will—in the future—meet other agents who will—even further in the future—meet the
borrowers with whom they are currently paired.* Thus, as in Townsend and Wallace
(1982, 1987), young lenders can buy the liabilities of borrowers in exchange for goods,
and sell these liabilities to others in the future. It is in this sense that private liabilities
circulate. But in contrast to Townsend and Wallace (1982, 1987), private liabilities may
coexist with a stock of outside money. And, unlike Townsend and Wallace, we study an
infinite horizon economy and pay particular attention to dynamic equilibria.

The specific questions we investigate are: How are private liabilities priced by the
market? Do they support efficient allocations? Could systems with private circulating
liabilities give rise to a profusion of equilibria, or what Friedman might call “excessive

volatility”?

1.3. Main results and historical perspective. American history has produced a
close approximation to a system of private money creation. According to Temin (1969),
almost 90 percent of the U.S. money supply® in 1830 consisted of private banknotes.
During this period of history, different notes circulated at different discounts and premia
(outside their location of origin). In addition, these discounts and premia fluctuated.
Thus holders of different banknotes—privately-issued currencies—potentially faced sub-
stantially different and fluctuating rates of return on their real balances.

What explains the discounts and premia on notes? And what explains the fluctuations
in them? Commonly proposed candidates are transportation costs (costs of offering the
notes for redemption) and the risk of default. But Gorton (1989) has shown that note

discounts reflected transportation costs only to a very limited extent, and Rolnick, Smith

4This is an important dimension on which our model differs from Kiyotaki and Wright (1989, 1993).

5That is, coins plus privately-issued banknotes. This calculation ignores deposits, whose monetary
role was very limited at the time. A relatively large fraction of banknotes in 1830 were issued by the
Second Bank of the United States, at that time the nation’s sole federally chartered bank. But, even the
Second Bank was 80 percent privately owned.
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and Weber (1996) show that default risks were often minimal. Moreover, neither fluctu-
ated enough in “normal” times to explain the magnitude of fluctuations in note discounts
or premia.

In a system of purely private currency issue, our model gives rise to discounts and
premia on notes under weak conditions. Some notes will be discounted and some notes
will bear premia, even though their redemption costs are identical, and even though there
is no default risk. Moreover, these discounts and premia will be reflected in agents facing
different rates of return on currency. This situation cannot be corrected by a purely
private monetary arrangement. Moreover, note discounts and premia should generally be
expected to fluctuate, even in the absence of any fluctuations in “fundamentals.” Thus
a purely private monetary system will give rise to endogenous volatility. We also show
that the intertemporal allocation of resources is constrained-inefficient in economies of
the Samuelson type with sufficiently “patient” traders.

We next ask, what happens if circulating private liabilities coexist with a stock of
outside money? Is this mixed public/private monetary system capable of supporting
an optimal allocation of resources? And, will such systems display indeterminacies or
endogenous volatility? First, we show that, with zero default risk, a system with outside
money and private currency does not permit discounts or premia on notes. As a result,
agents face identical rates of return and allocations are Pareto optimal in a steady state
where outside money has value. However, fluctuations in price levels and rates of return
will be observed outside this steady state. And, along dynamical equilibrium paths, these
fluctuations will normally dampen only very slowly. Thus excessive volatility continues to
be a feature of an economy in which outside money and private currency coexist. But, the
scope for indeterminacy here is no greater than in a conventional overlapping generations
model with only outside money.

Finally, we consider an economy where private circulating liabilities are prohibited, and
the government has a monopoly of currency issue. In our environment, a prohibition of
private currency creation prevents households from smoothing consumption and generates

very serious inefliciencies. It does not eliminate volatility, nor does it reduce the degree
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of indeterminacy.

What do we conclude from this? First, a system of purely private currency issue is
generally not going to produce even a constrained-efficient allocation of resources. Con-
strained efficiency requires lump-sum taxes and transfers; full efficiency requires both
inside and outside money. Second, the existence of safe, privately-issued liabilities does
not threaten economic efficiency. In fact, a mix of private and government currency issues
promotes efficiency. Thus our analysis does not support arguments that a purely private
monetary system is to be desired. It does support a version of the real bills doctrine.

As Friedman conjectured, economies that need private circulating liabilities to achieve
efficiency will be volatile. But this volatility cannot typically be eliminated simply by pro-
hibiting private issue of notes, and prohibiting circulating private liabilities has potentially
large welfare costs for borrowers.

2. AN ECONOMY WITH INSIDE MONEY ONLY
2.1. The environment. We consider a pure exchange economy consisting of an infi-
nite sequence of three-period lived, overlapping generations. In each period agents inhabit
two locations, which are indexed by h = 1,2. We let ¢t = 0,1, ... index time. All young
generations are identical in size and composition, and all young agents are divided into
two groups, which we label as borrowers and lenders for reasons that will become clear
below. In each period agents are endowed with some of a single nonstorable consumption
good. Let e;, j = 1,2,3, denote the age j endowment of this good for a lender and let
wj, j = 1,2,3, denote the age j endowment of this good for a borrower. For simplicity
we assume that e; > 0, while e = e3 = 0, and that wg > 0, while wy = ws = 0. Let
cent (t+7), with j =0,1,2 and h = 1,2, denote the time ¢t 4 j consumption of a lender
born at time ¢ in location h, and let ¢ ¢ (¢t + 7), with j = 0,1,2 and h = 1,2, denote the
time ¢ + j consumption of a borrower born at time ¢ in location h.6 We assume that the

lifetime utility of a lender born at an arbitrary date t is given by

wlcent (t),cone (E+1)cone (t+2)] =Incope (t) + Blncene (t+1), (1)

SUnder this convention for agent-level variables, the subscript represents the type, location of birth,
and date of birth of the agent in question, respectively, while the date in parentheses represents the actual
time at which an activity occurs.
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with 8 > 0, while the lifetime utility of a borrower born at an arbitrary date t is given
by”

v [Cb,h,t (t) ; Cb,h,t (t —+ 1) , Cb,h,t (t —+ 2)] =In Cb,ht (t) -+ Bln Cb,ht (t —+ 1) . (2)

Note that, in the absence of our assumptions about spatial separation and limited com-
munication, the third period of agents’ lives would involve no economic activity. Thus, in
the absence of these assumptions, our economy would collapse to a standard two period
overlapping generations model.®

We assume that in each period in location 1 there are N/2 lenders and yN borrowers
in the current young generation, with v € [1/2,1). In location 2 there are N/2 lenders and
(1 — )N borrowers. Thus there is a total population of 2N in each generation, which is
not necessarily equally divided across locations.? By setting v > 1/2, we have (i) location
1 is relatively large, and (ii) the “excess demand” for credit in location 1 is relatively
large at any rate of interest.

Some of the agents in this economy may move between locations. In particular, lenders
who are born in location 1 (2) move to location 2 (1) in middle age and then remain in
their new location when old. We assume that borrowers spend their entire lives in the
location of their birth. These assumptions mean that borrowers and lenders who interact
in youth will never directly interact with each other again.'”

Finally, we assume that—within a period—there is no communication across islands.
Thus spatial separation and limited communication across locations implies that trade
can occur only between agents who are in direct contact with each other.

Together our assumptions imply the following. Young borrowers in any given location
at ¢t would like to acquire resources from young lenders. However, a borrower and a lender
will never meet each other again. Thus trade must be accomplished as follows. Young

borrowers acquire resources at t from young lenders. In exchange the borrowers issue a

"There would be no generality gained by allowing borrowers and lenders to have different discount
factors, although it could be accomplished without difficulty.
8For expositions of the standard two-period model, see Azariadis (1993) and Sargent (1987, Chapter
7).
9Note that we have assumed that, in the aggregate, there are equal numbers of borrowers and lenders.
Given our freedom to vary e; and wsg, this assumption entails no real loss of generality.
100ur results would be unaltered if lenders returned to their location of birth when old.
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claim against themselves. Lenders take these claims to their new location and, at ¢t + 1,
trade these claims to the next generation of lenders in exchange for goods. At ¢+ 2 these
now newly middle-aged lenders bring these claims back to their location of origin, where
they are redeemed by the original issuers. Thus at least some trade must occur through
the use of circulating, privately-issued liabilities.

Our assumptions imply that two kinds of liabilities can be issued: Liabilities with a
maturity of one period, and liabilities with a maturity of two periods. At each date there
will be newly-issued liabilities of each type in each location. In addition, at time ¢ there
will be liabilities circulating in location 1(2) with a maturity of two periods that were

issued in location 2 (1) at ¢ — 1. These liabilities will mature at ¢t + 1 in location 2 (1).

2.2. Lenders. Our assumptions about the itineraries of agents imply that a young
lender will acquire only long-maturity liabilities, although possibly previously-issued ones
that will mature next period. Let & (t) denote the quantity of previously-issued lia-
bilities acquired by a young lender in location h at time t that will mature in the other
location at t 4+ 1. In this notation the subscript “1” represents the time until the liabil-
ity “matures” (one period), the subscript h denotes the location of acquisition, and the
date in parentheses represents the date of acquisition. Let 1/Rp 1 (t); h = 1,2; k = 1,2;
h # k; denote the price of these liabilities, in units of current consumption, in location h
at t. Then the one period gross rate of return received by a lender moving from location
h at ¢ to location k at t + 1 is Ry (¢). In addition, let &g (t) denote the quantity of
newly-issued two-period liabilities acquired in location h at t by the same agent. These
liabilities will be sold in location k (k # h) at t +1 for 1/Ry », (¢ + 1) ; hence their current
price (discounted present value) in location h is 1/Rp i, (t) R, n (t + 1). It follows that the

budget constraints confronting a young lender born at an arbitrary date ¢ take the form

T1,n (1) o (1)
t J , < 5
con,e (t) + N0 + Ron () R (1) = e1 (3)
and
= z t
cuns (1) <20+ 2ty (1)

fort >0, h=1,2, and k # h.
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A young lender in location h at date ¢ chooses values cept (t), cone (t+ 1), 1,5 (t)
and 2 p, (t) to maximize In ¢ p ¢ (t) + Blncen s (t + 1), subject to (3), (4), 1,1 (t) > 0,
and &g 5 (t) > 0. The solution to this problem sets cop ¢ (t) =e1/(1+8), cene (t+1) =
[Bex/ (L+ B)] Rn,k (t) , and

Beq _ 531,]1 (t) 532,]1 (t)

1+8  Rui(t)  Rug(t)Ren(t—+1) (5)

where ¢ > 0, h = 1,2, and h # k. Finally, to simplify the notation, let e = fe;/ (1 + ).

2.3. Borrowers. For a young borrower in location h at t matters are as follows. The
borrower can issue a claim to a unit of consumption maturing at ¢+1. Such a claim can be
held only by agents staying in location h, and its time ¢ price is 1/Ry, , (t) . Thus Ry, 5, (t)
is the gross one period rate of return between ¢ and t+ 1 for agents (borrowers) remaining
in location h. Let yy, (t) be the quantity of one-period (non-circulating) liabilities issued
by a representative young borrower in location h at t.

A young borrower could also issue (circulating) liabilities that are claims to consump-
tion at ¢t + 2. These claims will be sold to young lenders at ¢, who will then sell them at
t+1 in their new location. Thus, if a borrower issues x, (t) two-period claims in location
h at t, these will sell for xj, (t) /Ruk (t) Repn (t+ 1), with h =1,2, k=1,2, and k # h.

