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 TARGET ZONES AND CONDITIONAL VOLATILITY:
THE ROLE OF REALIGNMENTS 

1. INTRODUCTION

Since March 1979, most of the nations of the European Union have participated in a

"target zone" system of exchange rate management known as the Exchange Rate Mechanism

(ERM) of the European Monetary System (EMS). Realignments of these target zones have been 

common; the United Kingdom and Italy suspended their participation in the ERM on September

17, 1992, after speculative attacks. After August 1993, the bands were broadened sufficiently to

functionally alter the character of the system. These episodes, the Mexican peso crisis, and the

more recent Asian currency turmoil have focused attention on the importance of realignments of

target zone systems.

Because of the importance of exchange rates in economic decisions, various authors (e.g.

Baillie and Bollerslev 1989, 1991, Lastrapes 1989, Hsieh 1988, 1989, and Jorion 1988) have

studied the empirical properties of floating exchange rates, emphasizing measurement of

conditional volatility. The ERM target zone system, however, complicates the study of European

exchange rate volatility. Diebold and Pauly (1988) used ARCH models to conclude that the ERM

reduced conditional volatility but ignored the most prominent characteristic of ERM rates,

realignments of the ERM bands. Vlaar and Palm (1993) were the first to model this feature of

ERM exchange rates with "jump-diffusion" (G)ARCH processes. They concentrated on

investigating the optimal jump mixture and producing a multivariate model. In similar work,

Nieuwland, Verschoor and Wolff (1994) focused on the mean reversion properties of ERM

exchange rates and the excess kurtosis found in the data and concluded that the model which
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most successfully fitted the EMS exchange rate returns “is a combined jump-GARCH model

with conditionally t-distributed innovations.”

This paper extends the work of Vlaar and Palm (1993) and Nieuwland, Verschoor and

Wolff (1994) by considering the interaction of realignments and conditional volatility in three

ways. First, information about the credibility of the target zones is incorporated into the model to

allow for a time-varying jump probability for the jump-diffusion GARCH models. The data

generally reject constant jump intensity in favor of a time-varying parametrization that better

forecasts conditional volatility during periods of speculative pressure. Second, to provide a more

robust estimate of the forecast conditional variance, the absolute value GARCH models of Taylor

(1986) and Schwert (1989), as well as standard GARCH models, are fit to the data. Time-varying

realignment probability and absolute value GARCH models are employed to reduce bias in the

estimated GARCH parameters. Third, study of the periods around realignments suggests

conditional volatility is higher than normal at these times.

2. THE DATA

The data consist of weekly exchange and interest rates from seven ERM countries �

Belgium, Denmark, France, Germany, Ireland, Italy, and the Netherlands � from March 14, 1979,

to July 31, 1992 (698 observations). The end of the sample was chosen to exclude the speculative

attacks of September 1992. Weekly rates were used to facilitate comparison with previous results

and avoid problems with day-of-the week effects in the data. Wednesday dollar spot exchange

rates were obtained from the Federal Reserve Board of Governors and converted to deutsche

mark rates by assuming the absence of triangular arbitrage. Target zone central parities of each



1 In this context, predictability means predictability from fundamentals or time series models. 

Neely, Weller and Dittmar (1997) and Neely and Weller (1998) discuss predictability of returns

from technical signals for dollar and target zone exchange rates, respectively. 

3

ERM currency, and the three-month and 12-month Euromarket interest rates, were obtained from

the Bank of International Settlements (BIS). Bilateral target zones were normally ±2.25% but

more volatile currencies used ±6.0% target zones some of the time. Figure 1 depicts the time

series of the French franc per deutsche mark (FF/DM) exchange rate, from March 1979 through

July 1992. The most striking feature of Figure 1 is the realignments of the FF/DM target zone. 

Three stylized facts emerge from the literature on weekly floating exchange rates:  they

are martingales, they are conditionally heteroskedastic, and they exhibit excess kurtosis. Target

zone exchange rates are different, however. They are normally constrained within bands which

are occasionally realigned. Some of their statistical properties are quite different from those of

managed floating rates. For example, target zone exchange rate changes are more predictable

than those of floating rates in the short term.1

Target zone exchange rates do exhibit the second stylized fact of high frequency financial

time series: they are conditionally heteroskedastic. Figure 2 shows the weekly changes in the

French francs per deutsche mark (FF/DM) exchange rate. These changes appear to contain time-

varying volatility (ARCH). Previous work, as well as formal tests not reported here, confirm the

presence of ARCH in the data. 

