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On the Treatment of the Weighted Initial Observation
in the AR(1) Regression Model

DANIEL L. THORNTON

A number of studies have investigated the
treatment of the weighted initial observation in the
estimation of the AR(1) regression model, [e.g.,
Kadiyala (1968), Maeshiro (1976, 1979), Chipman
(1979), Doran (1979), Doran and Griffiths (1983),
Spitzer (1979) and Fomby and Guilkey (1983)]1. It is
generally conceded that the Cochrane-Orcutt (C-0)
estimator, which deletes the initial observation, is
inefficient relative to the Prais-Winsten (P-W)
estimator, which weights it by (1-92)]/2.
Nevertheless, it is usually suggested that the C-0
estimator might be preferable in cases where the past
is not sufficiently long to warrant the use of the
P-W estimator, [e.g., Judge, et. al, (1980) p.
1821.1/

The purpose of this paper is to present a
general AR(1) model for the case where the past is
finite, to present the efficiencies of the P-W and
C-0 estimators for this model and to demonstrate that
the P-W estimator is always more efficient than the
C-0 estimator when the AR(1) process has a finite

past.
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2. A General AR(1) Model

Consider the modé]

(1) Y = X8 + ¢,
where Y is a nx1 vector of observations on the
dependent variable, X is a nxk matrix of known
nonstochastic regressors, 8 is a kx1 vector of
unknown coefficients and € is a nx1 vector of

random disturbances. Assume that

e, <t U t>-q
= -1 "t
(2) ey = s u t<-gq

where u, s nid(0, 05);3/ The parameter q is assumed

known and is continuous for q > 1; g-1 denotes the

number of periods since the process beganhi/

It is easy to show that

o2
E(ee') = fpz o
where
[ u -p 0 0 0
-0 ]+p2 -p 0 . 0
-1 1 0 -p 1+o2 -p 0
¢ = 1:Eﬂ
PO 0 0 0 o e e -p

and where u = (1-92(q+1))/(1-92q).

Furthermore, there is a transformation matrix



p -
$ 0 0 0
-p 0
C= 0 -p 1 o
0 0 0 . . . -p 1
s -

where § = [(1-02)/(1-02q)]1/2, such that C'C = (1-p2)¢]]
Thus, equation (1) can be transformed to the classical
regression model by premultiplying (1) by C.

If the customary stationarity condition is
assumed (i.e., !p! < 1), then the usual covariance

matrix, A, is

Tim ¢ = A,
q+oo
and the usual P-W transformation matrix, M, is
limC =M.4/
q+no

The C-0 transformation matrix, Q, is C with

the first row deleted.
3. The Relative Efficiencies of the C-0
and P-W estimators
It is easy to show that the efficiency of the P-W
estimator relative to the general Aitken's estimator is
less than the efficiency of the C-0 estimator relative
to the Aitken's estimator. To see this, let
B, B and & denote the general Aitken's, P-W and C-0

estimators of B, respectively. The efficiencies of

8 and 8 with respect to B are
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Eg = TGl »
and
R 1281
EB = Iz‘él s

where I3 , I3 and Iz are their respective covariance

matrices. But

2
u

~ —_ =1 =1
XB = ]—pz (Xl‘b X) s

g

2
‘i!—" VT 1 taa? =1
IB = Top2(X MIMX) TIX M MM MX(X"M'MX) ”
and

02
2 u ] int -
25 = 7,2 (X'Q'x)~1x'Q' QeQ' Qx(X' Q' QX) - 1.

By straightforward multiplication,

M'M = (1-02) A°T,

Q'Q = (1-02) (A"T-e),

MoM' = (1-02)(I-c),

and

QeQ' = (1-02) I,

where © and ¢ are nxn matrices whose (1,1) elements
are 1 and qu’ respectively, and all other elements
are zeros. Given these results, the efficiency ratios
can be rewritten as

_I_X'(A'])X_I_2
XY o=TX X' (A-T-2) X1

Eg =

and



. el
Eé= _'_X (A ")

S X1

IX'¢"X|

From a standard theorem in matrix algebra,
AT > i (T - X or Xt (AT =), so that
e3> E3.5/ |

This intuition for this result is quite simnle.
Maeshiro (1980) has noted that the net gain in efficiency
results from the gain in efficiency due to the reduction or
elimination of autocorrelation and to the loss of efficiency
due to the increased colinearity among the transformed
variab]es.éf In this instance the P-W estimator induces
less colinearity in the transformed variables, enough less to
be more efficient than the C-0 estimator for any given set of
fixed regressor variables.

Since both of these estimators will be most inefficient
for smoothly trended data, especially for large positive
values of p, the results for the simple time-trend model
yt = a + Bt + €t

n+1

are presented. Following Chipman, let X = 1 - —5— %

whera 7 = (1 2 3 ... n)'; therefore,

yia-ly = {n-1) g?(g, n)’
12 (1-07)

where g(p,n) = (n-3)(n-2)p2 - 2(n-3)(n+1)p + n(n+1).

