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Abstract

We introduce adaptive learning behavior into a general equilibrium lifecycle economy with

capital accumulation. Agents form forecasts of the rate of return to capital assets using least

squares autoregressions on past data. We show that, in contrast to the perfect foresight

dynamics, the dynamical system under learning possesses equilibria characterized by persistent

excess volatility in returns to capital. We explore a quantitative case for these learning

equilibria. We use an evolutionary search algorithm to calibrate a version of the system under

learning and show that this system can generate data that matches some features of the time

series data for U.S. stock returns and per capita consumption. We argue that this finding

provides support for the hypothesis that the observed excess volatility of asset returns can be

explained by changes in investor expectations against a background of relatively small changes

in fundamental factors.
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1. INTRODUCTION

1.1. Overview. We present a general equilibrium economy in which the fact that

agents are learning can imply persistent volatility in the economy’s state variables. The

structure of our model is closely related to many models in use in general equilibrium

macroeconomics today. Weargue that our findings provide a plausible explanation for the

observed cross-correlations and levels of volatility in economic data coming from markets

where expectations seem to play a large role, such as financial markets. Economists
have long argued over whether the data in such markets are consistent with fundamental

factors, or whether observed prices are instead consistently deviating from prices based
solely upon underlying fundamentals. Our approach provides a way to frame this debate

within the context of standard capital theory.

The environment we examine is a general equilibrium lifecycle economy with capital

accumulation and exogenous growth. Agents live for many periods, and we use standard

specifications for preferences and technology. In this environment, agents face a multi—step

ahead forecast problem, one that has not often been studied in the learning literature to

date. Agents learn by running least squares regressions using data that is endogenously

generated by the economy in which they operate: They form forecasts of the future using

their least squares rule, and then they take optimal actions given their forecast. The use

of a least squares rule is a common choice in the learning literature, but its effects have

not been widely studied in models with capital accumulation.

In order to make our system as stark as possible, and to maintain relative simplicity,
we eliminate all exogenous uncertainty from the economy we study. The volatility that

we isolate is thus entirely due to the effects of learning on the system; in the absence of

learning, the rate of return to capital in a stationary equilibrium would be a constant

that was entirely pinned down by unchanging economic fundamentals. Thus our volatile
return to capital is part of the endogenous fluctuation of the economy under learning—the

fluctuations arise because expectations are continually being revised in the face of new
data. Volatility can persist because agents’ expectations affect actual outcomes, and these

outcomes in turn feed back into agents’ expectations.

We begin by considering a simple benchmark, a perfect foresight version of the model,
and characterize the equilibrium. We then introduce least squares learning, and describe

the dynamic system that characterizes the economy under this learning assumption. We

show that it is possible to partition the parameter space into two sets—one in which an

equilibrium of the model is stable under least squares learning and one in which it is
unstable. In parameter regions where instability arises, we show that a neighborhood of

the steady state can contain complicated limiting dynamics for the system under learning.

These are the excess volatility or learning equilibria of our model. We are able to char-
acterize the situations in which these dynamics arise in terms of a vector of parameters
that govern specifications of tastes and technology.

We then consider a more realistic version of our model, and explore the possibility of a

quantitative case for the learning equilibria that we isolate. We use an evolutionary search
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algorithm to find interesting calibrations of the economy under least squares learning.

We compare the data generated by these artificial economies to actual data concerning

the relationship between consumption and asset returns in the U.S. over the last century.

Perhaps the most salient feature of the U.S. data is that the percentage standard deviation

of the returns to capital is largerelative to the percentage standard deviation of per capita
consumption growth. Weshow that the model with learning is able to generatedata which

approach the U.S. data on this dimension, whereas the model without learning cannot do

so. We also provide a detailed discussion of other facets of the fit between the model and
the data.

This research provides some support for the hypothesis that much of the observed

volatility in capital asset returns may be due to expectations which are continually being

revised, against a backdrop of fundamental factors that are not changing in quantitatively

important ways. Our approach provides one method of making this type of argument

rigorous and quantifiable, and brings it into contact with a large literature on the nature
of asset pricing. While our model is sparse in some obvious ways that enable us to simplify

matters considerably (for instance, all assets pay the same rate of return), in many respects

the quantitative fit we obtain is impressive and suggests that other persistently volatile

phenomena (such as business cycles) might also be characterized in whole or in part
by such learning system dynamics. At a methodological level, we have shown how one

might go about comparingalternative hypotheses concerning the root causes of asset price

volatility to more standard hypotheses, in a way that allows economists to evaluate the
relative merits of each explanation.

1.2. Related literature. Arthur, et al., (1997), Brock and Hommes (1997), Bullard
(1994), Grandmont (1998), Hommes and Sorger (1998ab), and Timrnerman (1993, 1996)

are among the most recent authors arguing that allowing for adaptive learning behavior

might endogenously generate fluctuations. The papers by Arthur, et al., Tirnmerman, and

Brock and Hommes specifically focus on the question that we address in this paper: how

the incorporation of adaptive learning behavior might help to explain excess volatility in

asset market returns. Arthur et al. and Timmerman study learning in the context of the

standard, efficient markets “present value” model, where the price of a stock is equal to

the expected present discounted value of all future dividends. In these models, the process

governing dividends is exogenously given and is therefore unaffected by the fact that agents

are learning. Similarly, Brock and Hommes study the implications of learning behavior
using a version of the cobweb model with exogenously given demand and supply schedules.

We view our analysis as complementary to this earlier work. Our main objective is to

discover the implications of learning in the context ofa general equilibrium macroeconomic

model which is closely related to those used inmainstream macroeconomics, and to explore

the implications of our model from a quantitative—theoretic viewpoint.

Our work can be distinguished from “noise trader” explanations of excess volatility

(e.g., DeLong, et at. (1990)) which posit the coexistence of rational and naive investor
types. While the agents in our model are heterogeneous in the sense that agents of
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different generations have different planning horizons, all agents’ expectations of future

rates of return on capital are identical in our framework. By contrast with much of the
work on noise trader models, we demonstrate that the boundedly rational agents in our

model are unlikely to detect that their learning model is misspecifled.

Evans and Honkapohja (1997), Marimon (1997) and Sargent (1993) survey the lit-

erature on learning in macroeconomic models. Grandmont (1998) provides a general

discussion the stability of rational expectations equilibria under adaptive learning behav-

ior and also addresses the possibility of complicated dynamics under learning in general

equilibrium models, Homines and Sorger (1998ab) also study the possibility of model

consistent, endogenous fluctuations due to learning. Bullard (1994) has demonstrated the

possibility of endogenous fluctuations under the least squares learning dynamic that we

consider here for a class of general equilibrium endowment economies. One contribution
of this paper is to extend this result to production economies.

A number of researchers have recently used adaptive learning models to help explain
empirical macroeconomic phenomena. For instance, Arifovic (1996) proposes an adaptive

learning explanation of exchange rate fluctuations, Marcet and Nicolini (1997) suggest
that learning may be responsible for recurrent hyperinflationary episodes, Sargent (1998)

models the recent history of U.S. inflation and monetary policy as a learning process on

the part of the monetary policy authorities, and Arifovic, Bullard and Dufry (1997) build

a learning-based explanation of world growth and development patterns. Here, we go

a step beyond these qualitative comparisons and directly consider how well a calibrated

version of our model fits several features of U.S. data.

There is a large literature that addresses the excess volatility of stock pricesrelative to
changes in fundamentals following Shiller (1981) and LeRoy and Porter (1981). Surveys

of this literature are provided in Shiller (1989) and Campbell, Lo, and MacKinlay (1997).

West (1988) evaluated much of the literature on stock price volatility tests and concluded

that excess volatility is a robust empirical phenomenon that is unlikely to be accounted

for by standard present value models. He (along with others, e.g. Shiller (1989)) also dis-

misses rational bubble explanations as unlikely, and argues that the kind of naive behavior

exhibited in “noise trader” models does not play a substantial role in the determination of

actual stock prices. West concludes that it might be useful to consider some other models

of the determination of excess returns, preferably parametric models, “so that the model

potentially could be rejected because of implausible parameter estimates or painfully large

test statistics.” This paper can be viewed as following up on these suggestions.