Consistent with conditional heteroskedasticity is the third stylized fact:  exchange rate

changes are characterized by “fat tailed distributions,” i.e., excess kurtosis. Table 1 displays

summary statistics of the exchange returns (100*ln(et/et-1)). The skewness statistics are uniformly
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positive, reflecting the weakness of these currencies versus the deutsche mark during these

periods. Five of the six ERM rates’ skewness statistics reject symmetry at the 5% level. The

target zone exchange rate returns are also extremely kurtotic, more kurtotic than floating rates,

with kurtosis statistics of at least ten. These very high skewness and kurtosis statistics are partly

due to the realignments in the target zone exchange rates. 

3. MODELS OF EXCHANGE RATE CHANGES

There are three major issues involved in the modeling of target zone exchange rates. The

first issue is how to model the expected changes in the exchange rate—within the target zone and

with realignments. The second issue is how to model conditional heteroskedasticity of the target

zone exchange rate processes. Finally, the "fat tails" and possible discontinuities in the data must

be confronted. This section describes the log likelihood function for exchange rate changes and

explains how its features model the data. 

3.1  The Basic Model

The basic model for high frequency target zone exchange rate changes is the jump-

diffusion GARCH model that assumes the returns are drawn from a mixture of distributions—a

diffusion process and a jump process. The continuously compounded rate of return is:

00 � ln(
et

et�1

) = µ1t + ht 1t , with probability (1� t )

= µ1t + ht 1t + µ2 + 2t , with probability t

(1)

where 1t and 2t are mean-zero errors and the number of jumps per period is drawn from a
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Bernoulli distribution with parameter t. In this case, the log likelihood function for ln(et/et-1)

with conditionally t-distributed innovations is: 
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where µ1t is the time-varying mean of the diffusion process, µ2 is the mean of the jump

distribution, ht is the variance of the diffusion process, 2 is the variance of the jump distribution,

and t is the time-varying probability of a jump. The following subsections describe the rationale

for the features of this log likelihood. 

3.2   Jump-Diffusion Models

The very high kurtosis statistics for the ERM exchange rates are symptomatic of discrete

discontinuities or "jumps" in the data, caused partially by realignments. To manage this feature of

the data, Vlaar and Palm (1993) and Nieuwland, Verschoor and Wolff (1994) applied “jump-

diffusion" GARCH models in which the change in the exchange rate is assumed to be drawn

from a mixture of distributions with the number of jumps per period drawn from a Poisson or

Bernoulli distribution. Nieuwland, Verschoor and Wolff used the Poisson specification of Jorion
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(1988), but Vlaar and Palm (1993) specifically investigated the use of Poisson and Bernoulli

specifications and found "...there are no strong reasons to prefer the Poisson mixture to the

Bernoulli-normal model."   Modeling the probability of a jump as a Bernoulli trial is simpler

computationally and perhaps more realistic for modeling ERM realignments; more than one

"jump" in a week would indicate a breakdown of the ERM. Therefore, the Bernoulli specification

is used here. 

The distribution of the error terms in the jump-diffusion models is another tool to treat the

kurtosis in the data. Vlaar and Palm (1993) used the simpler normal and multivariate normal

distributions as the underlying distributions for their jump-diffusion models. However, if

allowance for the GARCH process and a mixture of normal distributions cannot fully account for

the kurtosis in the data, one can mix from fat-tailed distributions, such as conditional t-

distributions. Nieuwland, Verschoor and Wolff (1994) found this strategy to be useful in

reducing kurtosis in the standardized residuals. Therefore, the models in this study were

estimated with the conditional t-distribution as well as the normal distribution. 

