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1. INTRODUCTION

1.1. Overview. Monetary policy rules have been the subject of a good deal of recent
research in the literature on monetary economics and monetary policy.! While some of
this work has focussed on systems which abstract from or suppress private sector expecta-
tions, many of the more recent papers analyze systems where private sector expectations
enter the model explicitly. Most of these models involve small, forward-looking represen-
tations of the macroeconomy, such as those found in Clarida, et al., (1999), McCallum and
Nelson (1999), and Woodford (1999). In many cases the small model is a log-linearized
and simplified version of a larger model derived from optimizing behavior in a dynamic
stochastic general equilibrium context.

When private sector expectations enter such models explicitly, recent research has
emphasized the possibility that certain policy rules may be associated with indeterminacy
of rational expectations equilibrium, and therefore might be viewed as undesirable. Some
of the authors that discuss this issue include Bernanke and Woodford (1997), Carlstrom
and Fuerst (1999, 2000), Christiano and Gust (1999), Clarida, et al., (2000), Rotemberg
and Woodford (1998, 1999), and Woodford (1999). In a typical analysis, the authors
compute the rational expectations solutions of the system with a given monetary policy
rule, and if the rule induces indeterminacy then it is viewed as undesirable. The idea is that
if the monetary authorities actually followed such a rule, the system might be unexpectedly
volatile as agents are unable to coordinate on a particular equilibrium among the many
that exist.? In contrast, when equilibrium is determinate, it is normally assumed that the
agents can coordinate on that equilibrium.

It is far from clear, however, exactly how or whether such coordination would arise.
In order to complete such an argument, one needs to show the potential for agents to

learn the equilibrium of the model being analyzed. In this paper, we take on this task.

LFor a sample of the recent work, see the volume edited by Taylor (1999).

2 Alternatively, the agents may be able to coordinate, but the risk exists that the equilibrium achieved
may be one with undesirable properties, such as a large degree of volatility. See Woodford (1999, pp.

67-69).
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We assume the agents of the model do not initially have rational expectations, and that
they instead form forecasts by using recursive learning algorithms—such as recursive least
squares—based on the data produced by the economy itself. Our methodology is that of
Evans and Honkapohja (1999, 2001). We ask whether the agents in such a world can learn
the fundamental or MSV equilibrium of the system under a range of possible Taylor-type
monetary policy feedback rules. We use the criterion of expectational stability (a.k.a.
E-stability) to calculate whether rational expectations equilibria are stable under real
time recursive learning dynamics or not. The research of Marcet and Sargent (1989)
and Evans and Honkapohja (1999, 2001) has shown that the expectational stability of
rational expectations equilibrium governs local convergence of real time recursive learning
algorithms in a wide variety of macroeconomic models.?

We think of learnability as a necessary additional criterion for evaluating alternative
monetary policy feedback rules. In particular, in our view economists should only advo-
cate policy rules which induce learnable rational expectations equilibria. Central banks
adopting monetary policy rules that are not associated with learnable rational expecta-
tions equilibria, under the assumption that private sector agents will coordinate on the
equilibrium they are targeting, are making an important mistake. Our analysis suggests
that such policymakers will encounter difficulties, as the private sector agents instead
fail to coordinate, and the macroeconomic system diverges away from the targeted equi-
librium. Learnable equilibria, on the other hand, do not have such problems. This is
because the agents can indeed coordinate on the equilibrium the policymakers are target-
ing, so that the learning dynamics tend toward, and eventually coincide with, the rational

expectations dynamics. Learnable equilibria are therefore to be recommended.

1.2. Model environment. We consider monetary policy rules which have been sug-
gested by various authors. All of these rules envision the central bank adjusting a short-

term nominal interest rate in linear response to deviations of inflation from some target

” o«

3 Accordingly, we use the terms “learnability,” “expectational stability,” “E-stability,” and “stability

in the learning dynamics” interchangably in this paper.
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level and to deviations of real output from some target level. We take up four variants of
such rules which we believe are representative of the literature: rules where the nominal
interest rate set by the central bank responds to deviations of current values of inflation
and output (we call this the contemporaneous data specification); rules where the interest
rate reacts to lagged values of output and inflation deviations (lagged data specification);
rules where the interest rate responds to future forecasts of inflation and output devia-
tions (forward looking rules); and finally, rules which respond to current expectations of
inflation and output deviations (contemporaneous expectations).

The novel contribution of this paper is to evaluate these policy rules based on the
learnability criterion in a standard, small, forward-looking macroeconomic model which is
currently the workhorse for the study of such rules. We analyze the stability of equilibria
under learning dynamics, and we also provide conditions for unique equilibria. Conditions
for unique equilibria may be found sporadically for some of these policy rules in the
existing literature, and we put these results into a unifying framework. Thus, we are able
to evaluate monetary policy rules based not only on whether they induce determinacy but

also based on whether they induce learnability.

1.3. Main results. We find that monetary policy rules which react to current values
of inflation and output deviations can easily induce determinate equilibria. Moreover,
when equilibrium is determinate it is also learnable under this specification. However,
contemporaneous data rules have often been criticized because they place unrealistic in-
formational demands on the central bank, since precise information on current quarter
values of inflation and output is usually not available to policymakers. One of our im-
portant findings is that rules which react to contemporaneous expectations of inflation
and output deviations lead to exactly the same regions of determinate and learnable equi-
libria. Consequently, our results suggest that rules where the central bank responds to
current expectations of inflation and output deviations are the most desirable in terms of
generating both determinacy and learnability. Our reading of the policy rules literature
is that such rules have not been given adequate attention and our results suggest more

emphasis on them may prove fruitful.
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We find that rules which respond to lagged values or to future forecasts of inflation
and output deviations do not have the same desirable properties. Determinate rational
expectations equilibria are not necessarily learnable under the lagged data specification.
In addition, rules which respond to lagged data can easily fail to generate determinacy.
Forward-looking rules can easily induce equilibrium indeterminacy (see also Bernanke and
Woodford (1997)). We find that determinate equilibria are always learnable for forward-
looking rules, but when equilibrium is indeterminate, those equilibria which correspond
to the minimum state variable (MSV) solutions may also be learnable. We do not ex-
amine the learnability of sunspot equilibria, which may exist when the equilibrium is
indeterminate, in this paper.

