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Risk-Adjusted, Ex Ante, Optimal Technical Trading Rules in Equity Markets

Abstract: This paper uses genetic programming to construct risk-adjusted, ex ante,
optimal, trading rules for the S&P 500 Index and then characterizes the predictive content of
these rules. These results extend previous results by using risk-adjustment selection criteria to
generate ex ante rules with improved performance. There is, however, no evidence that the rules
significantly outperform the buy-and-hold strategy on a risk-adjusted basis. Therefore, the
results are consistent with market efficiency. Nevertheless, risk-adjustment techniques should be

seriously considered when evaluating trading strategies.



Risk-Adjusted, Ex Ante, Optimal Technical Trading Rules in Equity Markets

The use of technical trading rules—trading rules based on past price behavior—has been
common in equity markets since the turn-of-the-century analysis of Wall Street Journal editor
Charles Dow. Because excess returns generated from publicly available information would seem
to contradict the efficient markets hypothesis, a number of authors have studied the usefulness of
technical analysis in equity markets (Brock, Lakonishok and Lebaron (1992), Bessembinder and
Chan (1995, 1998), Allen and Karjalainen (1999), Lo, Mamaysky and Wang (2000)). Such
studies have generally evaluated raw excess returns rather than explicitly risk-adjusted returns,
leaving unclear the implications of their work for the efficient markets hypothesis. Risk-
adjusting the returns is necessary because the technical trading strategies spend time out of the
market and therefore have less volatile returns than the buy-and-hold rule. Therefore, simply
comparing the returns to each strategy is insufficient to compare the usefulness of the rules. An
exception to the failure to adjust for risk is the work of Brown, Goetzmann and Kumar (1998)
that found value in the risk-adjusted returns generated by the market signals of William Peter
Hamilton.'

Another common problem in the trading rule literature is that rules are evaluated
precisely because they are widely used by technical traders (see Brock, Lakonishok and Lebaron
(1992)). Ready (1998) argues that testing such rules is a form of data snooping. This practice is
likely to produce spurious evidence of technical trading profits; the rules are widely used

precisely because they would have been profitable on past data.

! Another exception is the work of Bessembinder and Chan (1998), which uses varying leverage with its technical

trading rule to produce a rule with approximately the same risk as a buy-and-hold strategy.



Rather than evaluating widely used rules, one might search for optimal, ex ante rules with
a nonlinear search procedure such as genetic programming (Koza (1992)). Allen and
Karjalainen (1999)—hereafter AK—used genetic programming to generate optimal, ex ante,
technical trading rules on daily S&P 500 data over the period 1929 through 1995. They found
that the transactions cost-adjusted returns to these rules failed to exceed the returns to a buy-and-
hold strategy—despite the exclusion of dividends from the stock return—and that the market was
efficient in this sense.” There was, however, some evidence of predictability in returns as the
rules tended to be in the market during periods of high returns and out of the market during
periods of low returns. Although AK attributed this predictability to low-order serial correlation
in the stock index, they speculated that the rules might be useful on a risk-adjusted basis despite
their lower returns. “Even though the rules do not lead to higher absolute returns than a buy-
and-hold strategy, the reduced volatility might still make them attractive to some investors on a
risk-adjusted basis.” (Allen and Karjalainen (1999), p. 261) AK did not, however, use any risk-
adjustment techniques in their work.

This paper extends the literature by investigating whether ex ante, optimal technical
trading rules are useful on a risk-adjusted basis in equity markets. It is not sufficient merely to
examine the results from previous genetic-programming rules with common methods of risk
adjustment. To fairly evaluate risk-adjusted returns, new sets of rules that maximize risk-
adjusted measures like the Sharpe ratio (Sharpe (1966)), the X* statistic (Sweeney and Lee

(1990)) and the X, measure (Dacorogna et al. (2001)) are generated. In addition, this paper

? Neely, Weller and Dittmar (1997) and Neely and Weller (2000, 1999) have applied genetic programming to find
trading rules in the dollar foreign exchange market and the European Monetary System.
* The return to a dynamic strategy—moving in and out of the market—will be reduced less by the exclusion of

dividends than will the return to a buy-and-hold strategy.



more fully characterizes the predictability found by these rules and conducts formal tests of
market timing (Cumby and Modest (1987)). A central point of this study is that risk adjustment
is not a secondary issue; it is absolutely essential both for evaluating the usefulness of trading
rules and for measuring the consistency of results with market efficiency (Sharpe (1966), Jensen
(1968), Kho (1996), Brown, Goetzmann, and Kumar (1998), Ready (1998), Dowd (2000)).

