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Risk-Adjusted, Ex Ante, Optimal Technical Trading Rules in Equity Markets

Abstract: This paper uses genetic programming to construct risk-adjusted, ex ante,

optimal, trading rules for the S&P 500 Index and then characterizes the predictive content of

these rules.  These results extend previous results by using risk-adjustment selection criteria to

generate ex ante rules with improved performance.  There is, however, no evidence that the rules

significantly outperform the buy-and-hold strategy on a risk-adjusted basis.  Therefore, the

results are consistent with market efficiency.  Nevertheless, risk-adjustment techniques should be

seriously considered when evaluating trading strategies.
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Risk-Adjusted, Ex Ante, Optimal Technical Trading Rules in Equity Markets

The use of technical trading rules—trading rules based on past price behavior—has been

common in equity markets since the turn-of-the-century analysis of Wall Street Journal editor

Charles Dow.  Because excess returns generated from publicly available information would seem

to contradict the efficient markets hypothesis, a number of authors have studied the usefulness of

technical analysis in equity markets (Brock, Lakonishok and Lebaron (1992), Bessembinder and

Chan (1995, 1998), Allen and Karjalainen (1999), Lo, Mamaysky and Wang (2000)).  Such

studies have generally evaluated raw excess returns rather than explicitly risk-adjusted returns,

leaving unclear the implications of their work for the efficient markets hypothesis.  Risk-

adjusting the returns is necessary because the technical trading strategies spend time out of the

market and therefore have less volatile returns than the buy-and-hold rule. Therefore, simply

comparing the returns to each strategy is insufficient to compare the usefulness of the rules.  An

exception to the failure to adjust for risk is the work of Brown, Goetzmann and Kumar (1998)

that found value in the risk-adjusted returns generated by the market signals of William Peter

Hamilton.1

Another common problem in the trading rule literature is that rules are evaluated

precisely because they are widely used by technical traders (see Brock, Lakonishok and Lebaron

(1992)).  Ready (1998) argues that testing such rules is a form of data snooping.  This practice is

likely to produce spurious evidence of technical trading profits; the rules are widely used

precisely because they would have been profitable on past data.

                                                
1 Another exception is the work of Bessembinder and Chan  (1998), which uses varying leverage with its technical

trading rule to produce a rule with approximately the same risk as a buy-and-hold strategy.
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Rather than evaluating widely used rules, one might search for optimal, ex ante rules with

a nonlinear search procedure such as genetic programming (Koza (1992)).  Allen and

Karjalainen (1999)—hereafter AK—used genetic programming to generate optimal, ex ante,

technical trading rules on daily S&P 500 data over the period 1929 through 1995.2  They found

that the transactions cost-adjusted returns to these rules failed to exceed the returns to a buy-and-

hold strategy—despite the exclusion of dividends from the stock return—and that the market was

efficient in this sense.3  There was, however, some evidence of predictability in returns as the

rules tended to be in the market during periods of high returns and out of the market during

periods of low returns.  Although AK attributed this predictability to low-order serial correlation

in the stock index, they speculated that the rules might be useful on a risk-adjusted basis despite

their lower returns.  “Even though the rules do not lead to higher absolute returns than a buy-

and-hold strategy, the reduced volatility might still make them attractive to some investors on a

risk-adjusted basis.” (Allen and Karjalainen (1999), p. 261)  AK did not, however, use any risk-

adjustment techniques in their work.

This paper extends the literature by investigating whether ex ante, optimal technical

trading rules are useful on a risk-adjusted basis in equity markets.  It is not sufficient merely to

examine the results from previous genetic-programming rules with common methods of risk

adjustment.  To fairly evaluate risk-adjusted returns, new sets of rules that maximize risk-

adjusted measures like the Sharpe ratio (Sharpe (1966)), the X* statistic (Sweeney and Lee

(1990)) and the Xeff measure (Dacorogna et al. (2001)) are generated.  In addition, this paper

                                                
2 Neely, Weller and Dittmar (1997) and Neely and Weller (2000, 1999) have applied genetic programming to find

trading rules in the dollar foreign exchange market and the European Monetary System.