3.3  Mean Reversion Within the Target Zone

A problem with applying the simple jump-diffusion model to target zone exchange rates

is that it assumes that future movements of the exchange rate are completely unpredictable. In

target zones, however, mean reversion within the target zone is expected because of central bank

intervention. The expected change within the band should be dependent on the current position

of the exchange rate within the band. Therefore, the mean of the diffusion process, µ1t (from (2)),

is parametrized as:
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µ1t � µ0 � µ lx ( ln(et�1 ) � ln (ct�1 ) ) (3)

where et and ct are the position of the exchange rate and the central parity at time t. If the

exchange rate is currently greater (less) than the center of the band, it is reasonable to expect that

it will decline (increase), that is, µlx is expected to be negative. This parametrization is more

intuitive and more consistent with the literature on target zone credibility (see Mizrach, 1993,

and Rose and Svensson, 1994) than an ARMA specification.

3.4  Modeling the Jump Probability

The simple jump-diffusion model assumes a constant probability of a jump. This ignores

the literature on the realignments of target zones that suggests the structure of Eurocurrency

interest rate differentials and the domestic yield curve should provide information about the

likelihood of realignments. Specifically, uncovered interest parity requires the interest differential

to measure expected depreciation against the deutsche mark. Further, expectations of a

devaluation should steepen the weak currency’s yield curve because a devaluation changes the

rate of return over short horizons much more than it does over longer horizons.

Because all the realignments have been devaluations with respect to the deutsche mark, 

the probability of realignment ( t in (2)) is modeled as a probit function of the three-month

interest differential with Germany and the yield curve in the other country. For example, the

realignment probability for France, at time t, would be:

� �
zt

��

(u ) du, zt � 0 � id ( i ff3
t � i ge3

t ) � yc ( i ff3
t � i ff1

t (4)



2  Nelson and Cao (1992) show the constraints on 1 and  in (5) are sufficient but not

necessary to ensure positive conditional variance forecasts. For cases in which the estimated

conditional variance process was explosive ( 1+  > 1), the model was reestimated using the

IGARCH model that imposes 1 +  = 1.
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where (it
ff3 -  it

ge3) is the interest rate differential on three-month Euromarket rates of France with

Germany; (it
ff3 -  it

ff12) is a measure of the French yield curve (the three-month interest rate minus

the 12-month interest rate) and (*) denotes the standard normal distribution function. 

3.5  Conditional Heteroskedasticity

Because conditional heteroskedasticity may also contribute to excess kurtosis,

GARCH(1,1) and absolute value GARCH models are used to model the conditional variance of

the diffusion process as a function of  past errors. For example, the absolute value GARCH(1,1)

model used in this work parametrizes current conditional variance as a function of the magnitude

of the last shock and the last estimated conditional variance. In this case, the conditional standard

deviation (ht
1/2) at time t is expressed as:

h

1
2

t � 0 � 1 � | t�1 | � �h 1/2
t�1 , 0, 1, � 0. (5)

where t-1 is the residual from the model of the spot exchange rate at time "t-1."2

The GARCH(1,1) and absolute value GARCH(1,1) model have the advantages of

simplicity and parsimony while allowing long correlation among the magnitudes of the shocks.

While most studies of exchange rates have used Bollerslev’s GARCH(1,1) parametrization to

estimate conditional heteroskedasticity, Nelson and Foster (1994) showed that the absolute value
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GARCH model is a superior filter for series with discrete changes or excess kurtosis and only

slightly inferior to the standard GARCH model for true diffusion processes. 

4. RESULTS

To investigate the interaction of conditional volatility and realignments, a variety of

general and restricted jump-diffusion GARCH models were estimated using the likelihood

function (2) as the baseline model. Two issues are examined:

1)  Is time-varying jump intensity an appropriate way to model the data?  If so, how does

it affect the choice of GARCH model and the estimated conditional volatility series?

2)  What is the behavior of the actual and forecast volatility around realignments? 

4.1  Time Varying Realignment Probability and Maximum Likelihood Results

 Confirming the work of Vlaar and Palm (1993) and Nieuwland, Verschoor and Wolff

(1994), the data are supportive of elaborate models of target zone exchange rates. For example,

heteroskedasticity and mean reversion in the diffusion process and a conditional t distribution are

generally preferred by likelihood ratio and non-nested tests to restricted models. Also in accord

with previous findings, estimates of the degrees of freedom parameter ( ) in Table 2 are very

low, consistent with very fat tails. Even allowing for absolute value GARCH and time-varying

jumps,  was estimated to be less than 4 for four of the six rates, indicating infinite kurtosis. 