The rules fail to consistently and significantly outperform the buy-and-hold strategy by
any risk-adjusted measure. Thus, this exercise extends previous results to find that risk-adjusted,
ex ante, optimal rule returns are consistent with market efficiency. The facts that the market
indices used here exclude dividends and that some predictability may be due to spurious

autocorrelation only reinforce the negative results.

2. METHODOLOGY

A. Genetic Programming

Genetic programming is a nonlinear search procedure for problems in which the solution
may be represented as a computer program or decision tree (Koza (1992)). Like its cousin, the
genetic algorithm (Holland (1975)), genetic programming uses the principles of parallel search
and natural selection to search for candidate solutions to problems of interest.* Essentially, a
computer randomly generates a population of candidate solutions—expressible as decision
trees—to a problem of interest. The rules are required only to be well defined and to produce
output appropriate to the problem of interest—a buy/sell decision in the present case. Of course,
most of these random solutions will be quite poor, but some, purely by chance, will "fit" the in-

sample data reasonably well, generating excess returns. The computer then allows the



population to "evolve" using reproduction and mutation operators. Reproduction mixes subtrees
of the population while mutation replaces subtrees with new, randomly generated subtrees.
Members of the population that are more fit (profitable) have a greater chance to reproduce
whereas less fit members have a greater chance of being replaced. In this way the genetic
program searches promising areas of the solution space by evolving a population of rules that
tends to become more adept at solving the problem in successive generations.’
B. Data Sets

Ten overlapping in-sample estimation periods (1929-35, 1934-40, 1939-45... 1974-80) of
daily S&P500 data from 1929 to 1995 are input to the genetic program to construct ten sets of ex
ante trading rules. There were ten independent rules from each in-sample period. Each in-
sample period of seven years was broken down into a training period (five years) and a selection
period (two years) to alleviate the problem of overfitting the data.® Rules with positive excess
returns over the buy-and-hold strategy in the training period were saved for out-of-sample testing

over the remainder of the data (1936-95, 1941-95...1981-95).”

* Genetic algorithms require the solution to the problem to be encoded as fixed-length character strings rather than
as decision trees or computer programs as in genetic programming.

> An alternative (but not equivalent) nonparametric procedure would be to use neural networks to produce either
forecasts (Gengay (1998b), Gengay and Stengos (1997)) or trading rule signals (Gengay (1998a)) on daily equity
market data.

® Overfitting—the finding of spurious patterns in the data—often results from applying a flexible statistical
technique to one sample of data. Breaking the in-sample period into two subsamples helps alleviate this by
requiring the patterns to be in both samples.

" To check for robustness, all the exercises were repeated with 15-year in-sample periods, with and without
truncated out-of-sample periods. Except where otherwise noted, all the results in this paper proved robust to longer

in-sample periods, with and without shorter out-of-sample periods. Full results are available from the author.



C. Trading Procedures and Return Calculations

This paper uses modified versions of AK’s programs and similar procedures both because
the procedures are sensible and to maintain maximum comparability to the unadjusted results.”®
One difference between AK’s procedures and those used here should be noted: Interest rates are
treated differently. AK's code attributes one day’s (1/365) interest rate to the rules during each
business day—not calendar day—they are out of the market. This practice understates the
returns to the genetic programming rules by 0.5 percent or less. In this paper, rules earn interest
on calendar days—not business days—they are out of the market. Table 1 summarizes some of
the important parameters of interest. AK provide more information on the program and
parameters.

[Place Table 1 about here.]