How do borrowers redeem two period claims when old when they have no old age
endowment? The answer is that they must acquire claims on resources at t + 1 when
they are middle-aged. Let g, (t + 1) be the quantity of one-period liabilities acquired at
t + 1 by middle-aged borrowers in location i to redeem their two-period liabilities that
will come due at ¢t + 2. Clearly middle-aged borrowers must pay ¢ (t + 1) /Rnn (t + 1)

for these claims. In order to redeem their liabilities,
zp (t) < gn (t+1) (6)

for t > 0, h = 1,2, must hold.
Notice that transactions mediated through circulating liabilities require middle-aged
“borrowers” to save in order to redeem their two-period (circulating) liabilities. Thus

our “borrowers” label only accurately reflects the behavior of these agents in their first
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period of life. One-period maturities sold by young borrowers are purchased by middle-
aged borrowers who inhabit the same location. We can also deduce that some such claims
must be traded; otherwise borrowers could not redeem their circulating liabilities when
old. !

A young borrower in location h at ¢, then, chooses values ¢y p ¢ (t) , co,ne (t+ 1), yn (£),

Un (t+ 1), and zp, (t) to maximize Incp p ¢ (£) +Blncy p e (t + 1), subject to (6), zp (t) > 0,

yn (t) zp (1)

it O S B T T o @) Ron 6+ 1) (7)
and
cone (t+1) + % < wy — yn (1) . (8)

It is easy to verify that an absence of arbitrage opportunities requires that
Rp,p () Bp (8 +1) = Rpi () Ren (£ 4 1) 9)

where t > 0; h = 1,2; and k = 1, 2. The solution to the borrower’s problem therefore sets

ot (t) =wa/ (1 + B) Ry (t), and cppy (t+ 1) = fwe/ (14 ). In addition,

o0 6) = Rap (04 1) | (7225 ) = 0) (10

for t > 0 and h = 1,2 holds. To simplify notation, we henceforth let w = ws/ (1 + ).
To summarize, then, trade in this model requires that young borrowers issue some
long-maturity liabilities and some short-maturity liabilities. Long-maturity liabilities are
sold to young lenders who take them elsewhere and trade them. Thus these liabilities cir-
culate. Short-maturity liabilities are sold to middle-aged borrowers, who acquire them as
a method of honoring their own liability issues. Short-maturity liabilities do not circulate.

We now investigate what is required in order for markets in these liabilities to clear.

2.4. Equilibrium. In equilibrium three kinds of liabilities are traded: Newly-issued

one-period liabilities, newly-issued two-period liabilities, and previously-issued two-period

Hnequality (6) forces all liabilities to be default-free. In our view this is a natural “first case” to
consider. First, it seems appropriate to understand how an economy without default risk operates. This
can be regarded as a prelude to understanding how the possibility of default risk might change matters.
Second, to understand the real bills doctrine, we must understand how an economy works when safe
private liabilities are traded. And third, as discussed by Rolnick, Smith, and Weber (1996), “small”
default risks on notes are the historically most relevant situation.
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liabilities. The markets for these liabilities are linked together in the following way. At

date t, young borrowers in location h issue one-period liabilities with a current value of

yn (t) __w xp (t)
Run (t) Run (t) Run (t) Ry p (t+ 1) '

(11)

These liabilities are sold to middle-aged borrowers, who wish to purchase one-period
liabilities (maturing in location h) with a value of xj (t — 1) /Ry (t) . (The purchase of
one-period liabilities with this value enables these borrowers to pay off their liabilities
that mature at ¢+ 1.) Hence an equality between the demand for newly-issued one-period

liabilities and their supply requires that

xh(tl)—thih(—t(tj_l) (12)

for h = 1,2, and ¢t > 0. Rearranging terms in (12) yields the following law of motion for

circulating liabilities issued by each borrower:
2 () = [w — @ (£ — 1)) Run (¢4 1) (13)

for h=1,2,and t > 0.

In location 1 there are YN borrowers, while in location 2 there are (1—+)N borrowers.
There are N/2 lenders in each location. In location 1 at ¢, there are (1 — v)Nao (t — 1)
one-period old liabilities circulating that were issued in location 2 in the previous period.
Similarly, in location 2 at ¢, there are YNz (t — 1) one-period old liabilities circulating
that were issued in location 1 in the previous period. Clearly, then, in equilibrium,
F11() =21 —7)x2(t—1) and &1,2 (t) = 2yx1 (¢t — 1) must hold. Similarly, 21 (t) =
2yxq (t) and Za 2 (t) = 2 (1 — ) z2 (t) must be satisfied. Using these conditions in (5), we

obtain the condition for the market in circulating liabilities to clear in location 1:

xo (t—1) x1 (%)

e
5 == + 14
2 ( 7) R1,2 (t) rYRLg (t) R2,1 (t + 1) ( )
for t > 0. Similarly, in location 2 we must have
e x1 (t—1) w9 (1)
5=V @ TU- 15
27 Ra 1 (1) 1=7) Ro1 () R (t+1) (15)

for t > 0.
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Equations (14) and (15) guarantee that the market for two-period (circulating) liabil-
ities clears at each date and in each location. Equation (13) is implied by clearing of the
market in one-period liabilities in each location. These equations, and the no-arbitrage
conditions (9) are the equilibrium conditions for an economy with no outside money. Fi-
nally, it is easy to show that these conditions, along with (6)-(8) and (10), imply the

satisfaction of the following goods market clearing conditions:

g +yw = Rziw(t) + (g) Ray (t—1) (16)
§+(1—7)w:(1—7)%+(g)RLz(t—l) (17)

for ¢ > 1. Equation (16) [(17)] implies that goods demand equals goods supply in location
1 (2) at each date after the initial period.

In the initial period, ¢ = 0, we assume that middle-aged borrowers in location h have
an inherited stock, xp (—1), h = 1,2, of previously-issued liabilities. Hence z; (—1) and

x9 (—1) are given as initial conditions.

2.5. Steady state equilibria. We begin our analysis of equilibria with privately-
issued circulating liabilities by considering steady states. In a steady state equilibrium
we have Rq1(t) = Ri1, Ra2(t) = Raa, Ri2(t) = Ri2, R21(t) = Ror, 21 (t) = w1,
and z2(t) = x2. In a steady state the no-arbitrage conditions Ry 1 (t) Ri1(t+1) =
Ri2(t)R21(t+1) and R (t) R22 (t+1) = Ra1 (t) R1,2 (t + 1) immediately imply that
Ri11 = Roo = R, and that

RisRoy = R?. (18)

Moreover, in a steady state, (13) yields

vy =y — (%) w. (19)

Defining m = 1/R, we can also write the steady state versions of (14) and (15) as

Ry = 2(0 =)z (20)

and

(21)
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Using Ri2Ro1 = 1/72, 21 = 12 = w/ (1 + ), and equations (20) and (21), we obtain the

single equilibrium condition
4y(1 — y)w?n? = [(A+7m)e—2(1—7) w7r2] [(1+7)e— 2710772] . (22)

Clearly any steady state equilibrium value of m must satisfy (22). In addition, it must
imply positive values for Rjo and Rg;. Equations (19), (20), and (21), along with the

condition v > 1/2, imply that Rij2 > 0 and Ro; > 0 hold iff 7 satisfies

7T'2 e

< —.
1+7  2yw

(23)

Thus any solution to (22) that also obeys (23) is a legitimate steady state equilibrium

value of m. We now state a result about such solutions.

Proposition 1. There is a unique steady state equilibrium value, denoted by mw*, that
satisfies (22) and (23). The steady state equilibrium interest rates Ry1 and Rgo are equal
to R* =1/m*.

Proof. See Appendix A. W

2.6. Properties of steady state equilibria: interest rates. In order to character-
ize the steady state equilibrium values Rq; and Rge (R*), it is useful to proceed as follows.
Imagine that all agents in our economy inhabited the same location, or equivalently, that
inter-location trade was possible. Call this analog to our environment the centralized
(trading) economy, and call our actual economy the decentralized economy. In the cen-
tralized economy, the unique equilibrium real rate of interest (steady state or otherwise) is
R=w/e=1/m.If w/e > (<) 1 the equilibrium of the centralized economy is dynamically
efficient (inefficient), and there is no role (there is a role) for outside money. Gale (1973)
refers to economies with w > (<)e as “classical” (“Samuelson”) economies. The next
result shows what happens in decentralized economies when endowment patterns make

their centralized analogs Samuelsonian or classical.

Proposition 2. Part (a). If v =1/2 (locations are symmetric), then 1/7* = R* = w/e.
Part (b). If v > 1/2 and w/e < 1, then 1/7* = R* € (w/e,1). Part (c). If v > 1/2 and
w/e > 1, then 1/7* = R* € (1,w/e).
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Proof. See Appendix B. l

Proposition 2 asserts that if the locations are symmetric, then spatial separation and
limited communication have no effect on the steady state allocations received by borrowers
(and, as we show below, on lenders as well). In addition, these features do not affect the
conditions under which an economy admits a role for outside money. Finally, if the two
locations are asymmetric (v > 1/2), then spatial separation and limited communication
put upward (downward) pressure on real rates of interest faced by borrowers in Samuelson
(classical) economies.

What about steady state rates of return faced by lenders? The next proposition states

a result in this regard.

Proposition 3. Part (a). Suppose that v = 1/2. Then Rj2 = Rg; = R* < (>)1 in
a classical (Samuelson) economy. Part (b). Suppose that v > 1/2. Then R* > Rjs if
R* > 1, while R* > Ry if R* < 1.

Proof. See Appendix C.

Proposition 3 makes two important claims. First, in an inside-money-only economy,
rates of interest faced by borrowers and rates of interest faced by lenders can never be
equal (unless v = 1/2 or e = w). Thus, since the marginal rates of substitution between
borrowers and lenders are not equated, resource allocations are statically inefficient (rel-
ative to what is possible in a centralized economy). Second, if v > 1/2, then lenders in
different locations will also face different rates of return. Hence their marginal rates of
substitution are unequal. Note also that the sign of R* — 1 depends only on the sign of
e — w; hence endowment patterns alone determine which lenders earn high returns on
savings.

Proposition 3 also has implications for the discounts and premia observed on different
circulating liabilities. When 1/Rpr < (>) 1/Rpn, previously-issued circulating liabilities
sell at a discount (premium) in location h—relative to noncirculating liabilities. Thus,
as implied by Proposition 3, if v > 1/2 such liabilities sell at a premium (discount) in

location 1 in a classical (Samuelson) economy. The converse is true in location 2. Notice
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that whose liabilities bear a discount or premium depends only on the endowment patterns
of borrowers and lenders, not on the relative magnitudes of the excess demand for credit
in the different locations.

The discount or premium on newly-issued liabilities in location h—relative to noncir-
culating liabilities—is Rpp/ Rk Rign = 1/Rpn. In a steady state, this discount/premium is
identical across locations. This observation has an immediate corollary: Previously-issued
two-period circulating liabilities and newly-issued two-period liabilities will bear different
discounts. As a consequence, the discount or premium on any given “note” or liability
must fluctuate over time. In addition, perfectly safe liabilities of different issuers will not
have the same discount in the same location. Both observations seem consistent with the
facts mentioned in the introduction concerning discounts and premia on privately-issued

banknotes in the antebellum U.S.

2.7. Constrained efficiency of stationary equilibria. We examine next whether
the stationary allocations described by equations (18)-(22) can be improved upon by a
central planner who is able to reallocate endowments among individuals inhabiting the
same location, but cannot transfer resources between different locations. The planner
thus maximizes a convex combination of the stationary ordinal utilities for agents (j, k)
where j = b,/ and h = 1,2, subject to two distinct resource constraints for locations 1
and 2.