A number of papers, for instance Poterba and Summers (1988) among many oth-

ers, documented that real stock returns have a large forecastable component at longer

horizons, even though the predictable component at shorter horizons is relatively small.

The equilibria we study have this property, as real returns orbit about a constant mean.

Campbell (1991) and Campbell and Amrner (1993) used the forecastability result to de-

compose stock market volatility into the portions attributable to changing forecasts of

stock returns, dividend growth, and real (risk-free) interest rates. Of these, the chang-
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ing forecasts of real stock returns were by far the most important factor in explaining

stock market volatility. Our model might be viewed as consistent with this evidence
on expectations-driven volatility, as our fluctuating learning equilibria involve changes in

investor sentiment as the sole driving force.

We organize the paper as follows. The next section describes our general model en-
vironment, and presents an argument for the existence of learning equilibria in a simple

case. We then proceed in the following section to outline our computational approach to

identifying such equilibria in more realistic formulations of the model. Some of the detail
behind our approach has been relegated to an appendix. In Section 4 we present our main

results and include some remarks on interpretation. The final section offers concluding

comments and thoughts on directions for further research.

2. THE ENVIRONMENT

2.1. Preferences and endowments. Time t is discrete and takes on integer values

on the real line. At every date t, a new generation of agents is born. These agents live
for n periods, where n > 2 is a positive integer. The size of each new generation of agents

grows at a constant gross rate ~ > 1, where the size of the time t = 0 generation is

normalized to unity. There is ~asingle, perishable good that is both consumed and used
as input into production, which we will call capital, and an unbacked outside asset issued

by the government. The representative agent of a generation born at time t seeks to

maximize discounted lifetime utility given by

u = ~ (1)

where ~ > 0, p> 1 is a preference parameter describing the inverse of the intertemporal

elasticity of substitution, and c~(t+ i) denotes the time t + i consumption of the agent

born at time t. Agents are endowed with one unit of leisure in every period along with

an effective labor productivity coefficient, e~,where i indexes the period of life. Agents

inelastically supply their unit of leisure in every period in exchange for the competitive

market wage rate. Their income is then the wage multiplied their labor productivity.

coefficient. The sequence of lifetime effective labor coefficients, {e~}~i, is the same for

all agents.

2.2. Production technology. The economy contains a number of perfectly competi-

tive firms that all have access to the same constant returns to scale production technology.

Aggregate output, Y(t), is determined according to

Y(t) = ~(tl)(l~K(t)~L(t)1_a, (2)

where A > 1 denotes the exogenously given gross rate of labor productivity growth,

a E (0, 1) denotes capital’s share of output, K(t) denotes the aggregate capital stock

at time t, and L(t) denotes the aggregate effective labor supply at date t. This latter



LEARNING AND EXCESS VOLATILITY 5

quantity is given by

L(t) = ~~t_~_1ej+l. (3)

Denoting the ratio of capital to effective labor as k(t) = K(t)/L(t), the marginal products

of capital and labor determine the rental rate, r(t), and the wage rate, w(t), as

r(t) = A(t_hl~k(t)01 (4)

w(t) = A(th1~~(1— o~)k(t)~.

2.3. Government. A government that endures forever plays only one role, which is

to supply unbacked liabilities to the economy at a constant growth rate 6 )~1’. These

liabilities pay no interest. The aggregate, time t stock of this outsideasset, denoted H(t),

evolves according to:

H(t) = OH(t — 1). (5)

The government’s real revenue from seigniorage is endogenously determined by g(t) =

[H(t) — H(t — 1)j/P(t), where P(t) denotes price of the consumption good in terms of the

outside asset at time t. Substituting the rule for government liabilities into the expression

for g(t), we can rewrite real government revenue as:

16—i\ H(t)
g(t) = t~—~—)~ (6)

It is assumed that government revenue leaves the economy.

Remark on the inclusion of a nominal asset. By including a stock of unbacked

government liabilities which grows at a constant rate, we are keeping the model close to

the class of economies studied by Bullard (1994) in which learning equilibria were iso-

lated. In this way, we are able to maintain some confidence that the volatile equilibria we

seek actually exist in our model with capital accumulation and production—otherwise, we

would be left with little guidance as to where and how to find such equilibria. We think

this is a sensible way to proceed for the purposes of this paper, even though inclusion of

a nominal asset has some clear drawbacks for our quantitative exercise. The unbacked

government liabilities can be interpreted as unbacked government debt paying zero nom-

inal return, combined with the monetary base. Because the supply of these liabilities is

growing at a constant gross rate 0 which is greater than the growth rate of the economy,
the price level will rise over time, meaning that the unbacked liabilities will pay a low

real rate of return equal to P(t)/P(t + 1). Arbitrage will force capital to pay the same

real return as these unbacked liabilities, and thus by construction we are going to end

up with a counterfactually low mean return to capital. This could be remedied, at the
cost of some complication, by inclusion of a simple form of costly financial intermediation

for capital in the model, so that the real returns to capital would be higher than the

real returns to unbacked government liabilities by a constant sufficient to make the mean
return to capital match the data. We could go further, and include a fiat currency reserve



LEARNING AND EXCESS VOLATILITY 6

requirement on the intermediaries, effectively splitting the stock of unbacked liabilities

into two components, flat currency paying a low real rate of return, and government debt,
paying a real return between those on currency and capital. While we think that our

basic results would hold in such an environment, our judgement is that building in such

elaborate nominal elements is not the right focus for this paper. Accordingly, we elect to

remain with the simple framework and report results which focus on the volatility of real

returns to capital relative to the volatifity of per capita consumption growth and other

related statistics, and to leave explanations for rate of return dominance and other issues

to future research.

2.4. Assets and rates of return. Agents can rent capital to firms, borrow or lend in

the consumption loan market, and hold government liabilities. Arbitrage ensures that the

gross rate of return from holding non—interest bearing government liabilities, P(t)/P(t +

1), equals the gross real return from capital or consumption loans, R(t), which in turn

equals one plus the rental rate net of depreciation at rate ~i. This can be summarized as

P(t)/P(t + 1) = R(t) = 1 + r(t + 1) — ~t for all t.

Since we will be considering the behavior of our model under an adaptive learning

assumption where agents lack perfect foresight, we want to draw a sharp distinction

between past rates of return that are known at each date t and expected rates of return

that must be forecast. We use the notation R(t—i —1) = P(t —i — 1)/P(t —i), i = 0,1,...

to define past, realized gross rates of return. For future expected gross rates of return

we need to keep track of the date at which these expectations were formed, since when

agents are learning forecasts can change from one date to the next. We imagine that
agents forecast the future gross inflation rate and we use the notation (3~_~(t— i + j) to

denote the commonly held expectation, formed at date t — i, of the gross inflation rate at

time t — i +j, where i, j = 0, 1, ..., n — 2. The expected gross inflation rate is the inverse

of the expected gross rate of return in this economy.

2.5. The household’s problem. The representative agent born at time t faces the

following sequence of budget constraints, one for each of the n periods of life:

c~(t) ~ w(t)ei — at(t), (7)

c~(t+i) < w(t+i)e~+i—at(t+i)+aj(t+i—1)~3~(t+i—1)’,

ct(t+n—1) < w(t+n—1)e~+at(t+n—2)/3~(t+n—2)1.

for i = 1,2, ..., n — 2. Here, at(t + i) denotes the asset holdings accumulated by the agent

born at time t as of period t + i. These budget constraints can be combined into a single

lifetime budget constraint which is given by:

+ ~c~(t+ i)fl~~(t+j) <w(t)ei + w(t+i)e~~1 ~(t +i). (8)

The household’s problem is to maximize (1) subject to (8).
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2.6. Perfect foresight equilibria. We first consider the case where households are

assumed to have perfect foresight knowledge of rates of return. We will later relax this

assumption and introduce learning. The perfect foresight case serves as a useful bench-

mark for comparison with the results we obtain for the same model under a learning

assumption and allows us to characterize the conditions under which a rational expecta-

tions equilibrium exists. Under perfect foresight, we do not need to draw a distinction

between past, realized gross rates of return and expected future mates of return. For this

reason, in this section, we replace the notation of expected gross inflation with the perfect

foresight realization, i.e. we set /3~~(t— i + j) = R(t — i +j)~for all i, j. Thus, under

perfect foresight, the representative agent’s budget constraint may be rewritten as:

Ct(t) + ~ct(t + i) fJR(t +i)-’ <w(t)ei + (t + i)e~+i R(t +i)1. (9)

If we solve the household’s problem, we can determine each generation’s consumption

demand at time t in terms of interest rates and wage rates. Therefore, by writing wage

rates as a function of interest rates, we can determine each generation’s asset holdings at

date t as a function of interest rates alone. Aggregate asset holdings, A(t), is then given

by A(t) = >~LIJ~~t ~at.~(t). This expression is accordingly a complicated function of
interest mates dating from t — n + 2 to t + n — 2.

