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ABSTRACT

We study adaptive learning behavior in a sequence of n-period endowment overlapping generations economies
with fiat currency, where n refers to the number of periods in agents’ lifetimes. Agents initially have
heterogeneous beliefs and seek to form multi-step-ahead forecasts of future prices using a forecast rule chosen
from a vast set of possible forecast rules. Agents take optimal actions given their forecasts of future prices.
They learn in every period by creating new forecast rules and by emulating the forecast rules of other agents.
Computational experiments with artificial adaptive agents are conducted. These experiments yield three
qualitatively different types of outcomes. In one, the initially heterogeneous population of artificial agents
learns to coordinate on a low inflation, stationary perfect foresight equilibrium. In another, we observe
persistent currency collapse. The third outcome is a lack of coordination within the allotted time frame. One
possible outcome, a stationary perfect foresight equilibrium with a relatively high inflation rate, is never
observed.
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1 Introduction

1.1 Overview

Macroeconomic research is frequently conducted using general equilibrium models in which agents
must forecast endogenous variables many periods ahead in order to make consumption and savings
decisions. Examples in this class include Ramsey-type growth models and multi-period overlapping
generations models. Much of the recent literature on adaptive learning behavior, however, focuses
on models where agents must plan only one period ahead.! In this paper, we examine adaptive
learning behavior in an environment where agents must form plans many periods ahead. Our analysis
involves computational experiments with artificial adaptive agents who populate a sequence of n—
period endowment overlapping generations economies, where n refers to the number of periods in
agents’ lifetimes. We assume that agents within and across generations initially have heterogeneous
beliefs about the future path of prices and rates of return. The questions we seek to address
are (1) how do initially heterogeneous agents learn over time to forecast the future correctly in
general equilibrium environments, and (2) can such a learning process be used to isolate a particular
stationary equilibrium solution in a model with multiple stationary equilibria.

In order to address the first question, we develop a model that makes use of Holland’s (1975)
genetic algorithm, a stochastic directed search algorithm that is based on principles of population
genetics.2 The genetic algorithm processes a finite population of objects each of which can be thought
of as representing an individual agent. In our case, the objects represent agents’ forecast rules. The
objects are encoded as strings in a finite (usually binary) alphabet. Strings can be decoded and
evaluated according to some fitness criterion. In every iteration, the genetic algorithm replaces the
fixed population of strings by choosing among existing strings in a manner that is consistent with
the principle of natural selection; strings with high fitness values are more likely to be chosen than
strings with low fitness values. The chosen strings also undergo genetic operations of recombination
and mutation which serve to advance the search for higher fitness. When this process is applied
repeatedly, eventually only highly fit strings remain in the population, and often a single string will
come to dominate the population. Holland (1975) has argued that genetic algorithms optimize on

the trade-off between searching for new solutions and utilizing information discovered in the past.?

1For a survey of the literature, see Sargent (1993).

?See Goldberg (1989) or Michalewicz (1994) for an introduction to genetic algorithms.

3Holland's “schema theorem” is proved by an analogy with the two—armed bandit problem and is found in Holland
{1975, pp. 75-88). Goldberg (1989, pp. 28-33) provides a less technical description of Holland’s result.



The genetic algorithm is a natural choice for modeling the manner in which a heterogeneous
population of agents might go about learning to forecast future prices. However the genetic algorithm
as it is typically implemented is not well-suited for handling an important aspect of our relatively
standard general equilibrium problem. In particular, the standard genetic algorithm does not allow
objects that are part of the system for more than one iteration to be updated. Agents who are in
the middle of life in our model may want to change their forecast rule over the remaining periods
of life instead of maintaining their original forecast rule {the one they adopted in the first period
of life). We therefore augment the genetic algorithm with an additional procedure that allows each
agent in our model to emulate the behavior of other agents. Even the most casual observation
suggests that emulation of other agents’ is a large part of adaptive learning behavior. We show
how the desire to emulate other agents’ forecast rules arises naturally in the n—period overlapping
generations environment that we consider.

We interpret our learning and emulation model as describing a process by which ideas are ex-
changed in a large, competitive economy with heterogeneous beliefs. We view the genetic algorithm
as capturing a trial-and-error learning process through which successful ideas (forecast rules) are
propagated while new ideas continually emerge. These new ideas come from two sources: (1) the
newly created forecast rules of “newborn” agents, and (2) emulation. Our interpretation of the model
is intended to de—emphasize the obvious biological undertones of both the overlapping generations
model and the genetic algorithm.

In answer to the second question that we posed, as to whether such a learning process can be
used to isolate a particular equilibrium in an environment with multiple equilibria, we report the
results of computational experiments using many different parameterizations of our model of learning
and emulation. In each of these experiments, the initial population of forecast rules is randomly
generated. We examine what happens to this population of forecast rules over many iterations using

our genetic—algorithm-based model of learning and emulation.

1.2 Summary of findings and conclusions

We find that three different outcomes are possible after we simulate our system for a long period
of time. First, we often observe coordination on a stationary equilibrium with a relatively low
inflation rate. There are two stationary perfect foresight equilibria in the model, one with a relatively

low inflation rate and one with a relatively high inflation rate, but coordination on the stationary



equilibrium with the relatively high inflation rate is never observed. This first result is consistent
with the findings of many earlier analyses of adaptive learning behavior in two period overlapping
generations economies.*

Second, we often observe persistent currency collapse. It can happen that some agents’ forecast
rules yield predictions of very high inflation rates. These agents will then decide to hold little or
no currency, and by itself (that is, holding the decisions of the other agents constant) this effect
will tend to push next period’s inflation higher. Higher inflation can then validate the forecasts of
higher inflation, so that the forecast rules of this group turn out to be successful {they achieve high
levels of fitness). This can lead to a propagation of forecast rules that predict high inflation, which
can in turn cause actual inflation to remain high. In this way, a self-fulfilling hyperinflation can be
achieved and sustained. We interpret this outcome as a currency collapse, as fiat money would cease
to have value were it not for some restrictions that we place on agent’s portfolio decisions. In our
computational experiments, this currency collapse outcome appears to become more frequent as the
number of periods that agents live increases and as the level of the government deficit increases.®

The third result is that the population of adaptive agents sometimes does not achieve coordination
on any stationary outcome within the allotted time. We can only speculate that these nonconvergent
cases might eventually converge to a perfect foresight equilibrium outcome or to a self~fulfilling
hyperinflation if the simulations were allowed to continue for a longer period.

Our general conclusions are as follows. First, our algorithm can be given an appealing eco-
nomic interpretation as a model of trial-and-error learning through which older, successful ideas
are retained and propagated while some new ideas are developed and exchanged among agents with
heterogeneous beliefs and planning horizons, all of whom are participants in a large competitive
economy. Second, our model of learning and emulation is a useful search algorithm that may enable
researchers to select from among multiple stationary equilibrium outcomes in the highly nonlir~ar
and multi-period environments that are increasingly being studied by macroeconomists. Third, our
computational experiments suggest that currency collapse is a distinct possibility under our trial-
and-error learning scheme, even when the government is following an otherwise sustainable deficit

policy. Of particular interest is our finding that forecasts may interact with the general equilibrium

price level dynamics in such a way as to generate a self-fulfilling hyperinflation.

4See, for instance, Marcet and Sargent (1989), Woodford (1990), Marimon and Sunder (1993), and Arifovic (1995).
5Evans and Ramey (1995, 1996) can also generate currency collapse outcomes under the assumption that it is
costly for agents to form expectations.