Each day, the trading rules generated by the genetic program observe prices and generate
a buy or sell signal indicating the position to take (the same day). The buy and sell signals are
used along with stock prices and 30-day T-bill interest rates to compute the continuously
compounded excess return of the rule over the return to a buy-and-hold strategy in the stock
market. This daily excess return—ignoring any transactions costs—over the buy-and-hold
strategy at time 7 is given by:

xsr, = (z, - 1){1{%} —In(1+ i,)} (1)

t

where z, is an indicator variable taking the value 1 if the rule is in the market or 0 if the rule is in
T-bills, P, is the stock index and i, is the interest rate on the 30-day Treasury bill earned from

business day 7 to business day #+/. The cumulative excess return—also called the "fitness"—for



a trading rule from time zero to time 7 is the sum of the daily excess returns less a proportional
transactions cost. AK considered transactions costs of 0.1 percent, 0.25 percent and 0.5 percent.
For brevity’s sake, this paper concentrates on transactions costs of 0.25 percent. Because it is
likely that trading costs have decreased over time, the use of 25 basis point transactions costs
might underestimate the true value in earlier periods but overestimate them recently.
D. Risk Adjustment Techniques

The criterion of judging the rules to be useful only if they generate a return that exceeds
the buy-and-hold return is neither necessary nor sufficient to conclude that the rules do not
violate the efficient markets hypothesis (EMH).” The EMH is usually interpreted to mean that
asset prices reflect information to the point where the potential risk-adjusted excess returns do
not exceed the transactions costs of acting (trading) on that information (Jensen (1978)). Risk
adjustment is potentially important because dynamic strategies, such as those found by the
genetic program, are often out of the market and therefore may bear much less risk than the buy-
and-hold strategy. Although there is no universally accepted method of adjusting returns for
risk, this paper will employ four techniques: the Sharpe ratio, the X* measure, Jensen’s o and the

X.smeasure of Dacorogna et al. (2001).10

¥ Genetic programs written by other authors produced results similar to those generated by the AK programs,

suggesting that genetic programming is robust to small change in procedures.

? Brown, Goetzmann and Kumar (1998) find that risk adjustment is crucial in evaluating Dow

Theory recommendations.

' There is some danger of data snooping in looking at multiple measures of risk. Sullivan, Timmerman and White
(1999) propose a method to counter data snooping in the testing of multiple types of rules. This procedure is not

appropriate for this paper as this paper does not test the “best” rule out of a group, but rather a portfolio rule.



The Sharpe ratio—the expected excess return per unit of risk for a zero-investment
strategy (Campbell, Lo and MacKinlay (1997))—is usually expressed in annual terms as the
annual excess return over the riskless rate—net of transactions costs—to a portfolio over that
portfolio’s annual standard deviation. The daily excess return over the riskless rate—ignoring

transactions costs—to the rules at time ¢ is given by:

= z{ln(%} —In(1+ i,):l , (2)

where the variables are as defined in equation (1). Although the rules may have lower returns
than the buy-and-hold strategy, lower volatility may permit the returns to be leveraged up to
exceed the buy-and-hold return with similar risk. As an example, assume the excess return to the
trading rule was only half that of the buy-and-hold strategy, but the trading rule’s Sharpe ratio
was higher. In this case, the trading rule could take leveraged positions in the market—buying
with only a 50 percent margin—to obtain equal returns with lower risk."' Buying with a slightly
lower margin would enable the rule to obtain higher expected returns for the same risk.

Sweeney and Lee (1990) developed another risk-adjustment strategy, the X* measure, in

the context of the foreign exchange market that may be even more appropriate for equity

" Because dynamic strategies are at an inherent disadvantage, as the market return will, on average, exceed the
riskless return, Bessembinder and Chan (1995, 1998) pursue another strategy to compare trading rules to a market
return. They permit rules to use double leverage during periods in which they are in the market. Ready (1998) has
questioned whether the strategy of leveraging returns is implementable, as the investor would have to know—or

predict—the ex post moments to compute the proper amount of leverage.



markets.'> They show that, in the presence of a constant risk premium, an equilibrium daily risk-

adjusted return to a trading rule would be given by:
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where z, P, , and i, are defined as before, T is the number of observations, » is the number of one-

€)

way trades, c is the proportional transactions cost, p; is the proportion of the time spent in the
market and p; is the proportion of the time spent in T-bills (p; + p, =1). Note that the sum of the
third and fourth terms estimates the expected return to a zero transactions-cost strategy that
randomly is in the market on a fraction p, of the days, earning the market premium, and in T-bills
otherwise. The risk-adjusted return—under the null of no timing ability—is the actual return less
the expected return. Positive X* statistics are interpreted as evidence of superior risk-adjusted
returns.