A constrained-efficient stationary allocation with equal treatment is a list {cy j n, Cm,jn }
of stationary consumptions for young (= y) agents of type (j, h) and middle-aged (= m)
agents of the same type, which maximizes the social welfare function

W= > > lajn(ncyin+B8memin) + (1 —ajn) cm,jnl (24)
Je{bty ne{L2}

subject to the resource constraints

1 e
3 leven + empe2] +leypn + empa] < 31 + yws (25)
for location 1, and
1 el
3 levez + emen] + (L =7) leyp2 + emp2] < 5 + (1 =7)we (26)
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for location 2. Here «j; € (0,1] is the weight assigned by the planner to a type (4, h)
member of a normal generation, and 1 — a5, is the weight assigned to the same type of
the transitional generation, born middle-aged at time 1.

The first-order conditions for this problem reduce to:
[MRS (b, h)]2 = MRS (¢,1) MRS (¢,2) > 1 (27)

for h = 1,2, where M RS (j, h) is the absolute value of the marginal rate of substitution for
household (4, k) . These conditions require that all borrowers face a common marginal rate
of substitution which should be no less than “one plus the growth rate of resources,” while
lenders in different locations may face different marginal rates of substitution. However,
the lenders’ marginal rates of substitution must have a geometric average equal to the
common M RS of borrowers.

From equation (18) and Proposition 2, it is easy to check that stationary equilibria are
constrained optima only in classical economies in which the yields, and the corresponding
marginal rates of substitution, exceed unity. Stationary yields in Samuelson economies
with circulating private liabilities are below the natural growth rate; hence allocations
can be improved by a system of lump-sum taxes and transfers among agents living in the

same location.

2.8. Equilibrium dynamics. We now take up the topic of dynamical equilibria with
circulating liabilities. To do so, use as state variables the quantities xp, (t) of two-period
claims issued by young borrowers at time ¢ in location h. We also define the lagged values

vp (t) = zp (t — 1) and the auxiliary functions

flear(t—=1) 20 (t—1),22(t —2)] = (28)
era(t—1)—2(1 =) [w—z2 (t — 1)) [w — 22 (t — 2)]
2yzy (t— 1)z (t — 1) ’

Qo (t—1),z2(t—1),22 (t — 2)]

2yww—21 (t—1)] fler (t— 1),z (t —1),22 (t — 2)]
(e+2yw)fley (t=1), w2 (t 1), 22t =2)] —e

glra(t—1), 22t —1), 21 (t —2)] = (30)

(29)
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ery (t—1)—2y[w—z (t —1)] [w— 21 (t — 2)]
20—z (t— 1)z (t—1) ’

and
Zx1(t—1),2a(t—1),21 (¢t —2)] = (31)

20 —yww—a2 (t—1)]glr1 (t = 1), 22 (t — 1) ,21 (t — 2)]
20— ulgln(t-1)aa(t—D,or (-2~

Then we show in Appendix D that dynamical equilibria are solutions to the dynamical

System

21(t) = Qo (t—1), 20 (t—1), v (t—1)], (32)
v (t) = Zloy(t—1), 20 (t—1), 0 (t—1)], (33)
v (t) = ap(t—1), (34)
v (t) = ag(t—1). (35)

We now proceed to analyze local dynamics in a neighborhood of the unique steady

state. This steady state has
w

e (36)

T =29 =21

where 7* is the steady state inverse gross real return derived above. Linearizing the

system (32) - (35) in a neighborhood of the steady state yields

1 () —x x1(t—1)—x
xo (t) —x x2(t—1)—x
—J (37)
v () —x v (t—1)—=z
vg (t) —x vy (t—1)—x

where the Jacobian matrix is given by

Q1 Q2 0 @3
Z1 Zy Zz 0

J= (38)
1 0 0 0

and where the partial derivatives (Q);, Zi)?zl are evaluated at the steady state.
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The eigenvalues of J are the roots of the following polynomial:
PQ) =X = (Q1+ Z2)A° + (@122~ Q2Z1)N* — (Q2Z5 + Qs Z1)A — Q3Z3 = 0. (39)
Proposition 4 gives a characterization of these eigenvalues.

Proposition 4. Suppose that v < 1. Then (a) J has four real eigenvalues; (b) —R* =
—1/7* is an eigenvalue of J; (c¢) J has an eigenvalue in the interval (—1/(1+ 7*),0); (d)
—1 is an eigenvalue of J; (e) if

() > M (40)
- 21 —y)w

then J has an eigenvalue in the interval (1, 00); (f) a sufficient condition for equation (40)

to be satisfied is that w > e, or that

[M} : >2y 1. (41)

e

Proof. See Appendix E. H

We should note that extensive numerical analysis revealed that the positive eigenvalue
of J always exceeds unity, even if (40) fails to hold. The nature of this analysis is described
in the next subsection.

Proposition 4 states that, in a Samuelson economy (7* > 1), J has at least two
eigenvalues in the interval (—1,0). Thus, it is possible to approach the steady state; any
paths that do approach the steady state will display slowly damped oscillation. Second,
in a classical economy (7* < 1), equation (40) necessarily holds. Then J has only one
eigenvalue in the interior of the unit interval. Third, —1 is always an eigenvalue of J.
Thus the dynamical system consisting of equations (32)-(35) always possesses a center
manifold. Dynamics along the center manifold are investigated in the next subsection.

The results just described indicate the following fact. Along any equilibrium path
that converges to the steady state, privately-issued circulating liabilities are necessarily a

source of endogenous oscillations.

2.9. Motion on the center manifold. As we have noted, the steady state possesses

a center manifold. We now follow the procedure outlined by Wiggins (1990) to characterize
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the stability of the dynamical system along the center manifold in a neighborhood of the
steady state. The essential idea is that the first-order approximation to the dynamical
system does not yield sufficient information to fully characterize local dynamics in a
neighborhood of the steady state, and so the next step is to construct a second-order
approximation. Naturally it is not possible to do so analytically. Therefore, we construct
a numerical approximation to the center manifold across a set that essentially “spans the
space” of possible parameter value. The procedures underlying the construction of the
center manifold are described in Appendix F.

We begin with Samuelson (w < e) economies. In our numerical exercise, we sampled
1,000 economies with e = 1 and with w selected using a uniform distribution over the
interval (0,1).12 This procedure collects a sample over all possible ratios of e/w that are
consistent with the Samuelson case. The parameter v was selected using a uniform dis-
tribution over the interval (1/2,1). Proposition 4 stops short of showing that the positive
eigenvalue associated with the linearization at the steady state is always greater than one.
But numerical calculations for these 1,000 economies indicated that the positive eigen-
value always exceeded unity. We therefore are left with two stable, negative eigenvalues
and an eigenvalue equal to —1. Our numerical calculation of the motion on the center
manifold for this case indicated that the dynamics along the center manifold are always
stable (that is, for all 1,000 economies we sampled). Since we have two initial conditions,
we conclude that equilibrium is indeterminate with one degree of freedom. Thus there are
many equilibrium paths for given initial conditions. In addition, along any equilibrium
path, the economy will display oscillatory motion en route to the steady state. These os-
cillations are damped, but may decay only very slowly with time, because of the presence
of a center manifold.

We now turn to classical economies. Here we sampled 1,000 economies with w = 1
and with e selected using a uniform distribution over the interval (0,1), and we chose
v as before. Again, this procedure collects a sample over all possible ratios of w/e that

are consistent with the classical case. And as before, the positive eigenvalue discussed

12 An examination of the equilibrium conditions will indicate that the values e and w do not matter
individually for the properties of equilibrium. Only the ratio e/w matters.
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FIGURE |

CENTER MANIFOLD DYNAMICS, CLASSICAL CASE ECONOMIES
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Figure 1: Center manifold dynamics for classical case economies. A square indicates a randomly
selected economy which displayed unstable center manifold dynamics. The blank area corre-
sponds to economies which had stable center manifold dynamics. The stable region is associated
with determinacy of equilibrium.

in Proposition 4 was always greater than unity. This leaves us with one negative, stable
eigenvalue as well as the eigenvalue equal to —1. The calculation of the economy’s motion
along the center manifold indicated that the dynamics can be either stable or unstable.
Figure 1 displays regions of the parameter space that deliver stability or instability. The
essential message of the figure is that for large enough values of e, the dynamics along the
center manifold are stable, and hence, combined with the one stable eigenvalue and the
two initial conditions, equilibrium is determinate. If the economy is relatively asymmetric
(y — 1), then the minimum value of e consistent with determinacy falls. For relatively
low values of e, and v not too large, the dynamics on the center manifold are unstable,
and hence the steady state cannot generally be approached.!?

To summarize, any equilibrium paths that do approach the steady state display oscil-

13 A characterization of the global dynamics is not straightforward, and we know little about the prop-
erties of equilibrium in this situation.
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lation en route. This is true of both Samuelson and classical economies. These oscillations
are damped, but due to the presence of —1 as an eigenvalue, they may dampen only very
slowly. Samuelson economies support Friedman’s (1960) conjecture that privately-issued,
circulating liabilities can give rise to an indeterminacy of equilibrium. We conclude that all
economies with privately-issued circulating liabilities will display endogenously arising—or
“excessive” —volatility, just as Friedman (1960) asserted.
3. AN ECONOMY WITH BOTH INSIDE AND OUTSIDE MONEY

3.1. Changes to the environment. We now allow for the possibility that a stock
of fiat (outside) money coexists alongside private circulating liabilities. We assume that
these government-issued liabilities are never redeemed. Except for the presence of outside
liabilities, all other features of the economy are unaltered. Thus, in this economy, as
in the previous economy, borrowers can issue both one- and two-period liabilities. The
latter will circulate, as described above, prior to being redeemed. Lenders can hold the
circulating liabilities of borrowers and, in addition, they can now hold government-issued
fiat currency. We let M be the constant per capita stock of outside money, and we let
pr, (t) be the time ¢ dollar price of a unit of consumption in location h. Finally, as before,

inside liabilities are (indexed) claims to future consumption.!

3.2. Lenders. Let my (t) be the real value of outside money balances acquired by a
young lender at date ¢ in location h. Then this agent chooses values cp ¢ (t), cone (t+ 1),

Z1,n (), Ton (t), and my, (t) to maximize Incep ¢ (t) + Blncep, (t+ 1), subject to

B (t) G (t) .
Coht (t) + Rh,k (t) + Rh,k (t) Rk,h (t n 1) <e h (t) (42)
and
coma (£) < Fup (1) + #ﬁ)m T (8) % (43)

for h =1,2, k = 1,2, and k£ # h. In order for both inside and outside money to be held
in this economy, both must carry the same one period gross rate of return. Since young

lenders who carry outside money from location 1 (2) to location 2 (1) between t and ¢+ 1

14Nothing changes in the analysis if inside liabilities are a claim to delivery of outside money at some
future date.
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earn the gross real return p; (t) /p2 (t + 1) [p2 (t) /p1 (t +1)], it follows that

Ria(t) =p1(t) /p2(t+1) (44)

and
Roq (t) =p2(t) /p1 (t+1) (45)
for all £ > 0. The solution to the lender’s problem is to set c¢p ¢ (t) =e1/ (1 + ) and

_ BerRny (t)

cont (t+1) 15

(46)
Again, we let e = 13/ (1 + 3).

3.3. Borrowers. For young borrowers matters are essentially the same as before, ex-
cept that they too can carry fiat money between periods. For middle-aged “borrowers”
an obvious motive for doing so exists: Holding outside money enables them to redeem the
circulating liabilities they issued when young. Borrowers in their first period of life have
no obvious reason to hold government liabilities. However, it is innocuous to allow them
to do so. And, as we will see, allowing them to do so facilitates a particular interpretation
of the model. Thus we allow both young and middle-aged borrowers to accumulate real
balances in every period.