1.3 Recent related literature

Computational experiments with adaptive algorithms (such as genetic algorithms) in economic set-
tings have been suggested by Holland and Miller (1991) and Sargent (1993), and have been performed
by Andreoni and Miller (1995), Arifovic (1994, 1995, 1996), Arthur (1994), Axelrod (1987), Bin-
more and Samuelson (1992), Ho (1996), Marimon, McGratten and Sargent (1990), Miller (1996)
and Rust, Miller, and Palmer (1994) among others. These applicat:lons have generally not been
in competitive general equilibrium environments like we have in mind. An important exception is
the work of Arifovic (1995, 1996), who studies genetic algorithm learning in two period overlap-
ping generations economies with government issued fiat currency. Arifovic (1995), in particular,
reports that the genetic algorithm learning model converges to a low inflation, stationary perfect
foresight equilibrium of the two period overlapping generations model even in cases where Marcet
and Sargent (1989) found that the model with least squares learning failed to converge. Later in this
paper we argue that Arifovic’s {1995) non-overlapping information structure is not very promising
when agents’ lifetimes are extended to n periods. This observation motivates our development of

b

a modified genetic algorithm learning model in which “middle-aged” agents can choose to emulate
one another.

The rest of the paper is organized as follows. Section two presents the n—period overlapping
generations economy that we study. Section three provides the details of our genetic-algorithm-

based model of learning and emulation, and section four reports the results from our computational

experiments. Section five concludes with a summary of our findings.

2 An n—period overlapping generations model

We consider a sequence of n—period endowment overlapping generations economies where n repre-
sents the number of periods in an agent’s lifetime. Time t is discrete and may take on integer values
from the infinite past to the infinite future. At any time ¢, there are n generations of agents alive,
with each generation having a different birth date corresponding to times t —n+ 1, t —n -+ 2, ...,
t — 1, t. The number of agents in each generation is finite and there is no population growth. For
simplicity, we shall assume in this section that there is a single representative agent alive in every
generation. We shall also assume for now that each of these agents has perfect foresight knowledge

of future prices and rates of return. This last assumption allows us to characterize the stationary



equilibria of the model. We will relax both of these assumptions later when we study adaptive
learning behavior in this environment. All agents, regardless of the period in which they were born,
receive the same lifetime endowment profile for the single, perishable consumption good in the n
periods of life. This endowinent profile is denoted by {w;, wo, ..., w, }, and it is further assumed that
wy > we > ... > w, > 0.

Agents in this economy can save only by holding government issued fiat currency. Our assumption
that the endowment profile is strictly decreasing over the n periods of each agent’s lifetime implies
that agents of all generations will always be able to achieve their optimal consumption and savings
decisions by holding fiat currency. We explicitly rule out the possibility of a private consumption
loan market, but the elimination of the consumption loan market does not prevent agents from
achieving the optimal outcome.®
Fiat currency is introduced into this economy by a government that endures forever. This

government has control over the fixed level of its real deficit, £, which it finances entirely through

seignorage:

CH(t) — H(t — 1)
= — 7 (1)

Here H(t) denotes the stock of currency in circulation at time ¢, and P(¢) is the price of the
consumption good in terms of fiat money. We assume that all government revenue leaves the
economy.

Agents of all generations seek to maximize the same time separable logarithmic utility function.

The agent born at time ¢ seeks to maximize

n—1
U= Zlnct(t +1)
i=0

subject to
n—1 n—1

i1 i1
e (t) + Z eyt +1) H Bt +7) < wy + Z Wit1 H B(t+ 7),
=1 7=0 i=1 =0

where ¢;{t +¢) denotes consumption by the agent born at time ¢ in period ¢ + 4, and 8(f + j) denotes
the gross inflation rate between dates t + 7 and t + j + 1. Under the assumption that all agents have

perfect foresight, we have that

8t +5) = Tt v

SWe rule out the possibility of consumption loans so as to avoid some difficulties in modelling how a heterogeneous
population of agents might meet and agree to borrowing and lending decisions when they lack agreement about future
rates of return.




The solution to the maximization problem of the young agent born at time ¢ yields a lifetime
consumption and savings plan. The consumption and savings plans of the representative agents
born at earlier dates t —1,t—2,...,t —n+1 can be calculated in a similar manner simply by changing
the horizon over which the maximization problem is defined. Solving all n of these problems, it is
possible to construct the amount of aggregate savings {asset holdings) in the economy at any date
t, S(t), by summing together the time ¢ savings amounts of all n individuals alive in the economy

at time ¢. It can be shown that this aggregate savings function is given by:”

n—3n—2—1 n—-2 1
S(t) = sz-kz > w1+1H,6(t—~ —W =3 Wi ,H[j‘(t-
i=0 j=1 i==1 j==0 =
where
1 n—1 k+i—-2
W;CE-T—L w1+zwz+1 H ﬁ(t+J
j=k~1

Since all savings must be held in the form of fiat currency, the market clearing condition for this

economy is given by:

H(t)
S(t) = —=. 2
0= 55 2)
Equilibria in this economy are characterized by positive sequences for prices and fiat currency that
satisfy equations (1) and (2). Combining equations (1) and (2) one obtains an equilibrium law of
motion for prices:

P(t) = [g-%}%} P(t—1). 3)

Stationary perfect foresight equilibria for the general n—period model are solutions to equation (3)
under the assumption that the forecast price is equal to the actual price P{(¢ + j) for all j. Bullard
(1992) has shown for the case where £ = 0, that there are at most two such stationary values for 3
for any value of n; this result generalizes to the case studied here of a positive government deficit.
To ensure that both of these stationary equilibria exist and involve the use of positive valued fiat
currency, we need one further assumption. We require that £ € (0,€), where ¢ is the maximum
amount of revenue the government can collect through seignorage.® That is, the deficit cannot be

so high as to cause nonexistence of equilibria.

7See Bullard (1992). ~
8This maximum deficit level, £, can be calculated as follows. In a stationary equilibrium, equation (3) can be

rewritten as £ = (1 - %) 5(8), where S(f) is the stationary value of the aggregate savings function given above. To
find € we numerically solved the equation 8¢/88 = 0 for 8, and then used this value of 8 to determine £ using equation

(3).



In summary, the general n-period model that we consider in this paper has two stationary
perfect foresight equilibria in which fiat currency has positive value. We shall denote the stationary
equilibrium with the relatively low inflation rate by [¢ and we shall denote the stationary equilibrium
with the relatively high inflation rate by 8, where 8y < fBn. The general n—period model under
perfect foresight is therefore analogous to the more familiar two period endowment overlapping
generations economy that has been the focus of previous analyses of adaptive learning behavior. We
now turn to our model of how agents learn in the n—period overlapping generations environment when

they lack perfect foresight and when there are many heterogeneous agents within each generation.

3 A model of learning and emulation

We begin this section by discussing how a heterogeneous population of agents in a large competitive
economy might exchange ideas. We then describe how our heterogeneous population of agents can
be represented and how their forecast rules can be evaluated in a manner that is consistent with the
application of a genetic algorithm. We also (iiscuss how agents use their forecast rules to generate
optimal consumption and savings decisions. Next, we describe how the genetic algorithm can be
applied to update the forecast rules of the heterogeneous population of agents and how the genetic
algorithm can be augmented to include an emulation procedure. Finally, we provide a summary of

the entire algorithm.

3.1 Non-overlapping information structures

The manner in which ideas are exchanged among agents of different generations becomes a crit-
ical issue in the general n—period environment that we consider. Arifovic (1995) studies genetic
algorithm learning in a two period overlapping generations framework, and imagines that newborn
agents inherit ideas from the generation born two periods ago—the newborn agent’s “grandparents.”
Generations that overlap with one another do not exchange ideas at all. We refer to this situation as
a non-overlapping information structure. If we adopted a non-overlapping information structure for
our sequence of n—period overlapping generations economies, there would be no interaction between
the oldest generation and members of the “middle generations” who overlap with the oldest gen-
eration. Agents in middle generations are neither “old” (agents who are in the last period of their
productive lives) nor “newborn” (agents who are just beginning the first period of their productive

lives). A non-overlapping information structure, applied to our system, would not allow for the



possibility that members of these middle generations are also learning from one date to the next.
The lack of a learning role for these middle generations is a shortcoming that becomes especially
troublesome as the number of periods, n, becomes large. As Sargent (1993, pp. 101-2) notes,
In the [two period overlapping generations] model, learning occurs between non—-overlapping
generations of grandparents to grandchildren, with the grandchildren adjusting their
grandparents’ savings choice after observing the consequence of their grandparents’
choice... When we extend the horizon beyond two periods, it becomes increasingly incon-

venient to model learning in this way because we have to wait longer for the consequences
of lifetime savings behavior to be known. [Italics in original.|

The “wait” that Sargent refers to is a burden borne by the middle generations, who cannot

determine the relative fitness of their forecast rules until they are in the n*"

period of life and have
knowledge of the last n market prices. It is implausible to think that agents would wait their entire
lifetime before revising their forecast rules and consumption and savings plans, especially when a
new market price level realization is revealed to them in every period. For this reason, we do not
use a non-overlapping information structure in our model.? Our main idea is to instead augment

the genetic algorithm with an “emulation” procedure.