The asset market clearing condition is that aggregate asset holdings equals the stock

of unbacked liabilities plus the capital stock,

A(t)=~+K(t+1). (10)

Combining (5) and (10), one obtains an equilibrium condition:

A(t) — K(t + 1) = R(t — 1)0[A(t — 1) — K(t)]. (11)

Since both A(t) and K(t + 1) can be written as functions of interest rates, this expression

is a 2n — 3 order difference equation in R (t). We define a stationary, competitive, perfect
foresight equilibrium as any stationary sequence of values {R(t)}~°~0,such that equation

(11) holds at every date t. We restrict attention to a class of stationary perfect foresight

equilibria for this model in which aggregate asset holdings consist of both capital and
holdings of the outside government asset. In steady state, total asset holdings A(t) as well

as the capital stock K(t) grow at the gross rate of growth of output, A~.The existence
condition for this steady state equilibrium (which is readily apparent from (11)) is a

stationary value of R = A~0’ such that A(t) — K(t + 1) > 0 for all t. We study a

neighborhood of this steady state equilibrium in the remainder of this paper.

2.7. Learning. In this section we relax the perfect foresight assumption and introduce

adaptive learning behavior. The agents in the model under learning form forecasts of the

future using a least squares regression, and then take optimal actions given their forecast.
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We begin by defining a perceived law of motion for all agents in the model. The time
t forecast of the gross inflation rate between time t and time t + 1 is denoted by fl~(t)
and defined by P(t + 1) = /3~(t)P(t). We imagine that agents estimate gross inflation

by running a first order autoregression on price data available through time t — 1. The

implied regression coefficient can be recursively updated according to the equation:

fl~±1(t+ 1) fit (t) + y(t) {OtA(t — I3~(t)], (12)

where the gain, .y(t), can also be defined recursively as:

I ro[A(t— 1) —K(t)]12 )
~y(t+ 1) =

17
(t)~ I A(t) — K(t + 1) j + (13)

This least squares specification for agent learning behavior is a standard choice in the

macroeconomic learning literature.

The agents in this model live for many periods, and so they need to forecast many

periods into the future in order to decide how much to consume and save in the present
period. The autoregression we have specified implies that f3~_~(t— i + j) = /3~(t— i)

Vi, j > 0, that is, that the agent extrapolates the predicted one—step ahead inflation
rate to all future periods for which a forecast is required. This feature of the first-order

autoregression means that we can denote the forecast value /3~(t+j) more simply by the

date at which it is made, namely, we can denote ~ + j) by /3(t) Vj. Of course, in the

next period, a new piece of information will be available, namely the price level P(t), and

so a new forecast will be made that takes account of this additional information; this new

forecast will then be extrapolated into the future by all agents who need to forecast one

or more periods ahead.

Using this simplified notation, we can write the aggregate capital stock at time t under

learning as:

= At~ [/3(t — 1)—’ + ~ — 1] ~:~t~ej+l. (14)

Notice that since K(t) was determined by decisions made at time t — 1, K(t) is a function
of j3(t — 1). On the other hand, expected future values of the capital stock at date t

depend on the current value of ~3(t),

t_i 1
K(t + i) = At+z_i [ — I ~ ~t+t_2_iej±i, (15)

for all i > 0. By the same logic, the wage rate at date t is given by:

w(t) = (1 — a)At_l [/3(t — 1Y’ + ~ — 1] ~ (16)

and expected future wage rates at date t are given by:

w(t + i) = (1 — a)A(t+i_i) [/3(t)’+ — ] ‘ (17)
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for all i > 0. Accordingly, at time t, we can write all future expected wage rates as a

function of next period’s expected wage rate, w(t + 1):

w(t + i) = A’~w(t+ 1), (18)

for i 1.

While all agents form optimal consumption plans at time t on the basis of the inflation
forecast /3(t), when agents lack perfect foresight knowledge, these inflation forecasts will

generally be incorrect. Therefore, agents will want to re—optimize their consumption

decisions for the remainder of their lives at every date, taking into account the new

inflation forecast that is available at every date. For this reason, it is important to keep
close trackof the inflation forecasts that are being used inagent’s consumption and savings

decisions.

Let us begin be rewriting the consumption decision of the agent born at time t, using
the simplified notation of /3~(t+ j) = ~3(t) for j = 1,2, .. .n — 2. We have:

n—i .
— w(t)ei + ~ w(t +z)e~+i/3(t) 19

Cj — ~ ~~
7
L/3(t) (i_j~~1)

The asset holdings of this agent may be written as:

— w(t)ei + ~ w(t + i)e~~i/3(t)’
at(t) — w(t)ei — . (20)

~ 6~/3(t) ~‘

Agents who were born prior to period t, in period t — k, k = 1,2, ..., n —2, have additional

time t income from existing asset holdings brought over from the previous period. These

agents make current consumption and savings decisions on the basis of the current forecast

of inflation, /3(t). The fact that they use this new value for /3(t) implies that they me—

optimize at date t, choosing a new consumption plan for the remaining n — k periods of

their lives. For these agents, we have that

at_k(t) = w(t)ek+1 + R(t — 1)at_k(t — 1)

(21)

w(t)ek+i + ~ w(t + i)ek+~/3(t)’+ R(t — 1)at_k(t — 1)

Define the terms
n—k

,~-1 (~l)(p—l’
Dk(t) = ~ t~7/3(t) “ (22)

and
n—k—i .

~ ,~ w(t)ek+i + ~ w(t + z)ek+~+i/3(t)
k~) Dk(t)
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The expression for Wk(t) can be written entirely as a function of /3(t — 1), /3(t) by using

our definition for the real wage rates, since only w(t) depends on /3(t — 1):

(1 — &)At_l [Pt_1~l+~~~1} ~‘ eJ~4
Wk(t) = Dk(t)

(24)

— ~)At~~1
[~~(t~

1
+~_1] e~

1
/3(t)~

+ Dk(t)

Then we can write:

at(t) = w(t)ei — Wo(t), (25)

at_k(t) = w(t)ek+i — Wk(t) + R(t — 1) [i — Dk(t)] at_k(t — 1),

fork=1,...,n—2.Itfollowsthat

at_k(t — k) = w(t — k)ei — Wo(t — k), (26)

and

at_k(t—j) = w(t—j)ek~+l—Wk~(t—j)+R(t—j—1) [i_ 1 . 1 at_k(t—j—1),
i

(27)
for all j <k.

n—2 t—i—1
Using the above deflmtions, and noting that A(t) = ~& a~(t),we deduce an

expression for aggregate asset holdings at date t as a function of expectations, /3, formed

at time t and at dates in the past, and of past, realized rates of return R:

A(t) = ~tii [w(t)e~+i— W~(t)] (28)

+ R(t — 1)~0~t_i_2[w(t — 1)e~~1— W~(t—1)] [i — _____

+ R(t — 1)R(t —
2
)~~t_~3 [w(t — 2)e~÷1— W~(t_2)]fl [i — D~~~(t±j— 2)1

± R(t — 1)R(t — 2)R(t — 3)~~t_~_4 [w(t — 3)et+i — W~(t— 3)]fl [i_ D~+~(t±j— 3)1
+ ~:R(t_j)~t_n±itw(t_n+2)ei_wo(t_n+2)1~:[1_ D~(t+j—n+2)]~

Next, we note that the equilibrium condition (11) can be written more generally as:

ft £ 1 — A(t—~)—K(t—~+1) 29(t - - - 0[A(t - £ -1) - K(t - £)]‘ ~
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for £ = 0,1,..., n — 3. Using (29) we can substitute out for R(t — £ — 1) in the above

expressionfor A(t). Collecting terms in A(t) we have a recursive expression for aggregate
asset holdings at time t:

A(t) = >fl_2 ~t~j-1 [w(t)ej+i — W~(t)]
1 — ~—2 n—i—2 jt—j—i—1 jw(t—i)ej+j—Wj(t—i)l ii=1 j=O ~‘ 8’IA(t—i)—K(t—i+i)j k=i — DJ+k(t+k—i)

(30)

~n—2
~çn—i—2

1
t—j—i—i IK(t+i)Iw(t—i)ej+,—wj(t—i)l1 ~ i

— i=1 ~ ‘I’ I O~[A(t—i)—K(t—i+i)] j k=1 — Dj+k(t±k—i)

1 — ç-.~n—2 n—i—2 jt—j—i—1 [w(t—i)ej+i—Wj(t—i)1 ‘~ Fi — iL.ei—_i j_—O V’ O’[A(t—i)—K(t—i+i)) k=1 ~ D
3

÷k(t+k—i)

This expression for aggregate asset holding under learning is quite useful, because it

depends only on expectations formed at time t and earlier and on past values of aggregate

asset holdings. We can therefore combine equation (30) with equations (12) and (13) to

define a dynamic system under learning. By substituting appropriately we can create a

first order nonlinear system in which /3(t + 1), g(t + 1), and A(t) are all functions of past

values of these same three variables. We seek to understand the dynamic behavior of this

system in a neighborhood of the steady state where /3 = 6 (A~b)_i,‘y = i — 2 and

A = A (a complicated expression we do not display here), under the existence condition

A-K>0.

2.8. Existence of learning equilibria. The steady state of the system under learn-

ing coincideswith the steady state of the system under perfect foresight. We now consider

the local stability of this steady state under learning. In particular, we show that the pa-

rameter space for which the steady state exists may be divided into two regions, one in

which the steady state is locally stable under learning, and another in which it is locally

unstable under learning. In the parameter regions where instability arises, we show that

the system under learning possesses complicated limiting dynamics, which we refer to

as the learning equilibria of the model following Bullard (1994) and Grandmont (1998).

We can discuss the local stability of the steady state under learning and illustrate the
existence of learning equilibria most simply for the n = 2 period version of the model; the

analysis for higher values of n is similar.

Consider the version of the 2-period model in which the productivity proffle, {e1, e2 } =

{ 1, 0} and in which five of the seven deep parameters, ~, p, A, ~,L’and ~t are all set equal to

1, leaving the two parameters a and 6 free to vary. This much-simplified version of the

model merely serves to facilitate our illustration of stability analysis as will become clear

below. In this simple case, under least squares learning, the aggregate capital stock and

asset holdings are given by:

K(t) = [a/3(t — 1)}T~, (31)

A(t)= iaK(~)~ (32)
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The steady state where both inside and outside assets are held is one where /3(t) = 0’ for

all t, such that A— K > 0. Assuming that 6> 1, this steady state existence condition may
be written as 1 < 0 < (1 — a)/2a, with c~E (0, 1). Note that in the limiting case where

0 = 1, this condition implies that a < 1/3. Let us define the set of free, deep parameters
for which the steady state exists in this special case as = {0,a I 6 E (1, (1 —

aE(0,i)}.

The system under least squares learning consists of equations (12—13) in this simple

case (because A(t) is not recursive unless n ~ 3). Using the above definitions for K(t)

and A(t) in (12—13), the two equation learning system can be written entirely in terms

of present and past values of /3 and ‘y. For stability analysis it will be useful to have a

first order representation of this dynamical system. When n = 2, we canwrite the system

under least squares learning in the following first order form:

/3(t + 1) = f[fi(t), fi(t — 1), /3(t — 2), 7(t)] (33)

/3(t) = /3(t)

/3(t— 1) = /3(t —1)

7(t + 1) = g[/3(t), /3(t — 1), /3(t —2),7(t)]

Letting co(t) = [/3(t + 1), /3(t), /3(t — 1), -y(t + 1)}, we can express the dynamical system

under learning more compactly as ~(t) = M(~(t — 1)) where M is defined by the right

hand side of the system (33). The steady state where both inside and outside assets are

held occurs at ~ = M(~), where ~ = [0,6,0, 1 — 02}/. The stability of the system under
learning can be assessed by linearizing the system and evaluating the resulting Jacobian

matrix at a steady state. Despite the simplicity of the two-period special case that we

consider here, the analytic eigenvalues are quite complicated. Therefore, we pursue the

following numerical approach to conduct our stability analysis.

Recall that in the special version of the two-period model that we are considering,

S describes the set of free parameters for which the steady state where both inside and
outside assets are held exists. We shall therefore consider a grid of values for a and

6 that covers this entire set. For each (ci, 0) pair in 5, we calculate the maximum of

the modulus of the four numerically determined eigenvalues for the linearized system

evaluated at the steady state. Local stability of the system under least squares learning

requires that all four eigenvalues have modulus less than unity. If the maximum modulus

is less than unity, we plot a diamond in Figure 1. Thus area to the southwest in the

diagram represents a portion of the region of the parameter space in which the least

squares learning system is locally stable, as all four roots of the system have modulus less

than unity. The figure indicates that as a increases toward the upper bound of 1/3, the

range of 0 values under which the least squares learning system is locally stable steadily

shrinks. Similarly, as 0 increases beyond the lower bound of 1, the range of a values for
which the least squares learning system is locally stable also shrinks.’ Learning equilibria,

1
1n an effort to provide a clear diagram, we have not included the entire feasible parameter set in the

figure.
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S
4)

Figure 1
Stability frontier for a simplified, two period model

Figure 1: The stability frontier for the simplified, two-period economy. A diamond is plotted if
a randomly selected ci, 0 pair is associated with a set of eigenvalues whose maximum modulus is
less than one, creating the gray area in the figure. Thus, when ci and 0 are sufficiently small, the

system will be locally stable under least squares learning. The region where learning equilibria
may exist occurs when the largest eigenvalue crosses the unit circle, which is in a neighborhood
of the border between the stable and unstable regions, the stability frontier, in the figure.

if they exist, will arise along the border between the stable and unstable regions of the

parameter space.2 Bullard (1994) has shown that for endowment overlapping generations

economies learning equilibria correspond to the existence of a Hopf bifurcation in the

learning system dynamics. Figure 1 suggests that similar equilibria will exist here as

well, and we use a straightforward numerical simulation strategy to find them in more

complicated versions of the model. This strategy works as follows. Suppose the system

under learning is initialized at the steady state. If we then perturb the system by adding

a small shock to the steady state value of /3, we can observe the resulting response of the

dynamical system. If the system returns to the steady state then it is locally stable under

learning, otherwise the steady state is locally unstable. In the latter case, if the system
does not explode—if the dynamics remain bounded—then we have reason to believe that
we have found a learning equilibrium. If the forecast errors are stationary and have not

diminished to zero, as will be the case throughout this paper, then the learning equilibrium

is not a perfect foresight equilibrium.
2

1n a later section we give some heuristic reasoning on forces we think would drive our systems to this
region of the parameter space.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Alpha
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3. COMPUTATIONAL STRATEGY

3.1. Overview. We now turn to the question of whether the learning equilibria dis-

cussed in the previous section can be isolated ina more realistic context, where agents live
for more than two periods. The multi—period version of the model allows us to interpret

each period as a length of time that is conducive to a more realistic calibration of the

model as will become clear below. Our strategy is to conduct an evolutionary search over

a well—defined parameter space, in an attempt to locate parameter regions in which the
implied dynamics under learning are complicated and generate data that match several

aspects of the actual data collected on the U.S. economy over the last 100 years.

3.2. Model parameterization. We interpret larger values of n as allowing individ-

uals to update their consumption and savings plans more frequently over their lifetimes.

We consider a version of the model where agents live for n = 11 periods. Assuming that

a typical individual’s productive lifetime is approximately 55 years, we can interpret each

period inour model as comprising an interval of 5 years. The parameters of our model will
be chosen with this interpretation inmind.3 The 11—period model is both computationally

feasible and captures the essential insight of modeling learning in a multi—period context,

namely that agents frequently reoptimize over their lifetimes, taking into account new

information that was unavailable to them when they were younger. Such reoptimization
by individual agents is not possible in the standard two period environment.