3 The return to a dynamic strategy—moving in and out of the market—will be reduced less by the exclusion of

dividends than will the return to a buy-and-hold strategy.
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more fully characterizes the predictability found by these rules and conducts formal tests of

market timing (Cumby and Modest (1987)).  A central point of this study is that risk adjustment

is not a secondary issue; it is absolutely essential both for evaluating the usefulness of trading

rules and for measuring the consistency of results with market efficiency (Sharpe (1966), Jensen

(1968), Kho (1996), Brown, Goetzmann, and Kumar (1998), Ready (1998), Dowd (2000)).

The rules fail to consistently and significantly outperform the buy-and-hold strategy by

any risk-adjusted measure.  Thus, this exercise extends previous results to find that risk-adjusted,

ex ante, optimal rule returns are consistent with market efficiency.  The facts that the market

indices used here exclude dividends and that some predictability may be due to spurious

autocorrelation only reinforce the negative results.

2.  METHODOLOGY

A. Genetic Programming

Genetic programming is a nonlinear search procedure for problems in which the solution

may be represented as a computer program or decision tree (Koza (1992)).  Like its cousin, the

genetic algorithm (Holland (1975)), genetic programming uses the principles of parallel search

and natural selection to search for candidate solutions to problems of interest.4 Essentially, a

computer randomly generates a population of candidate solutions—expressible as decision

trees—to a problem of interest.  The rules are required only to be well defined and to produce

output appropriate to the problem of interest—a buy/sell decision in the present case.  Of course,

most of these random solutions will be quite poor, but some, purely by chance, will "fit" the in-

sample data reasonably well, generating excess returns.  The computer then allows the
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population to "evolve" using reproduction and mutation operators.  Reproduction mixes subtrees

of the population while mutation replaces subtrees with new, randomly generated subtrees.

Members of the population that are more fit (profitable) have a greater chance to reproduce

whereas less fit members have a greater chance of being replaced.  In this way the genetic

program searches promising areas of the solution space by evolving a population of rules that

tends to become more adept at solving the problem in successive generations.5

B. Data Sets

Ten overlapping in-sample estimation periods (1929-35, 1934-40, 1939-45… 1974-80) of

daily S&P500 data from 1929 to 1995 are input to the genetic program to construct ten sets of ex

ante trading rules.  There were ten independent rules from each in-sample period.  Each in-

sample period of seven years was broken down into a training period (five years) and a selection

period (two years) to alleviate the problem of overfitting the data.6  Rules with positive excess

returns over the buy-and-hold strategy in the training period were saved for out-of-sample testing

over the remainder of the data (1936-95, 1941-95…1981-95).7

                                                                                                                                                            
4 Genetic algorithms require the solution to the problem to be encoded as fixed-length character strings rather than

as decision trees or computer programs as in genetic programming.

5 An alternative (but not equivalent) nonparametric procedure would be to use neural networks to produce either

forecasts (Gençay (1998b), Gençay and Stengos (1997)) or trading rule signals (Gençay (1998a)) on daily equity

market data.

6 Overfitting—the finding of spurious patterns in the data—often results from applying a flexible statistical

technique to one sample of data.  Breaking the in-sample period into two subsamples helps alleviate this by

requiring the patterns to be in both samples.

7 To check for robustness, all the exercises were repeated with 15-year in-sample periods, with and without

truncated out-of-sample periods.  Except where otherwise noted, all the results in this paper proved robust to longer

in-sample periods, with and without shorter out-of-sample periods. Full results are available from the author.
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C. Trading Procedures and Return Calculations

This paper uses modified versions of AK’s programs and similar procedures both because

the procedures are sensible and to maintain maximum comparability to the unadjusted results.8

One difference between AK’s procedures and those used here should be noted: Interest rates are

treated differently.  AK's code attributes one day’s (1/365) interest rate to the rules during each

business day—not calendar day—they are out of the market.  This practice understates the

returns to the genetic programming rules by 0.5 percent or less.  In this paper, rules earn interest

on calendar days—not business days—they are out of the market. Table 1 summarizes some of

the important parameters of interest.  AK provide more information on the program and

parameters.

[Place Table 1 about here.]