We now turn to a detailed discussion of our learning and emulation algorithm.
3.2 Representation of a heterogeneous population

The population of agents alive at time ¢ is denoted by A(¢). An individual agent at time ¢ is denoted
by A;;(t) where the ¢ subscript, ¢ = t—n+1, .., t, refers to the agent’s birth date. In each generation
there are m members who are indexed by j = 1,2,...,m. The total population of agents alive at
time ¢ is therefore equal to n x m.

Each individual agent alive at time #, A;;(t), is completely characterized by a forecast rule for
future prices. For implementation of the genetic operators of the genetic algorithm it is necessary
to code each of these forecast rules as strings of L binary digits (bits), that is, values chosen from

the binary alphabet {0,1}. A single string—agent A;;(t)’s forecast rule—might look like this:

9There is another, more practical, difficulty with a non-overlapping information structure. Consider the n-period
model, where n is a large number. Virtually all of the agents alive at date t were also alive at date t — 1. If the
only way to inject new forecast rules into the system is through a single, “newborn” generation of agents, then the
fraction of new, updated decision rules at each date ¢t will only be 1/n. The injection of new decision rules through the
creation of offspring thus appears to be a rather poor device, especially if the goal is to design a system that adapts
quickly to new circumstances. The result of the emulation procedure is that in every period outside of equilibrium,
almost all agents have an incentive to alter their forecast rules, so that the fraction of new, updated forecast rules
may be as high as (n — 1)/n.



The binary representations of agents’ forecast rules can be decoded as follows. The first L — 1 bits
reading from left to right specify whether or not to include certain lagged values in either a linear
least-squares autoregression on past price levels or a linear least-squares autoregression on past first
differences in prices. If the bit in position £ is set to 1, then the £'* lagged value is to be included in
the autoregression; if it is set to 0, then the %" lagged value is not included in the autoregression.
The last bit (the bit furthest to the right) specifies whether the autoregression is to be performed
using price levels or first differences in prices. If this last bit is set to 1, then the forecast rule
involves an autoregression of price differences on lagged price differences. If it is set to 0, the rule
specifies an autoregression of price levels on past price levels. A constant term is always included in
the specification of any autoregression.!?

Once the forecast rule specification is decoded, the model parameters are estimated using the
first half of the available data on past prices.!! The fitted forecast model is used to generate a
sequence of point forecasts for price levels over the period of the second half of the available data on
past prices.!? The criterion used to assess forecast accuracy is then the mean squared error (MSE)
between the model forecasts and the actual data over the second half of the price data set. Each
forecast rule’s fitness value is simply the inverse of its MSE based on this calculation. In the genetic
algorithm, rules with higher fitness will be more likely to be chosen by agents for the purpose of
forecasting future inflation.

Almost every member of this class of forecast rules will accurately forecast inflation at either of
the two stationary perfect foresight equilibria.'® Qutside of equilibrium, however, different forecast

rules in the class will often yield very different forecasts of future prices based on the same data.}*

10 As an example, consider A;;(t) = 1001101010, The rightmost bit, which is set to zero, indicates that the forecast
rule will involve an autoregression of the price level P(t) on lagged values of the price level, P(t — j). The first
L — 1 = 9 bits, starting from the left, provide the specification of this agent’s linear autoregressive forecast rule which
we can write as

PQ) =0 +mP{t - 1)+ 2P —4) +73P(t—5) + Pt —7)+ Pt - 9),

where the v terms denote the coeflicients to be estimated by fitting this model to the data set on past prices. If the
rightmost bit had been set to one rather than zero, then the forecast rule specification would instead have been:

AP(t) = 4o + MAP{E — 1) + v APt — 4) + v3AP(t — 5) + v AP(t — 7) + v AP(L — 9),

where AP(t — j) = P(t — j) — P(t — 7 — 1) Vj.

11We always insure that there is enough data to run the most demanding regression in the first period.

2We did not allow the agents to forecast negative prices, even if that is what their forecast rule prescribed. We
substituted a lower bound, a very small positive number, for a negative price forecast.

13The only forecast rule specification that is feasible but clearly inaccurate in an equilibrium with positive inflation
is a string where every bit is set equal to 0. Such a rule would involve a regression of the price level P(t) on a constant
alone, and could not capture the inflationary trend.

MFor one fairly trivial example, if the price level was relatively high in some period t — j. compared with other
recent periods, a time t forecast rule that includes this jth lagged value of the price level or of the difference in prices
can lead to substantially different forecasts of future rates of return relative to other rules that do not inciude this



This represents our claim that when we initialize our systems randomly, as we will in the implemen-
tation, we are considering systems with a initially rich diversity of beliefs concerning future prices.
These agents with diverse opinions therefore take quite different actions with respect to holding fiat
currency. In addition, we allow for a sufficiently large set of rules to make the problem of choosing
from among the various rules interesting and nontrivial. In our implementation, we chose a string
lengtﬁ of L = 21, so that there were in fact 22!, or approximately 2.1 million different forecast rules
that agents could choose from. This large set of rules helps to justify our use of a genetic—based
search algorithm; the genetic algorithm is very adept at searching large solution spaces because of
its use of a population of candidate strings to process many different solutions simultaneously, in

parallel.

3.3 How forecasts are used

An agent is completely described by a forecast rule. At each date ¢, agents fit their rules to the set of
past price data using the entire history of prices through period ¢ — 1. Forecasts of future price levels
are then generated and converted into forecasts of rates of return—gross inflation factors—over the
remainder of the agent’s planning horizon. An agent in the kth period of life, where 1 < k < n will
require n — k forecasts of future gross inflation factors in order to make consumption and savings
decisions over the remaining periods of life. Given the sequence of inflation forecasts generated
by each forecast rule, each agent solves the optimization problem stated in section 2, defined over
the remaining number of periods in their lives and using the given sequence of endowments that is
relevant to their planning horizon.!® The solution to the optimization problem results in a sequence
of consumption and savings amounts that is optimal for each agent given the forecasts generated by
the rule they are using a time ¢.

We are particularly interested in each agent’s optimal savings decision in period ¢, which we
denote by s;;(t). By summing together all of these savings decisions, we are able to calculate

aggregate savings in the economy at time t:

n—i m

S() =323 silt)

i=1 j=1

jth lagged value.

15We note that while agents in our model may lack perfect foresight knowledge of future prices, they do know how
to solve a constrained optimization problem. Thus, we depart from previous analyses involving genetic algorithm
learning (e.g. Arifovic (1995, 1996)) in that the agents in our model are not learning how to optimize, but are rather
learning about which forecast rules provide good forecasts.

10



Using this value together with aggregate savings from the previous period, S(t— 1), and the previous
price level, P(t — 1), we can generate the realization for the price level at time ¢, P(t), according to
the law of motion (3). Each new price level realization gets added to the data set on past prices.
We now turn to a description of the process by which the set of forecast rules is updated following

each new realization of the price level.

3.4 Genetic operators

Prior to making consumption and savings decisions in the first period of life, the members of the
“newborn” generation have to adopt forecast rules that they can use to forecast future gross inflation.
We imagine that these newborn agents construct forecast rules based on an exchange of ideas with
members of the current population of agents. We do this by using a series of genetic operators:
reproduction, recombination, mutation and election. These operators are all part of the genetic
algorithm.