Taylor (1999a) recommends a “leaning against the wind” policy rule which calls for
nominal interest rates which are adjusted positively, and more than one-for-one, in re-
sponse to inflation above target, and positively to levels of production above target. We
call this the Taylor principle following Woodford (2000, 2001). Taylor’s intuition is that
under such a rule, a rise in inflation brings about an increase in the real interest rate
which reduces demand and inflationary pressures, bringing the economy back towards the
targeted equilibrium. On the other hand, a policy rule which does not obey the Tay-
lor principle brings about a decrease in the real interest rate which adds to inflationary
pressures, pushing the economy away from the targeted equilibrium.

In this paper we support Taylor’s intuition based on the criterion of learnability. In
fact, we find that the Taylor principle completely characterizes learnability. If agents
do not have rational expectations of inflation and output and instead start with some
subjective expectations of these variables, learning recursively using some version of least
squares, then a “leaning against the wind” policy on the part of the central bank does
indeed push the economy towards the rational expectations equilibrium (REE) across all
the specifications of policy rules we consider.

Finally, we find that across all the information structures we consider, policy rules
which respond relatively aggressively to inflation with little or no reaction to the output

gap (or output gap forecasts) generally induce both determinate and learnable rational
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expectations equilibria. To the extent that both determinacy and learnability are desirable

criteria, central banks may want to consider adopting such rules.

1.4. Recent related literature. In an analysis complimentary to ours, Evans and
Honkapohja (2000) consider the learnability of equilibria induced by optimal monetary
policy rules in a structural model like the one used in this paper. By optimal, Evans
and Honkapohja mean a policy rule derived from minimization of a loss function for
the monetary authority, given the structure of the economy. A rule derived in such
a way may or may not generate either determinacy or learnability of equilibrium, and
Evans and Honkapohja investigate both of these properties. One important finding is
that if the central bank assumes rational expectations on the part of private agents,
then the equilibria induced are always unstable in the learning dynamics. On the other
hand, if optimal policy is conditioned directly on the observed (subjective) private sector
expectations, then the REE becomes stable under learning dynamics.

In contrast to Evans and Honkapohja (2000), we study simple policy rules which are
of the form recommended in Taylor’s (1993) widely-cited work. We locate the set of rules
in this class which are associated with both determinacy and learnability. A practitioner
wishing to find an optimal policy rule in this set could then postulate an objective criterion
for the central bank and use it to locate the best rule. This is essentially the same process
that Rotemberg and Woodford (1998, 1999) and other authors have used to analyze these
types of rules. The advantage of remaining in the class of Taylor-type rules hinges on
the alleged robustness of these rules across models, as discussed at length in the Taylor
(1999) volume. For this reason we think it is interesting to consider learnability under
either optimal rules or Taylor-type rules.

McCallum (1999) and Taylor (1999b) have argued that it is important to check the
robustness of policy rules in different monetary models since in general there is little
agreement among economists about the appropriateness of any particular model. In this
respect, Carlstrom and Fuerst (1999, 2000) show that the equilibrium determinacy prop-
erties in models like the one we analyze are sensitive to certain key assumptions. These

assumptions include which money balances, in terms of timing, enter the utility function,
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and also the nature of the sticky price assumption along off-equilibrium paths. They
conclude that under their alternative assumptions, in setting the nominal interest rate,
central banks should react aggressively to lagged inflation in order to preserve determinacy
of equilibrium. Our model also provides support for policy rules which react aggressively
to lagged inflation (and mildly to output). We also advocate policy rules based on contem-
poraneous forecasts. Since these forecasts are in effect based on past data in our systems
under learning, we support the intuition that a central bank should look backward, as in
the models analyzed by Carlstrom and Fuerst. We also think it would be interesting to

carry out our learning analysis in the classes of models analyzed by Carlstrom and Fuerst.

1.5. Organization. In the next section we present the model we will analyze through-
out the paper. We also discuss the types of linear policy feedback rules we will use to
organize our analysis, and a calibrated case which we will employ. In the subsequent
sections, we present results on determinacy of equilibrium, and then on learnability of
equilibrium, for each of four different classes of policy rules. We conclude with a sum-
mary of our findings.
2. THE ENVIRONMENT

2.1. A baseline model. We study a simple and small forward-looking macroeconomic
model analyzed by Woodford (1999). Woodford (1999) derived his model from a more
elaborate, optimizing framework with sticky prices studied by Rotemberg and Woodford
(1998, 1999), and intended it to be a parsimonious description of the U.S. economy, with
mechanisms that would remain prominent in nearly any model with complete microfoun-

dations. We write Woodford’s (1999, p. 16) system as

2t = Zte+1 — (7_1 (’I"t — T? — 775+1) (1)

T = Kzt BTy (2)

where z; is the output gap, 7 is the inflation rate, and r; is the nominal interest rate. Each
variable is expressed as a percentage deviation from its long run level, and in particular,
r¢ is the deviation of the nominal interest rate from the steady state value that would

obtain with zero inflation and steady state output growth. A superscript “e” represents
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a (possibly nonrational) expectation. We use this notation for expectations so that we
can be flexible in describing our systems under both rational expectations and learning,
along with the accompanying informational assumptions in each case. The parameters
o, relating to the elasticity of intertemporal substitution of the representative household,
k, relating to the degree of price stickiness, and (, the household’s discount factor, are
viewed as structural, arising from the analysis of the larger dynamic stochastic general
equilibrium model, and from the subsequent approximations to that model that produce
these equations. We assume « and o are positive on economic grounds, and that 0 < 8 < 1.

The “natural rate of interest” r}* is an exogenous stochastic term that follows the process
i =priite (3)

where ¢, is iid noise with variance 02, and 0 < p < 1 is a serial correlation parameter.
We supplement equations (1), (2), and (3) with a policy rule, which represents the

behavior of the monetary authority. Our baseline specification is to use

TL= QT+ P2 (4)

so that 7, is set by the monetary authority in response to inflation and the size of the
output gap.* We assume throughout the paper that ¢, and ¢, are non-negative, with at
least one strictly positive.