Each day, the trading rules generated by the genetic program observe prices and generate

a buy or sell signal indicating the position to take (the same day).  The buy and sell signals are

used along with stock prices and 30-day T-bill interest rates to compute the continuously

compounded excess return of the rule over the return to a buy-and-hold strategy in the stock

market.  This daily excess return—ignoring any transactions costs—over the buy-and-hold

strategy at time t is given by:
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where zt is an indicator variable taking the value 1 if the rule is in the market or 0 if the rule is in

T-bills, Pt is the stock index and it is the interest rate on the 30-day Treasury bill earned from

business day t to business day t+1.  The cumulative excess return—also called the "fitness"—for
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a trading rule from time zero to time T is the sum of the daily excess returns less a proportional

transactions cost.  AK considered transactions costs of 0.1 percent, 0.25 percent and 0.5 percent.

For brevity’s sake, this paper concentrates on transactions costs of 0.25 percent. Because it is

likely that trading costs have decreased over time, the use of 25 basis point transactions costs

might underestimate the true value in earlier periods but overestimate them recently.

D. Risk Adjustment Techniques

The criterion of judging the rules to be useful only if they generate a return that exceeds

the buy-and-hold return is neither necessary nor sufficient to conclude that the rules do not

violate the efficient markets hypothesis (EMH).9  The EMH is usually interpreted to mean that

asset prices reflect information to the point where the potential risk-adjusted excess returns do

not exceed the transactions costs of acting (trading) on that information (Jensen (1978)).  Risk

adjustment is potentially important because dynamic strategies, such as those found by the

genetic program, are often out of the market and therefore may bear much less risk than the buy-

and-hold strategy.  Although there is no universally accepted method of adjusting returns for

risk, this paper will employ four techniques: the Sharpe ratio, the X* measure, Jensen’s α and the

Xeff measure of Dacorogna et al. (2001).10

                                                                                                                                                            
8 Genetic programs written by other authors produced results similar to those generated by the AK programs,

suggesting that genetic programming is robust to small change in procedures.

9 Brown, Goetzmann and Kumar (1998) find that risk adjustment is crucial in evaluating Dow

Theory recommendations.

10 There is some danger of data snooping in looking at multiple measures of risk.  Sullivan, Timmerman and White

(1999) propose a method to counter data snooping in the testing of multiple types of rules.  This procedure is not

appropriate for this paper as this paper does not test the “best” rule out of a group, but rather a portfolio rule.
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The Sharpe ratio—the expected excess return per unit of risk for a zero-investment

strategy (Campbell, Lo and MacKinlay (1997))—is usually expressed in annual terms as the

annual excess return over the riskless rate—net of transactions costs—to a portfolio over that

portfolio’s annual standard deviation.  The daily excess return over the riskless rate—ignoring

transactions costs—to the rules at time t is given by:
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where the variables are as defined in equation (1).  Although the rules may have lower returns

than the buy-and-hold strategy, lower volatility may permit the returns to be leveraged up to

exceed the buy-and-hold return with similar risk.  As an example, assume the excess return to the

trading rule was only half that of the buy-and-hold strategy, but the trading rule’s Sharpe ratio

was higher. In this case, the trading rule could take leveraged positions in the market—buying

with only a 50 percent margin—to obtain equal returns with lower risk.11  Buying with a slightly

lower margin would enable the rule to obtain higher expected returns for the same risk.

Sweeney and Lee (1990) developed another risk-adjustment strategy, the X* measure, in

the context of the foreign exchange market that may be even more appropriate for equity

                                                
11 Because dynamic strategies are at an inherent disadvantage, as the market return will, on average, exceed the

riskless return, Bessembinder and Chan (1995, 1998) pursue another strategy to compare trading rules to a market

return. They permit rules to use double leverage during periods in which they are in the market. Ready (1998) has

questioned whether the strategy of leveraging returns is implementable, as the investor would have to know—or

predict—the ex post moments to compute the proper amount of leverage.



8

markets.12  They show that, in the presence of a constant risk premium, an equilibrium daily risk-

adjusted return to a trading rule would be given by:
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where zt, Pt , and it are defined as before, T is the number of observations, n is the number of one-

way trades, c is the proportional transactions cost, p1 is the proportion of the time spent in the

market and p2 is the proportion of the time spent in T-bills (p1 + p2 =1).  Note that the sum of the

third and fourth terms estimates the expected return to a zero transactions-cost strategy that

randomly is in the market on a fraction p1 of the days, earning the market premium, and in T-bills

otherwise.  The risk-adjusted return—under the null of no timing ability—is the actual return less

the expected return.  Positive X* statistics are interpreted as evidence of superior risk-adjusted

returns.