The lifetime sequence of labor productivity coefficients, {e~}~1,is assumed to be the

same for all agents. The 11-period productivity proffle we chose is based on data from

Hansen (1993) and is hump-shaped. Hansen reports relative hourly earnings from two

different samples for seven different age-sex groupings. We use weighted averages of the

age-sex groupings and then fit a polynomial function which provides us with a smooth

endowment profile for ~ Since we use a model with inelastic labor supply, we need

to impose some retirement period on the agents. We do this by setting e~= 0 for the last

few periods of life.4

Our strategy is to keep n and {e~}fixed, and conduct our search over the remaining
parameters of the model, which mainly govern tastes and technology. As suggested by

the two period example, changes in any of these parameter values can cause the dynamics

of the system under learning to undergo phase changes. In principle, we want to allow

these parameters to vary across the entire domain in order to have the best chance of

finding a parameter vector that best achieves the goals of our search. However, we also
want to search in a reasonable parameter range, in part as a way to speed up the search

process. Accordingly, we restrict the range over which we allow variation in each of the

parameters of the deep parameter vector. Table 1 provides the parameter ranges that we
3

ldeally, we would like to consider a 55—period version of our model so that each period could be
interpreted as a single year. However, we have found that our search strategy for the 55—period version
of the model is not feasible given our current computational resources.4

1n some economies we set the productivity profile to zero in the last three periods, while in others we
set it to zero during the last two periods. We did not find any qualitative differences in the results that
were dependent on this feature of the model.
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Table 1. Ranges for model parameters.

Model
parameter

One—year
range

Five—year
range

5 0.90 to 1.10 0.59 to 1.61
p 1.01 to 10.0 same
ci 0.15 to 0.30 same
jt 0.05 to 1.00 0.22 to 1.00
A 1.0025 to 1.0300 1.0126 to 1.159
~, 1.001 to 1.020 1.005 to 1.040

0~ 0.00001 to 0.50 same

Table 1: Ranges for model parameters. Here we list the allowed parameter ranges expressed in
annual terms in the second column, and expressed in five year terms in the third column.

adopted for each of the seven model parameters. Our choices for the 0 parameter, which

governs the growth rate of the outside asset, are based on the following considerations. To

ensure that the capital stock is positive, we require that the steady state gross inflation
rate 0/An) < 1/(1 — j.i). On the other hand, we also require that the steady state gross

inflation rate satisfies 0/A~C’>1. Since the implied restrictions on 0 depend on the choices

made for A, ~&,and /2, we choose a value for 0 after choices for these parameters have been

made. In particular, for given values of A, ~,b,and /2, we set

6 = A~’+ 0_ [1/(1 — ~i) — 1] A~,

where 0
pct E (0, 1). This formula for 6 ensures that the above restrictions always hold.

In searching for parameterizations of our model, we chose values for 0
jxt rather than 6,

and then obtained a value for 0 using the above formula. Thus in Table 1 we provide the

ranges for Opet rather than for 6. While 6
pct can take on values between zero and one, we

found by experimenting with our system that lower values tended to be the most relevant,

and so for much of our analysis we restricted 0 to relatively low values in order to speed

up our search.

3.3. Data targets. An artificial economy is a tuple {6, p, a, j.t, A, ~, Opct} inour frame-

work, which we sometimes refer to as a candidate vector. We wish to choose values for

these vectors such that the implied behavior of the dynamic system under learning has

aspects that match corresponding aspects of the U.S. data. Before we can assess the

properties of the simulated data, however, a candidate vector must meet two necessary

conditions, namely (1) the parameterization is such that there exists a steady state where

both inside and outside assets are held, and (2) there is persistent volatility in asset re-

turns, that is, the system has achieved some kind of complicated attractor. The first

objective was achieved by calculating the values of A and K at the steady state where
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Table 2. U.S. data, 1890—1994.

Statistic Value
Standard deviation of real stock returns 55.2

Standard deviation of real per capita consumption growth 8.75
First order serial correlation of real per capita consumption growth —0.24

Contemporaneous correlation between real stock returns and
per capita consumption growth 0.24

Table 2: Aspects of the U.S. data on returns to capital and per capita consumption growth,
from 1894 to 1994. We use five year, non-overlapping time intervals.

R = /3~= A~/0for each candidate vector of parameter values. A steady state with

inside and outside assets exists if A — K > 0. The second objective was achieved by

checking whether the time path for real returns following a initial displacement from the

steady state was asymptotically converging toward the steady state, or exhibiting explo-

sive behavior; in either of these two cases, the objective of persistent volatility was judged

to be unsatisfied.

If these two necessary conditions are met, we move to assessing the candidate vector’s

performance on dynamics. We think the most interesting approach is to try to identify
the returns to capital in the model economy with the volatile returns to equity in the

U.S. economy. The time series evidence that we use to assess the performance of our

model is based on an updated version of the data set used in Grossman and Shiuler
(1981), which provides annual data on stock prices and dividends as well as per capita

consumption for the U.S. from 1890—1997. This is the standard data set used in the macro—
finance literature. Using this data, we constructed real stock returns (which include real

dividends) and real per capita consumption growth rates at five year, non—overlapping

frequencies, covering the period 1890—1994, for a total of 21 observations. The statistics
from this data that we will use to assess the performance of our model are given in Table

2.

We chose these particular statistics because they capture several important features
of the data that effectively characterize what is commonly called excess volatility. In

particular, the standard deviation of real stock returns is more than six times the stan-

dard deviation in real per capita consumption growth. Furthermore, the first order serial

correlation of real per capita consumption growth is somewhat negative, while the con-

temporaneous correlation between real stock returns and per capita consumption growth

is somewhat positive. The picture painted by these statistics is one in which fundamental

factors, typically taken to be represented by real per capita consumption growth, do not
vary as much as real stock returns, and there is apparently very little in the way of a
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relationship between these two variables.5 The four statistics in Table 2 will serve as

targets for the 11—period model that we seek to calibrate.

The last of our seven objectives concerns the endogenously determined forecast errors,

defined for the contemporaneous case by:

e(t) = /3(t)—
1

— R(t).

The hallmark of learning equilibria is that these forecast errors do not tend to zero as

time tends to ±00. A reasonable restriction to place on the learning equilibria that we

isolate through our parameter search is that these forecast errors are not systematic—
random enough so that agents will judge that their linear least squares forecasting model

is consistent with the world in which they live. We operationalized this by considering

the correlations between e(t) and e(t — j), where j = 1,2, ..., 10.6 If the forecasts are

sufficiently random, then forecast errors at 1—10 lags should be uncorrelated with one

another. We note that since our learning specification is a first-order autoregression,
our objective regarding forecast errors is somewhat more rigorous than one might expect

least squares learners to adopt. For each parameterization, we calculated the correlation

between e(t) and e(t — j) using the 21—observation sample we drew from the artificial

time series generated by the model. We focused on the maximum of these 10 correlation

coefficients in absolute value.

Given our two necessary conditions and our five targets, and given the seven parameter

value ranges of Table 2, we developed and implemented a genetic algorithm to conduct the
search for a parameter vector that couldcome as close as possible to meeting our objectives

and data targets. A genetic algorithm is a population—based, stochastic, directed search

algorithm that incorporates basic principles of population genetics.7 The algorithm works

on a population of “strings.” Each string encodes one candidate solution to some well—

specified problem. In our application, strings consist of a seven parameter vector for our

model. At the beginning of every “generation,” strings are evaluated according to some

fitness criterion. In our application the fitness criterion will be how close the candidate

system came to meeting all our objectives and data targets. Following the principle of

survival of the fittest, strings with a higher fitness level have a greater probability of

advancing to the next generation of candidate solutions. The strings that are selected to

be retained in the population of candidate solutions undergo, with some fixed probabilities,

naturally occurring genetic operations of crossover and mutation, which serve to advance

the search for increasingly higher fitness levels. We chose to use a genetic algorithm

to conduct our search for a parameterization of our model because these algorithms are
5

1n our model, there is a sharper definition of fundamental factors, namely preferences, technology,
and government policy. We have specified all of these factors to be constant or growing at a constant
rate, and not subject to stochastic shocks, so that from this perspective the fundamentals of our model
are unchanging over time. Nevertheless, as long as the context is clear, we refer interchangably to “the
fundamentals” of the model economy as either the implied sequence of consumption growth rates or as
the unchanging preferences and technology.6

Agents only live for 11 periods, so we are considering all of the correlations between forecast errors
that occur during agents’ lifetimes.