The process of attaching a forecast rule to a newborn agent begins with the first genetic operator,
reproduction. The reproduction operator involves choosing two agents (forecast rules) randomly, with
replacement, from the entire n x m population of agents alive at time t — 1.16 One can think of each
newborn agent as meeting with two other agents who have been alive for one or more periods, and
considering each of these two agents’ forecast rules for adoption. The newborn calculates the fitness
of the two forecast rules and ranks the one with highest fitness as the candidate for adoption. If
reproduction were the only operator, the newborn would adopt this forecast rule with the highest
fitness value, and, repeating the process for all newborn agents, the forecast rules with higher
fitness would tend to be adopted by the newborn generation. Reproduction provides most of the
evolutionary pressure in our model. But other operators are necessary in order to introduce new
forecast rules into the population.

To do this, we imagine that the newborn agent ﬁses the two ranked forecast rules from the
reproduction operator to develop two alternative forecast rules. The creation of these two alter-
native forecast rules involves the use of the genetic operators of crossover (recombination) and
mutation. The crossover operator involves taking the two strings and swapping portions of the

elements of these two strings. To illustrate, suppose that our newborn agent meets with two agents

16The fact that we create newborns from the entire stock of genetic information available at time ¢, instead of just
from the oldest generation (as in Arifovic (1995)), is what we call mizing. Mixing substantially reduces the potential
of the systemn to cycle near the steady state.

11



(already alive in the population) who have the following forecast rules: 010100110010111010101 and
111001010101101101010. With fixed probability p°, an integer is chosen from the interval [1, L — 1].
Let us suppose that an integer is chosen, and it turns out to be 12. In this case, the two strings are

each divided into two parts with the dividing point to the right of bit position 12:
010100110010 | 111010101

111001010101 | 101101010

The two parts to the right of bit position 12 are then swapped. The two resulting strings,
010100110010101101010

111001010101111010101

may take the place of the two strings in the newborn population; for the moment we simply set them
aside. With probability 1 — p¢, no integer is chosen, and crossover is not performed on the randomly
paired agents’ forecast rules; in this case, the two post—crossover strings are the same as the two
pre—crossover strings. The purpose of crossover is to combine blocks of bits with other blocks of bits—
Holland (1975) calls these blocks schema—in an effort to advance the search for improved forecast
rules. The rationale is that schema (blocks of bits) that are highly fit will not only survive into
successive generations but will also spread throughout the population. The other genetic operator—
mautation—also serves to advance the search for better forecast rules. The mutation operator is
applied to each bit in each of the two recombined, post-crossover strings. With fixed probability p™,
the bit is changed: if the bit was a 0, it is changed to a 1, and if the bit was a 1 it is changed to a 0.
With probability 1 — p™, the bit is left unchanged. The newborn agent then calculates the fitness of
the two alternative strings and ranks the string with the highest fitness as a candidate for adoption.

The newborn agent now has two candidate strings for adoption: the more highly fit of the
two strings produced by the reproduction operator, and the more highly fit of the two alternative
strings produced by the crossover and mutation operators. We use the election operator to allow
the newborn to make the decision about which one to adopt.!” Election simply means that the

agent will adopt the candidate string with the highest fitness. The idea of election is to allow agents

to consider alternative forecast rules, possibly ones that have never been in the population before,

7 The election operator was first proposed and used by Arifovic (1995).



without forcing them to adopt “bad ideas,” forecast rules with fitness worse that they could have
had by simply copying an existing rule.

Altogether, then, we imagine that each newborn agent meets with two older agents, experiments
with their rules by combining and mutating them, and then chooses the best forecast rule of the four
based on past forecast accuracy.!® We interpret this process as one by which young agents learn from
their elders and also inject new ideas into the society. The basic idea of the genetic algorithm is to
advance the search for highly fit strings. The reproduction operator serves to copy existing forecast
rules so that the building blocks for new forecast rules are rules that have already been used by the
population. The crossover and mutation operators allow agents to experiment with new forecast
rules, some of which may be very different from those used by members of the current population.
While agents experiment with new possibilities for their forecast rules, they also avoid adoption of
“bad” rules—forecast rules with high MSEs—an effect which is due to the election operator.!®

Once the m members of the newborn generation have chosen their forecast rules, these newborn
agents emerge at time ¢ as members of the youngest generation—generation 1. It is at this point that
the oldest generation—generation n—ceases to exist. The m members of generations¢ = 1,2,...,n—1
alive at time t — 1 are redesignated as members of generations ¢ = 2,3, ...,n at time t. As we have
emphasized, however, it is important that the m(n — 1) members of these “middle” generations also
update their forecast rules over the remaining horizons of their lives, since in every period there is

a new realization of the price level.

3.5 Emulation

We now want to think of the agents who are members of these middle generations as also searching
for new ideas about how to improve their forecast rules in the next period of their lives. The search
by members of the middle generations for new and improved forecast rules constitutes the emulation
part of our model. These “middle-aged” agents already have a forecast rule—they are not “blank
slates” like the newborns. Thus we imagine that these middle-aged agents continue to consider their

current forecast rule as a candidate for the rule they will choose to use in the next period of life.

18The ‘tournament’ selection process we employ has several advantages over the “biased roulette wheel” selection
method used by Arifovic {1995) and advocated by Goldberg (1989). See Fogel (1994) for a discussion of the problems
with roulette wheel selection.

9The fact that agents consider alternatives but do not necessarily adopt them is an important feature of our model
because it means that agents are still experimenting with alternative forecast rules even after the system has converged
to a steady state. Thus the system has the potential to react effectively to some change in the environment, such as
a perturbation of a model parameter.
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However, they also explore new possibilities.

In particular, each of the m members of every generation ¢, 1 < ¢ < n—1 meets one randomly cho-
sen member from the entire n x m population of agents. The random selection of another agent from
the population is made with replacement. Each middle-aged agent considers adopting—emulating—
the forecast rule of this randomly chosen ‘partner agent.” The middle-aged agents calculate the fitness
of their existing forecast rules as well as the fitness of their partner agents’ forecast rules. For each
agent, the forecast ru1'e with higher fitness is a candidate for use in the next period of life. The
middle-aged agents also experiment with new forecast rules. They take their own forecast rule and
the forecast rule of their randomly selected partner agent, and they apply the genetic operators of
crossover and mutation in order to create two alternative forecast rules in the same manner as was
described for the newborn agents. They then calculate the fitness of the two alternatives, and the
better of the two becomes a candidate for adoption in the next period of life. We then employ the
election operator to allow the agents to choose to adopt the better of the two candidate forecast
rules. The result is that each middle-aged agent has one, possibly new, forecast rule for purposes
of decision-making in the next period of life.?0

We interpret this process as one where middle—aged agents exchange ideas with other members of
society. At the same time, they experiment with new possibilities through crossover and mutation,
in order to try to improve the accuracy of their forecast rules and therefore increase their utility by
making good consumption and savings decisions. While middle-aged agents may choose to emulate
the forecast rule of their partner agent, or may have chosen to adopt one of the two alternative
rules they created via experimentation (crossover and mutation), a third possibility is that these
middle-aged agents continued to use the same forecast rule they used in the previous period.

We note that forecast rules created via this emulation process may never have appeared before in
the population of agents. These new decision rules are in addition to those “reated by the newborn
agents, and provide another source of “new ideas” in every period. The number of new forecast
rules per period due to emulation may be as high as m(n — 2), while the number of new forecast
rules per period that can be attributed to the newborn generation can be no higher than m. Thus,
the emulation feature of our model can inject many more new ideas into the system relative to the

number of new ideas provided by the newborn generation alone.

20 Agents who are members of generation n — 1 in period ¢ — 1 do not engage in emulation. Their planning horizon
consists of only one period, the last period of their lives, and consumption in the last period of life is predetermined
as 100 percent of wealth, so there is no need to experiment with forecast rules.
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3.6 Summary of the algorithm

Before turning to the results, we provide a brief summary of our learning and emulation algorithm.
Given a population of strings at time ¢ — 1, our learning and emulation algorithm operates on this

population of agents in the foliowing sequence of steps:

1. A set of m newborns enters the model without forecast rules. These agents decide on a forecast
rule by “exchanging ideas” with some of the members of the population currently alive. This
process is implemented via the application of the genetic operators reproduction, crossover,

mutation, and election. The result is m newborn agents.