For notational convenience we have written the policy rule (4), as well as the ones
in the next section, without a constant term. Woodford (1999, pp. 17-18) has argued
that in general, a nonzero term r* should be added to the right hand side of equation
(4) to account for the idea that in this model, the policy authorities may well wish to
stabilize nominal interest rates about a value different from the steady state value consis-

tent with zero inflation and steady state output growth. This would occur either because

4Rotemberg and Woodford (1999) respond to the Lucas critique by arguing that the equations de-
scribing their economy have coefficients which are not dependent on the parameters in the monetary
authority’s policy rule; accordingly they study a number of possible policy rules in their paper. We follow

their procedure in this paper.
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the policy authority wishes to counteract the distortions emphasized by Friedman (1969),
or because the authorities wish to account for the possibility of encountering the lower
bound on nominal interest rates. The constant term makes little difference for the issues
we discuss (and hence we suppress it), except for one point: When we analyze learning
in the remainder of the paper, we will allow agents to take account of a possible constant
term in their learning rule, because this is the more general specification. In the special
case where there is actually no constant in the economic model and agents also specify
no constant in their learning rule, the F-stability conditions we report will be somewhat
altered. We regard this as a special case, and we do not conduct an extensive analysis of

it.

2.2. Alternative specifications for setting interest rates. In the model given
by equations (1)-(4), only the private sector forms expectations about future values of
endogenous variables. The policymakers, whose behavior is embodied in equation (4),
only react to information which is observed at time ¢. McCallum (1999) has argued that
such reaction functions are unrealistic, since actual policymakers do not have complete
information on variables such as output and inflation in the quarter they must make a
decision. In reaction to this critique, we will call the specification embodied in equation (4)
our contemporaneous data specification, and we will consider other possibilities below.?
One alternative is to follow one of McCallum’s suggestions and posit that the monetary
authorities must react to last quarter’s observations on inflation and the output gap, which

could possibly be viewed as closer to the reality of central bank practice. This leads to

SThere is an additional problem with the contemporaneous data specification. When private sector
expectations are formed using information dated t — 1 and earlier, a tension is introduced, because the
monetary authority is reacting to time ¢t information on inflation and the output gap. Thus the central
bank has “superior information” in this specification. In our other specifications, this tension is absent,
as the private sector and the central bank use the same information, either for forming expectations or

setting the interest rate instrument, or both.
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our lagged data specification for our interest rate equation, in which (4) is replaced with
Tt = Prle—1 + Pr2t—1. (5)

Another method of coping with McCallum’s criticism is to assume that the authorities
set their interest rate instrument in response to their forecasts of output and inflation
deviations, formed using the information available as of either time ¢ — 1 or time ¢, so that
the policy rule itself is forward-looking. Bernanke and Woodford (1997), among others,
have analyzed forward-looking rules. We consider simple versions of such rules, ones in
which the monetary authority looks just one quarter ahead when setting its interest rate
instrument. This yields a specification, which we call the forward expectations model, in

which the interest rate equation (4) is replaced with

Tt = 907r7r§+1 + 90225+1' (6)

There are several ways to interpret this equation. When there is learning in the model,
it may be two-sided, as both policymakers and private sector agents form (identical)
expectations of the future. We impute identical learning algorithms to each when we
introduce learning. Alternatively, following Bernanke and Woodford (1997), it may be
that the central bank simply reacts to the predictions of private sector forecasters, so that
in this interpretation it is only the private sector which is learning.

Finally, another way to cope with McCallum’s criticism is to assume that the au-
thorities set their interest rate instrument in response to their current ezpectations (as
opposed to using current data), formed using the information available as of time ¢t — 1,
of the current period output gap and inflation. This also might be viewed as close to
the actual practice of central banks. The interpretations given above for the case when
the central bank targets future forecasts of inflation and output carry over to this case.
Thus we consider contemporaneous expectations versions of our systems where the policy

feedback rule (4) is replaced with

Tt = Soﬂﬂ-? + Sozzte (7)
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2.3. Methodology. We begin our analysis of each system by providing conditions
for a determinate equilibrium to exist. We use standard methodology for this purpose,
whereby the system is required to have the correct number of eigenvalues inside the unit
circle given the number of free and predetermined variables in the system.%

We adapt methods developed by Evans and Honkapohja (1999, 2001) to understand
how learning affects these systems. We assume the agents in the model no longer have
rational expectations at the outset. Instead, we replace expected values with adaptive
rules, in which the agents form expectations using the data generated by the system in
which they operate. We imagine that the agents use versions of recursive least squares
updating, and we calculate the conditions for expectational stability (E-stability). Evans
and Honkapohja (2001) have shown that expectational stability, a notional time concept,
corresponds to stability under real-time adaptive learning under quite general conditions.
In particular, under E-stability recursive least squares learning is locally convergent to
the rational expectations equilibrium (REE). Moreover, under weak assumptions, it can
be shown that if a rational expectations equilibrium is not E-stable, then the probabil-
ity of convergence of the recursive least squares algorithm to the rational expectations
equilibrium is zero.

We now define precisely the concept of E-stability. Following Evans and Honkapohja

(2001), consider a general class of models’
Yt = o+ BEyiy1 + 6yi—1 + scwy (8)

Wy = Ppwi_1 + €4 9)

where y; is an n X 1 vector of endogenous variables, « is an n X 1 vector of constants,
B, 8, », and ¢ are n X n matrices of coefficients, and wy is an n X 1 vector of exogenous

variables which is assumed to follow a stationary VAR, so that e; is an n x 1 vector of

6For discussions of this methodology in contexts like ours see Blanchard and Kahn (1980), McCallum
(1983), and Farmer (1991, 1999).
"The class of models discussed in the previous section are special cases of this general class. A similar

analysis can also be carried out when expectations are dated time ¢t — 1.
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white noise terms. Following McCallum (1983), we focus on the MSV (minimal state

variable) solutions which are of the form

Y = a+byi—1 + cwy (10)

where a, b, and ¢ are conformable and are to be calculated by the method of undetermined
coefficients. Use (10) to compute the corresponding expectation, Fiy;11 = a+ by, + chw,

and the MSV solutions consequently satisfy

(I — Bb— B)a = «, (11)
Bb? —b+6=0, (12)

and
(I — Bb)c — Beg = . (13)