7
See, e.g. Michalewicz (1994) for an introduction to genetic algorithms.
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known from the artificial intelligence literature to be efficient searchers of large and rugged

landscapes, such as the 11—period model we are considering here. Indeed, Holland (1975)

has shown that genetic algorithms optimize on the trade-off between exploration of new
solutions and exploitation of the best solutions discovered in the past.

A more detailed discussion of this search algorithm is given in the Appendix.

4. MAIN FINDINGS

4.1. Dynamics of artificial economies. The results we report are based on evolu-
tionary searches of the parameter space using our genetic search algorithm. We remark
that, despite the use of a rather elaborate methodology, we found this search to be a

difficult one, in the sense that separate searches beginning with randomly assigned can-

didate parameter vectors tended to end up in different portions of the parameter space.8

To counteract this effect, we simply searched the parameter space a number of times and

here we report several of the interesting economies we found. We think this serves our

purpose of illustrating how a learning equilibrium could be behind observed volatility in

financial markets, even though it is possible that there may be economies that match the

data more closely than those displayed here within our parameter space.

We begin by examining the dynamics of these artificial economies, and then we turn

to a discussion of the individual parameter vectors.

We report five illustrative best—of—generation strings—the ones with the best fitness
values—from searches we conducted, and for simplicity we refer to these five cases as

economies 1,2,3,4 and 5. In Figure 2 we display one view of the attracting sets of these

economies. These are the limiting dynamics of systems simulated for a large number of

periods followinga small shock. Wehaveplotted the deviation of the real return to capital
from its mean at time t against the same deviation at time t — 1, in order to give a two-

dimensionalview of the limiting dynamics. It is clear from the figure that Economy 2 has

particularly simple dynamics, a three-period cycle. Economies 1 and 5 follow motion on

relatively complicated closed curves, while Economies 3 and 4 possess more complicated

attracting sets.

In Table 3 we report the time series statistics associated with each of these five artificial
economies, as compared to the U.S. data. Economies 1 and 2 are what we call high

volatility economies, because the returns to capital in these cases are about as volatile as

in the U.S. data, in fact exactly so in the case of Economy 2. The other three cases are

accordingly what we call low volatility economies. If we consider the standard deviation of

per capita consumption growth, we see that for Economies 1, 3, and 5, the volatility of this

variable is close to the U.S. data, and in most cases substantially less than the volatility of

returns to capital. These statistics show that this general equilibrium model under least

squares learning can capture an essential feature of the excess volatility phenomenon,

namely the much greater variation in real returns to capital compared with underlying

fundamentals as captured by per capita consumption growth rates. However, in terms of
8

In part, this may reflect our inability (because of resource constraints) to let the genetic algorithm
search for a sufficiently long period of time. How long such a search might take is unknown, however.
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Figure 2
Attracting sets for fiveartificial economies, viewed in two dimensions.
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Figure 2: Attracting sets for five artificial economies, viewed in two dimensions. Here we have
plotted the the deviation of the real rate of return to capital from its mean at time t against

returns at time t — 1, for each of the five artificial economies we report.
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Table 3. Data statistics associated with artificial economies.

Statistic
U.S.
data

Artificial_economy
1 2 3 5

Standard deviation of
returns to capital 55.2 43.8 55.2 24.6 26.5 20.3

Standard deviation of per
capita consumption growth 8.75 8.63 21.9 8.17 18.9 8.29

Serial correlation of per
capita consumption growth —0.24 —0.32 —0.53 —0.61 —0.47 —0.29

Contemporaneous correlation
between returns to capital and

per capita consumption growth 0.24 0.95 0.99 0.43 0.26 .20
Maximum correlation coefficient,

forecast errors at 1 to 10 lags — 0.92 1.00 0.75 0.63 0.68

Table 3: Summary statistics from artificial economies as compared to those from the U.S. data,
all in terms of five year time periods. We used a sample size of 21 for the artificial economies,
which is the number of data points in the actual data.

relative volatility (the ratio of the standard deviation of returns to that of consumption

growth) in these two variables, our model comes up short. None of the artificial economies

has a relative volatility of more than about 5, and most are considerably smaller, while
the relative volatility in the data is about 6.3. Thus while this model generates excess

volatility, it does not generate enough excess volatility to match the data.

The first order serial correlation of per capita consumption growth is negative in

the data, and is also negative in each of the five artificial economies. In two cases,

Economies 1 and 5, this correlation is relatively close to the data. The contemporaneous

correlation between the returns to capital and per capita consumption growth is somewhat

positive, .24, in the U.S. data. The high volatility economieswe report have far too high a

correlation on this dimension to match the data. The low volatility economies do better,

with Economy 4 coming particularly close to target.

Our volatile learning equilibria are driven by expectational errors. Agents are using

first-order autoregressions to predict the future, and they make mistakes that do not vanish

asymptotically. We have no data for the U.S. on forecast errors for five year returns over

the last 100 years. However, we do have strong priors that forecast errors should not

follow any obvious pattern, lest the agents learn from these errors themselves and change

their learning rule, which would in turn change the dynamics of the system. How do our

artificial economies fare on this dimension? In the last row of Table 3, we report the
maximum correlation for forecast errors at 1 to 10 lags. This is but one way to assess the

randomness of the forecast errors in our model. For the two high volatility economies, this
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Figure 3: Forecast errors. We plot the last 21 of 1,000 observations for economies 1, 3, 4, and 5.

In each case, the Durbin-Watson statistic is given, as if calculated with knowledge of the entire
sample.

maximum correlation is very high, and in the case of Economy 2, it is actually 1.0. This

is because Economy 2 follows a three-period cycle, so that every third forecast error is

exactly the same. The other economies follow more complicated trajectories, with forecast
errors that are not perfectly correlated within 10 lags. Our view is that the low volatility

economies have forecast errors which are not obviously systematic, enough so that agents
could not distinguish them from random errors within 21 observations. We now turn to

pursue this point.

Agents who were concerned about possiblemisspecification of their least squares learn-

ing rule might conduct some diagnostic test, such as a Durbin—Watson statistic, for the

presence of serially correlated forecast errors.9 Using our sample of 21 end-of—run fore-

cast errors, we calculated the Durbin—Watson test statistic for each of our five artificial

economies. This statistic d was 2.61, 2.99, 1.60, 1.54, and 1.50, respectively for Economies

1, 2, 3, 4, and 5. A plot of the associated forecast errors for Economies 1, 3, 4 and 5
9

Bray and Savin (1986) used a Durbin-Watson test as a guide to misspecification in a learning model.
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(Economy 2 has perfectly systematic errors and has been omitted) is given in Figure 3.
With 21 observations and 1 regressor, the upper and lower bounds at the 5 percent sig-

nificance level are dL = 1.132 and du = 1.420,’° Let’s suppose that the agents first test a
null hypothesis of no serial correlation against an alternative of positive serial correlation.

For economies 1 and 2, the calculated Durbin-Watson statistics are larger than the upper

bound and therefore, agents would not reject the null hypothesis of no serial correla-

tion, and would conclude that little evidence of positive serial correlation existed. If they

wished to test for negative serial correlation, the corresponding test statistic values would

be 4—d, or 1.39, 1.01, 2.40, 2.46, and 2.50 for economies 1, 2, 3, 4, and 5, respectively. For

Economy 2—the perfectly cyclical economy—the null hypothesis of no serial correlation

can be rejected, and for Economy 1, the test is inconclusive. For the three low volatility

economies, however, a null hypothesis of no serial correlation again cannot be rejected,

and in these cases agents would conclude that there was little evidence of negative serial

correlation.
Thus, agents using ordinary least squares regressions might have difficulty detecting

that their model was misspecifled, even if they had access to data on forecast errors

extending back a century or more. Of course, we do not have such data in modern

economies. For this reason, it might be more realistic to think of an agent forecasting over

his or her lifetime, in our model 11 periods of 5 years each. An agent would presumably

recall the forecast errors made over the lifetime, and might change his or her forecast

rule late in life based on the errors made early in life. But this would involve an even

shorter sample than the 21 observations we have allowed in calculatingthe Durbin-Watson

statistic in Figure 3. We note further that the system we are examining is completely

deterministic, an extreme assumption which we have adopted in part for tractability and

in part in order to keep the nature of our results clear. If we were to add a reasonable

amount of noise to the system, for instance by making output subject to stochastic shocks,

the forecast errors generated by our system might appear to be even more complicated to

the agents in our model.