Extending previous results, however, substantial support was found for time-varying

jump intensity. Likelihood ratio tests reject a constant jump probability for at least half the

exchange rates over a variety of model specifications and likelihood functions. The Akaike
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information criterion was even more supportive of the time-varying parametrization. Justification

for this model was especially pronounced for the standard—rather than absolute value—GARCH

models and the normal—rather than t—distributions. Given the highly parametrized models and

relatively few periods of speculative pressure, this is substantial evidence in favor of the time-

varying jump intensity. 

A priori, it was expected that the absolute value GARCH model of Taylor (1986) and

Schwert (1989) would be preferred to the standard GARCH model of Bollerslev (1986) because

ARCH specifications are not robust to discontinuities in the data such as realignments (Nelson,

1992). Essentially, the problem is the process that produces the "jump" discontinuities is not the

same as the diffusion process whose conditional variance is being modeled by the (G)ARCH

process; the "jumps" bias the (G)ARCH parameters. The data, however, proved indifferent

between the GARCH and absolute value GARCH models of conditional volatility for the models

with mean reversion and time-varying realignment probabilities. The time-varying realignment

probability, in particular, sometimes offset the discontinuities in the data that bias the GARCH

parameters. For more parsimonious models, however, the absolute value GARCH model was

generally preferred.

In light of the theoretical advantages of the absolute value GARCH parametrization,

results from the most general jump-diffusion absolute value GARCH model with both time-

varying mean in the diffusion process (3) and a time-varying jump frequency (4) are presented in

Table 2. The time series of conditional standard deviations produced by this model is shown in

Figure 3. Generally, volatility is quite low but tends to spike upward, especially around

realignment periods. 
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The fourth column of Table 2 shows the estimates of the within-the-band mean reversion

parameter (µlx) are always of the correct sign and likelihood ratio tests of the hypothesis that µlx =

0 reject the null for four of the six rates. These results support modeling the mean reversion

within the target zone as a function of position in the band. 

It was expected, a priori, that the parameter t would capture the probability of a

realignment in any given period, µ2 would capture the mean size of the realignments, 2 would

capture the variance of the realignments, etc. But, as noted in Vlaar and Palm (1993) and 

Nieuwland, Verschoor and Wolff (1994), the jump models did not pick up only the realignments

as jumps; large movements within the bands also affected the jump parameters. The use of time

varying realignment probabilities mitigated this tendency. For example, the mean implied jump

intensity (see column 6 of Table 3) is much lower with the time-varying realignment

parametrization. The model was much better able to pick out realignments as jumps. 

All of the estimated interest differential ( id) parameters and four of the six the yield curve

( yc) parameters were of the expected sign. The correlation among the time-varying realignment

probability parameters makes their standard errors uninformative as to individual significance but

likelihood ratio tests of the restriction that the time-varying realignment probability parameters

are jointly zero ( id = yc = 0) reject that hypothesis for three of the six exchange rates (the

Belgian Franc, Danish Kroner and Dutch Guilder). These results are conservative in the sense

that the use of a normal distribution and/or the standard GARCH(1,1) model yielded even more

positive results for this parametrization, as did use of the Akaike information criterion rather than

likelihood ratio tests. 

The time series of the probability of "jumping" for the FF/DM exchange rate is shown in
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Figure 4. The decline in the average probability of jump in Figure 4 affirms the previous

conclusion of Frankel and Phillips (1992) and Mizrach (1993) that the ERM had been getting

more credible from 1985 to 1992. The eighth column of Table 3 shows the correlation between

the probability of jump and the absolute value of the error. Not surprisingly, they are all positive

and the correlation is highest for the three rates � Belgium, Denmark and the Netherlands � for

which the likelihood ratio test rejects that the time-varying realignment probability parameters

are jointly zero ( id= yc= 0). Figure 3 shows that by permitting jump-intensity to vary with

interest rate differentials and the yield curve, forecast conditional volatility rises during periods

of speculative pressure, often before realignments of the system. Weeks of realignment are

represented by dashed lines in the figure. A constant probability of jump model would not pick

up this uncertainty. Also, to the extent this feature reduces the bias in GARCH parameter

estimates, it will more accurately forecast conditional volatility in “normal” periods. Time-

varying realignment probability is an important characteristic of ERM exchange rates. 