The third risk-adjustment measure considered is the X.smeasures advocated by
Dacorogna et al. (2001). X, measures the utility that the trading strategy provides to a constant

absolute risk averse individual over a weighted average of return horizons. The measure is:

X
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12 Sweeney (1988) uses the X* measure in the equity market. Ready (1998) constructs a statistic similar to Sweeney
and Lee's (1990) X*. In turn, the test statistic of X*, proposed by Sweeney and Lee (1990), is virtually equivalent to
the test statistic of the coefficient f3; in the Cumby-Modest test of market timing if transactions costs are omitted

from the X* calculation.



252:100( <~ n. (1+c)). : :
where — 7 er - Eln is the annualized excess return to the rule in percentage
—-C

=1
terms, net of transactions costs; 7, is defined in equation (2); 6/ is the variance of nonoverlapping
returns of length At; days; (1 year/At; days) is the number of returns of length At; days in one
year; and 7 is a risk aversion parameter. Dacorogna et al. (2001) recommend values of y between
0.08 and 0.15; this paper sets y equal to 0.12. The sequence of weights {, } takes on a

maximum value at a holding period of 90 days:

- 1 . )

i 2
24| In| Al
90days

The return horizons At; are given by a geometric sequence {1,2,4,8, 16, etc}, whose

maximum value is less than or equal to one quarter the number of days in the sample. Interested
readers should consult Dacorogna et al. (2001) for additional details on this risk measure.
Finally, we also consider the performance of the rules according to Jensen’s (1968) «, the

return in excess of the riskless rate that is uncorrelated with the excess return to the market:

z,[In(P., /P)~In(1+ i,)]—%lnﬁ*—cj =a+ By [In(B.,/B)~In(1+i)]+¢,. (6)
—C
If the intercept in equation (6)—o—is positive and significant, then the trading rule produces

excess returns that cannot be explained by correlation with the market.

3. RESULTS
A. In-sample Results

Table 2 shows the in-sample results from implementing a uniformly weighted portfolio

strategy using the excess return as the fitness criteria. The rules are assessed a 0.25 percent



transactions cost for changing positions, and information on day ¢ is used to trade the same day.
As might be expected, the rules did very well in the sample on which they were trained and
selected. The in-sample, annual excess return over the buy-and-hold strategy, averaged over the
ten samples, was just over 5 percent. The analogous Sharpe ratio was 0.75, the risk-adjusted,
annualized X* return was 4.34 percent and Jensen’s o. was 7.12 percent. Rules selected using
the other fitness criteria (Sharpe ratios, X*, X.x) also did well in-sample, producing especially
good results by the metric for which they were constructed.

[Place Table 2 about here.]

It is worth noting that, although these rules are optimal in the sense of being the best rules
that could be found within the limitations of the search procedure, they are not optimal in the
sense of being the best possible rules one could find on the in-sample data. With sufficient
computational power, a nonparametric search procedure like the genetic program could find an
extremely good in-sample fit that would be unlikely to be informative about out-of-sample
performance. That is, it would “overfit” the data. The use of both the training and selection

periods is one method to help guard against such overfitting.

B. Comparison with Previous Results

Table 3 shows the out-of-sample results from implementing a uniformly weighted
portfolio based on all the good rules found in-sample.”? As in AK (compare with Table 2, Panel
A in AK), the rules generally failed to produce positive excess returns over the buy-and-hold

strategy in the sample. With the exception of the period 1949-55, for which no good in-sample

13 Results for median portfolio rules are broadly similar to—slightly better than—those of the uniform portfolio
rules. For the sake of brevity, they will not be reported separately. The median portfolio rule goes into the market if

most of the N rules are in the market; otherwise it stays out of the market.