For E-stability we regard equation (10) as the perceived law of motion (PLM) of the
agents and using Fiy;11 = a + by + cow,, one obtains the actual law of motion (ALM)
of y; as

y: = (I — Bb) '+ Ba + 8y;_1 + (Beg + s)wy]. (14)

Thus the mapping from the PLM to the ALM takes the form
T (a,b,c) = ((I — Bb)™"(a+ Ba) , (I — Bb)~'6,(I — Bb)™"(Bcg + x)). (15)
Expectational stability is determined by the following matrix differential equation

diT (a,b,¢) =T (a,b,c) — (a,b,c). (16)

The fixed points of equation (16) give us the MSV solution. We say that a particular
MSYV solution (C_L, b, E) is E-stable if the MSV fixed point of the differential equation (16)
is locally asymptotically stable at that point. The conditions for E-stability of the MSV

solution (C_L, b, E) are given in Proposition 10.3 of Evans and Honkapohja (2001).%

8For an interpretation of equation (16) as a stylized learning process, see Evans and Honkapohja (2001,

Chapter 2).
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Under real time learning, the PLM is time dependent and takes the form
Yi = ap—1 + b—1ys—1 + 1wy (17)

where the coefficients a4, b;, ¢; are updated by running recursive least squares on actual
data, x} = (1,y,_1,w). This generates a corresponding ALM for y; (which is also obvi-
ously time dependent). However, as shown in Proposition 10.4 of Evans and Honkapohja
(2001), the E-stability conditions derived from equation (16) actually govern stability
under such adaptive learning. This is the reason why we focus on E-stability conditions
throughout the paper.

In the learning literature, an important issue is the so-called “dating of expectations.”
That is, when an expectation term enters the model, there is a question of what informa-
tion the agent is able to incorporate when forming expectations. Expectational stability
conditions, in general, are influenced by the exact dating of expectations. The conven-
tion in the learning literature is to assume all expectations are formed at time ¢ using
information available as of time ¢t — 1. Evans and Honkapohja (1999) comment that this

“

assumption “... seems more natural in a learning environment.” If one assumes instead
that time t observations are in the information set, then a simultaneity problem is intro-
duced, where the system is determining time ¢ variables at the same time that agents are
using time ¢ variables to form expectations. The problem can usually be handled at the

cost of additional complexity. In this paper we generally work out results for both ¢ and

t — 1 dating of expectations and where appropriate report on any differences we find.

2.4. Parameters. We have analytical results in most cases, but we illustrate our
findings using a calibrated case. Woodford (1999) calibrated the parameters o = .157 and
k = .024 based on econometric estimates from a larger model contained in Rotemberg and
Woodford (1998, 1999); we use these as our baseline values. The value of the discount
factor 3 is set throughout to .99. Calibrations of the policy rules correspond to values
for the parameters ¢, and ¢,, and we examine 0 < ¢ < 10, and 0 < ¢, < 4. For
the stochastic process describing the natural rate of interest, we use p = .35, the serial

correlation suggested by Woodford (1999). We also discuss the robustness of our results
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to an alternative calibration suggested by Clarida, et al. (2000). In that calibration, we

increase the values of two parameters: ¢ from .157 to 1 and & from .024 to .3.
3. POLICY RULES AND THE EQUILIBRIA THEY INDUCE

3.1. Contemporaneous data in the policy rule.

Determinacy. In this subsection, we consider the contemporaneous data version of
the model represented by equations (1)-(4). We substitute the policy rule (4) into (1),
and put our system involving the two endogenous variables z; and 7; (given by equations

(1) and (2)) in the following form?
ye = o+ By + sy (18)

where y; = [z, 7], @ =0, and

o+, thp, | Ko Kt B(0+e,) |

where the form of ¢ is omitted since it is not needed in what follows. Since both z; and
7 in the system (18) are free, we need both of the eigenvalues of B to be inside the unit
circle for determinacy; otherwise the equilibrium will be indeterminate. We provide a
characterization of the necessary and sufficient condition for determinacy in the following

proposition.

Proposition 1. Let x(¢, — 1) + (1 — B)¢, # 0.9 Under contemporaneous data interest
rate rules the necessary and sufficient condition for a rational expectations equilibrium to

be unique is that

(or = 1) + (1= B, > 0. (20)

Proof. See Appendix A. W
Condition (20) may be given an economic interpretation and this is discussed in the

next section.

90ne obtains a similar system whether expectations are dated time ¢ or time t — 1.

10T his condition rules out non-generic cases which we will generally ignore in what follows.
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Learning. The results for learning are identical whether we assume ¢t — 1 or ¢ dating
of expectations in (18). For convenience, we assume ¢ dating of expectations below.
The MSV solution in this case takes the simple form y, = a + ¢r} with @ = 0 and
¢ = (I — pB) "' (where I denotes a conformable identity matrix throughout the paper).

For the study of learning, we endow agents with a perceived law of motion (PLM)
Yy =a+crp (21)

which corresponds to the MSV solution. As we mentioned in the discussion of the policy
rule (4), the more general specification of the PLM involves a constant term for this model.
Using the PLM, we compute E;y;11 = a + cpry, assuming the time ¢ information set to
be (1,77")’, and substituting this into equation (18), we obtain the actual law of motion

(ALM) which is followed by y; as

y¢ = Ba + (Bcep + »)r). (22)
Using (21) and (22), we can define a map, T, from the PLM to the ALM as

T(a,c) = (Ba, Bep + ). (23)

Expectational stability is then determined by the matrix differential equation as discussed
earlier.

We now compute the necessary and sufficient condition for a MSV solution to equation
(18) to be E-stable using the framework spelled out above. This yields an important base-
line result, which is that the condition that guarantees E-stability turns out to be identical

to the condition which guarantees uniqueness of rational expectations equilibrium.

Proposition 2. Let k(p, — 1) + (1 — )¢, # 0. Suppose the time t information set
is (1,77)’. Under contemporaneous data interest rate rules, the necessary and sufficient
condition for an MSV solution (0,¢) of (18) to be E-stable is that'!