2. Emulation takes place. Agents of all generations A;;, ¢ < n — 1 are randomly paired with one
of the members of the population. The middle-aged agents consider copying their partner’s
forecast rule and also consider new ideas through application of the genetic operators crossover
and mutation. The result is an updating of the m x (n — 2) forecast rules associated with

middle-aged agents.

3. Time officially changes from date ¢t — 1 to date t. The m members of the newborn population
become the m members of generation 1. Agents A;;, ¢ < n enter the next stage of life. Agents

of the oldest generation, A,;, cease to exist.

4. Aggregate savings is determined. Each agent A;;, i < n fits his forecast rule using the entire
history of prices through time t—1. The fitted forecast rule is then used to generate a sequence
of forecasts of the gross inflation factor over the relevant planning horizon of agent A;;. Given
these forecast values, the agent solves the optimization problem over the remaining period of

his life. This results in a savings decision for period ¢, denoted by s;;(t). Aggregate savings is

then given by S(t) = S0} D oieq i (2)-

5. Using aggregate savings at dates £ — 1 and ¢, a new market price level realization, P(t), is

determined according to equation (3).

6. This process is repeated to some maximum number of iterations.

This completes our description of the sequence of steps involved in our model of learning and

emulation. We now turn to the design and results of our computational experiments.
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4 Computational experiments

4.1 Parameterization and initialization

The endowment sequence we chose is based on a 55—period (annual) model where the endowment in
period k is given by wy = 56— k. Conversion from a 55-period model to an n < 55 period model was
accomplished by integrating this endowment sequence using appropriate limits on the integration.
We then normalized the condensed profile so that the first period endowment was always equal to
unity.2! By following this procedure, we ensure that the endowment profile is consistent across the
sequence of n—period economies that we study.

We chose values for the parameters of our learning and emulation model based on results in the
artificial intelligence literature. We maintained a constant total population size, ps, of approximately
60 agents where possible. The number of agents in each generation was set in most cases according
to the formula m = ps/n. When we reached n = 7, the highest value of n that we considered, we
chose to set ps = 56, so that m = 8.

We set the bitstring length L = 21, creating a set of about 2.1 million possible forecast rules.
The probability of mutation p™ was set equal to the inverse of the string length, 1/21 = .048. A
low probability of mutation, in particular, a probability that is inversely proportional to the string
length, is standard in the artificial intelligence literature. There is less consensus regarding the
choice for the probability of crossover, p¢, although it is generally believed that a genetic algorithm
is most effective with p° > 0.5. For our simulations, we chose to set p¢ equal to 1.0.22

The initial population of agents (forecast rules) in each simulation was randomly generated; each
bit in every bitstring of the initial n x m population of bitstrings was assigned the value 0 or 1
with probability .5. We also began each simulation with an initial set of past market prices which
were chosen as follows. First, given the model parameters (discussed below), we numerically solved
for the two stationary inflation factors, B¢ and (5. We then chose random values for past gross
inflation over the uniform interval [8e, Bi]; this procedure ensures that past inflation has been in a
range that is theoretically plausible given the particular parameterization of the model. We then

converted these randomly chosen inflation factors into a sequence of past market prices. This initial

21por example, when n = 3, we integrate the formula wg = 56 — k from 1 to 19.33, then from 19.33 to 37.67,
and finally from 37.67 to 56. Normalizing the first period endowment to unity, this process yields a three period
endowment sequence of {1.0,0.6,0.2}.

22These parameter values are consistent with those suggested by Grefenstette (1986) and Goldberg (1989). We
note that since the election operator assures that bad forecast rules will not be adopted, agents can experiment with
alternatives through crossover without penalty.
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set of market prices was made large enough to accommodate initial forecast rules involving up to 20
lagged values, and also allows for the testing of these rules so that MSEs on the initial population
of forecast rules can be calculated.

The goal of our computational experiments was to assess whether the population of artificially
adaptive agents could learn to create and adopt forecast rules that are consistent with perfect
foresight knowledge of future prices. Since there are always just two stationary perfect foresight
equilibria in this model, we were also interested in which of the two (if any) the population of
agents might settle on. Since the population of initial forecast rules and the initial set of prices were
randomly generated, our experiments can be viewed as a test of whether either perfect foresight

steady state is globally stable under an evolutionary learning scheme.
4.2 Satisfaction of the government’s budget constraint

Outside of a stationary equilibrium, where agents have not yet discovered and coordinated upon a
forecast rule that is consistent with perfect foresight knowledge of future prices, it can be the case
that some or all of the agents’ forecast rules yield forecasts of inflation that are so high that these
agents optimally choose not to hold any fiat currency; that is, they optimally choose not to save, and
instead they simply consume their endowments. If enough of the forecast rules in the population
lead to such zero (or near zero) savings decisions, the government’s deficit borrowing constraint, as
given in equation (1), may fail to hold. We interpret this situation as one of currency collapse.
While we allow for the possibility of such currency collapse outcomes, we also wanted to observe
what happened to the evolution of the system after such collapses had occurred. We therefore
implemented the following taxation scheme. After aggregate savings has been determined, but prior
to the end of the period, the government checks that the level of aggregate savings is sufficient
to meet its revenue requirements according to equation (1). If aggregate savings is too low, the
government computes the extent of the shortfall and forces each agent (regardless of their savings
decision) to give up some small amount of the consumption good and instead hold some small
amount of currency. The government chooses the amount of the tax that all agents must pay so
that summing up across all agents, the government is able to make up its shortfall plus a small
additional amount which ensures that the deficit financing constraint is more than exactly satisfied.
The imposition of the tax prevents a currency collapse outcome from violating the government’s

budget constraint, which would lead to a breakdown of the law of motion for prices (equation (3))
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and cause our algorithm to terminate following the first period of the currency collapse outcome.
The taxation scheme thus creates a third stationary outcome for the model, which is associated with
near-violation of the government budget constraint. We chose the definition of “near—violation” to
be so close to violating the budget constraint that the associated stationary inflation rate was one
to two orders of magnitude greater than .

Our taxation scheme is a simple device that allows our system to continue evolving regardless
of the forecasts being made by the agents. In the description of our results (section 4) we report
the number of times, if any, that the tax was imposed. One can then interpret any computational
experiment in which the tax was imposed as a currency collapse outcome. However, since our
taxation scheme allows the system to continue following a currency collapse we can continue to
characterize the evolution of our system beyond any currency collapse outcome. Following a currency
collapse we can observe one of two further developments. The first is that a number of agents choose
to adopt forecast rules that forecast lower inflation and using these rules they choose to save enough
so that the level of aggregate savings exceeds the level necessary to meet the government’s revenue
requirements. In this case, the system can continue indefinitely without further imposition of the
tax, possibly converging eventually to one of the stationary perfect foresight equilibria of the model.
We observed this type of outcome in our computational experiments. On the other hand, some or
all agents may continue to forecast very high inflation so that the taxation scheme continues to be
implemented every period. In this case, the system can remain in a state of persistent currency

collapse. We observed this outcome as well.

4.3 Design of computational experiments

Computational experiments with our learning and emulation algorithm were conducted in a sequence
of n—period endowment overlapping generations economies. The model parameters that we allowed
to vary were the number of periods in agents’ lives, n, and the level of the government’s deficit, &.
In particular, the number of periods in agents’ lives was allowed to vary fromn =3 onup ton=7.
The level of the government’s deficit was chosen as a certain fraction, z € (0,1), of the maximum
feasible deficit level £, that is, £ = €. For each of the 5 different values for n, we considered cases
where z = .1, .3 and .5. We used our model of learning and emulation to perform 10 simulations

for each of these 15 model economies for a total of 150 computational experiments. Each simulation
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ran for 125 iterations.23

4.4 Simulation results

4.4.1 General summary

Our computational experiments yielded three qualitatively different types of outcomes. The most
common outcome was that the population of agents eventually achieved coordination on the low
inflation, stationary perfect foresight equilibrium of the model. That is, all agents’ forecast rules
eventually yielded forecasts for gross inﬁation that were equal to the value of §; for the given model
economy. In such cases, the forecasts of inflation became self-fulfilling in that agents could not
do better (in terms of lower MSE) by shifting to other forecast rules. In tandem with the low
inflation outcome, we never observed coordination on the stationary perfect foresight equilibrium
with relatively high inflation, 85. This finding is consistent with earlier analyses of learning behavior
in the context of two period overlapping generations economies.