10



rules were found, the out-of-sample performance was similar to that found by AK.'* While AK
found only one period in which the mean excess return over the buy-and-hold strategy was
positive, the current exercise found two such periods. The rules were long in the market about
51 percent of the time and traded 7.3 times a year, on average, though the figures varied widely
with the in-sample period. The 1974-80 period produced uninteresting rules that stayed out of
the market almost all the time.

[Place Table 3 about here.]

Column 5 of Table 3 shows the mean annual return to the market when the rules are in
the market less the mean annual market return when the rules are out of the market (r,-7,).
Although there is no measure of statistical significance, positive numbers favor the proposition
that the rules have some market timing ability. AK found that rules from seven of ten in-sample
periods had market timing ability by this measure. The results in this paper are similar, showing
that six of nine have positive r,-7,. Because the rules' buy/sell decisions could be closely
replicated by moving average rules, AK concluded that the genetic programming rules were
taking advantage of low-order serial correlation. AK speculated that the rules might be of use to
a risk-averse speculator, but did not seriously explore that possibility. As noted previously, risk
adjustment is necessary to evaluate the consistency of the rules with the EMH. The next section

reports the results of such procedures.

' There are two reasons why the results will not exactly replicate those found by AK: 1) Genetic programming is
inherently stochastic, generating and recombining populations probabilistically; and 2) interest rate returns were

treated differently in this analysis.
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C. Risk-Adjusted Results

The average Sharpe ratio of the transactions cost-adjusted genetic programming rules is
about 0.02, lower than the average 0.13 Sharpe ratio—the index doesn’t include dividends—for
the buy-and-hold strategy over the ten subsamples. "’

As Dowd (2000) points out, the Sharpe ratio only provides enough information to choose
between two investments that are uncorrelated with the return to the institution’s portfolio. This
is clearly not the case with these trading rules. Dowd (2000) proposes that an investment should
be undertaken if it improves the Sharpe ratio of the portfolio, taken as a whole. To implement
this strategy in the present situation, portfolio shares must be chosen. Three methods are
considered: 1) to arbitrarily set the portfolio weights to '% on the trading rule and 2 on the buy-
and-hold strategy; 2) to choose the weights to maximize the in-sample Sharpe ratio; 3) to choose
the weights ex post to maximize the out-of-sample Sharpe ratio. While the third method clearly
constitutes data mining, it provides an upper bound on the benefit from using the rule.

Columns 7 through 9 of Table 3 show the improvement of the combined portfolio’s out-
of-sample Sharpe ratio over that of the buy-and-hold strategy, using each of the three strategies
for choosing portfolio weights. None of the three portfolio strategies significantly improves
upon the Sharpe ratio of the buy-and-hold strategy.

The second risk adjustment procedure considered is the X* procedure advocated by

Sweeney and Lee (1990). Most of the annualized X* statistics—net of transactions costs—in

'3 Jorion and Goetzmann (1999) estimate that dividends made up much of the total return to U.S. equities over the
period 1921 to 1995. The average Sharpe ratio for the buy-and-hold strategy over the ten overlapping out-of-sample

subsamples is 0.13; whereas the Sharpe ratio from 1929 through 1995 is 0.06 for the index ex dividends.

12



Table 3 are negative, indicating that the rules would not have been useful, even by this risk-
adjusted measure. Almost all the X* statistics would have been positive though, if transactions
costs had not been netted out. This supports the evidence of predictability suggested by the -7,
statistics.

The mean of the third risk-adjusted return measure, X, is negative and lower than the
X generated by either the buy-and-hold strategy or the riskless strategy (X« = 0). That is, the
genetic programming rules would not help an investor who has constant risk averse utility over
the weighted average of returns at various horizons.