The third risk-adjustment measure considered is the Xeff measures advocated by

Dacorogna et al. (2001). Xeff  measures the utility that the trading strategy provides to a constant

absolute risk averse individual over a weighted average of return horizons.  The measure is:
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12 Sweeney (1988) uses the X* measure in the equity market. Ready (1998) constructs a statistic similar to Sweeney

and Lee's (1990) X*. In turn, the test statistic of X*, proposed by Sweeney and Lee (1990), is virtually equivalent to

the test statistic of the coefficient β1 in the Cumby-Modest test of market timing if transactions costs are omitted

from the X* calculation.
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 is the annualized excess return to the rule in percentage

terms, net of transactions costs; rt is defined in equation (2); σi
2 is the variance of nonoverlapping

returns of length ∆ti days; (1 year/∆ti days) is the number of returns of length ∆ti days in one

year; and γ is a risk aversion parameter. Dacorogna et al. (2001) recommend values of γ between

0.08 and 0.15; this paper sets γ equal to 0.12.  The sequence of weights { iw~ } takes on a

maximum value at a holding period of 90 days:

2

90
ln2

1~

�
�
�

�
�
�
�

�
��
�

�
��
�

� ∆+

=

days
t

w
i

i . (5)

The return horizons ∆ti are given by a geometric sequence {1,2,4,8, 16, etc}, whose

maximum value is less than or equal to one quarter the number of days in the sample.  Interested

readers should consult Dacorogna et al. (2001) for additional details on this risk measure.

Finally, we also consider the performance of the rules according to Jensen’s (1968) α, the

return in excess of the riskless rate that is uncorrelated with the excess return to the market:
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If the intercept in equation (6)—α—is positive and significant, then the trading rule produces

excess returns that cannot be explained by correlation with the market.

3. RESULTS

A.  In-sample Results

Table 2 shows the in-sample results from implementing a uniformly weighted portfolio

strategy using the excess return as the fitness criteria. The rules are assessed a 0.25 percent
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transactions cost for changing positions, and information on day t is used to trade the same day.

As might be expected, the rules did very well in the sample on which they were trained and

selected. The in-sample, annual excess return over the buy-and-hold strategy, averaged over the

ten samples, was just over 5 percent.  The analogous Sharpe ratio was 0.75, the risk-adjusted,

annualized X* return was 4.34 percent and Jensen’s α was 7.12 percent.  Rules selected using

the other fitness criteria (Sharpe ratios, X*, Xeff) also did well in-sample, producing especially

good results by the metric for which they were constructed.

[Place Table 2 about here.]

It is worth noting that, although these rules are optimal in the sense of being the best rules

that could be found within the limitations of the search procedure, they are not optimal in the

sense of being the best possible rules one could find on the in-sample data. With sufficient

computational power, a nonparametric search procedure like the genetic program could find an

extremely good in-sample fit that would be unlikely to be informative about out-of-sample

performance.  That is, it would “overfit” the data.  The use of both the training and selection

periods is one method to help guard against such overfitting.

B.  Comparison with Previous Results

Table 3 shows the out-of-sample results from implementing a uniformly weighted

portfolio based on all the good rules found in-sample.13  As in AK (compare with Table 2, Panel

A in AK), the rules generally failed to produce positive excess returns over the buy-and-hold

strategy in the sample.  With the exception of the period 1949-55, for which no good in-sample

                                                
13  Results for median portfolio rules are broadly similar to—slightly better than—those of the uniform portfolio

rules. For the sake of brevity, they will not be reported separately. The median portfolio rule goes into the market if

most of the N rules are in the market; otherwise it stays out of the market.
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rules were found, the out-of-sample performance was similar to that found by AK.14  While AK

found only one period in which the mean excess return over the buy-and-hold strategy was

positive, the current exercise found two such periods.  The rules were long in the market about

51 percent of the time and traded 7.3 times a year, on average, though the figures varied widely

with the in-sample period.  The 1974-80 period produced uninteresting rules that stayed out of

the market almost all the time.

[Place Table 3 about here.]

Column 5 of Table 3 shows the mean annual return to the market when the rules are in

the market less the mean annual market return when the rules are out of the market (rb-rs).