(o —1) + (1= B)g, > 0. (24)

117t is possible to show that the MSV solution is learnable even when agents allow for a lag in the

endogenous variables in their PLM, so that this result is robust at least to some overparametrizations in

the PLM of agents (see Evans and Honkapohja (2001)).
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Proof. See Appendix B.

The key condition in Propositions 1 and 2, inequality (24), can be rewritten as

(1-5)

K

O+ w, > 1. (25)

The price adjustment equation (2) implies that each percentage point of permanently
higher inflation results in a permanently higher output gap of (1— 3)/k percentage points.
The left hand side of (25) then shows the long-run increase in the nominal interest rate
prescribed by the interest rule (4) for each unit permanent increase in the inflation rate.
Conditon (24), therefore, corresponds to the Taylor principle as discussed by Woodford
(2000, 2001): Nominal interest rates rise by more than the increase in the inflation rate
in the long-run. The intuition for this result is quite clear. A deviation of private sector
expected inflation from the rational expectations (RE) value leads to an increase in the real
interest rate when the Taylor principle is satisfied. This reduces the output gap through
equation (1) which in turn reduces inflation through equation (2). Such a policy, therefore,
succeeds in guiding initially nonrational private sector expectations towards the RE value.
On the other hand, if the policy rule does not satisfy this principle, a deviation of private
sector expected inflation from the RE value leads to a decrease in the real interest rate
which increases the output gap through (1) and increases inflation through (2). Over
time, this leads to upward revisions of both expected inflation and expected output gap.
The interest rate rule is unable to offset this tendency and the economy moves further
away from the rational expectations equilibrium. Obviously, ¢, > 1 is sufficient for the
Taylor principle to be satisfied. But even for values of ¢, < 1, the policy authority can
compensate for a relatively low value of ¢, by choosing a sufficiently large value of ¢,,
in such a way as to still satisfy condition (25). One of our important findings is that the
Taylor principle seems to characterize learnability for all classes of policy rules we study.

Propositions 1 and 2 in conjunction show that under contemporaneous data policy
rules, the set of parameter values consistent with determinate equilibria are exactly the
same as the set consistent with expectational stability. Since all determinate REE are
E-stable, one could view this as justifying the focus on determinate equilibria in previous

studies of policy rules, for the case in which the policy rule reacts to contemporaneous
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data.

[FIGURE 1 ABOUT HERE].

Figure 1 plots the region of determinacy and expectational stability of the MSV so-
lution as a function of ¢, and ¢,, when all other parameters are set at baseline values.
Much of the parameter space is associated with a determinate REE. Our result under
learning shows that this entire region is also associated with expectational stability. In
the indeterminate region of the parameter space, near the origin in the Figure, equilibria
corresponding to the MSV solution are always expectationally unstable when agents have
a PLM corresponding to the relevant MSV solution. Note that the negatively sloped
straight line in the figure corresponds to the Taylor principle; points to the right of this
line are learnable (and determinate, in this case) whereas points to the left are not learn-
able (and indeterminate, in this case). This line has a vertical intercept corresponding to
¢, = k/(1 — B) and a horizontal intercept corresponding to ¢, = 1. Consequently, the
line pivots upwards as k increases with the horizontal intercept staying unchanged. As a
result, for the Clarida, et al., (2000) calibration, which uses a higher x (= .3), the vertical
intercept becomes larger (= 30). Our analytical results, therefore, show that higher values
of Kk increase the size of the indeterminate region near the origin (as long as ¢, < 1)
whereas it leaves the determinate region for ¢, > 1 unaffected.

As we have noted above, the economic model as we have written it in equations (1)
through (4) has no constant terms, but the perceived law of motion of the agents under
learning (21) does have a constant term. If we included explicit constant terms in the
economic model (1) through (4) and proceeded with the same analysis, the E-stability
conditions would be identical to the ones we report in this section and below. If, however,
the model (1) through (4) is literally interpreted as not having any constant terms—
and Woodford (1999) suggests that this is a difficult case to make—then the appropriate
perceived law of motion for the agents under learning would also not include a constant
term. In this special case, the condition for E-stability would change somewhat. In
particular, the condition would depend on p, the degree of serial correlation of the shock,

and if ¢, = 0 then the condition would reduce to ¢, > p instead of ¢, > 1. Thus the
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condition for E-stability would be less stringent. However, we regard this situation as a

special case and we do not pursue it further in the remainder of the paper.

3.2. Lagged data in the policy rule.

Determinacy. The case of a policy rule with contemporaneous data is probably the
least realistic in terms of what policymakers actually know when decisions about interest
rates are made. In this subsection, we consider rules with lagged data, so that policy-
makers are, in the current quarter, reacting to information about the previous quarter’s
output gap and inflation rate. The policy rule is, therefore, given by (5) and our complete
system is given by (1), (2), (3) and (5).

For the analysis of uniqueness, we move equation (5) one time period forward and

rewrite the system of equations (1), (2), and (5) as

1 0 ot 2z 1 o7t 0 2f4q o=t
- 1 0 m™ | =10 6 0 T |+ 0 |r (26)
SDZ SDW 0 Tt 0 0 1 Tt-{-l 0

Pre-multiplying the matrix associated with the expectational variables with the inverse

of the left hand matrix gives

1 0 _B‘Pw 1
B=—— 0 B K (27)
(SDZ + KSDW) 0-(902 + "{9077) p, + (‘L{ + ﬂo-)(pﬂ -0

which is the matrix relevant for uniqueness. We now have two free endogenous variables,
z¢ and 7, and one predetermined endogenous variable, r;. Consequently, we need exactly
two of the eigenvalues of B to be inside the unit circle for uniqueness.

In order to have a unique equilibrium, we must rule out aggressive response to either

inflation or output as is shown in the proposition below.!?

Proposition 3. Under lagged data interest rate rules a set of sufficient conditions for
unique equilibria are

H(Spﬂ' - 1) + (1 - 6)¢z > Oa (28)

12Tn this case it can be shown that a sufficiently aggressive response to inflation and output will

necessarily lead to local explosiveness, that is, paths that are locally diverging away from the steady

state.
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and

Klpr = 1)+ (1+0) ¢, <20(1+0). (29)

Proof. See Appendix C. Wl

Proposition 3 shows that rules characterized by ¢, > 1 and a small response to output
can lead to unique equilibria. Proposition 2 established that determinate equilibria are the
only learnable ones, for the case of contemporaneous data in the policy rule. This baseline
result concerning learnability does not carry over to the case of lagged data interest rate

rules, however, as we now show.