Recall the last measure of risk-adjusted returns—Jensen’s o—estimates the mean return
that is uncorrelated with the return to the market portfolio. To measure Jensen’s «, returns to the
market and to the trading rules were aggregated over nonoverlapping 30-day periods and
regression (6) was performed by OLS using annualized returns. These results are shown in
columns 14 and 15 of Table 3. The alphas are never significantly positive in any out-of-sample

period, and the mean among all the out-of-sample periods is negative.

D. Rules to Maximize Risk-Adjusted Measures

Of course, the rules trained on an excess return criterion may not be the best risk-adjusted
rules. To determine whether technical trading rules can produce better risk-adjusted returns than
the buy-and-hold strategy, ideally we must train rules using risk-adjustment criteria.

The results of such an exercise using the Sharpe ratio as the in-sample fitness criterion
are shown in Table 4. In several cases, the rules trained on Sharpe ratios turned out to be
trivial— almost always long or short—in the out-of-sample period. The non-trivial rules failed

to produce higher mean out-of-sample Sharpe ratios, but they did show marginally greater

13



predictive ability by the standard of the r,-r, and X* statistics. They also spent less time in the
market (27 percent long). Using the rules trained to maximize the Sharpe ratio in a portfolio
with the buy-and-hold strategy, as suggested by Dowd (2000), failed to produce significant
improvement over the buy-and-hold Sharpe ratio (see columns 7 through 9 of Table 4).

[Place Table 4 about here.]

Table 5 shows the analogous out-of-sample results from rules trained to maximize X* as
the in-sample fitness criteria. There are no trivial (non-trading) X* portfolio rules, and the rules
are very even handed. That is, there are no cases in which the rules are always in or always out of
the market. The results are generally better to those of the rules trained on excess returns. The
annualized excess return over the buy-and-hold is about 60 basis points greater than in the
benchmark case, and the average Sharpe ratio is about the same as the average buy-and-hold
Sharpe ratio over all sample periods (0.11 vs. 0.13). The mean annualized X* statistic is about
zero, which is better than the mean X* statistics from the rules trained with excess returns or the
Sharpe ratio as fitness criteria. However, it should be noted that even positive X* results may be
consistent with the EMH in the presence of a time-varying risk premium. The rules’ mean X
measure is slightly inferior to that of the buy-and-hold strategy. Jensen’s alpha is never
statistically significant in any sample, and the mean alpha is slightly positive but statistically and
economically insignificant.

[Place Table 5 about here.]

Finally, we consider the results from training rules to maximize the X statistics. The
results are very similar to those from the other fitness criteria in Tables 3 through 5. Table 6

shows that the ex ante uniform portfolio rule chosen to maximize the X statistic never

14



outperforms the buy-and-hold strategy in a statistically and economically significant way by any
of the risk-adjusted return metrics.

[Place Table 6 about here.]

4. CHARACTERIZING LOW-ORDER SERIAL CORRELATION

After finding that moving average rules could closely approximate the GP rules' buy/sell
behavior, AK attributed the predictability found by their GP trading rules to "low-order serial
correlation" in the returns (Campbell, Lo and MacKinlay (1997)). One might speculate that a
simple time series model of returns could produce better decisions than the GP. To test this
prediction and to attempt to better characterize the nature of the predictability found by AK, a
variety of ARMA models were fit to the in-sample excess returns and the best in-sample models
and parameters were chosen by the Akaike, Schwarz and excess return criteria. The best models
were used to generate trading signals—as with the genetic programs—during the out-of-sample
periods. Table 7 shows that the non-trivial ARIMA models are even less successful than the rules
constructed by genetic programming. If low-order serial correlation generates the predictability,
the genetic rules are apparently more successful at estimating it than are standard ARIMA
models.

[Place Table 7 about here.]

Finally, Cumby-Modest tests of market timing ability are used to more formally
determine whether the rules have predictive content. The statistical significance of the
coefficient (f3,) in the regression of excess returns on signals from the trading rule summarizes

the rules’ one-day-ahead timing ability:

15



250-100- [h{%} —In(1+1, )} =B, + Bz, +€,. (7)

t+1

Table 8 presents strong evidence that the rules do possess predictive ability: 29 of the 32
available f3, coefficients are positive and 20 of those are significant at the 5 percent level. Of the
three fitness criteria, the X* criteria seems to have produced the rules with the most predictive
content. These timing tests illustrate the well-known result that profitability is not necessary for

a rule to have predictive content.