4.2. Other characteristics ofthe artificial economies. Wenow turn to evaluating
other aspects of the artificial economies, based on the best-of-generation parameter vectors

at the end of our searches. These parameter vectors, for which growth rates should be

interpreted in terms of five-year time periods, are listed in Table 4. Of course, we have

already tried to use our seven parameters to meet existence and volatility objectives, as

well as five data-based targets, and to ask the model to perform well on a number of

additional dimensions is pushing the envelope somewhat—a better approach would be

to consider models with more realistic features in order to try to address more aspects

of the data. Nevertheless, we think our economies fall short of a completely convincing

demonstration of the existence of empirically plausible learning equilibria, mainly because

‘°Thelower bound for the Durbin-Watson test statistic when there is no intercept term in the regression
(as in our case) comes from the tables reported in Farebrother (1980). The upper bound is not affected
by the absence of an intercept term.
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Table 4. Parameter vectors for artificial economies.

Economy 5 J~ p a ~z A 0~
1 1.176 2.809 0.1849 0.8940 1.031 1.019 0.01815
2 1.752 3.850 0.1827 0.8630 1.139 1.021 0.02515
3 1.392 1.292 0.1553 0.7507 1.140 1.073 0.07121
4 1.571 1.036 0.1518 0.8033 1.132 1.081 0.08228
5 1.418 1.022 0.1511 0.6616 1.181 1.105 0.08898

Table 4: The parameters associated with five reported artificial economies. These parameter

values are expressed appropriately for five—year time periods.

our economies involve capital share parameters which are too low, and depreciation rates

which are too high.1’ However, we stress that we are only taking a first step in this

paper as a means of illustrating the potential of our approach, and that in some ways our

parameter vectors are quite reasonable.

Considering Table 4, we begin with the most reasonable aspects and proceed to the
less reasonable. In evaluating these parameter vectors, we want to think in terms of

modern economies generally, even though we restricted our comparisons to the U.S. data

in the previous section. The rate of technological change, A, and the rate of population

growth, ~, are expressed in gross rates over five-year intervals. Thus the annual rate of

technological change across the five economies ranges from about one-half of one percent

to 3.4 percent. These values are within the range one might expect for industrialized
or developing economies.12 The rate of population growth, on an annual basis, ranges

from about four-tenths of one percent to about 2 percent. Again, these values are within
the range of observed values for modern economies. The value for °~I~ has no direct

interpretation, but can be related to the inflation rates observed for these economies. The

steady state inflation rates for the five economies range from about 1.1 percent up to about
22 percent, which is consistent with average inflation rates observed in OECD economies

during the postwar era. Economy 1 has a steady state inflation rate of 4 percent, the U.S.

postwar average.

Regarding preferences, Table 4 reveals that the curvature parameter p, which can be in-

terpreted as the coefficient of relative risk aversion, ranged from about unity—logarithmic

preferences—up to 3.85. These values are consistent with those often used in the litera-

ture. The discount factor 6, was consistently above unity. On an annual basis, the rate
of time preference as conventionally measured ranged from —3.2 percent to —8.6 percent.

‘
1
When we tried to limit our genetic algorithm search to relatively high capital share, low depreciation

cases, we found that it was difficult or impossible to meet our existence check for equilibria where agents
hold both inside and outside assets.

‘
2

We note that, in the model, these rates are constant, but an econometrician evaluating the rate of
technological progress would have to estimate them from the volatile data produced by these economies,
and that estimate would be subject to some uncertainty. The same would hold true of other parameters.
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As is well-known, in overlapping generations models this parameter plays a quite different

role from that played in representative agent models, and in particular, there is no re-

quirement that it takes on a positive value. Negative values are consistent with a number

of empirical estimates including Hurd (1989), who estimates the difference between the

real interest rate facing agents and the rate of time preference as 4.1 percent. The real

interest rate is typically taken as the rate on short-term govermnent debt, which averages

about 1 percent in the postwar U.S. data, or as that rate after taxes, which averages

about 0 percent. This leads to an estimate of the rate of time preference around —3 or
—4 percent. Hurd’s (1989) alternative estimate of the difference between the rate of time

preference and the real interest rate was even larger, 6.1 percent.

The least satisfactory aspect of our economies is that the capital share is too low to be

consistent with estimates of the capital share in the U.S. economy, and the depreciation
rate is too large. Most capital share calibrations in the real business cycle literature

use values of one-third or higher, based principally on inclusion of consumer durables

in the measure of the capital stock. Even if one does not include consumer durables in

the measured capital stock, capital share is around one-fourth in the postwar U.S. data,

higher than in any of our five economies. Estimates of the annual depreciation rate in the

U.S. data range from about .04 to .12. In contrast, the five economies listed in Table 4

have annual depreciation rates ranging from a minimum of more than 19 percent up to

36 percent. These are outside the range of U.S. experience.

Weleave it as a challenge for future research to develop models with learningequilibria
which can perform more satisfactorily on these dimensions.

4.3. A remark on interpretation. So far, we have behaved like econometricians in
locating a best fitparameter vector for our model, and interpreting that fit. However, there

is an equilibrium question for our analysis, namely, why are these points in the parameter
space reasonable? What is it that drives these economies to the stability frontier outlined

in Figure 2? Obviously, this type of question is beyond the scope of our analysis, because
we have not attempted to model an endogenous process that would keep these economies

on that frontier. Instead, we have appealed to the data and argued that the equilibria we
describe are the ones that provide the closest match. Nevertheless, we give here a heuristic

argument as to why we might observe economies in the volatile region as opposed to, say,

in the stable region where the steady state would obtain. We imagine that all parameters

are given by nature, except for the government policy parameter 0, which is set by the

government to maximize goverument revenue before setting other explicit taxes. In this

scenario, the government moves 0 to as large a value as possible. All else equal, larger

values of 6 will tend to move our systems closer to the stability frontier, and will tend

to make observed dynamics more volatile. A government pursuing such a policy would

push 6 higher but would stop near the stability frontier. At that point, revenue would be

maximized on average, but would be volatile. If the government tried to raise still more
revenue, the dynamics would collapse (the system would move too far into the unstable

region). On the other hand, a lower value of 0 would produce lower average revenue. Thus
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one might be expect certain types of politico-economic equilibria to exist on the stability

frontier, and not to exist elsewhere in the parameter space.

5. CONCLUSIONS

Observed levels of volatility in markets where expectations seem to play a large role,

such as markets for capital assets, have long been a puzzle for economists. The data we
use reveals that the standard deviation in annual returns to equity in the U.S. over the

last century or so is around 18 percent. Changes in fundamentals, on the other hand,

do not seem to be nearly so pronounced. For instance, the postwar quarterly standard

deviation of technological change as measured by the Solow residual is only about 0.7

percent (Cooley and Prescott (1995)) and the standard deviation of annual aggregate per

capita consumption growth over the last century is only about 3 percent. Most other

processes fundamental to economic value, such as demographics, government policy, or

preferences, are usually viewed either as constant or as slowly changing, low—volatility

variables. If economic fundamentals are not changing very much from year to year, why

are capital asset returns so volatile? Questions like this have led economists to debate
whether the data in such markets are consistent with fundamental factors, or whether

observed returns are instead consistently deviating from the returns one might expect

based on fundamentals alone.