Although there is no measure of statistical significance, positive numbers favor the proposition

that the rules have some market timing ability. AK found that rules from seven of ten in-sample

periods had market timing ability by this measure. The results in this paper are similar, showing

that six of nine have positive rb-rs.  Because the rules' buy/sell decisions could be closely

replicated by moving average rules, AK concluded that the genetic programming rules were

taking advantage of low-order serial correlation.  AK speculated that the rules might be of use to

a risk-averse speculator, but did not seriously explore that possibility.  As noted previously, risk

adjustment is necessary to evaluate the consistency of the rules with the EMH.  The next section

reports the results of such procedures.

                                                
14 There are two reasons why the results will not exactly replicate those found by AK: 1) Genetic programming is

inherently stochastic, generating and recombining populations probabilistically; and 2) interest rate returns were

treated differently in this analysis.
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C.  Risk-Adjusted Results

The average Sharpe ratio of the transactions cost-adjusted genetic programming rules is

about 0.02, lower than the average 0.13 Sharpe ratio—the index doesn’t include dividends—for

the buy-and-hold strategy over the ten subsamples.15

As Dowd (2000) points out, the Sharpe ratio only provides enough information to choose

between two investments that are uncorrelated with the return to the institution’s portfolio.  This

is clearly not the case with these trading rules.  Dowd (2000) proposes that an investment should

be undertaken if it improves the Sharpe ratio of the portfolio, taken as a whole.  To implement

this strategy in the present situation, portfolio shares must be chosen.  Three methods are

considered:  1) to arbitrarily set the portfolio weights to ½ on the trading rule and ½ on the buy-

and-hold strategy; 2) to choose the weights to maximize the in-sample Sharpe ratio; 3) to choose

the weights ex post to maximize the out-of-sample Sharpe ratio.  While the third method clearly

constitutes data mining, it provides an upper bound on the benefit from using the rule.

Columns 7 through 9 of Table 3 show the improvement of the combined portfolio’s out-

of-sample Sharpe ratio over that of the buy-and-hold strategy, using each of the three strategies

for choosing portfolio weights.  None of the three portfolio strategies significantly improves

upon the Sharpe ratio of the buy-and-hold strategy.

The second risk adjustment procedure considered is the X* procedure advocated by

Sweeney and Lee (1990).  Most of the annualized X* statistics—net of transactions costs—in

                                                
15 Jorion and Goetzmann (1999) estimate that dividends made up much of the total return to U.S. equities over the

period 1921 to 1995. The average Sharpe ratio for the buy-and-hold strategy over the ten overlapping out-of-sample

subsamples is 0.13; whereas the Sharpe ratio from 1929 through 1995 is 0.06 for the index ex dividends.
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Table 3 are negative, indicating that the rules would not have been useful, even by this risk-

adjusted measure.  Almost all the X* statistics would have been positive though, if transactions

costs had not been netted out.  This supports the evidence of predictability suggested by the rb-rs

statistics.

The mean of the third risk-adjusted return measure, Xeff, is negative and lower than the

Xeff  generated by either the buy-and-hold strategy or the riskless strategy (Xeff  = 0).  That is, the

genetic programming rules would not help an investor who has constant risk averse utility over

the weighted average of returns at various horizons.

Recall the last measure of risk-adjusted returns—Jensen’s α—estimates the mean return

that is uncorrelated with the return to the market portfolio.  To measure Jensen’s α, returns to the

market and to the trading rules were aggregated over nonoverlapping 30-day periods and

regression (6) was performed by OLS using annualized returns.  These results are shown in

columns 14 and 15 of Table 3.  The alphas are never significantly positive in any out-of-sample

period, and the mean among all the out-of-sample periods is negative.

D.  Rules to Maximize Risk-Adjusted Measures

Of course, the rules trained on an excess return criterion may not be the best risk-adjusted

rules.  To determine whether technical trading rules can produce better risk-adjusted returns than

the buy-and-hold strategy, ideally we must train rules using risk-adjustment criteria.

The results of such an exercise using the Sharpe ratio as the in-sample fitness criterion

are shown in Table 4.  In several cases, the rules trained on Sharpe ratios turned out to be

trivial— almost always long or short—in the out-of-sample  period. The non-trivial rules failed

to produce higher mean out-of-sample Sharpe ratios, but they did show marginally greater
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predictive ability by the standard of the rb-rs and X* statistics.  They also spent less time in the

market (27 percent long).  Using the rules trained to maximize the Sharpe ratio in a portfolio

with the buy-and-hold strategy, as suggested by Dowd (2000), failed to produce significant

improvement over the buy-and-hold Sharpe ratio (see columns 7 through 9 of Table 4). 