Learning. For the analysis of learning, we substitute equation (5) into equation (1)
and reduce the system to two equations involving the endogenous variables z; and 7.

Defining y; = [, 7Tt]/ , this system can be written as

Yt = B1Yip1 + OYr—1 + sery! (30)

with
=] % wotig | (31)
s=| Soh e 2)

and the form of s is omitted since it is not needed. In this formulation, we assume that
expectations of inflation and output of the private sector are formed at time ¢t — 1. The

MSV solution of (30) takes the form
Y = a+ bys_q +ert | + e (33)
with @ =0, ¢ = p(I — 3,0 — pB,) "5, and

b— B2 — 8 =0. (34)

13Since the central bank is using last quarter’s values of inflation and output in setting the current

interest rate, assuming that the private sector has access to current quarter values of inflation and output
in forming its expectations is tantamount to assuming that the public has superior information. Assuming
t — 1 dating of expectations removes this tension and puts the monetary authority and the public in a

symmetric position.
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Because equation (34) is a matrix quadratic, there are potentially multiple solutions for
b. The determinate case corresponds to the situation when there is a unique solution for
b with both its eigenvalues inside the unit circle. For the analysis of learning, we assume

that agents have a PLM of the form
Y = a+byi—1 + crilq + e (35)
corresponding to the MSV solution which leads to an ALM of the form
ye = (By + Bib)a + (816> + 8)yi—1 + (Brbe + pBic + pe)ryy + ey (36)

The mapping from the PLM to the ALM can then be computed, and we can apply the
results of Evans and Honkapohja (2001). We require the eigenvalues of all of the three
matrices b’ ® B +I® 611_), pBy + ﬂlf), and (8 + ﬂ15 to have real parts less than one for
E-stability whereas F-instability obtains if any eigenvalue of these matrices has a real
part more than one.

[FIGURE 2 ABOUT HERE]

We did not obtain analytical results in this case. However, we illustrate our findings
in Figure 2, which depicts determinacy and learnability, when all parameters other than
¢, and @ are set at baseline values. We first note that only a subset of the parameter
space that is consistent with determinacy is also consistent with learnability in the lagged
data case. Determinate but E-unstable equilibria exist for values of ¢, < 1 and relatively
high values of ¢,. On the other hand, the determinate equilibria for values of ¢ > 1
and small values of ¢, are E-stable. In the indeterminate region of the parameter space,
which occurs for values of ¢, < 1 and relatively small values of ¢_, we find that there
are two stationary solutions which take the form of the MSV solution (33). However,
both of these stationary solutions always turn out to be E-unstable. For the alternative
calibration suggested by Clarida, et al., (2000), we find that the boundary between the
determinate and learnable region and the explosive region shifts upward in the parameter
space, i.e., roughly speaking, we obtain determinacy and learnability for a larger portion
of the parameter space. Qualitatively, however, the regions are similar: there continue to

exist determinate E-unstable equilibria for values of ¢, < 1 and relatively high values of
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¢, determinate E-stable equilibria for values of ¢ > 1 and relatively small values of ¢,,
and indeterminate equilibria for values of ¢, < 1 and relatively small values of ¢, . In the
latter case, both of the stationary MSV solutions continue to be E-unstable.

We checked that all (stationary) MSV solutions which satisfy the Taylor principle
are E-stable while all solutions which do not satisfy the Taylor principle are E-unstable
(whether in the determinate or indeterminate region of the parameter space). The inti-
mate connection we observe between FE-stability and policy rules which conform to the
Taylor principle leads us to conjecture that condition (24) still characterizes learnability in
the lagged data case. On the other hand, determinacy is not characterized by the Taylor

principle in this case.

3.3. Forward expectations in the policy rule.

Determinacy. With forward expectations, the policy rule is given by (6), and the
complete model by (1), (2), (3), and (6). We can again reduce the system of equations (1),
(2), and (6) to two equations involving the endogenous variables (z;,7;) by substituting

equation (6) into equation (1). The reduced system is then given by
yo = o+ Byiy + ] (37)

where y; = [z, 7], @ =0, 5 = [0~ ko™, and B is as defined by

_ 1_0-71902 071(1_@71')
B=1 w1—0"p) Brro(1-py) | (38)

Since the variables z; and 74 are free, we need both the eigenvalues of B to be inside the
unit circle for uniqueness. In this case we are again able to provide a characterization
of the necessary and sufficient conditions for determinacy. This is given in the following

proposition.

Proposition 4. Under interest rate rules with forward expectations the necessary and

sufficient conditions for a rational expectations equilibrium to be unique are that
p. <o(1+67Y), (39)

Klpr = 1)+ (1 +B)p. <20(1+ D), (40)
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and

Proof. See Appendix D. B

We first note that, unlike the other specifications, values assigned to ¢, are of primary
importance for determining uniqueness. In particular, an aggressive response to output
leads to indeterminacy, quite independently of ¢ . If the response to output is modest,
rules with ¢, > 1 can lead to determinate equilibria; however, too large a value of ¢

again leads to indeterminacy.

Learning. The analysis of F-stability here is akin to the case of rules with contem-
poraneous data and the results are identical for ¢ — 1 and t dating of expectations. For
t-dating of expectations, the MSV solution takes the form y; = a + ¢ry* with a = 0, and
¢ = (I — pB)~'52. The PLM of agents again takes the form of equation (21) and the re-
mainder of the analysis proceeds as in Section 3.1. We obtain a complete characterization

for E-stability of the MSV solution in the following proposition.