The second qualitative outcome that we observed was that of a persistent, self~fulfilling currency
collapse. In this case, at the end of the computational experiment all (or almost all) agents’ forecast
rules were forecasting very high inflation causing agents to save little or nothing. Given these savings
decisions, actual inflation tended to be high, and so the expectations of high inflation became self-
fulfilling. The government’s taxation scheme was imposed in every period, and the system never
deviated away from experiencing the very high rates of inflation associated with the taxation scheme.
We refer to this outcome as a persistent currency collapse because in the absence of the government’s
taxation scheme fiat currency would have ceased to have any value.

The intuition behind the persistent currency collapse outcome is fairly straightforward. It can
happen that, by chance, some agents’ forecast rules yield forecasts of very rapid increases in the price
level, and hence very high inflation rates. These agents then decide to hold little or no currency,
and in particular, less currency than they held in the previous period. If we hold the other agents’
decisions constant, equation (3) indicates that this effect tends to push the next period’s inflation
rate higher. The genetic algorithm then tends to reward (assign higher fitness to) the forecast rules
that forecast higher inflation. This means that the forecast rules belonging to these agents tend to

be copied and propagated in the economy. This process can lead to more agents forecasting high

23Data accumulates in the algorithm, and since a great number of regressions have to be run during each iteration,
we found significant slowing of the algorithm as the number of iterations increased. This effect is somewhat offset by
the tendency of the algorithm to create similar populations, in which case certain evaluations do not have to be done
multiple times. Generally, however, our experimental design exhausted our available computational resources.
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inflation, these agents then choosing to hold little or no currency, actual inflation rising again, and
still more agents choosing rules that forecast high inflation. In this way, a self-fulfilling hyperinflation
can be achieved and sustained.

A third outcome was that the population of agents failed to coordinate on either of the two sta-
tionary perfect foresight equilibria within the allotted number of iterations. This failure-to—converge
outcome does not imply that the system would not have eventually converged to a stationary equi-
librium if the system had been allowed to run for a longer number of periods. We simply note that

after 125 iterations, the system had not achieved anything resembling convergence.
4.4.2 Detailed summary

A detailed summary of the main results from our 150 computational experiments is provided in Table
1, which is partitioned according to the value of n. For each different value for n, n = 3,4,5,6,7,
there were three different values for the fraction of the maximum deficit, z = .1,.3,.5. The left
column of Table 1 reports the various different combinations of n and z that we considered in our
simulation analysis and the associated values fqr Be and Bi. To the right of this column are various
summary statistics on each of the replications (numbered 1 through 10) that we conducted for each
(n, z) pair.

The first statistics that are reported are the mean, pjg, and standard deviation, g, of the
actual gross inflation factor, 3, from the last 10 iterations of each experiment. These statistics can
be used to assess whether the system has achieved either of the two stationary perfect foresight
equilibrium values, 8, or §,. For example, in the case where n = 3 and = = .1, we see that in
experiment 1, 39 = 1.019 and o3¢ = 0.000. For this (n, z) pair, the value for §; = 1.019. We may
therefore conclude that the system did coordinate on the low inflation, stationary perfect foresight
equilibrinm of the model within 125 iterations. The 95 statistic is the standard deviation of 3 over
all 125 iterations of each experiment. This statistic provides a characterization of the volatility of
the actual gross inflation factor over the 125 periods of each simulation. Generally, we found gross
inflation factors could be quite volatile in the course of our experiments, with the level of inflation
often many orders of magnitude higher than levels consistent with stationary equilibria, even in
cases where coordination on a stationary perfect foresight outcome eventually attained.

The numbers under the heading H represent the average of all of the Hamming distances calcu-

lated for all pairs of strings in the population at the end of each experiment. The Hamming distance
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between any two binary strings provides a measure of the extent to which the two strings differ from
one another; this metric can be defined as follows. Let @ denote a binary string of length L with
elements (a;,as,...ar), a; € {0,1} and let b denote another binary string of length L with elements

(b1,b2,...b1), b; € {0,1}. Then the Hamming distance between these two strings is defined by:

L
H&,g = Z [ai b b,;}.
i=1

Note that if two strings are identical, their Hamming distance is zero, while the maximum Hamming
distance between two L-length strings is L. In our simulations we had population sizes of N = 60 or
N = 56 strings. We therefore calculated N(N — 1)/2 Hamming distances for all possible pairings of
strings that were in the population following iteration 125 of each simulation. The average value of
all of these Hamming distance calculations is the number reported under the heading H. If H = 0,
then all N strings were identical at the end of the simulation. The maximum value for H is given
by the formula ﬂ—!’},’{—‘—ﬂ Since we used a string length L = 21, this maximum value for H is 10.68
when N = 60 and 10.69 when N = 56.

Finally, the entries under the heading cc indicate the number of periods in each experiment
(out of 125) in which a currency collapse occurred—that is, the number of times the tax scheme
that ensures satisfaction of the government’s budget constraint had to be imposed. One can simply
interpret any experiment in which this entry is not zero as a currency collapse outcome. If we take
the tax device more literally, we note that one or more periods of currency collapse need not prevent
the system from ultimately achieving coordination on the low inflation stationary perfect foresight
equilibrium. Notice also that there are several instances of persistent currency collapse, where agents
are continually forecasting high inflation and the government is forced to impose its taxation scheme
in every period. These instances can be identified in Table 1 as experiments where py¢ is greater
than 3, and (5, by one or two orders of magnitude, and in addition 019 = 0.0000 and cc > 10. As an
example, see experiment #1 for the case where n = 5 and = = .5. The value for pjg in these cases
is the stationary inflation factor associated with the case where all agents optimally choose to save
zero, and all government revenue is derived from the imposition of the taxation scheme.

The statistics in Table 1 provide us with some sense of relative likelihood of the three observed
outcomes as we vary both n and . We note that for relatively low values of n (and any value for
x), the system is more likely to achieve coordination on the low inflation stationary perfect foresight

equilibrium where § = ;. Indeed as n increases we see that persistent currency collapse outcomes
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become increasingly likely. One can interpret this as less tendency for the system to coordinate on the
low inflation steady state when agents are allowed to change their forecast rules more and more often
during their lifetimes. We also observe that for a given value of n, convergence to the low inflation
stationary perfect foresight equilibrium appears to be more likely for relatively lower values of = than
for relatively higher values of z. Indeed, the average number of periods of currency collapse is highest
when z = .5, and most of the self-fulfilling currency collapse situations occur when z = .5. This can
be interpreted as saying that as the government presses toward the maximum amount of revenue
from seignorage, the risk of destabilizing the economy increases. Interestingly, the government does
not have to attempt an unsustainable policy (£ > £, a case where no rational expectations equilibria

exist) to run this risk. Merely getting relatively close to such a policy, but keeping ¢ < £, is sufficient.
4.4.3 Some illustrations

Figures 1, 2 and 3 provide illustrations of the three different qualitative outcomes that we observed.
Each figure plots the evolution of the gross inflation factor (8) over the 125 iterations of three different
experiments. To make the comparison as simple as possible we considered three experiments from
the same (n, z) pair—all three experiments were for the case where n = 5 and z = .5. We stress that
the volatility of gross inflation tended to be surprisingly high in these experiments, as evidenced by
our use of logarithmic scaling in the figures.