[Place Table 4 about here.]

Table 5 shows the analogous out-of-sample results from rules trained to maximize X* as

the in-sample fitness criteria.  There are no trivial (non-trading) X* portfolio rules, and the rules

are very even handed. That is, there are no cases in which the rules are always in or always out of

the market.  The results are generally better to those of the rules trained on excess returns.  The

annualized excess return over the buy-and-hold is about 60 basis points greater than in the

benchmark case, and the average Sharpe ratio is about the same as the average buy-and-hold

Sharpe ratio over all sample periods (0.11 vs. 0.13).  The mean annualized X* statistic is about

zero, which is better than the mean X* statistics from the rules trained with excess returns or the

Sharpe ratio as fitness criteria.  However, it should be noted that even positive X* results may be

consistent with the EMH in the presence of a time-varying risk premium.  The rules’ mean Xeff

measure is slightly inferior to that of the buy-and-hold strategy.  Jensen’s alpha is never

statistically significant in any sample, and the mean alpha is slightly positive but statistically and

economically insignificant.

[Place Table 5 about here.]

Finally, we consider the results from training rules to maximize the Xeff  statistics.  The

results are very similar to those from the other fitness criteria in Tables 3 through 5.  Table 6

shows that the ex ante uniform portfolio rule chosen to maximize the Xeff  statistic never
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outperforms the buy-and-hold strategy in a statistically and economically significant way by any

of the risk-adjusted return metrics.

[Place Table 6 about here.]

4.  CHARACTERIZING LOW-ORDER SERIAL CORRELATION

After finding that moving average rules could closely approximate the GP rules' buy/sell

behavior, AK attributed the predictability found by their GP trading rules to "low-order serial

correlation" in the returns (Campbell, Lo and MacKinlay (1997)).  One might speculate that a

simple time series model of returns could produce better decisions than the GP.  To test this

prediction and to attempt to better characterize the nature of the predictability found by AK, a

variety of ARMA models were fit to the in-sample excess returns and the best in-sample models

and parameters were chosen by the Akaike, Schwarz and excess return criteria.  The best models

were used to generate trading signals—as with the genetic programs—during the out-of-sample

periods. Table 7 shows that the non-trivial ARIMA models are even less successful than the rules

constructed by genetic programming.  If low-order serial correlation generates the predictability,

the genetic rules are apparently more successful at estimating it than are standard ARIMA

models.

[Place Table 7 about here.]

Finally, Cumby-Modest tests of market timing ability are used to more formally

determine whether the rules have predictive content.  The statistical significance of the

coefficient (β1) in the regression of excess returns on signals from the trading rule summarizes

the rules’ one-day-ahead timing ability:
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Table 8 presents strong evidence that the rules do possess predictive ability: 29 of the 32

available β1 coefficients are positive and 20 of those are significant at the 5 percent level.  Of the

three fitness criteria, the X* criteria seems to have produced the rules with the most predictive

content.  These timing tests illustrate the well-known result that profitability is not necessary for

a rule to have predictive content.

[Place Table 8 about here.]

5.  CONCLUSION

This paper has investigated whether ex ante, optimal trading rules created by genetic

programming are useful on a risk-adjusted basis.  Although risk-adjustment improves the relative

attractiveness of the rules, neither Sharpe ratios nor Sweeney and Lee's X* statistic, nor

Gençay’s Xeff  measure, nor Jensen’s α provide evidence that rules developed by genetic

programming would have been useful even to risk-averse speculators, contrary to reasonable

speculation.  Rules trained on the X* measure had the best risk-adjusted performance by all the

measures, approximately equaling the buy-and-hold return performance. Not too much should be

made of this result, however.  With 15-year in-sample periods—results omitted for brevity—the