Let zy (t) [2n (t + 1)] be the quantity of real balances held by a young (middle-aged)

borrower between t and t+1 (¢+1 and t+2). Then a borrower born at ¢ faces the budget

constraints
yn (t) zp (t)
Co,n,t (t) < Rh}th R0 ;k’h GrD) zp (1) (47)
and
Cone (E+ 1)+ % 5 (1) < wy —yp () + 21 (1) (%) L (48)

Finally, a middle-aged borrower born at ¢ must hold enough claims on period ¢ + 2 con-
sumption to enable him to redeem the circulating liabilities he issued at t. Given the

ability of such an agent to hold outside money, the appropriate analog of equation (6) is

xh<t><gh<t+1>+zh<t+1>% (49)
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for h =1,2.

A young borrower in location h at ¢ chooses values ¢y 14 (), cp 24 (t + 1), zn (t), yn (£),
n (t+1), 2z, (t), and 2, (t + 1) to maximize Incp 4 ¢ (t)+B1ncp p,e (t + 1), subject to (47)-
(49), zp, (t) > 0, and yp, () > 0. As before, in order for this problem to have a solution,
the no arbitrage conditions (9) must be satisfied. In addition, the return on real balances
held between t and t + 1 by middle-aged borrowers is py, (t) /pp (t +1). The return on
one-period liabilities is Ry, p, (t). Thus, a lack of arbitrage opportunities for middle-aged
borrowers requires that

ph (1)

Rpp(t) = PNCES)) (50)

fort > 0, and h = 1,2. When the no arbitrage conditions hold, the solution to a borrower’s
problem sets ¢, p¢ (t) = wa/ (14 B) Rp,p (t) = w/Rp,p (t) and cppe (t+ 1) = fw, where

as above w = wq/ (14 ().

3.4. Equilibrium. In the inside money only economy, it was most convenient to de-
scribe dynamical equilibria in terms of the sequences {x1 (¢)} and {3 (t)}. However, in
the presence of outside money, the quantity of circulating private liabilities issued will
generally be indeterminate. It is therefore most convenient to work directly with the
goods market clearing and the no-arbitrage conditions.

The per capita supply of available goods in location 1 is & +vywp = 6(12—'/;’6)—!—7 (1+75)w.
The per capita demand of young borrowers in this location at ¢ is ywa/ (1 + 5) R11 (t) =
~yw/Ry 1 (t), while that of borrowers in the second period of life is y8w = yBwa/ (1 + ).
The per capita demand for goods by young lenders is e/20 = e1/2 (1 + () while the per

capita demand of middle-aged lenders is 22f21=0 — R, (£ —1). Hence, the goods

1+43
market clears in location 1 at t iff
el Yws vBwz el Bey
— + ywy = + + Roq(t—1 51
2 TS A p R @ 01 s) 2+ 2aem ) 6
for t > 1. This simplifies to
Cw= T SRy (- 1). (52)

2 Rii(t) 272
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Similarly, the goods market clears in location 2 at t iff

(e cp ¢y (53)

Fl=yw= Roa(t) 2

[NCR oY

for t > 1. In addition, the no-arbitrage conditions (9) and (50) must obtain in each location
at each date.

At t = 1, middle-aged agents hold the initial outside money supply, plus any previously-
issued circulating private liabilities. Let M, () be the stock of outside money!? in location
h at t (clearly My (t) + My (t) = M), and let xp, (—1) for h = 1,2, denote the initial stock
of circulating private liabilities. Then middle-aged agents in location 1 at t = 1 hold
circulating liabilities with a real value M; (0) /p1 (1) + 22 (—1) /R12 (0). It follows that

the goods market clears in location 1 at ¢t = 0 if

e__qw MO (A-vaza(1) (54)

27 Ri1(0)  pi(0) Ry, (0)

Similarly, the goods market clears in location 2 at ¢t = 0 if

e (1-7mw M) 2 (-1
2 Ry2(0) * p2(0) - R (0) (55)

Here M; (0), M5 (0), x1 (—1), and x2 (—1) are given initial conditions. Moreover, the

no-arbitrage conditions imply that

R1,2(0) = R2,2 (0) [p1 (0) /p2 (0)] (56)

and
R2,1(0) = R1,1 (0) [p2 (0) /p1 (0)]. (57)

Substituting these conditions into (54) and (55) allows us (generically) to determine
p1(0) and ps (0) (and, therefore, Ry 2 (0) and Rz (0)), once Ry (0) and Ry 5 (0) are
specified. It follows that our economy has two equations connecting the initial-period
yields {R1,1(0),R1,2(0),Rz2,1(0),R22(0)} and, hence, two initial degrees of freedom.
Once these are specified equations (54) and (55)—along with the no-arbitrage condi-

tions for ¢ = 1—determine the initial price levels. Equations (52) and (53), along with

15This represents liabilities of the central bank or, equivalently, never-to-be-redeemed liabilities of an
initial middle-aged generation that “invents” fiat money.
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the no-arbitrage conditions (9), then determine the sequence {R11 (t), R12(t), R (t),
Ro (t)}52,. And the sequence {p; (t),p2 (t)},=, can be derived from the initial price
levels and the relations Ry, i (t) = pp (t) /pe (t+1).

Prior to describing equilibria of our economy characterized by spatial separation and
limited communication, it will be useful to describe briefly its counterpart economy where

all agents inhabit a common location at all dates. We now turn our attention to this task.

3.5. The centralized economy. Suppose that at each date all agents inhabit the
same location. Then there is a common price level, p (¢), and a common one period rate
of return, R (t), between ¢t and ¢ + 1. In addition, there is no need for private circulating

liabilities. The goods market clears at ¢ > 1 if

w
At t = 1 the goods market clears if
w M
e= + —F=- 59
CTORNTE )

There are two possible steady state equilibria. One has R (t) =1 for all ¢t and M/p(t) =

e —w/R(t) = e — w. Real balances are positive iff
e>w, (60)

as we henceforth assume.'® The other steady state is nonmonetary (lim;_,..p (t) = o)
and has R = w/e < 1. It is easy to verify from equation (58) that the monetary steady
state is unstable, while the nonmonetary steady state is asymptotically stable. Moreover,
R (1) is a free initial condition. For all R (1) € (w/e, 1) there is an equilibrium with R (¢) |
w/e. Clearly this implies that p (t) T co. There is, then, a one-dimensional indeterminacy
of equilibrium. There is also a unique equilibrium where the value of money is bounded

away from zero.

160f course, (60) just implies that, in order for outside money to have value, the centralized economy
must be “Samuelsonian,” in Gale’s (1973) sense.
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3.6. The decentralized economy.

Overview. We now characterize equilibria of our economy in the presence of spatial
separation and limited communication. To do so, we note that equations (52)-(53) and the
arbitrage conditions described by equation (9) can be rewritten as the following dynamical

system, which obtains for ¢ > 1:

- 2vw
Ri1(t+1) = e+ 2yw —eRy () oy
B 2(L=y)w
Rop(t+1) = e+2(1—7y)w—eRyz2(t)’ .
B 2(1 —vy)wRy (t)
Rip(t+1) = le+2(1— ) w—eRyis(t) Rax () (63)
and
Ran(t41) = 2ywRy 1 (t) (64)

e+ 2yw — eRpy ()] Ru2 (t)
As we have noted previously, there are two free initial conditions. We begin with an

analysis of steady state equilibria.

A monetary!” steady state. When the values Ry (t), Ri2(t), Raa(t), and
Ry (t) are constant, it is apparent that Ry = Rge. It is also apparent that setting
R11(t) = Ra2(t) = Roa(t) = R12(t) = 1 Vt constitutes a constant solution to the
system (61)-(64). Notice that, in a monetary steady state, all agents face the same rate
of return. Thus the marginal rates of substitution of all agents are equated. Moreover,
the allocation of resources that obtains in a monetary steady state of the decentralized
economy duplicates that which obtains in the steady state of the centralized economy. It
follows from Balasko and Shell (1981) that this allocation is Pareto optimal. We therefore
conclude that, at least with respect to steady states, a combination of a government-issued
fiat currency and circulating private liabilities allows the economy to completely overcome
the problems of spatial separation and limited communication. As we have seen, this is

not true if outside money is absent. And, as we will show presently, it is not true if inside

1By “monetary” we mean a steady state where the outside money has positive value. Privately-issued
liabilities will be circulating as well in this steady state.



PRIVATE AND PUBLIC CIRCULATING LIABILITIES 26

money is absent. Both types of money are required to support the centralized resource al-
location. It is therefore possible to conclude that, in this economy, the Hayek proposal for

eliminating outside money prevents the attainment of an optimal allocation of resources.

Price level determination. When Ry (t) = p1(t) /p1 (t+1) =1 and Ra (t) =
p2 (t) /p2 (t +1) = 1, the price level in each location is constant. And, when Ry (t) =
p1 (t) /p2 (t + 1) = 1, the price level is identical in each location as well. We now turn to
the problem of determining the steady state price level, which we denote simply by p.

Let zj, be the (constant) per capita steady state value of circulating liability issues
in location h, let y, be the (constant) per capita steady state value of one-period (non-
circulating) liabilities issued in location h, and let M}, be the (constant) quantity of fiat
currency circulating in location h in a steady state. Then, since all gross rates of return
equal one, and since young lenders in location h must hold (a) all new issues of circu-
lating liabilities in location h, plus (b) all circulating liabilities issued last period in the
other location, plus (c) all outside money circulating in location h that is not absorbed

by borrowers, in location 1 we have that

e M-
5 = 7$1+(1—7)$2+71—7($1—91) (65)

2
M
= (1*7)x2+—p1 +yw — yry.

Similarly, in location 2 we have

g = 73:14—(1—7)962-5-%—(1—7)(332_92) (66)
(M — M)

= vz — (1—7)22 + + (1 =y w.

Adding (65) and (66) yields
M

e —w

p= (67)

which coincides with the steady state price level of the centralized economy. Our main-

tained assumption that w/e < 1 implies that p > 0.

Discounts or premia on private “notes”. It is also worthy of mention that, when

Ri1 = Ri2 = Ry1 = Ry, there are no discounts or premia on privately-issued liabilities.
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This is true both with respect to currency, and with respect to noncirculating liabilities.
Hence, at least with respect to steady states, the introduction of outside money eliminates

any “lack of uniformity” of the currency.

3.7. Local dynamics.

Overview. We now analyze local dynamics in a neighborhood of both the monetary
and the nonmonetary steady state. To do so, we construct a linear approximation at a

steady state of the dynamical system consisting of equations (61)-(64):

Rl,l (t + 1) — R11 i R1y1 (t) — R11 i
Roo(t+1) — Roz Ry (t) — Raz
=J (68)
Ri2 (t+1) — Rio Ry (t) — Rqo
L Ra 1 (t + 1) — Ry i i Ry (t) — Ro1 |

where J is the Jacobian matrix

r OR; l(t+1) OR, l(t+1) OR; l(t+1) OR, l(t+1) T
BRl’l(t) 8R2’2(t) BRI’Q(t) 8R2’1(t)

3R2}2(t+1) 8R2}2(t+1) 3R2)2(t+1) 8R2}2(t+1)

ORy,1(t) OR2 2(t) OR1,2(t) ORo2,1(t)
J= (69)
3R1}2(t+1) 8R1’2(t+1) 3R1,2(t+1) 8R1’2(t+1)
OR1,1(t) AR 2(t) OR1,2(t) ORo2,1(t)

OR2,1(t+1)  OR21(t+1) OR21(t+1)  ORp 1 (t+1)
L ORy(t) AR, (1) OR; »(t) AR, 1 (1)

with all partial derivatives evaluated at the steady state in question, and where [Ry1, Rao,
Ry2, Ra1] denotes the vector of steady state interest rates. In a monetary steady state
Ry1 = Rog = Ry2 = Ry1 = 1; in a nonmonetary steady state the vector [Ry1, Rag, R12, Rm]/
is described by Proposition 1. The elements of the matrix J are described in Appendix
G.