By direct multiplication,

2
x'oThx = XA x (B5h 62901629,



Xt (Te)x = x A Tx - (3512
and

2
X' (A -o)x = XAty - (a1 02

Thus, for the time-trend model

[(n -1) qﬁ(o n)]

Ea = 12 (1-¢p’ )2 .
?
r(n—1)q(pzn) (D= 1)2 (£ )][(n -1)qle, g) (n§1) 0297
12 (1-07) 1- p 12 (1-0)
Likewise,
(n-1)g(e,n) _ (n-1)2
. 12 (1-0%) ¢
Ex = 73
(n-1)g(e,n) . (0= e,
12 (=) Z120
Also,
. (n-1)g(e,n)
B = Yy (109 - ()
q (n-1)g(e,n)
12 (1-09)

Values of these efficiencies are presented in Tahles
1 and 2. As expected, both estimators are relatively
inefficient for large positive values of p. The
inefficiency diminishes quickly, however, for the P-W
estimator as q gets large.
4, Conclusions
This paper has shown that the Prais-Winston

estimator is more efficient than the Cochrane-Orcutt

estimator if the usual AR(1) model is assumed to have
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a finite past. Thus, the usual assumption that the
latter estimator is preferred in this case is shown
to be wrong. Calculated efficiency ratios for the
time-trend model suggest that the difference in the
efficiency of the two estimators might be substantial
for smoothly trended data. These results give
further support to the growing belief that whenever

possible the first observation should be retained in

the serial correlation adjustment.



FOOTNOTES

1/Since economic time series are generally
prices or quantities of commodities most (if not all)
of which are the result of inventions, innovations or
deregulation that have occurred in the finite past,
this assumption is, strictly speaking, not valid.
Nevertheless, it is reasonable to conjecture that the
lToss of efficiency may be small if the initial
observation of the sample is "sufficiently far" from
the initial observation in the time series. The
results for the mean and time-trend models are
consistent with this conjecture.

2/ There are‘of course an infinite number of
other finite past assumptions that could be made.

For example, let et be nid(0, o%) for t < -q and
let ut be nid(0, of) for t > q, and further assume

that 0% = 0f/(1-02). This would eliminate
the heteroskedasticity in (2), but it would also eliminate

the need to distinguish between the finite and
infinite past that is characteristic of nearly all
discussions of the AR(1) regression model. Thus,
attention is limited to the generalization of the
usual model.

3/1f one wished to use the feasible Aitken's
estimator, q would have to be estimated simultaneously
with e, If the wrong value of q is used, it can be
shown that the resulting estimator may be more or
less efficient than the C-0 estimator. However, the
C-0 estimator is less efficient for the time-trend
model.

4/Readers unfamiliar with the form of these
matrices can consult Kadivala (1969) or Judge, et. -
al. (1981, n. 181).

5/See Graybill (1969, p. 330).

6/5ee Kramer (1982) for some additional
insight.



Table 1:

Calculated Values of Eg for Time-Trend Model
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n

10
0. 924565
0. 992507
0.999753
0. 999639
0.979974
0.847964
0. 576887
0. 442701
0.387519
0. 360330
0. 333661

0.99383
1.00000
1.00000
1.00000
1.00000
1. 00000
0. 99644
0.97070
0.93599
0.90728
0.86806

0.99772
1.00000
1.00000
1.00000
1.00000
1.00000
0.99995
0.99715
0.98707
0.97341
0.94703

0.99964
1.00000
1.00000
1.00000
1.00000
1. 00000
1.00000
0.99999
0.99975
0.99846
0.99133

20

0.963070
0. 996051
0. 999857
0.999745
0.982597
0. 848728
0.541784
0. 358381
0.280292
0. 242681
0.207003

0.99709
1.00000
1.00000
1.00000
1.00000
1.00000
0.99590
0.95273
0. 90000
0.84771
0.77426

0.99893
1.00000
1.00000
1.00000
1.00000
1.00000
0.99995
0. 99596
0.97916
0.95419
0.90311

0.99983
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99959
0.99729
0.98350

50

0. 985369
. 998369
. 999937
. 999872

. 989273
.870911

0
0
0
0
0
0.539708
0. 325852
0.219723
0.166204
0.116815

0.99887
1.00000
1.00000
1.00000
1.00000
1.00000
0.99586
0.95273
0.86680
0.77591
0.63475
0.99958
1.00000
1.00000
1.00000
1.00000
1.00000
0.99995
0.99533
0.97141
0.92834
0. 82526

0.99993
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99944
0.99565
0.96796