Proposition 5. Suppose the time t information set is (1,7}"). Under interest rate rules
with forward expectations, the necessary and sufficient condition for an MSV solution

(0,¢) of (37) to be E-stable is that
K(pr - 1) + (1 - ﬂ)@z >0 (42)

Proof. See Appendix E. B

Propositions 4 and 5 in conjunction show that under policy rules with forward ex-
pectations, if an MSV solution is unique, then it must be expectationally stable. The
condition is again that the Taylor principle applies as we showed in earlier cases. In this
case, however, the converse does not hold, as satisfaction of the expectational stability
condition does not imply satisfaction of the determinacy conditions. Consequently, when
equilibrium is (potentially) indeterminate, the system may still converge to equilibria

which correspond to the MSV solution.!

MWe again stress that we have not undertaken the analysis of sunspot solutions in this paper. When

such a solution exists, it remains an open question whether agents may be able to learn it in this context.
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[FIGURE 3 ABOUT HERE].

Figure 3 illustrates the intersections of the regions of determinacy and learnability
of the MSV solution at baseline parameter values. Determinate equilibria are always
expectationally stable. For baseline values, this occurs (roughly) for values of ¢, between
1 and 27 and values of ¢, less than .32. On the other hand, in the indeterminate region
of the parameter space, equilibria corresponding to the MSV solution may or may not be
learnable when agents have a PLM corresponding to the relevant MSV solution. With
the alternative calibration of Clarida, et al., (2000), determinacy and learnability obtain
(roughly) for values of ¢, between 1 and 13 and values of ¢, less than 2, i.e., for larger
values of ¢, and smaller values of ¢, than in the baseline case. We also note that for
given k, higher values of ¢ enhance determinacy when ¢, > 1 since this relaxes the right

hand constraints of equations (39) and (40).

3.4. Contemporaneous expectations in the policy rule.

Determinacy. With contemporaneous expectations, the policy rule is given by (7).
In this case we assume t — 1 dating of expectations for the central bank and the private
sector so as to put them in a symmetric position as far as their information is concerned.
Our complete model is given by (1), (2), (3), and (7). We can reduce our system of
equations (1), (2), and (7) to two equations by substituting equation (7) into equation (1)

and write this system in the form

Y = Boyy + Blyte+1 + sery! (43)
where y; = [z¢, 7], 2 = [0, ko~ 1]/,
—1 —1
_ —p.0 —Pn0
me S50 N g

and

By = [ (45)

1 o1
k B+ko™t |
The situation with contemporaneous expectations is similar to the situation with contem-

poraneous data at least as far as determinacy is concerned. In particular, the necessary
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and sufficient condition for a unique REE is given by condition (20) of Proposition 1 (and
as portrayed in Figure 1 for baseline parameter values). The easiest way to see this is
by replacing the expectations with the actual values (which is required for determining
uniqueness following Farmer (1999) or Evans and Honkapohja (2001)) and observing that
this yields the matrix, (I — Bg) !B, for determining uniqueness which is exactly the
same as the one obtained for contemporaneous data, namely, the matrix given in (19).
Furthermore, since the variables z; and 7; are free, we need both eigenvalues of (19) to

be inside the unit circle for uniqueness, as in the case of contemporaneous data.

Learning. Given our model of the form of equation (43), the MSV solution takes
the form y; = @ + erl® 4 + s, with @ = 0 and ¢ = p(I — Bg — pBy) '3. We assume that
agents have the PLM

yr = a+cry_q + xe (46)
from which we compute the expectations E;_1y; = a+crj; and Ey_1yi41 = a+cEi_1r) =

a + cpry_,. Substituting this into our model (43) yields the ALM
yt = (Bo + Bi)a + (Boc + Bicp + »p)ry | + ey (47)
The map from the PLM to the ALM takes the form
T(a,c) = ((Bo + Bi)a, (Boc + Bicp + »p)). (48)
We are now in a position to prove the following proposition.

Proposition 6. The necessary and sufficient condition for the MSV solution (0, ¢) of (43)
to be E-stable under interest rate rules with contemporaneous expectations is given by

inequality (42).

Proof. See AppendixF. B
The Taylor principle condition (42) is also the necessary and sufficient condition for
uniqueness of equilibria under contemporaneous expectations. Hence, Proposition 6 shows

that the set of parameters consistent with both unique and E-stable equilibria are exactly
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the same—a conclusion which we also obtained for the specification of contemporane-
ous data policy rules. The situation for the case of baseline parameter values is again
summarized in Figure 1, where the determinate region is also the expectationally stable
region.

4. CONCLUSION

‘We have studied the stability of a simple macroeconomic system under learning for various
monetary policy rules using methods developed by Evans and Honkapohja (1999, 2001).
We found that the Taylor principle—that nominal interest rates should be adjusted more
than one-for-one with changes in inflation—is closely linked with stability in the learning
dynamics across all of our specifications. We also found that, in general, determinacy alone
is insufficient to induce learnability of a rational expectations equilibrium. We conclude
that it may be unwise to simply assume that coordination on a unique equilibrium can
occur under a reasonable description of agent learning.

We stress that the methodology we employ to analyze the effects of learning imparts a
lot of information to the agents in our model. By endowing the agents with a perceived law
of motion that coincides with the MSV solution of the system, we are in effect giving the
agents the correct specification of the vector autoregression they need to estimate in order
to learn the rational expectations equilibrium. The local nature of the analysis further
imparts initial expectations which are in the immediate neighborhood of the equilibrium.
If, under these circumstances, the system is nevertheless driven away from the rational
expectations equilibrium, then we do not hold out too much hope that the system can be
rendered stable under some other plausible learning mechanism (although of course that

remains an open question).!?