The dynamics of equation (68) are governed by the eigenvalues of J. We now charac-

terize these eigenvalues at each steady state.

The monetary steady state. Define the polynomials H (\) and P () by

e 62
H()\)_)\3{1+m}>\2+% (70)
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and

P(\) = (1+NHO). (71)

Then we have the following result:

Proposition 5. (a) The eigenvalues of J, at the monetary steady state, are the roots of
the equation P (\) = 0. (b) The value —1 is an eigenvalue of J. In addition, J has one

eigenvalue in the interval (—1,0), and two real eigenvalues that exceed one.

Proof. See Appendix H. W

Proposition 5 establishes that the monetary steady state possesses a one-dimensional
stable manifold, a two-dimensional unstable manifold, and a center manifold. Below we
establish stability of the monetary steady state along the center manifold. Thus, since
there are two free initial conditions, there is a unique dynamical equilibrium path that
approaches the monetary steady state. This result is an analog of the uniqueness of an
equilibrium where money asymptotically retains value in the centralized economy. Note
that, in particular, the coexistence of private circulating liabilities with outside money is
not a source of equilibrium indeterminacy. Along this dimension, then, quantity theoretic
criticisms of this “real bills” arrangement are incorrect.

It is true, however, that any paths that approach the monetary steady state must
display endogenous—or “excess”—volatility. Moreover, since —1 is an eigenvalue of J, this
volatility may dampen only very slowly. Thus, a coexistence of private and governmental
liabilities—or the need to trade with both kinds of liabilities—will lead to fluctuations.

On this dimension quantity-theoretic criticism of the “real bills” doctrine are justified.

The nonmonetary steady state. Define the polynomials ¢ () and p (\) by

. eR11Ro1 eRi1 Ry (1 + )‘) e? (R11)4
¢(A)_A3A2{1+ (ng> [2(1—7)210” Hi-puw
and
PN =1+ NP, (73)

Then we obtain the following result.
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Proposition 6. (a) The eigenvalues of J, at the nonmonetary steady state, are the roots
of p(A) = 0. (b) The value —1 is an eigenvalue of J. J also has one eigenvalue in the
interval (—1,0), one eigenvalue in the interval (0,1), and one eigenvalue in the interval

(1,00).

Proof. See AppendixI. B
Proposition 6 suggests that the nonmonetary steady state possesses a two-dimensional
stable manifold, a one-dimensional unstable manifold, and a center manifold. We now

discuss equilibrium dynamics along the center manifold.

Motion on the center manifold. As we have noted, the economy with outside
money has two steady states. And, at both, the Jacobian matrix has —1 as an eigenvalue.
We therefore evaluate equilibrium dynamics along the center manifold in a neighborhood
of each steady state.

In order to do so, we follow the procedure outlined in Appendix F. In addition, in
order for money to be valued, e > w must hold. Moreover, the properties of equilibrium
dynamics depend only on the ratio e/w. Thus, we construct a numerical approximation
to the center manifold—at each steady state—choosing parameters as follows. First,
we set e = 1 and choose values for w using a uniform distribution over the interval
(0,1). As before, we choose 7 using a uniform distribution on the interval (1/2,1). We
choose 1,000 economies, randomly, defined in this way, and calculated the center manifold
approximation in each case.

For the monetary steady state, we have one negative stable eigenvalue and two ini-
tial conditions. Our calculations indicate that the dynamics along the center manifold
are always stable in a neighborhood of this steady state. We conclude that equilibrium
is determinate in this case. The unique equilibrium trajectory for given initial condi-
tions approaches the steady state with oscillatory motion, but these oscillations may only
dampen very slowly over time, due to the presence of —1 as an eigenvalue.

In a neighborhood of the nonmonetary steady state, we have two stable eigenvalues

and two initial conditions. Our approximations of the center manifold dynamics indicated
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again that local dynamics are stable along the center manifold. We conclude that there
is a one-dimensional indeterminacy of equilibria that approach the nonmonetary steady
state, just as in the centralized analog of our economy. However, except for economies
with special configurations of initial conditions, all equilibrium paths display oscillatory
dynamics en route to the steady state. This is not true when trade is centralized.

We again conclude in favor of Friedman’s (1960) argument that endogenous volatility
naturally arises in an economy with circulating private liabilities. Generically, all equi-
librium paths display fluctuations, even in the absence of other shocks to the economy.
However, in contrast to Friedman’s assertions, the co-existence of publicly and privately-
issued liabilities is not a source of indeterminacy, at least near the monetary steady state.
Indeterminacies do arise in a neighborhood of the nonmonetary steady state. However,
this situation is no different than that in a conventional overlapping generations economy

in which private liabilities do not circulate.

Prohibition of private circulating liabilities. Suppose that as some (for instance
Friedman) have advocated, the use of private circulating liabilities is completely prohib-
ited in this economy. Then this prevents borrowers and lenders from trading, so that
borrowers cannot smooth their life-cycle consumption; their utility is driven to minus
infinity. Lenders can still trade using outside money. In this case the demand for real bal-
ances in each location is e/2, while the supply of real balances is M}, (t) /pn (t). Thus, the
equilibrium conditions of an economy with a prohibition on private circulating liabilities

My, (t) /pn (t) = e/2 (74)

for h=1,2,and t > 0.
In addition, since young lenders in location 1 (2) at t carry the outstanding stock of

currency in their location to location 2 (1) at ¢ + 1, we have
My (t+1)= My (t) =M — M (¢) (75)

for t > 0.
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Thus, unless M; (0) = M»(0) = M/2, a prohibition on circulating private liabili-
ties does mot eliminate price level volatility, although it does eliminate any indetermina-
cies. And, in contrast to the situation along dynamical equilibrium paths that approach
a steady state in an economy with inside money, any volatility here does not dampen
asymptotically.

As a historical matter, regional imbalances in the distribution of outside money were
alleged to be a continuing problem—at least in U.S. monetary history—from the colonial
era well into the 1830s or later. As equations (74) and (75) indicate, such imbalances would
create economic volatility when private circulating liabilities are prohibited. This fact,
along with the negative welfare consequences of such a prohibition for borrowers, makes
it clear that both inside and outside money are required to attain efficient outcomes in
the decentralized economy.

4. CONCLUSION

Because of recent technological and legal developments in the U.S., private banknote is-
sue is feasible. This possibility is rekindling the debate about an old topic in monetary
economics, namely, whether the provision of currency should be an activity left strictly to
the government, or, at the other extreme, whether market provision of close money sub-
stitutes would possibly eliminate any need for government currency issue. While plausible
arguments have been made on both sides of this issue, there are few formal frameworks
sufficiently rich to analyze this topic and evaluate competing policy prescriptions. Our
intent in this paper has been to propose such a formal framework. Our approach has been
to use an environment with heterogeneous agents, spatial separation, and limited com-
munication, in which potential borrowers and potential lenders meet only once in their
lifetimes. These features of the environment force intertemporal trading to be intermedi-
ated in part by private liabilities issued by borrowers, which are taken to another location
and exchanged for goods before they are brought back to the issuer for redemption.

Economies without outside money possess a unique steady state. If the economy’s
centralized analog is dynamically inefficient—that is, if the steady state interest rate is

sufficiently low—then the equilibrium of the decentralized economy is locally indetermi-
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nate. In addition, all equilibria converge to the steady state through slowly damped
oscillations in consumption and interest rates.'® This provides some theoretical support
for Friedman’s (1960) contention that an economy with only private currency issuance
would display endogenous (or “excess”) volatility, and possibly indeterminacies. If the
economy’s centralized analog is dynamically efficient—the steady state interest rate is
sufficiently high—then the equilibrium is either locally determinate, or, if incomes of bor-
rowers and lenders are sufficiently dissimilar, the steady state is unapproachable from
generic initial conditions.

In economies with both circulating private liabilities and government-issued fiat cur-
rency, two steady states exist.'® In the monetary steady state, private liabilities circulate,
and the agents willingly hold the outside money as well. This steady state is in fact
Pareto optimal and equilibrium is determinate in its immediate neighborhood. Equilib-
rium paths, however, again approach the steady state via very slowly damped oscillations.
We again interpret the nature of this equilibrium motion as consistent with Friedman’s
(1960) conjecture that systems with both private and public circulating liabilities are
subject to endogenous volatility. There is also a nonmonetary steady state in this econ-
omy. It has agents who trade privately-issued liabilities, but not government-issued lia-
bilities. There are hyperinflationary equilibrium paths that approach this steady state;
that is, equilibrium paths in which money is used at all dates, but with the property
that lim;—,o p (t) = 00. Such equilibria are indeterminate. And, generically speaking, any
equilibrium paths approaching the nonmonetary steady state display oscillatory motion.

Obviously our results strongly support the notion that the use of privately-issued,
circulating liabilities is a formula for generating endogenous volatility. This is true whether
or not outside money is present. Our results do not support the idea that the use of such

liabilities is conducive to the indeterminacy of equilibrium. Finally, our analysis supports

18Convergence via damped oscillations also occurs in overlapping generations economies with no cir-
culating liabilities and life cycles of three or more periods [Azariadis, Bullard, and Ohanian (1998)].
Non-monetary equilibria in these economies, however, are unique under standard gross substitutability
assumptions.

We might also note that, if we allow our agents to consume in their third period of life (and, possibly, to
have more general endowment patterns), equilibrium laws of motion are governed by dynamical systems
of higher order than those displayed here.

19Under our maintained assumption for this portion of the paper that e > w.
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neither the Hayek (1976) and Fama (1980) position that currency provision can safely
be “left to the market,” nor the Friedman (1960) proposal for regulating privately-issued
circulating liabilities out of existence. As we already know from standard overlapping
generations environments with (within-generation) heterogeneity, both private and public
liabilities are generally needed if an efficient allocation of resources is to be attained in
an economy of the Samuelson type. Of course in those environments private liabilities
need not circulate; here we can discuss prohibitions on the issue of private liabilities that
circulate in exactly the same way as currency.

There are, of course, many important questions regarding the private creation of cir-
culating liabilities that our analysis has not addressed. One concerns the determination of
rates of return, currency premia, and price levels in an economy where there is some risk
of default attached to private liabilities. When such default risk exists, one can also con-
sider the possibility of “fraudulent” creation of private currency. This possibility greatly
concerned Friedman (1960). Finally, it would be interesting to consider the circulation of
private liabilities whose redemption date is not known by the issuer. We hope to explore

the generality of our results in future research incorporating these features.
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A. PROOF OF PROPOSITION 1

To begin, we define the function
G(m) = (1 +7) — 2ewn? — 4y(1 — y)w?r3(1 — 7). (76)
Then we have the following result.
Lemma 7. 7 constitutes a solution to equation (22) iff m satisfies
G(r) = 0. (77)
Proof. Define the function H(7) by
H(m)=e(1+m)? - 2721 + m)ew — 4y (1 —y) 7?w? (1 — 7)) (1 + 7). (78)

Then it is easily verified that 7 satisfies (22) iff H (7) = 0. It is also easily verified that
H (m) = (1 +m)G (7). This establishes the claim. W
Lemma 7 implies that it suffices to find the roots of a cubic, as in equation (77).
Evidently it will be useful to know more about the properties of the function G. These

are stated in the following lemma.