Figure 1 is an illustration of one experiment (#7) where the system achieved coordination on
the stationary perfect foresight equilibrium, 8¢ = 1.069, within the allotted 125 iterations. As Table
1 indicates, the mean and standard deviation of the last 10 values for 2 in this experiment were
#10 = 1.069 and 19 = 0.000. Furthermore, there were no instances of any currency collapse along
the way. The standard deviation in # over all 125 iterations was o955 = 0.591; as Figure 1 shows,
the system never deviated very far from the low inflation stationary equilibrium. However, there are
other examples where the system ultimately converged upon the low inflation stationary equilibrium,
but where some episodes of currency collapse were experienced along the way.

Figure 2 illustrates the path of § for another experiment (#1) involving the same model economy.
Here we see that the path of the gross inflation factor 3 starts to become rather volatile after only
a few iterations. The first currency collapse occurs in period 56 when inflation socars to nearly

4,000 percent.?* Aggregate savings falls to a very low level, and the government is forced to require

24Currency collapse episodes may be identified in these figures by a discontinuity in the line connecting gross
inflation factors from one period to the next.
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agents to hold some fiat currency to meet its budget constraint. Following the currency collapse and
the government’s implementation of the tax scheme, gross inflation returns to relatively low levels
only to eventually rise once again to very high levels precipitating another currency collapse. This
same pattern is repeated several more times before the currency collapse outcome becomes a. self-
fulfilling event beginning with period 84. Thereafter, the gross inflation factor remains approximately
constant at the level 125.3. This is the gross inflation factor that is compatible with the government
meeting its budget constraint in every period by requiring all agents to hold some small amount of
fiat currency.

Finally, Figure 3 illustrates another experiment (#8) involving the same model economy where
the value of § had failed to achieve any kind of convergence after 125 iterations. The evolution
of this system is characterized by numerous currency collapse episodes; Table 1 documents that
currency collapses are experienced in 16 of 125 periods. Nevertheless, no sustained currency collapse
is observed within the 125 iterations. While it is not clear what would happen to this system if it
were allowed to run for a longer length of time, we speculate that it would either eventually converge
to the low inflation stationary equilibrium or it would end up at a self-fulfilling currency collapse

oﬁtcome.
4.4.4 Evolution of forecast rules

In addition to considering the behavior of the gross inflation factor over 125 iterations, it is also of
interest to consider the evolution of the population of forecast rules. The initial population of rules
was randomly generated. The average Hamming distance between all pairings of the initial randomly
generated forecast rules should be approximately one-half the stringlength: H = L/2 = 21/2, or
10.5. In most cases, the final populations of rules, following iteration 125, are considerably less
heterogeneous, judging from the average Hamming distances (H) reported in Table 1.

Looking at these average Hamming distances we see that with a single exception, H is never
equal to zero, indicating that after 125 iterations, there always remains some heterogeneity in the
specification of agents’ forecast rules, even in cases where the system has converged to a stationary
outcome. This is not a surprising finding, however, since nearly all the forecast rules that agents can
use will accurately forecast future prices when the system has achieved a stationary perfect foresight
equilibrium. Thus, there is no reason that forecast rules should all be equivalent; if all rules are

accurately forecasting future prices they will have the same MSE values, and will be able to continue
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to survive as members of the population of rules.?® In the case of a stationary currency collapse
outcome, all forecast rule specifications are capable of generating forecasts of very high inflation, so
the agent’s choice of which rule to use in such cases is not a very important consideration. For these
reasons, there does not appear to be, nor do we expect, any consistent relation between the model

parameters that we vary (n or z) and the value of H.26

5 Conclusion

We have interpreted our model of learning and emulation as describing a process by which hetero-
geneous agents in a large competitive economy exchange and experiment with new ideas about how
to forecast the future. Newborn agents form forecast rules by communicating with some members
of the population they are about to enter and by experimenting with new possibilities. Middle-aged
agents also exchange ideas with other agents in the population and experiment with alternative
forecast rules. These middle-aged agents may adopt an alternative forecast rule if they find that it
yields a lower MSE relative to their existing forecast rule. Thus our model envisions agents both em-
ulating others and also contemplating new, untried possibilities. We think that this model provides
a good description of trial-and-error learning for use in macroeconomic models. We also regard our
emulation procedure involving the middle-aged members of the population as an improvement on a
simple genetic algorithm approach in the context of our large competitive economy.

Based on a set of computational experiments in which we have considered a variety of model
economies, we find three possible long-run outcomes. The first and most common outcome is that the
population of agents eventually achieves coordination on the low inflation, stationary perfect foresight
equilibrium of the model. This outcome appears to be more likely for low values of n (agents consider
changing their forecast rules relatively less often during their lifetimes) and z (the government raises
relatively less revenue from seignorage) than for higher values of these parameters. While the agents
in our economies often coordinated on the low inflation stationary perfect foresight equilibrium,
we never observed coordination on the high inflation stationary perfect foresight equilibrium of the
model. Instead, our second outcome is that the system experiences persistent currency collapse.

This persistent currency collapse outcome appears to become more likely as n and £ are increased.

25There is no penalty for unparsimonious forecast rule specifications.

26\We note that agents’ choice of a forecast rule specification based on either price levels or on first differences in
prices does not appear to have had any effect on whether or not the system converged (or failed to converge) to a
stationary outcome. Most final populations of forecast rules included some mixture of price level and first difference
specifications.
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In this scenario, some agents’ forecast rules by chance yield forecasts of very high inflation rates.
These agents then decide to hold little or no currency; and this effect tends to push the next period’s
inflation higher and thus rewards the agents that forecast high inflation. The forecast rules belonging
to these agents then tend to be copied and propagated in the economy. In this way, a self-fulfilling
hyperinflation can be achieved and sustained. Our third outcome is one of non-convergence—after
125 iterations the dynamics were still inconclusive.

Our environment has many features we think are interesting from the perspective of studying
learning in macroeconomic models. In our formulation of the learning problem, the agents are
choosing from among a vast set of potential forecast rules, as opposed to learning about the correct
parameterization of a single forecast rule. We consider the decisions made by a relatively large pop-
ulation of initially heterogeneous agents, all of whom are interacting with one another in competitive
general equilibrium environment. The artificial agents in our model, rather than learning how to
optimize, are learning which forecast rules yield the best forecasts. We think that these features
constitute a plausible formulation of the learning problem that economic agents face. Finally, our
multi-period overlapping generations framework begins to place agents in a realistically complex en-
vironment, one where expectations have to be formed many periods into the future before decisions

can be made today.
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Table 1. Results from Computational Experiments

Replication H] Replication

Experiment || # 110 0125 H cc || # 110 0125 H ;:c
{o10) (o10)

n=23 1 1019 0.141 1.554 2 1019 0.115 1.897 O
(0.000) {0.000)

z=".1 3 1019 0490 258 O 4 1019 0.099 0 0
{0.000) {0.000)

Be = 1.019 5 6094 8407 273 32 6 1019 0304 0964 O
(9309) (0.000)

Br = 2.105 7 1.019 0254 085 0O 8§ 1019 0518 1372 O
(0.000) (0.000)

9 1.019 0212 2567 0 || 10 1019 0677 2138 O
(0.000) (0.000)

n =3 1 1062 0169 5932 0O 2 1062 38.14 7206 1
(0.000) (0.000)

T =.3 3 1.062 0.141 3853 0O 1062 0244 5106 O
{0.000) (0.000)

Be = 1.062 5 1.062 0139 4681 O 6 . 9222 3514 2
(0.000) (0.021)

Brn = 2.019 7 1062 0.145 3482 0 8 1.752 1034 1597 6
(0.000) (1.952)

9 1.062 0083 8598 0 || 10 1.062 7.789 5578 0O
(0.000) (0.001)

n=23 1 1115 0313 7221 O 2 1587 1295 5.907 20
(0.000) (1945)

z=. 3 1158 920.8 5.522 16 1.089 392.2 5709 11
. (1771) (0.182)

Be = 1.115 5 2830 3359 038 8 6 1.115 0.187T 6.314 O
(707.3) {0.000)

Brn = 1.922 7 2577 3729 6.642. 10 1098 1127 5.850 19
(3.830) (1704)