For this reason we think of the learnability criterion as a
minimal requirement for a policy rule to meet.
In this paper, we have only considered “simple” policy rules, in which policymakers do

not respond to the lagged interest rate. In part this was because this is the type of policy

15 An analogy we have in mind are the notions of weak and strong E-stability used in the learning
literature in univariate models. If a certain equilibrium is not weakly E-stable, then it cannot be strongly

E-stable (see Evans and Honkapohja (2001)).
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rule studied by Taylor (1993) which fueled the current wave of interest in monetary policy
rules. However, estimated policy rules usually include a lagged interest rate in order to
better capture the interest rate smoothing observed in actual central bank behavior. In a
companion paper, Bullard and Mitra (2000), we are considering the case when the central

bank also reacts to a lagged interest rate.
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6. APPENDICES
A. PROOF OF PROPOSITION 1

The characteristic polynomial of B (defined by (19)) is given by p(A) = A + a1\ + ag

where

@ = —L2 (49)
T+ . T Ry
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a; = _(K""_O’J’_ﬁﬂ"'/@@z). (50)
T+, + hp,

Both eigenvalues of B are inside the unit circle if and only if both of the following condi-

tions hold (see J.P. LaSalle (1986, p. 28)):

lag] < 1, (51)

1] < 1+ ap. (52)

Condition (51) implies the inequality ¢, + k., > —(1 — §)o, which is trivially satisfied
since 0 < @ < 1. Condition (52), on the other hand, implies (20). The condition, x(p, —
1)+ (1= B)p, # 0, rules out eigenvalues on the unit circle.
B. PROOF OF PROPOSITION 2

We have spelled out the PLM, the ALM, and the T' map from the PLM to the ALM by
equations (21), (22), and (23), respectively. Using the results of Evans and Honkapohja
(2001), we need the eigenvalues of both B (given by (19)) and pB to have real parts less
than 1 for E-stability. The eigenvalues of pB are given by the product of the eigenvalues
of B and p, and since 0 < p < 1, it suffices to have only the eigenvalues of B to have
real parts less than 1 for E-stability. On the other hand, the MSV solution will not be
E-stable if any eigenvalue of B has a real part more than 1. The characteristic polynomial

of B — I is given by A+ a1\ + as where

K(2SD7r — 1) + (2 _ﬂ)tpz +0(1 _ﬂ)

ay = o+, +rp, ) (53)
-1 1-—

4 = P D+A-Ple. (54)
0+ P, + Ky

Both eigenvalues of B have real parts less than 1 (i.e. both eigenvalues of B — I have
negative real parts) if and only if a; > 0 and as > 0 (these conditions are obtained by

applying the Routh theorem; see Chiang (1984)). Note that

K¢w+¢z+g(1_6)
o+ g, FRe

a] =ag + (55)

So as > 0 implies a; > 0. Consequently, the only condition required is as > 0 which

reduces to (24). On the other hand, if k(¢, — 1) + (1 — )¢, < 0, then the determinant
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and trace of B — I are non-zero so that no real root equals zero and in the case of complex
eigenvalues, the real parts are non-zero.
C. PROOF OF PROPOSITION 3

The characteristic polynomial of B (defined by (27)) is
pO) =2 = (1487 + kB 0 N+ (B =0 g A+ 7N e +e.). (56)

Note that p(0) > 0, p(—1) < 0 by condition (29), and p(1) > 0 by condition (28). By
Descartes’ rule of signs (see Barbeau (1989, p. 171)), there is necessarily a negative
root and either two positive roots or a pair of complex conjugates. Since p(0) > 0 and
p(—1) < 0, the negative root (A1) is inside the unit circle. If the roots are all real, then

since Y0 A =1+ 87"+ k370! we have
M4+ A3>1+6 4k ot >24k3 0 L. (57)

so that at least one positive root (A2) must be more than 1. However, this means that the
third positive root also exceeds 1 since p(1) > 0, p(Aa + ) < 0 for small positive e, and
p(00) = co. If the roots are complex, then the same argument shows their real parts to
be more than one.

D. PROOF OF PROPOSITION 4

The characteristic polynomial of B (given by equation (38)) is A? + a3\ + ao where

ag = Bl—0c""p,), (58)

@ = ko Mg, - to o —1-8. (59)

Both eigenvalues of B are inside the unit circle if and only if conditions (51) and (52) hold.
Condition (51) implies inequality (39) whereas condition (52) implies the inequalities (40)
and (41).

E. PROOF OF PROPOSITION 5
The proof of Proposition 2 spells out the expectational stability conditions in this case.

We merely note that the characteristic polynomial of B — I is given by

(Spw_l)+90z+ﬂ(1_/6)})\_~_K(@w_1)+(1_ﬂ)90z

2 K

(60)
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and it is easy to show that condition (42) is the required condition.
F. PROOF OF PROPOSITION 6

Appealing to the results of Evans and Honkapohja (2001), for expectational stability, we
require the real parts of the eigenvalues of the matrices Bg+ By and pBy + By to have real
parts less than one (B and Bj are defined by (44) and (45)) whereas instability obtains
if either matrix has an eigenvalue with real part more than one. Note that By + By is
identical to the matrix B (given by equation (38)) which was crucial for E-stability under
forward expectations. So inequality (42) guarantees that the real parts of the eigenvalues
of By + Bj are less than one. The matrix pBy + Bg — I has the characteristic polynomial

A2 + a1\ + ap where

ar = 2—p—Pp+o o, —ko (p—p,), (61)
a = 1—p—LFp+0p*+0 (1= Bp) — ko (p—pr). (62)

Note that
a1 =ag+1+p(Bp+Bo"e.). (63)

so that ag > 0 implies a; > 0. Consequently, both eigenvalues of (pB; + Bg) have real

parts less than one if and only if ag > 0. We can write ag as

ag =0 [o(1 = p)(1 = Bp) + (1 = Bp)g. + r(er — p)]. (64)

The first term within the parentheses is positive. As for the second and third terms, write

it as
(1=Bp)p. + k(pr —p) =k(pr — 1) + (1= B, + k(1 —p) + B(1 — p)p.. (65)

Inequality (42), therefore, implies that (1 — 8p)¢, + k(¢ —p) > 0, or that, ag > 0. Since

By + By is the same as B (given by (38)), condition (42) is also necessary.
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Figure 1
Policy Rules with Contemporaneous Data
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Figure 1: Regions of determinacy and expectational stability for the class of policy rules using
contemporaneous data. Parameters other than ¢, and ¢, are set at baseline values.



LEARNING ABOUT MONETARY PoOLICY RULES 31

Figure 2
Policy Rules with Lagged Data
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Figure 2: Determinacy and learnability for rules responding to lagged data, with parameters
other than .. and ¢, set at baseline values. Determinate equilibria may or may not be E-stable.
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Figure 3
Policy Rules with Forward Expectations
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Figure 3: Determinacy and learnability with forward expectations monetary policy rules, at
baseline parameter values. Determinate equilibria are always expectationally stable.