Lemma 8. G(m) is a continuous function satisfying the following conditions. Part (a):
limy—.ooG(m) = —00. Part (b): limy_o.G(T) = co. Part (c): G(0) = €2 > 0. Part (d):

G(1) = 2e(e — w). Part (e): Define @’ to be the unique solution to

7T'2 e

1+7T:2’yw'

(79)
Then G(7') <O0.
Proof. Parts (a)-(d) of the lemma are obvious, as is the continuity of G. For part

(e), note that

2ywm?
1+7

G(m)=e(l+m) [e ] —2(1 —y)wr? e — 2yw (7 — 1)]. (80)
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Then
G(r) =21 ) wr?[2yw (7' — 1) — ¢]. (81)

2
—e = 0 obviously holds. Thus G (') < 0 as claimed.

Moreover, 2yw (' —1) —e < =2
|

Lemma 8 implies that equation (77) has exactly one solution in the interval (0, 7’].
Since m < 7’ must hold in order for Rj2 > 0, only solutions to (77) lying in the interval
(0, '] are economically meaningful. Thus Proposition 1 is proved.

B. PROOF OF PROPOSITION 2

From the definition of G we have

¢ ()

(@2 [1+(<)] - 20w (i)2 (82)

w w

—4y (1 —7) (w)? (%)2 [1 - (%)}
= [1—4y(1—7)](e)? [1 - (i)} '

w

If v = 1/2 holds, clearly G (e/w) = 0. Moreover, it is easy to show that when v = 1/2,
e/w < 7'. Thus, if v = 1/2, 7* = e/w, establishing part (a) of the proposition. If v > 1/2,
then 1 > 4v (1 — ) holds. Hence, G (£) > (<)0iff 1 > (<) (£) . In addition e/w < 7/

holds iff [see equation (76)]

(55) [+ () E
(o) () (32

It follows from these observations that, if v > 1/2 and w < e, G (e/w) < 0 holds. In

addition, part (d) of Lemma 8 implies that G (1) > 0. Finally, e/w < 7’ necessarily holds.

Hence 7* € (1,e/w), establishing part (b). For part (c), if v > 1/2 and w > e we have

G (e/w) > 0, while part (d) of Lemma 8 implies G(1) < 0. Thus 7* € (e/w, min{1,7"}).
C. PROOF OF PROPOSITION 3

First we state and prove three useful lemmas.

Lemma 9. 7/ > 2;0 holds.
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Proof.  The proof is by contradiction. Suppose to the contrary that 7’ < 5%-. Then
yw

equation (76) implies that

62 e e
— > —= — .
dy?w (2710) [1 i 2%}] (54

But this is obviously false, yielding the desired contradiction. H

Lemma 10. Ify > 1/2, G [23 } > 0 holds.

w

Proof. Using the definition of GG, we have

() = o[ (3)] ()

This establishes the result. W

Lemma 11. Ify > 1/2, G [r < 0 holds,

7’)W]

Proof. Using the definition of G we have

o[rrsm) - @ (e sl e )

4y (1 =) (w)? {mr {1 - {ﬁ} }

— (27— 1) (e)?
ot
This establishes the result. W

It is now possible to prove Proposition 3.

For part (a), it is immediate from (20) and (21) that Ry = Ro;. In addition, using
(20), it is easy to show that Rj2 < R* holds in this case iff R* < w/e. For part (b),

equations (19) and (20) imply that 1/7* = R* > R, holds iff

e(l+7*)—2w (W*)Q >2w(l—vy)m* (1 —7%). (85)
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Equations (19) and (21) imply that 1/7* = R* > Rg; holds iff
e(147*) — 2w (1) > 2wyr* (1 — 7).

Moreover, equation (77) and the definition of G imply that

w?

e (14 7) — 2w (1) = 4y (1) (—) ()2 (1 — ).

e

Thus the condition (85) is equivalent to

o ()

while condition (86) is equivalent to

w

2(1 — (—) 1—-7) |7 — ———— .
1= (§) - - ] 20
In addition, Lemmas 10 and 11 establish that
e
27w<ﬂ- <2(17’y)w'

Part (b) then follows, establishing the proposition.
D. THE DYNAMICAL SYSTEM WITH NO OUTSIDE MONEY

From equation (14) we have

21—z (t—1)

e — [ 2y, (t) } .
Rl,z(t)Rg,l(t—i-l)

RLQ (t) =

Similarly, equation (15) can be rearranged as

2y (t—1)

- 2(1—y)xa(t ’
€ Roa (DR 2(t+1)

R2,1 (t) =

Moreover, equations (10), (16), and (17) imply that

]. _ [wg—xl(t—l)] [wg—xl(t—Q)]
Rio(t) Roq (E+ 1) 21 ()21 (E— 1)
and
1 7[wg7$2(t71)}[w27.’£2(t72)}.

Rg,l (t) RLQ (t + 1) €9 (t) T2 (t — 1)
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Substituting (93) into (91) yields

1 Cexy(t—1) =2y [w—ay (t—1)] [w— 1 (t - 2)]
sl 20— )er (- Dz 1) ' )
And substituting (94) into (92) yields
I ewp(t—1)—2(1—v)[w—mxa(t —1)] [w— x5 (t —2)]
R2’1 (t) - 2’}/.Tl (t — 1) xT9 (t — 1) ' (96)

In addition, solving the location 1 goods market clearing condition (16) for Raq (t — 1),

leading the result one period, and using equation (13) to eliminate Ry 1 (t 4+ 1), we obtain

Ro (1) = £ =2 [u;;l ﬂg;)(t) —n (-1 (97)

Applying the same sequence of steps to the location 2 goods market clearing condition

(17) yields
Ria(t) = exg () —2(1—9) 7:1:[7211(;) xy () — w2 (t —1)] . 98)

We now proceed as follows. Equations (95) and (98) imply that

exy (1) B er(t—l)72(1—7)[10—:1:2@—1)][wfxg(th)}.

exy (t) — 2yw w — x1 () — 21 (£ — 1)] 2yxy (t— 1)z (t—1)

(99)
Using the definition of the function f [z (t —1),22 (t — 1), 22 (t — 2)], equation (99) can

be rearranged to yield

B 2yww—x1 (t=1)] fler (t—1), 20 (t — 1), 22 (t — 2)]
1) = T ) (=), s = 1), ma (E—2) — (100)

Qlay(t—1), 22 (t— 1), a2 (t — 2)].

Similarly, equations (95) and (96) imply that

exy (1) _en t—1)—2vy(w—z1(t —1))(w—ay (t—Q)).

exy (t) —2(1 —y)w(w —z2 (t) —x2 (t — 1)) 20—z (t—1D)axa (t —1)
(101)

Using the definition of the function g[zy (¢t —1),z2 (t —1),21 (t — 2)], we may rewrite
(101) as

20 —yww—xa(t —D)]glry (t—1), 20 (t — 1), 21 (t — 2)]
20 = Tl - DD -2 —e

= Zloy(t—1), 29 (t—1), 21 (t—2)].
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Equations (100) and (102) constitute a system of two second order difference equations
that govern the evolution of the equilibrium sequence {z1 (t) ,x2 (¢)} . This system reduces
readily to equations (32)-(35) given in the text.

E. PROOF OF PROPOSITION 4

We begin by stating several lemmas that will be needed for the proof of the proposition.

Lemma 12. In a steady state equilibrium,

Ay (1 —7) (w—2)*2? = [ex -2y (w— $)2} [ea& —2(1—7) (w—2)? (103)

Proof. Equations (95) and (96) imply that

1
Rio(t) Ry (t+1)

= (104)

e (t—1) —2y(w—z (t 1)) (w =21 (t = 2))][ewn () —2(1 =) (w =22 (})) (w — 22 (£ — 1))]
dy(l—y)zy )z () (t— 1) 22 (t — 1) '

Equation (97), along with (104), implies that

(w21 (t = 1)) (w—a (¢ —2)) = (105)

lezy (t—1) =2y (w—ay (t 1)) (w— 21 (¢ = 2))][ewn () —2(1 — ) (w— 22 (1)) (w — 25 (¢t — 1))]
4y (1 —v)zz (t) w2 (t— 1)

which holds Vt > 1. Imposing 1 (t) = 1 (t —1) = 21 (t —2) = 22(t) = 22 (t —1) =

xg (t —2) = z in (105) and rearranging terms we obtain (103). This establishes the

lemma. M

Lemma 13. The partial derivatives of f (-) and g () , evaluated at a steady state, satisfy

Part (i)
wh (@)
HOCrRE 1 (106)
Part (ii)
zg2 (r,2,0)
Sy = 1 (107)
Part (iii)
ofy (rw,0)  2(1-y)(w-2)w (108)

flrz,x)  ex—2(1—7)(w—1)?
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Part (iv)
zgy (v, z,2) 2yw(w— x)
g(z,z,0)  ex— 2y (w— 1) (109)
Part (v)
zfs(z,z,x)  2(1—7)(w—a)x
f($,$,$) o 617*2(1—’)/) (w—x)Q (110)
Part (vi)
xg3 (x,z,x)  2y(w—x)x
g(z,z,z) B ex72’y(w—x)2 (111)
Part (vii)
xfy(x,z,2)] [2g1 (2,2, 2) _(w 2
e e - @ e
= (1+m)?
Part (viii)
e ] - e
zfs(z,z,x)] [zo1 (z, 2, 2)
[ f(z,2,2) ] [ 9 (@, z,2) ] (113)
Part (ix)
vfs(x,x,2)] [2g3 (x,z,2)]
{ f(z,z,x) ] { g (x,z, ) ] =1 (114)

Proof. Parts (i) and (ii) of the lemma follow from (128) and (131) below. For Part

(iii), differentiation of (28) implies that, at a steady state

xfo (z,x, x) 2(1—9) (w—2)w

= . 115
f(z,z,2) ex —2(1—7) (w—z)? (115)

For Part (iv) differentiation of (102) implies that, at a steady state,
xgl(:zz,:zz,a:): 2yw (w — ) . (116)

g (z,2,2) exr — 2y (w — x)
Parts (v) and (vi) of the lemma follow similarly. For Part (vii), note that at a steady

state

[fo o} [xgl <.>] = (iv (1@_2 f)[(:_jzj Wj s ML
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It follows from Lemma 12 that [xfo (-) /f ()]|[zer () /g (-)] = (w/:z:)2 Moreover, z =

w/ (14 7*) . Using these facts establishes Part (vii). For Part (viii), we have

afa ()] [2g3 ()] 4y (1= ) (w— )2 we
{ 70 } { 53() ] R [6117*2(1 77) (wvx)z} [efoV(w—:z:)z (118)
= lx+7r*,

where the second equality follows from (103). Similarly, we have that

[xfg, (:Z?,.T,.T):| {:zzgl (:Z?,.T,.’L‘):| _ 4y (1 — ) (w—z)* wa

[, x) g (x,z,2) ex —2(1—7)(w —x)z} [em — 2y (w —x)?
= % (119)
= 1+7*

Finally, for part (ix) of the lemma, we have that

[wfa (')] [9393 (‘)] _ 4y (1 =) (w —2)° ()*
aQ 9() [ex -2y (w— $)2} |:€$ —2(1 =) (w—z)?