9 1.115 0681 7387 0 ||10 1816 189.7 5472 12
(0.000) (1.146)
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Table 1. Results from Computational Experiments

(continued)

m Replication "] Replication
Experiment || # H10 o125 H cc || # 10 o125 H cc
(010) (010)
n=4 1 1.014 1957 6.567 O 2 1015 0568 0646 O
(0.000) {0.003)
z=.1 3 1014 0314 380 0 4 1015 7739 2720 O
(0.000) (0.000)

Be = 1.014 5 1014 0.098 049 O 6 1.014 1316 1.18 0
(0.000) {0.001)

Br=1764 [} 7 1014 865 3200 O 8 1015 2879 0.347 1
(0.000) (0.001)

9 1014 0308 3994 0 10 1015 0224 3820 O
{0.000) {0.000)

n=4 1 1312 1551 8.378 12| 2 1.047 0.150 3638 O
(3263) {0.000)

x=.3 3 1047 0139 7239 O 4 1047 0.083 4558 O
(0.000) {0.000)

Be = 1.047 5 1047 0468 4241 O 6 1.047 0869 7236 O
(0.000) (0.000)

Orn=1708 | 7 1047 0071 1862 O 8 1.047 1.110 3215 O
(6.000) (0.000)

9 1047 2034 7206 0 | 10 1.047 0278 5054 O
(0.001) (0.000)

n=4 1 3583 6723 6809 154 2 2660 1066 5503 7
(57.49) (716.9)

z=.5 3 108 0135 6912 0 4 1194 1398 7596 11
. (0.000) (0.465)

Be = 1.086 5 1.087 3240 7.18 1 197.1 953.3 6920 17
(0.002) (433.2)

Br=1646 || 7 1.086 0.080 6987 0 1.08 1.279 5289 O
(.0.001) (0.000)

9 108 0083 6687 0 |10 7327 7851 5030 25
{0.000) (11192)
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Table 1. Results from Computational Experiments

(continued)
: ﬂ] Replication "] Replication
Experiment || # 110 o125 H e || # 110 0125 H cc
(o10) (g10)
n=>5 1 1.014 0.389 0.390 2 1.012 3825 5733 1
(0.088) (0.002)
z=.1 3 1.014 2104 x 10°  6.687 8 4 1.012 1.343 1709 0O
(0.017) (0.007)
Be=1.012 | 5 2853 x10° 3623 x10° 6.261 11 f| 6 3063 x 103 3601 x 105 5548 12
(5726x107) (6126x103)
Brn=1580 || 7 1.012 0.169 7.049 0O 8 1.012 2.244 4.198
(0.006) (0.006)
9 1.006 0.745 5149 0 10 1.013 0.853 4.754
(0.083) {0.001)
n=>5 1 1.038 0.100 4.682 O 2 1.038 2.757 1487 0
(0.000) (0.000)
z=.3 3 1.039 126.8 1487 1 1.038 0.288 3.363
(6.002) {0.003)
Be=1.038 || 5 1.037 0.996 1.235 0O 6 1190 x 104 1685 x 104 1914 17
(0.000) (2382x102)
Orn=1540 || 7 1.038 0.497 6.627 O 8 1.038 0.219 1.979 0
{0.000) {0.000)
9 8.076 4001 5001 9 || 10 1.039 5.937 3.146
(15.68) (0.005)
n=>5 1 125.3 1461 2797 4914 2 125.3 83.68 3.903 66
(0.000) {0.000)
T =.5 3 1.157 523.4 5798 10} 4 1.057 197.9 5.228 6
(0.530) (0.163)
Be=1.069 || 5 32.45 3177 4359 161 6 125.3 1534 6.433 33
(58.82) (0.000)
Or = 1.494 7 1.069 0.591 6.767 O 26.25 805.7 8123 16
(0.000) (70.58)
9 1.068 0.413 7.002 0 | 10 76.36 717.4 1.372 12
(0.002) (77.33)
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Table 1. Results from Computational Experiments

(continued
Replication [ Replication
Experiment || # w10 0125 H ce || # 110 0125 H
(o10) (o10)
n=~6 1 1.008 0.510 8.891 0 2 1.011 0.516 3971 1
(0.015) (0.001)
Tz =.1 3 1638 4513 x10° 6.776 6 4 3536 x 10* 0424 x 10* 4606 16
(2.386) (1061x10°%)
Be = 1.010 5 1.016 8719 x 10" 3.503 6 6 6756 x 10* 7730 x 10* 7454 8
(0.012) (1353 x 10%)
Br=1467 || 7 1.010 0.672 4872 8 8 1.010 0.252 8523 0
(0.001) (0.001)
9 1.009 0.347 3.889 0 10 1.102 6649 x 10* 2472 7
(0.001) (0.434)
n==6 1 1.036 27.95 1.688 2 2 4.321 85.80 7.834 13
(0.002) (6.229)
x=.3 3 1.033 49.86 4866 4 4 1.030 21.28 7.306 2
(0.001) (0.003)
Be = 1.031 5 1.031 0.493 6.362 0 6 1.031 0.915 1.685 0
(0.001) {0.000)
Brn = 1.435 7 90.23 131.2 7.336 103 || 8 1.032 1.068 5875 0
(0.000) (0.004)
9  1.031 60.19 2.437 1 10 1.032 0.962 480 O
(0.008) {0.002)
n==6 1 1.601 107.2 7491 11 2 149.7 330.8 5971 52
(1.182) {0.000)
Tr=.5 3 149.7 74.05 584 70 4 1.205 371.8 6.140 11
(0.000) (0.463)
Be = 1.057 5 1.059 1.466 6.592 0 6 1.058 3.729 5.164
(0.004) {0.011)
Br = 1.400 7 1497 226.3 3.641 53 8 1.058 0.636 5.990
(0.000) (0.000)
9 149.7 29.34 5.003 122 ) 10 1.231 0.520 7183 O
(0.000) (0.731)
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Table 1. Results from Computational Experiments

(continued)
Replication Il Replication
Experiment || # 10 0125 H cc # 110 0195 " cc
(o10) (o10)
n=7 1 1.015 162.3 1038 1 2  1.008 1.344 7336 O
(0.011) (0.005)
z=.1 3 1.009 1.916 8791 O 4 1.016 24.49 6494 0O
{0.002) (0.023)
Be = 1.008 5 6797 x 107 2114 x 10° 4.291 13 6 1014 1159x10° 6900 1
(2039 102) (0.012)
Br=1390 || 7 1.009 0.667 5034 O 8 1.010 0.852 7.671 0
(0.002) {0.013)
9 1.010 5.823 4.862 1 10 1.008 4.005 7.098 0O
(0.009) (0.000)
n="7 1 104.7 820.3 8231 35 2 1047 36.13 7.482 109
(0.000) (.000)
T=.3 3 104.7 101.6 7.571 29 104.7 73.54 8.428 51
{0.600) {0.000)
Be = 1.027 5 1.025 27.90 7820 3 6 1.026 1.955 9.177
{0.004) (0.004)
Orn=1364 || 7 104.7 685.2 6.447 53 8 1.026 1.618 7.881
{0.000) {0.002)
9 1.647 0.645 7426 0 10 1.029 77.11 6.010
(1.618) (0.006)
n="7 1 173.9 215.4 6.468 42 2 1739 89.56 6.805 74
{0.000) {0.000)
z=.5 3 173.9 37.46 5973 122 ] 4 1.049 25.48 7.927 2
(0.000) (0.005)
Be = 1.049 5 173.9 88.01 5044 92 6 1739 51.17 6.888 113
(6.000) (0.000)
Bn =1.335 7 1.036 63.46 8145 5 173.9 259.0 5.534 82
(0.109) (0.000)
9 173.9 51.86 7179 112 | 10 1739 64.24 5821 104
(0.000) (0.000)

31




Gross Inflation (Log Scale)

Figure 1: Convergence to the Low Inflation Equilibrium
n=5, x=.5, experiment # 7
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Figure 2: A Persistent Currency Collapse
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Figure 3: A Nonconvergent Case
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