[Place Table 8 about here.]

5. CONCLUSION

This paper has investigated whether ex ante, optimal trading rules created by genetic
programming are useful on a risk-adjusted basis. Although risk-adjustment improves the relative
attractiveness of the rules, neither Sharpe ratios nor Sweeney and Lee's X* statistic, nor
Gengay’s X, measure, nor Jensen’s o provide evidence that rules developed by genetic
programming would have been useful even to risk-averse speculators, contrary to reasonable
speculation. Rules trained on the X* measure had the best risk-adjusted performance by all the
measures, approximately equaling the buy-and-hold return performance. Not too much should be
made of this result, however. With 15-year in-sample periods—results omitted for brevity—the
Sharpe ratio became the best out-of-sample performer, again with performance approximately
equal to the buy-and-hold strategy. Of course, risk is difficult to measure and any risk
adjustment is subject to criticism. Nevertheless, this paper argues that trading rule results must

be carefully interpreted in light of risk adjustment.

16



It is likely that the inclusion of dividends in the stock index, the removal of spurious
autocorrelation from the index returns or accounting for price slippage would only strengthen the

negative results of this exercise.

17
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Table 1: Genetic programming parameters of interest for AK’s implementation

Parameter

AK’s Choice

Size of a generation

Termination criterion

Probability of selection for
reproduction with rules ranked from
1 (worst) to 500 (best).

arithmetic functions

Boolean operators

functions of the data

500
50 generations or no improvement for 25 generations

2 - rank in population - 1

(size of population)’

+, -, *, /, norm, constant between (0,2)
"if—then", "and", norn, n<n, n>n, "nOt”, ntruen’ "false"
"moving average", "local maximum", "local minimum", "lag of

nn

stock index", "current stock index"
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Table 7: Results from ARIMA rules

In-sample Search AR MA Daily Excess Sharpe X*  Trades
Period Criterion Order Order Dummy Return Ry-R, per year % long
1929-35 |AIC 5 5 2 -34.19 1536 -3.04 -32.62 14556 0.575
SC 1 0 1 -3.69 NA NA  0.00 0.00  0.000
Excess Return 1 2 1 -3.89 46.81 -0.07 -0.22 1.44 0.003
1934-40 |AIC 2 2 1 -34.40 521 -3.00 -32.23 134.14 0.515
SC 2 2 1 -34.40 521 -3.00 -32.23 134.14 0.515
Excess Return 1 0 1 -0.17 -2187.39 032 -0.17 0.04 0.999
1939-45 |AIC 5 5 3 -34.05 -10.33 290 -32.27 118.79 0.549
SC 1 0 1 -0.58 -610.46 0.25 -0.58 0.36  0.999
Excess Return 1 0 1 -0.58 -610.46 0.25 -0.58 0.36 0.999
1944-50 |AIC 5 4 2 -25.34 13.85 -2.03 -23.78 108.27 0.617
SC 2 0 1 -2435 -0.26  -1.78 -23.14 9243 0.703
Excess Return 1 0 1 -020 -2187.25 0.30 -0.20 0.04 0.999
1949-55 |AIC 3 5 2 -30.43 1535 -2.62 -29.54 131.82 0.670
SC 2 0 2 -22.37 2152 -1.68 -21.74 10244 0.767
Excess Return 1 0 1 -0.24 -1095.88 0.19 -0.24 0.10  0.999
1954-60 |AIC 4 1 3 -28.12 18.57 225 -27.29 12533 0.685
SC 2 0 2 -24.67 21.02 -1.87 -24.00 112.11 0.745
Excess Return 1 0 1 -097 -107.73 0.12 -0.96 2.06 0.996
1959-65 |AIC 2 3 2 -25.61 25.65 -2.28 -2491 123.85 0.626
SC 1 1 2 -23.71 2248  -1.86 -23.27 109.16 0.768
Excess Return 1 0 1 -7.68 -11.64 -046 -7.55 27.50 0.935
1964-70 |AIC 5 5 3 -33.53 13.82  -3.04 -32.16 142.47 0.540
SC 3 2 2 -30.84 10.80  -2.71 -29.56 128.99 0.571
Excess Return 2 2 1 -16.05 -11.26  -1.38 -14.61 4738 0.515
1969-75 |AIC 5 5 2 2425 1842 -196 -21.75 10542 0.482
SC 1 1 2 -26.49 11.81 -1.84 -2536 109.95 0.765
Excess Return 2 2 1 -11.67 559 -126 -7.14 29.71 0.060
1974-80 |AIC 4 3 2 -14.23 -8.02  -0.75 -11.50  38.00 0.500
SC 2 1 1 -58.92 0.18 -5.45 -56.17 224.89 0.495
Excess Return 4 4 1 -14.06 -8.28  -0.74 -11.34  37.07 0.502