=1, (120)

where the last equality follows from (103). This completes the proof of the lemma. W

Lemma 14. Part (a):

N e M ey ] 2
- _<%>+[(e+2vw§f(-)e]

Part (b):
% (@@2) = - <w$x> * {[e+2(17)£}g(m,x,x> e] (122)
B ‘(ﬁ*[[em(l;w}g(‘)e]‘
Part (c):
e = [0 [ e ) 129
Part (d):

e e B (e T e
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Part (e):

ween [T [emre ) 09

Part (f):

Zs(,2,2) == [T’fﬁﬂ [ T2(1 ) e)g(;p,x,x)e]‘ (126)
(-

Proof.  Part (a). The definition of Q(-) in equation (100) implies that

r(t—=1)Qu[ri(t—1),z2(t —1),22(t —2)]
Qlr1(t—1),22(t—1),22(t —2)]

[wul(;ng (e +2yw) £ () ] a
70 (e t2mw) 7 () —e

- () - P58 oo

Moreover, equation (28) implies that

21 (t—1) filzr (t—1),22 (t — 1), 29 (t — 2)] _
flor(t=1), 22 (t — 1), 22 (t — 2)] '

Using (127) and (128), imposing z1 (1) = Q[x1 (t — 1), 20 (t — 1), 20 (t —2)] =21 (t — 1) =

< 21 (t—1) >+'x1(t1)f1[w1(t1),xz(t1>,$2(f2)q (127)

(128)

29 (t —1) = z9(t —2) = =, and rearranging terms yields the first equality in Part (a).

The second equality follows from the fact that

™ = . (129)

Part (b). The definition of Z (-) in equation (102) implies that

2o (t—1)Za[z1 (t— 1), 22 (t — 1), 21 (t — 2)]
Zlxy(t—1),29(t—1),21 (t —2)]

[ w2(t—1) T2 (t—1)gafz1 (t—1), 11?2( ) =2
<w—x2(t—1)>+{ G (= 1), 2 (i —1), 21 (1 = 2) } (130)

N S e O H

Moreover, equation (30) implies that

L= 1. (131)
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Substituting (131) into (130), imposing z2(t) = Z[z1(t—1),z2(t—1),21 (t —2)] =
2o (t—1) = 21 (t —1) = z1(t —2) = =z, and rearranging terms yields the first equal-
ity in Part (b). The second follows from (129).
Parts (c) and (d). The definition of Q () in equation (100) implies that
za(t—1) Qo (t—1), 29 (t— 1), 39 (t — 2)]
Qlar (t =1) a2 (t = 1), 22 (t = 2)]

(
e (t—1) Folan (6= D) an(t - Dan (6= 2] [, [ (et 2yw) fo ()
Tl (0 1) 72— 1),72(2)] Hl [(6+27w)f(-)6]} (132)

__{xth H ey )J'

In a steady state, equation (132) reduces to

wenn = [ o) 1

By the same token, the definition of Z (-) in equation (102) implies that

.Z‘l(t—1)Zl[$1(t—1),%‘2(t—1),$1(t—2)} o
Zx (t—1),20(t — 1), 21 (t —2)]

361(t—1)91[$1(t—1),$2(f—1),$1(t—2)]}{1_[ le+2(1—y)wg() ]}
gley (t—1),29(t — 1), 21 (t — 2)] [e+2(1—7)w]g()—e ( |
134

In steady state this expression reduces to that in Part (d) of the lemma.
Parts (e) and (f). From the definition of Q (-) in equation (100) we have
22 (t—2)Qsfwy (t—1),@a(t — 1), 22 (t —2)] _
Qe (t—1), 22 (t = 1), 29 (t - 2)]

2y (t=2) fa[zr(t—1), 2y (t =1, a0t =2)]] [, [ (e+2yw)f()
flon(t—=1) 20 (t— 1), 29 (t — 2)] ]{1 [(e+27w)f(.)_6:|}- (135)

In steady state, this reduces to the expression in Part (e) of the lemma. And, similarly,

the definition of Z (-) in equation (102) implies that

wy (t—2)Zz[xy (t—1), 20 (t —1), 21 (t —2)]
Zz1(t—1),20(t —1),21 (t —2)]

x1<t2>gg[x1<t1>,x2<t1>,x1<t2>1H1{ e+2(1 -y wg() ]}

glor(t—1), 22 (t—1), 21 (t —2)] le+2(1—y)wlg()—e
(136)

It follows that, in steady state, the expression in Part (f) of the lemma obtains. W
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We next establish some results about the polynomial P (\).

Lemma 15. The polynomial P (X) satisfies (a) limy—,_oc P (A) = 00, (b) imy_.0o P (A) =
00, and (¢) P(0) = —Qs (x,x,x) Zs (v, z,z) < 0.

Proof. Parts (a) and (b) are obvious. Part (c) follows from the definition of P (\),

along with Parts (e) and (f) of Lemma 14, and Part (ix) of Lemma 13. W

Lemma 16. The characteristic polynomial P (\) has the following representation:

1

PO =XMA-Q1)(\—2Z) — <22 + %) (Ql + F) N1+ +1%. (137)

Proof. It is straightforward to verify that

PO =MNA-Q1)(\—2Z) —Q22, [AJF (%ﬂ [)\+ (%”ﬂ : (138)

In addition, Lemmas 13 and 14 imply that

Qs Z3 w 1

= —_—= — = — 1
QR Z1 w (147 (139)
Finally, Lemmas 13 and 14 also imply that
2 1 1
Q221 =(1+7)" | Z2+ ey Q1+ el (140)
Then (137) follows from (138)-(140). W
Lemma 17. Ify < 1, we have
< Q1 <0< Zs. (141)

147
Proof. We have already shown that the first inequality in (141) obtains. The

inequality Q1 < 0 holds iff
e(l+7%) > (e+2vyw) f (z,z,2) . (142)
Equation (142) is easily shown to be equivalent to

4y (1=7) (W) (@) < (e (L+7") —2(1 —7)ew (r*)*

= 2yew (m) + 4y (1— ) () ()2 (L-7),  (143)
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where the second equality follows from the definition of G (7*) along with G (7*) = 0.

Finally, equation (143) reduces to

o
"< ST yem (144)

which has already been shown [see (90)]. Thus ()1 < 0. To demonstrate that Z, > 0, note
that Zy > 0 holds iff

e(l+7*) > le+2(1—v)wg(z,z,x)
(145)

e 2 T*
= (2)(1(—1:)10) - (117) e ()% + e (1+ %) — 2yw (7*)?.

Rearranging terms in (145), we have that Zs > 0 iff

4y (L=7) (@) (@) > () (L+77) - 2yew (r*)

= 2(1—7)ew(m)” +4y(1—7) (w)* (=) (1 - 7*), (146)

where, as before, the second equality follows from the definition of G (7*) and G (7*) = 0.
Rearranging terms in (146), we have that Zy > 0 iff
. e
— 147
> (147)

which, again, has been shown to hold [see (90)]. B

With these lemmas in hand, we are now prepared to provide a proof of Proposition 4.
Clearly
P(Z;) <0< /\lim P(N). (148)

It follows that J has an eigenvalue in the interval (Z3, 00). It is also easy to verify that
P (—1/7*) = 0 which establishes Part (b) of the proposition. In order to establish Part
(c), it suffices to show that

P {ﬁ] >0 (149)

holds. Part (c) then follows from the fact that P (0) < 0. It is clear from (137) that (149)
holds if
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and

o [t

are both satisfied. Condition (150) is readily shown to be equivalent to
em* (1+7*) > (e+ 2yw) f (z,z,x) — e,
and condition (151) is equivalent to
en*(1+7*)>(e+2(1—7y)w)g(z,z,x) —e.
It is straightforward but tedious to show that
(@ (1+r) (1-9)

(e 4+ 2vw) f (z,z,2) = e - e (7r*)2 +

e(l+7%) = 2(1 -7 w ()

and that

e+2(1—vy)w]g(z,z,z) = (;)(1(i:/)7::) — @ j 3 e (77*)2 +
e(1+7*) — 2yw ()%,

Substituting (154) into (152), it follows that (150) holds if

4y (1 =7) (w)* (1) = (e)* (1 + 1) — 2ew (n*)*.

48

(151)

(152)

(153)

(154)

(155)

(156)

But satisfaction of (156) is guaranteed by the definition of G (7*) and the fact that

G (7*) = 0. (Indeed, (156) must hold as a strict inequality if v < 1). Similarly, substitut-

ing (155) into (153), it follows that (151) is satisfied if (156) holds. But this establishes

that (149) is satisfied (and that it holds as a strict inequality if v < 1.) This completes

the proof of Part (c¢) of the proposition.

To establish Part (e) of the proposition, we proceed as follows. Suppose, for the

purpose of deriving a contradiction, that (40) holds, and so does P (1) > 0. For all

A > (1, we have

1

pu—

P <M A—Q)° - (ZQ + W—i) <Q1 +

)[A(1+7r*)+1]2.

(157)
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Then, since P (1) > 0, it follows that

2

1 L+ ()
1> (ZQ n ) (Ql +— )(1+7T*)2 _\wm)) (158)
1-G1
necessarily holds. Moreover, Lemma 17 implies that
[+ ()]
(1+7*)
A~ - >1. 159
1-Q1) — (159)
We then have our desired contradiction if

1 *

Qi+ )@+ =1, (160)

since (Z2 + ﬂ—l*) > (Q1 + ﬂ—l*) holds. Moreover, equation (160) is readily shown to be

equivalent to

e(l+7%) > (e+2yw) f (z,z,x) —e (161)
or to
e*(1+m) (l—vy D2 9 (1 ) (2
ex AT (I e 20— ) u(e) (162)

Rearranging terms in (160) yields condition (40). Thus (40) implies that inequality (160)
holds, yielding the desired contradiction. Thus P (1) < 0 when (40) holds. Part (e) of the
proposition then follows from limy_,., P (\) = co.

To establish Part (f) of the proposition, recall that

e . e
— —_— . 1
27w<7T <2(1—7)w (163)

It follows that (40) holds if 7* <1, or if 7* > 1 and

EE
27610 = {2(1 67)10} 2([%}2 : (164)

Rearranging terms in (164) yields condition (41) in Part (f) of the proposition.

It remains to establish part (d) of the proposition. To do so, note that

P(-1)

U+ Q) (11 Zy) — () (zz+ )(Q1+ 1) (165)
L+ Q) (14 Zo) — (L+7*Qu) (1 + 7 Z)

= (1-7m)[Q1+Ze+ (1+7")Q122].
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We now claim that

Q+Zo+ A +7")1Z2=0 (166)

always holds. Part (d) of the proposition then follows.

To demonstrate that (166) is necessarily satisfied, rewrite it as
—— ———=147). (167)

It follows from Lemma 14 that equation (167) is equivalent to the condition

1+ _ e+2(1—y)wg(z,z,z)—e
* e+ 2(1 =) w]g(x,z,7) —e (1 + ) + (168)
(e+2yw) f (z,z,x) — e

(e +2yw) f (z,x,x) —e (1 +7*)

Using equations (154) and (155) in (168), we have that (166) holds iff

1 * 2 *
+*7T _ 94 ; yewT o+ (169)
™ 2vew (m*)7 — 4y (1 — v) w? (7)
2(1 —~) ewr™

2(1—7)ew (1) — 4y (1 — ) w? (1)
where we have used the definition of G () to obtain (169). Rearranging terms in (169),
it follows that P (—1) = 0 holds if

ez @) o ()]
17 [1 2(1 7)(6 =+ 27(6 . (170)
Moreover, it is straightforward to verify that (170) is equivalent to the condition

e (14 1) — 2ew (1) — 4y (1 —y) w? (7)* (1 — 7*) = 0. (171)

But (171) necessarily holds, as is clear from the definition of G and the fact that G (7*) =
0. Thus P (—1) = 0, completing the proof of Part (d).