Sharpe ratio became the best out-of-sample performer, again with performance approximately

equal to the buy-and-hold strategy.  Of course, risk is difficult to measure and any risk

adjustment is subject to criticism.  Nevertheless, this paper argues that trading rule results must

be carefully interpreted in light of risk adjustment.
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It is likely that the inclusion of dividends in the stock index, the removal of spurious

autocorrelation from the index returns or accounting for price slippage would only strengthen the

negative results of this exercise.
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Table 1: Genetic programming parameters of interest for AK’s implementation
Parameter AK’s Choice
Size of a generation 500
Termination criterion 50 generations or no improvement for 25 generations
Probability of selection for
reproduction with rules ranked from
1 (worst) to 500 (best). ( )2population of size

1-population inrank 2 ⋅

arithmetic functions +, -, *, /, norm, constant between (0,2)
Boolean operators "if-then", "and", "or", "<", ">", "not", "true", "false"
functions of the data "moving average", "local maximum", "local minimum", "lag of

stock index", "current stock index"
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Table 7: Results from ARIMA rules
In-sample Search AR MA Daily Excess Sharpe X* Trades
Period Criterion Order Order Dummy Return Rb-Rs per year % long
1929-35 AIC 5 5 2 -34.19 15.36 -3.04 -32.62 145.56 0.575

SC 1 0 1 -3.69 NA NA 0.00 0.00 0.000
Excess Return 1 2 1 -3.89 46.81 -0.07 -0.22 1.44 0.003

1934-40 AIC 2 2 1 -34.40 5.21 -3.00 -32.23 134.14 0.515
SC 2 2 1 -34.40 5.21 -3.00 -32.23 134.14 0.515
Excess Return 1 0 1 -0.17 -2187.39 0.32 -0.17 0.04 0.999

1939-45 AIC 5 5 3 -34.05 -10.33 -2.90 -32.27 118.79 0.549
SC 1 0 1 -0.58 -610.46 0.25 -0.58 0.36 0.999
Excess Return 1 0 1 -0.58 -610.46 0.25 -0.58 0.36 0.999

1944-50 AIC 5 4 2 -25.34 13.85 -2.03 -23.78 108.27 0.617
SC 2 0 1 -24.35 -0.26 -1.78 -23.14 92.43 0.703
Excess Return 1 0 1 -0.20 -2187.25 0.30 -0.20 0.04 0.999

1949-55 AIC 3 5 2 -30.43 15.35 -2.62 -29.54 131.82 0.670
SC 2 0 2 -22.37 21.52 -1.68 -21.74 102.44 0.767
Excess Return 1 0 1 -0.24 -1095.88 0.19 -0.24 0.10 0.999

1954-60 AIC 4 1 3 -28.12 18.57 -2.25 -27.29 125.33 0.685
SC 2 0 2 -24.67 21.02 -1.87 -24.00 112.11 0.745
Excess Return 1 0 1 -0.97 -107.73 0.12 -0.96 2.06 0.996

1959-65 AIC 2 3 2 -25.61 25.65 -2.28 -24.91 123.85 0.626
SC 1 1 2 -23.71 22.48 -1.86 -23.27 109.16 0.768
Excess Return 1 0 1 -7.68 -11.64 -0.46 -7.55 27.50 0.935

1964-70 AIC 5 5 3 -33.53 13.82 -3.04 -32.16 142.47 0.540
SC 3 2 2 -30.84 10.80 -2.71 -29.56 128.99 0.571
Excess Return 2 2 1 -16.05 -11.26 -1.38 -14.61 47.38 0.515

1969-75 AIC 5 5 2 -24.25 18.42 -1.96 -21.75 105.42 0.482
SC 1 1 2 -26.49 11.81 -1.84 -25.36 109.95 0.765
Excess Return 2 2 1 -11.67 5.59 -1.26 -7.14 29.71 0.060

1974-80 AIC 4 3 2 -14.23 -8.02 -0.75 -11.50 38.00 0.500
SC 2 1 1 -58.92 0.18 -5.45 -56.17 224.89 0.495
Excess Return 4 4 1 -14.06 -8.28 -0.74 -11.34 37.07 0.502

Notes:  Column 2 shows the in-sample model selection criterion.  Columns 3 and 4 show the chosen
orders of the autoregressive and moving average components. Column 5 summarizes the deterministic
component of the model: 1 indicates a simple constant, 2 indicates a weekend dummy on returns while 3
indicates that a full set of day-of-the-week dummies was used.  For the other columns, see the notes to
Table 2.
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