0

2999931

100

992705
999176
999968

993688
906280

.562906

0
0
0
0
0
0
0
0.326317
0.
0
1
1
1
0
0
0
1
0

211732

.149160

.087616

. 99944

. 00000

.00000

. 00000

.00000

.00000

.99623

. 95283

. 86125

. 75280
.55787

.99979
.00000
.00000

.00000

.00000

.00000

. 99995

0
0
1
1
0
0
0
1
1
1
1
0. 99534
0.
0
0
1
1
1
1
1
1
0
0
0
0

97007

.91932

77421

. 99997

.00000

.00000

.00000

.00000

. 00000

.00000

.99999

. 99941

. 99506

. 95640

250

0.997086
0. 999668
0.999987
0. 999971

0.997203
0.950776

0.658873
0.361145
0.218260
0.147969
0.077203

.99978
. 00000
.00000
. 00000
.00000
. 00000
. 99748
. 95931
. 86581
.75104
.52364

OO OO O et = e o ed O

.99992
.00000
. 00000
.00000
. 00000
.00000
. 99997
. 99600
97117
. 91861
. 74920

. 99999
. 00000
.00000
.00000
.00000
.00000
.00000
. 99999
. 99943

. 99501
. 95027

OOOO =t =t s O




Table 2: Calculated Values of Eg for the Time-Trend Model
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n

10 20 50 100 250
0. 927468 0. 961555 0. 984769 0.992405 0.996967
.870036 0.934313 0.973503 0.986710 0. 994674
. 812656 0.901268 0. 959222 0.979391 0.991703
. 672807 0.804607 0.912880 0.954817 0.981524
.497674 0.629268 0.804975 0.892147 0.954041
. 344461 0.357294 0. 519902 0.676713 0.838702
. 301061 0.202016 0.191553 0.268166 0.457843
. 300654 0.177578 0.105880 0.107860 0.182183
. 302590 0.173514 0.085836 0.064457 0.082808
. 304002 0.172777 0.079646 0.050151 0.046660
.305704 0.172910 0.076171 0.041504 0.023632
. 990772 0. 995650 0.998313 0.999164 0.999668
. 899254 0.949912 0.979995 0.989999 0. 996000
.818792 0. 904841 0.960790 0.980199 0.992032
. 681729 0.810945 0.916072 0.956546 0.982250
.569149 0.693548 0.846234 0.916869 0. 965130
. 544886 0.558820 0.711597 0.826670 0.922163
.665712 0.539260 0.522772 0. 628820 0.796097
. 738810 0.586893 0.437934 0.443046 0.594441
. 770072 0.618406 0.420224 0.347190 0.410700
. 785696 0.636779 0.420755 0.307085 0.291194
.801153 0. 656707 0.430024 0.282780 0.181318
. 994903 0.997602 0.999071 0.999540 0.999817
899254 0.949912 0.979995 0.989999 0.996000
. 818792 0.904841 0.960790 0.980199 0.992032
.681729 0.810945 0.916072 0.956546 0.982250
. 569149 0.693548 0.846234 0.916869 0.965130
. 545671 0.559600 0.712246 0.827123 0.922390
.690742 0.567608 0.551291 0.655182 0.814090
. 793502 0.658700 . 0.514201 0.519381 0.665683
. 837938 0.714437 0.528067 0.450866 0.518284
.859430 0.745129 0.547782 0.424973 0.406561
. 879870 0.776666 0.578333 0.418702 0.287049
. 997332 0.998747 0.999515 0.999760 0.999905
. 899254 0.949912 0.979995 0. 989999 0. 996000
.818792 0. 904841 0.960790 0.980199 0.992032
. 681729 0.810945 0.916072 0.956546 0.982250
.569149 0.693548 0.846234 0.916869 0. 965130
. 545673 0. 559603 0.712248 0.827125 0.922391
.693908 0.571252 0.554965 0. 658532 0.816330
. 814237 0.687643 0.546969 0.552105 0.694308
. 874880 0.771866 0. 602103 0.426145 0.592671
. 905367 0.820623 0.654637 0.536281 0.517386
. 933454 0.869453 0.724267 0.579736 0.435373
. 998307 0.999205 0.999692 0.999848 0.999939
. 899254 0.949912 0.979995 0.989999 0. 996000
. 818792 0.904841 0.960790 0.980199 0.992032
.681729 0.810945 0.916072 0.956546 0. 982250
. 569149 0. 693548 0.846234 0.916869 0.965130
. 545673 0.559603 0.712248 0.827125 0.922391
0.693914 0.571259 0. 55497 0.658538 0.816344
0.815133 0.688917 0. 548440 0.553573 0.695567
0.880116 0.780332 0.613715 0.538274 0.604377
0. 916874 0.840620 0.686060 0.571422 0.552765
0.956759 0.913084 0. 805571 0.685130 0. 548793
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