4.2  Conditional Variance Around Realignment Periods

 What was the relationship between the periods of realignments and the conditional

volatility of the series?  To answer this question, the series must be aggregated to study their

common tendencies. Figure 5 displays such an aggregation: The natural logs of a normalized

measure of the behavior of the magnitude of the residuals and the conditional standard deviations

for twelve weeks before and after realignments. These data were constructed as follows:  for each

of the six ERM rates, 25 (2×12 + 1) weeks of residuals from the model were picked out around

each actual realignment. For each of the 37 realignments, the 25 observations on the absolute
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value of the residuals were normalized by dividing them by their respective mean values  for

each exchange rate over the whole sample. This left 37 normalized series of length 25 weeks or

25 vectors � indexed by the length of time from the realignment � 37 rows long. Each of the 25

vectors were sorted in order of magnitude and the 4th, 18th and 33rd elements (10th, 50th and

90th percentiles) of each were picked out to be graphed. Finally, the magnitude of the residuals

during the realignment periods necessitated taking natural logs of the two time series in order to

make the graph more readable. Conditional standard deviations were handled in a similar

manner.

Figure 5 provides some evidence that conditional volatility was moderately high in the

two weeks before and after realignments. A formal test of the hypothesis that the mean

magnitude of the residuals and conditional standard deviation is different in the weeks around

realignments was done by comparing the means of the series of natural logs of residual

magnitudes and conditional standard deviations in the four weeks around realignments to the

means of the same series four to 25 weeks around realignments. The fourth and fifth columns of

Table 4 show the t statistics and the p-values for these tests for the four periods before and after

realignments. The t statistics suggest that the mean residual magnitudes are higher than normal in

the two weeks before and after realignments. Because these tests assume the series have equal

variance, F tests for equality of variances are shown in columns two and three. The F tests fail to

reject the equal variance restriction for most of the cases. The t statistics should be interpreted

cautiously because they ignore the possible correlation between the volatility of different

exchange rates during the same realignment. Despite these caveats, these tests suggest that

conditional volatility is high in the two weeks around realignments and that this volatility may
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even be marginally useful in forecasting realignments of target zones. 

5. CONCLUSIONS

This paper focused on the interaction of conditional volatility and realignments of a target

zone exchange rate system (the ERM). Three conclusions are drawn. First, information about the

credibility of the target zones is useful in allowing for a time-varying realignment probability of

jump for the ERM exchange rate jump-diffusion GARCH models. Second, the absolute value

GARCH models of Taylor (1986) and Schwert (1989) provide a more robust estimate of the

forecast conditional variance. Absolute value GARCH models, time-varying realignment

probability and the conditional t distribution all proved useful in modeling the realignments

found in ERM data. The data suggest these specifications can substitute for one another, to some

extent, in reducing the bias in GARCH parameters caused by realignments. Finally, there is some

evidence that conditional volatility is higher in the weeks around realignments.
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1979-1992

Series Obs Mean Std Error Minimum Maximum Skewness Kurtosis

  BE 698 0.038 0.429 -3.008 7.768 8.417 156.531

  DK 698 0.046 0.376 -1.345 3.908 2.723 21.270

  FR 698 0.055 0.439 -2.121 6.041 7.496 87.237

  IE 698 0.050 0.437 -1.247 6.233 6.063 74.448

  IT 698 0.073 0.515 -4.427 5.005 1.773 27.185

  NL 698 0.006 0.178 -0.792 1.413 1.261 10.379

Notes: The skewness and kurtosis statistics would be distributed N(0,1) if the data were drawn identically
and independently from a normal distribution. These summary statistics include the full sample on the Irish
pound.