In this paper, we have explored the feasibility of the latter answer to this question,

that observed returns are not particularly closely connected with changes in fundamentals,
and that they in fact might be driven mostly by changes in investor sentiment. In our

framework, the deviations of returns from those suggested by fundamental factors are

caused by the fact that agents must learn about the environment in which they operate.
This creates a system in which expectational error is a driving force behind economic

volatility. In order to illustrate our ideas most vividly (and to keep the analysis relatively

simple), we have set up an environment which is very stark: there is no uncertainty
whatsoever in the underlying model. In the absence of learning, the steady state return to

capital would be completely pinned down by fundamentals, and would exhibit a standard

deviation of zero. We have shown that a calibration of our model with learning exists that

can deliver time series data that match some of the essential features of the U.S. data on

real stock returns and per capita consumption growth. In particular, our model captures

a portion of observed excess volatility in the data.

As we have emphasized, our model also has some drawbacks, and our results have

to be interpreted as only a first step in this direction. We think further research on

quantitative learning equilibria is warranted, and we hope we have provided some ideas

about how to pursue such research. Unfortunately, one generally has little guidance from

the theoretical literature about which features of quantifiable economies might provide

fertile ground for learning equilibria. But on the plus side we were able to extrapolate

in the present case from earlier theoretical work in stripped down model frameworks in
order to find quantitatively interesting equilibria; perhaps other simple examples can be

worked out relatively easily and then be used as a guide for quantitative-theoretic work
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like that carried out here.

APPENDIX: THE SEARCH ALGORITHM

The search algorithm proceeds in the following sequence of steps. First, a population of

N parameter vectors, or strings, is randomly initialized. We typically set N = 30, 50,
or 100, based on suggestions from the literature on genetic algorithms. Each string has

seven elements—the seven parameters of our model: 5, p, a, j.t, A, ~, 0. Denote each of

the seven elements of string s~by q5~,so that ~ is the value for the parameter p of string

s~.The initial parameter values for all N strings were drawn with uniform probability

from the parameter ranges specified in Table 2.

Second, the values of A and K at the steady state where R = A~1&/6were calculated for

each parameter string. IfA — K 0, then the parameter vector is assigned a large number

of penalty points and no further calculations are made for this string. If, on the other

hand, A — K > 0, so that the steady state of interest exists, the string is assigned zero

penalty points for this step in the algorithm. This step constitutes our existence check.
In our search algorithm, high fitness is associated with an absence of penalty points, so a

string with a large number of penalty points is not likely to remain long in the population

of candidate solutions as will become clear below.

If a string passes the existence check, the next step is to simulate the system for
maxit iterations using the candidate parameter vector. We found we could get effective

simulations by setting the number of iterations as low as 250, but we generally used higher

values such as 300, 500, or 1,000. The system is initialized at the steady state and then

the initial value i3(0) is perturbed by a small amount. If the resulting dynamic path for

~3is determined according to simple criteria to be explosive or convergent, the simulation
is stopped (so as to save time) and the candidate string is again assigned a number of

penalty points that are inversely related to the number of periods the simulation was

continued before being terminated. If the checks for explosive or convergent behavior are

satisfied, the model is simulated for maxit periods, and earns zero penalty points. This

check fulfills our objective of having persistently volatile behavior in asset returns.

If a string passes both the existence and persistent volatility checks, we then take the

last 21 observations from the maxit simulated observations on rates of return, per capita

consumption amounts and forecast errors for this string and we use this sample of 21

observations to construct the statistics that we will then compare with our target values

and ranges. In particular, we calculate the standard deviation of returns, the standard

deviation of the growth rates of per capita consumption, the serial correlation of per

capita consumption growth and the correlation between returns to capital and per capita

consumption growth. Finally, we calculate the maximum correlation coefficient of the

forecast errors at 1—10 lags. We limit our sample to 21 observations because that is the

number of observations from the U.S. data we have on non-overlapping 5—year returns

and 5—year growth rates of per capita consumption.

The fitness assigned to a string that passes both the existence and volatility checks

is zero. This fitness value may then be further altered according to how well the string
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performs with respect to the five statistical targets. Each of the five data statistics gets

an equal weight in further altering the fitness of a string. Let 8
jt denote the candidate

parameter vector i at generation t, and let ~ denote each of the five data statistics

(j = 1, ..., 5) that result from simulating the economy with parameter vector s~and

analyzing the final 21 observations. Denote the target value for each 03 by 63 and the

upper and lower bounds by ~ and ~. Then the fitness of string 5
jt is given by:

F(s~t)= >Pijt,

where

~ (0~— i9~)/(~— è~,) if ()ijt < O~,
Pijt

1
(
0~

t 03)1(63 63) otherwise

Given this fitness definition, parameter vectors that come closest to generating data that

match the desired targets will have lower fitness values and a vector that delivers an exact
fit on all five targets will have a fitness of zero.’3

Once fitness values have been determined for all N strings in the population, we apply
genetic operators which constitute the heart of the genetic algorithm.

First, a selection tournament is held. Two strings are randomly chosen with replace-

ment from the population of strings and their fitness values are compared. The string

with the better fitness value wins the tournament and a copy of this string is placed in

the next “generation,” G(t + 1), of candidate strings. This binary selection tournament

is conducted N — 1 more times so that G(t + 1) consists of a population of N strings.

The purpose of this selection operation is to direct the search process toward increasingly
fit strings. The remaining operations of the genetic algorithm, crossover and mutation,

inject the population with new, untried parameter vectors, so as to advance the search
for highly fit strings. These operators work on the strings in G(t + 1), the strings that

have won a selection tournament.

The crossover operation is conducted as follows. The N strings in G(t + 1) are con-

sidered two at a time, sj,~+,,s~+i,t+i. With probability pC, crossover is performed on two

vectors; otherwise crossover is not performed. If crossover is performed, we use one of

three methods with equal probability. Each of these methods have been shown to have

certain strengths in tackling difficult, nonlinear search spaces and therefore we chose to

use all three methods to conduct our search. The first method is single—point crossover

in which a integer I is chosen uniformly from the set [1, ..., 5]. The two strings are then

cut at integer I and the elements of the two strings, q5~and ~
5
i+1,j to the right of this

cut point, i.e. j > I, are then swapped. The second method, shuffle crossover, involves

5 draws from a binomial distribution. If the jth draw is a one, then the j°~elements of

‘
3

We also experimented with further penalizing strings that yielded values for O~outside the target
range , O~~]by adding a quadratic term to the penalty point function, when 6~,values were outside
these bounds. However, this modification appeared to make little difference for our results, so we adopted
the simpler, linear penalty point mechanism described above.
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the two vectors, q5~and ~ are swapped, otherwise the it/I elements are not swapped.

In the third and final method, arithmetic crossover, a random real number a E [0,1] is

chosen and this number is used to create two new vectors that are linear combinations of

the original two vectors: as~,t+,+ (1 — a)Sz+,,t+, and as~+,,t+i+ (1 — a)s~,t+i.
Mutation is performed on the strings in G(t + 1) following the application of the

crossover operation (i.e. on the recombined strings of G(t + 1)). The mutation operator

makes use of the upper and lower bounds for each of the seven parameter elements of a

string, q5~,~., that we specified in Table 2, and is applied with probability ptm to every

element of every string of G(t + 1). If mutation is to be performed on element

then two real numbers, r1 and r2 are drawn from [0, 1]. The new, mutated value of

is given by:

~i,j,t+i + — ~ [i — r~)] if r1 > .5,

1l3i,j,t+1 =

— (~i,j,t+1 — ~)[1 — r2 ] i~r, <.5,

where b is a parameter governing the degree to which the mutation operation is non-

uniform. This mutation operation is such that the probabilityof choosing a newparameter

element far from the existing value diminishes as t —o T, where T is the maximum number

of generations. The purpose of this non—uniform mutation operation is to ensure that,

with the passage of time (i.e. following many generations), the genetic algorithm samples

more intensively from the neighborhood of existing parameter values, since in the latter
stages of a search (close to time T), the parameter vectors should be approaching the

optimum.

Following crossover and mutation, the strings of G(t + 1) are once again evaluated for

their fitness, which involves simulating the economy implied by each ~ E G(t + 1).

The genetic algorithm selection tournament was conducted anew followed by another

application of the crossover and mutation operators on the winners. This process was

repeatedly conducted for some maximum number of generations, which we typically set

to 500. The genetic algorithm parameter values we used were pC = .95, pm = .20, and,

b=2.
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