F. DYNAMICS ALONG THE CENTER MANIFOLD
In this appendix we describe our calculations to determine the nature of motion along
a center manifold. We illustrate these calculations by studying the dynamic system de-
scribed by equations (61)-(64) in more detail in a neighborhood of the monetary steady

state. However, the same procedure can be applied to the system without money, or the
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system with money but at the nonmonetary steady state. In all of these cases, our linear
approximation of equilibrium dynamics in a neighborhood of the steady state left us with
an eigenvalue equal to —1. The main idea is then straightforward: In order to deduce the
nature of motion along the center manifold near the steady state, we need to construct

a second order Taylor’s series approximation to the original dynamical system. We let

6= 2'$w and £ = m Then the approximated system can be written as
Ryq (t + 1) — Ry 0 0 ¢ 0 Ry (t) — Rq1
Roo (t + 1) — Roo 0 0 O £ Roo (t) — Roo
= + 5 (172)
Ro1 (t + 1) — Roy 1 0 ¢ -1 Roq (t) — Ro1
Ryio (t + 1) — Ryo 01 -1 £ Ris (t) — Ryo

where the steady state interest rates are given by R1; = Roo = Ro1 = R12 = 1, and where

S is a 4 x 1 vector of second order terms defined by
82 [Rox (t) — 1)
& [Ruz () — 1J°

S=| [Riz(t) = 1 + 6% [Ray (t) = 1° = [Rus (t) — 1] [Ru2 (1) — 1] — (173)
6 [Ro1 (t) — 1] [Raz () — 1] + 8 [Ray (t) — 1] [Ran () — 1]

[Ro1 () = 1° + €% [Raa (t) — 1° — [Raz (t) — 1] [Roa () — 1] —
§[Ro1 (t) — 1] [Raz () — 1] + & [Roa (t) — 1] [Ra2 () — 1]

This same vector of second order terms applies for the system with money, but with all
terms evaluated at the nonmonetary steady state. However, for the system without money
(equations (32)-(35) in the text), the vector is considerably more complicated, and we do
not display it here.

We label the eigenvalues of the Jacobian matrix as A\, = —1, —1 < Ag < 0, and
Auyy Auy, > 1 for the monetary steady state (and analogously for the nonmonetary steady
state or the steady state of the system without money). We have complicated analytic
expressions for these eigenvalues, as functions of v, e, and w, which we do not display

here.
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The Jordan decomposition of the Jacobian matrix J can be written as

A 0 O 0

0 X 0 0
J=T T (174)
0 0 A, O

0 0 0 A,
where the columns of the matrix T are the eigenvectors associated with the system (68).
The matrix T~ is not available analytically. In order to write equations outside of matrix

notation, we will label the elements of T and of T~ as follows:

t11 ti2 ti13 tuia 111 412 913 114
to1 tog fo3 o4 191 i22 123 124
T = and 771 = : (175)
t31 t32 33 t34 131 132 933 134
ty1 taz T4z taa 141 142 143 T44

We now create a new coordinate system according to

[ R11 -1
v R22 -1
—7! . (176)
x Rgl -1
Yy Rip -1
This implies
Riy1 = 1+ ti1u + tiav + 32 + t4y, (177)
Roo =1+ tor1u + to2v + tazx + toay, (178)
Ro1 = 1+ tz1u + t32v + t337 + 34y, (179)
and
Rio =1+ tgu+tov + tgzx + taay. (180)

We will use the shorthand

21 = t11u + t120 + 132 + t14Y, (181)
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with zo, 23, and z4 defined similarly. By substituting appropriately into S, we find that
2.2
0% 23
¢4

S = . (182)
zz + 522'% — 2124 — 82324 + 02123

zg + 5222 — 2023 — E2324 + 2024
In this notation, we have to keep in mind that the 2’s are functions of u, v, x, and y. We

let N =719, and we label the four rows of N as ni, na, n3, and ng. The map is now

u A O 0 0 U
v 0 As O 0 v
— + N (u,v,x,y) . (183)
T 0 0 X,y O T
y 0 0 0 A, y

We now wish to find an approximation to the center manifold. With our transformed
coordinates, the steady state takes the form (u,v,z,y) = (0,0,0,0), and the center man-

ifold can be locally represented by a graph as follows:
v="hy(u),r = ho(u),y = hz(u),
We(0) = 4 (u,v,2,y) € R (184)
hi(0) = 0, Dhy(0) = 0,7 = 1,2, 3.
for u sufficiently small. We work with equation (2.1.56) in Wiggins (1990, p. 206). The

center manifold obeys

hAu + f(u, h(uw)) — Bh(u) — g(u, h(u)) =0 (185)
where
h = (h1,ha, h3), (186)
f(uvvv$7y) = N,
no
g(uv v, T, y) = ns 3
N4
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As O 0
B = 0 Xy O
0 0 Ay
Following Wiggins, we assume a center manifold of the form
hy(u) aju? + byud + O(u)
h(u) = | ho(u) | = | a2u?+bou+O?) |. (187)
hs(u) asu? + bgud + O(u?)

We would like to rewrite equation (185) in light of this approximation. We do this in parts.
First, consider the portion of equation (185) h(Au+ f(u, h(w))). Using the definitions above

to substitute into this expression, we find that

aju? + (2aic — by)ud + O(u?)
h(Au+ f(u,h(u))) = | agu?®+ (2agc — ba)u + O(ut) |. (188)
asu? + (2azc — b3)ud + O(u?)
where
. . 2. 2 2. 2
¢ = dyatortzr — Sirgtiitar — 671y (t31)” — 67413 (t31) (189)
—ig (t31)” + i1gtintar — i1altortar + Sirstaita

Fira€taitar — i13 (ta1)” — 11282 (tar)” — 11462 (tar)* .

Thus equation (185) can be written as

aju? + (2aic — by)ud + O(u?)
agu? + (2agc — bo)u + O(ut) | —

azu? + (2asc — bs)u3 + O(ut)

190
As O 0 aju? + byud + O(u) ng
0 Ay O asu? + boud + O(u?) = | n3
0 0 A, azu? + bgu® + O(u) T4

By expanding the term on the right hand side and equating coefficients, we can create a
system of six equations in six unknowns, aq, as, as, b1, ba, and bs. These equations have

a unique solution which we label aj, a3, a3, b7, b5, b3.
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We now have all the pieces to approximate the center manifold. The map restricted

to the center manifold can be written as follows:
u(t+1) = —u(t) + nq (191)

where ny = 41181 + 11289 + 91383 + 11484; 81 = 622'%, S9 = fzzz, S3 = ZZ + 62z§ — 2124 —
62324 + 62123, 84 = 25 + €223 — zo23 — Ez324 + Ezo24; 21 = tiu + tiov + ti3T + tiay,
zg = t1u 122V +l23 + 124y, 23 = l31u+ 1320 + 1332 + 134y, 24 = t11u + 12V + 1132 + 114y,
and v = hy(u) = aju? + bjud, * = ho(u) = asu? + bjud, y = hs(u) = aju? + biud.
In this expression, the ¢’s, t’s, a’s, and b’s, as well as 6 and &, are all functions of the
underlying primitive parameters of the model, v, e, and w. Because we do not have
analytic expressions for the elements of the 7~ matrix, we have to examine the motion
on the center manifold numerically.

The results of this calculation at the monetary steady state of the system with money,
as well as at the nonmonetary steady state and the steady state of the system without

money, are reported in the text.
G. ELEMENTS OF THE JACOBIAN MATRIX
In either steady state we have

aRlyl (t + 1) _ 6R1,1 (t + 1) B 8R1y1 (t -+ 1) .

= = =0 192
ORy11 (t) ORy 2 (1) OR12 (1) 192
and
ORi,1 (t+1) el
, _ . 193
ORy 1 (t) (e +2yw — eRyy) (195
In addition,
ORpo(t+1)  ORpp(t+1)  O9Rpa(t+1) _ (194)
8R2y2 (t) 6R1y1 (t) 6R2,1 (t)
and
OR2 (t+1) Rz (195)
OR1 4 (t) [e+2(1—7)w—eRy]’
Also,
OR12(t+1)
—= 2o, 196
ORy 1 (1) 190)
ORi2(t+1) Ry (197)

8R2y2 (t) o Roq ’
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8R1,2 (t + 1) _ eRio (198)
OR1 2 (1) [e+2(1—7)w—eRya|’
and
OR1 2 (t + 1) —Rq2
. = . 199
6R2,1 (t) Ro1 ( )
Finally,
8R2 1 (t + 1) Ryq
_ 7 — —_—, 200
(9R1y1 (t) R12 ( )
ORg1 (t+1)
— =, 201
OR3 2 (1) (201)
. = , 202
OR1 2 (t) Rio (202)
and
8R2,1 (t + 1) o eRay (203)

OR21 () e+ 2yw —eRyy
H. PRrROOF OF PROPOSITION 5
We begin by noting that, at a monetary steady state, R11 = Roo = Ro1 = Ri2 = 1. In

addition, it is straightforward to verify that the characteristic polynomial of J is given by

PO\ = M- {ﬁ}xﬁ
{L—l—é}xzju (204)

dy (1 = y) w? 2y(1=7y)w

e? e?
A+ .
2y(1=y)w? Ay (1 =) w?
It is then immediate that —1 is an eigenvalue of J. To establish the remainder of the

proposition, observe that
H-1)=-2-——<0 (205)

and
e

Thus, there is an eigenvalue in the interval (—1,0). Moreover, a comparison of the poly-
nomials G and H will indicate that H(7*) = 0, so that A = #* > 1 is an eigenvalue of J.
Finally, as above, define 7’ to be the unique solution to

7T2 (&

1+7T:2’yw'

(207)
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Then 7’ > 7* and H(n’) <0 hold. (See Lemma 8). The existence of an eigenvalue in the

interval [1’, 00) then follows from

lim H(\) = . (208)

A—0o0

I. PROOF OF PROPOSITION 6

We begin by proving a useful lemma.
Lemma 18. Ifw/e < 1, then ¢ (1) < 0.

Proof. To prove the lemma, observe that

_ e(Run) eRi\ (1 —v) Ro1 +yRio
1/1(1)27(17)102—(210)( v(1—7) > (209)
Therefore ) (1) < 0 holds iff
3
‘ (}21) < (1—=7) Ra1 +vRao. (210)

It follows from (61), (62), and the definition of 7* that

1 *
(1= ) Rot + ARus = | SLETD (211)
w (%)
Therefore, 1(1) < 0 is satisfied iff
(%) (™) < () + 7t — 1. (212)

However, w/e < 1 is satisfied. And, in addition, 7 > 1 implies that (7*)® < (7*)*+7* —1
holds. Therefore, (212) is satisfied, and ¢ (1) < 0 holds.
We can now prove the proposition.

At a nonmonetary steady state, the following relations obtain:

eRio eRy1 Ry
= 21
e+2(1—y)w—eRi2 2(1—7)w’ (213)
€R11 _ 6(R11)2 (214)
e+ 2yw — eRy 2yw
eRQQ - 6(R11)2 (215)

et+2(l—y)w—eRp 2(1—7)w’
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and

eRgy eR11 Roy

= 216
e+ 2vyw —eRoy 2vw (216)

Using (213)-(216), it is straightforward to verify that the characteristic polynomial of J

is given by

p(N) = >\4—)\3{

RuR RuR Ry)*
)\2{1+e ultar | ehyifvie e 11))w}+ (217)

eRi1Ryy | eRuRip |
2yw 2(1—7y)w

2vyw 21l —=y)w 4yl —x

e? (Rin)”
4 l%(l *1;) | "
62 (R11)4

4y(1 = y)w?

It is then immediate that —1 is an eigenvalue of J. For the remainder of the proposition,
observe that ¢ (—1) < 0 < % (0) holds, so that there is an eigenvalue in the interval
(—1,0). In addition, we have

lim ¢ (\) = o0 (218)

A—00
and 9 (1) < 0 from Lemma 18. These last two observations, along with ¢ (0) > 0, imply

that J has an eigenvalue in the interval (0,1), and an eigenvalue in the interval (1, co).