Table 1:  Summary Statistics from the ERM Exchange Rate Returns [100*ln(et/et-1)]
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1979-1992

Rate Obs µ0 µlx 0 1 µ2
2

0 id yc

BE 697 .010
*

-.017
*

.036
*

.379
*

.503
*

.029
*

.054
*

-2.934
*

1.063
*

1.096
*

3.490
*

DK 697 .018
(.011)

-.024
(.008)

.228
(.017)

.147
(.052)

.000
(.001)

.510
(.243)

.864
(.348)

-2.397
(.388)

.139
(.066)

.126
(.187)

9.362
(4.979)

FR 697 .006
(.007)

-.011
(.006)

.043
(.015)

.184
(.059)

.700
(.084)

4.540
(.558)

1.832
(2.131)

-2.948
(.424)

.071
(.053)

-.083
(.115)

3.305
(.519)

IE 560 .015
(.009)

-.027
(.010)

.107
(.028)

.249
(.061)

.423
(.107)

5.347
(.809)

1.488
(1.887)

-3.208
(.770)

.075
(.107)

.160
(.388)

3.979
(.707)

IT 697 -.040
(.018)

-.008
(.006)

.127
(.041)

.448
(.101)

.326
(.109)

.265
(.095)

.126
(.064)

-1.002
(.436)

.063
(.039)

.022
(.114)

3.034
(.534)

NL 697 -.000
(.003)

-.051
(.011)

.001
(.000)

.073
(.024)

*
*

.079
(.053)

.064
(.030)

-5.028
(1.872)

2.342
(.947)

-1.967
(.999)

6.570
(1.321)

Table 2:   Parameter Estimates from the Jump-Diffusion Absolute Value GARCH Model with Time-varying Mean and Jump Probability for the ERM Rates
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ERM: 1979-1992

Rate Mean
Cond Std
Deviation

Unconditional
Standard
Deviation

Corr. Estimated
Frequency of

Jumps (%)

Estimated
Size of
Jumps

Estimated
Jump

Std Dev 

Corr2 Number of
Realignments 

Frequency
in %

Mean Size of 
Realignment

Estimated
Realignment 

Std Dev 
BE 0.338 0.429 0.292 56.648 0.029 0.232 0.210 7 1.003 3.883 2.677
DK 0.343 0.377 0.219 5.717 0.510 0.929 0.222 8 1.148 3.765 1.217
FR 0.282 0.439 0.096 0.591 4.540 1.353 0.062 6 0.860 6.218 3.198
IE 0.289 0.424 0.105 0.361 5.347 1.220 0.081 5 0.893 5.466 2.934
IT 0.499 0.515 0.258 31.233 0.265 0.355 0.118 9 1.291 5.470 2.554
NL 0.142 0.178 0.501 5.876 0.079 0.252 0.226 2 0.287 1.947 0.047

Table 3: Conditional Volatility and Jump Statistics

Notes: Corr = Correlation of Residual Magnitude and Forecast Standard Deviation. Corr2 = Correlation of Residual Magnitude and Estimated Jump Probability.
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Tests of Distribution of Estimated Residual Error Magnitude Around Realignments

Periods After
Realignments

F statistic for
equality of
variances

F statistic
 p-value

t statistic for
equality of
means

t statistic 
p-value

-4 1.387 0.069 -1.278 0.101

-3 1.479 0.038 -0.228 0.410

-2 0.844 0.728 2.156 0.016

-1 0.691 0.915 2.029 0.021

 0 0.827 0.755 9.730 0.000

 1 1.084 0.341 0.090 0.464

 2 0.765 0.838 0.889 0.187

 3 1.539 0.025 -0.420 0.337

 4 1.476 0.038 -1.960 0.025

Tests of Distribution of Estimated Conditional Standard Deviation Around Realignments

Periods After
Realignments

F statistic for
equality of
variances

F statistic
 p-value

t statistic for
equality of
means

t statistic 
p-value

-4 0.853 0.714 -0.899 0.184

-3 0.638 0.951 -0.787 0.216

-2 0.639 0.951 0.032 0.487

-1 0.796 0.798 1.754 0.040

 0 0.678 0.925 1.308 0.096

 1 2.547 0.000 9.382 0.000

 2 1.619 0.014 4.892 0.000

 3 1.093 0.329 3.145 0.001

 4 0.939 0.573 1.414 0.079

Table 4:  Tests for whether mean residual magnitude and mean conditional standard deviation are of
unusual magnitude around periods of realignments.



Figure 1:  Target Zone Exchange Rate Behavior

Figure 2: Percentage Changes in the Exchange Rate



Figure 3:  Conditional Standard Deviation Over Time

Figure 4: Time Varying Jump Probability 



Figure 5: 10th, 50th and 90th Percentiles of Normalized Residual
Magnitudes and Forecast Conditional Standard Deviation Around
Realignments. 