Notes: Column 2 shows the in-sample model selection criterion. Columns 3 and 4 show the chosen

orders of the autoregressive and moving average components. Column 5 summarizes the deterministic
component of the model: 1 indicates a simple constant, 2 indicates a weekend dummy on returns while 3
indicates that a full set of day-of-the-week dummies was used. For the other columns, see the notes to

Table 2.

27



8¢

VN, POIeW o18 S[[90 yong -1uao1dd g6 uey) 1918313 10 Judd1ad ouo uey) ssof sem suonisod Suof Jo uontodoxd oy J1 pawrojrad jou sem

1891 9} ‘SN [RIALI SUNBN[BAD PIOAR O], "G()'() UBY) SSI[ san[eA-d Jo 1oquunu oy} pue sejdq danisod jo roquinu ay) SAB[dSIp mol [eurj oy ‘onjea
-d )1 pue 0110 pIEpUE)S S)1 “JUIIONJ0D dY) MOYS [duedqns ord JO SUWN[od AY [, *d1Isie)s ¥x oy} pue onsne)s , X oy} ‘oner adreys oy ‘suinjar
SSQOXO QIdM BLIJILIO SSAUILJ O} YOIYM UI SIsed Inoj 9y} uo ((£) uonenba 09s) $1593 1SIPON-AqUUN)) JO SINSAL oY) MOYS S[oued InoJ o], :SQION

S L 9 6 13 9 9 L
VN VN VN 91'0 91'9C 809C |VN VN VN VN VN VN 6L61 VL61
LT'0  CE8I 89LT |LTO  0E€¥C CI'ST  |VN VN VN 100  €8'8C 8C'69 VL6 6961
000 9¢II ¢S9F (0000 8CLI 19°S6 (0000  6¥'81 SL°09 (0000 9I'C€l LTT8 6961 ¥961
000 68 €8S (0000 6¥9 8SIC (000 S6L LI'SC (000  LTOI LO€E9 961 6561
000  9€LI ILIS [€0°0 86'S OI'IT |LOO 6I'S TLL 1000 90°0C I6'LY 6561 ¥S61
VN VN VN 1o 8¥9 €SL VN VN VN VN VN VN 561 6161
000 TC9 9981 (0000 OFS <TOBL (I00 OI'S €Il |0000 L699 SEVC 616l v161
90 O0v9 +90 [CL'0 ¥8S 8YFE- (PEO LL9  LLT €90 66V LI9I- Y6l 6¢61
1000 6L LETII |[I00  88% LOII (800  8C'SI 90°'IC (200 +vL9 I8¢l 6¢61 veol
9L°0  0V'?9 €€vb- [C00 €SL 1191 |VN VN VN 6v'0  LO6] 1¥0 ye6l 6261
onea-d (o's)  wvog|onpea-d (‘o's)  elog|onfea-d  (9's) B1og| onfea-d (*9°s) rlog

ooy ' odreyg Jyrewryousag

Surwr josIew JO $)9) ISIPOIN-AqUIn)) :§ J[qe ],



	D. Risk Adjustment Techniques
	A.  In-sample Results
	B.  Comparison with Previous Results
	C.  Risk-Adjusted Results

