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Model Fit and Model Selection

Narayana R. Kocherlakota

This paper uses an example to show that a model that fits the available data perfectly may provide
worse answers to policy questions than an alternative, imperfectly fitting model. The author
argues that, in the context of Bayesian estimation, this result can be interpreted as being due to
the use of an inappropriate prior over the parameters of shock processes. He urges the use of priors
that are obtained from explicit auxiliary information, not from the desire to obtain identification.
(JEL C11, E40, E60)
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Smets and Wouters and the ECB are adherents
to what one might call the principle of fit. Accord-
ing to this principle, models that fit the available
data well should be used for policy analysis;
models that do not fit the data well should not
be. The principle underlies much of applied
economic analysis. It is certainly not special to
sophisticated users of econometrics: Even cali-
brators who use little or no econometrics in their
analyses believe in the principle of fit. Indeed,
there are literally dozens of calibration papers
concerned with figuring out what perturbation
in a given model will lead it to fit one or two more
extra moments (like the correlation between hours
and output or the equity premium).

In this paper, I demonstrate that the principle
of fit does not always work. I construct a simple
example economy that I treat as if it were the true
world. In this economy, I consider an investigator
who wants to answer a policy question of interest
and estimates two models to do so. I show that

In an influential recent paper, Smets and
Wouters (2003) construct a dynamic sto-
chastic general equilibrium (DSGE) model
with a large number of real and nominal

frictions and estimate the unknown parameters
of the model using sophisticated Bayesian tech-
niques. They document that the estimated model
has out-of-sample forecasting performance supe-
rior to that of an unrestricted vector autoregres-
sion. They write of their findings (p. 1125), “This
suggests that the current generation of SDGE
[stochastic dynamic general equilibrium] models
with sticky prices and wages is sufficiently rich
to capture the stochastics and the dynamics in
the data, as long as a sufficient number of struc-
tural shocks is considered. These models can
therefore provide a useful tool for monetary
policy analysis” (italics added for emphasis).
The European Central Bank (ECB) agrees. They
are planning to begin using models with explicit
micro-foundations for the first time in their analy-
ses of monetary policy. In doing so, they are
explicitly motivated by the Smets and Wouters
(2003) analysis.1 1 See www.ecb.int/home/html/researcher_swm.en.html for details.
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model 1, which has a perfect fit to the available
data, may actually provide worse answers than
model 2, which has an imperfect fit.

The intuition behind this result is quite
simple. The policy question of interest concerns
how labor responds to a change in the tax rate.
The answer depends on the elasticity of the
labor supply. In both models, the estimate of this
parameter hinges on a particular non-testable
assumption about how stochastic shocks to the
labor-supply curve covary with tax rates. When
model 2’s identification restriction is closer to
being correct than model 1’s, model 2 provides a
better answer to the policy question, even though
its fit is always worse.

In the second part of the paper, I consider a
potential fix. I enrich the class of possible models
by discarding the non-testable assumption men-
tioned above. The resultant class of models is, by
construction, only partially identified; there is a
continuum of possible parameter estimates that
are consistent with the observed data. I argue that,
from the Bayesian perspective, a user of model 1
essentially has an incorrect prior over the set of
parameters of this richer third model. As a solu-
tion, I suggest using a prior that is carefully moti-
vated from auxiliary information, so that it does
not assign zero probability to positive-probability
events.

In general, there is much prior information
available about behavioral parameters, such as
those governing preferences and technology. How-
ever, there is much less prior information about
the parameters governing shock processes. One
possible response to this problem is to be what I
will term agnostic—that is, to be fully flexible
about the specification of the prior concerning
the shock-process parameters. I argue in the
context of the example that if one takes such an
agnostic approach, the data themselves reveal no
information about the behavioral parameters. I
interpret this result as an indirect argument for
the procedure commonly called calibration, in
which an investigator picks a plausible range for
technology and preference parameters based only
on prior auxiliary information.

In the final part of the paper, I return to Smets
and Wouters (2003). Using the above analysis, I

offer a critique of their approach to estimation
and model evaluation. I suggest how one might
change their estimation and evaluation approach
to ensure more reliable policy analyses.

The second part of the paper is about Bayesian
estimation of models given limited a priori infor-
mation, which is, as far as I know, novel. How-
ever, the first part is not new: It is well-known that
there are potential problems with the principle
of fit. In early contributions, Marschak (1950) and
Hurwicz (1950) emphasize that multiple struc-
tures (mappings between interventions and out-
comes) may be consistent with a given reduced
form (probabilistic description of available data).
Liu (1960) argues that this potential problem is,
in fact, endemic: The available data never serve to
identify the true structure uniquely. In perhaps
the most related work, Sims (1980) argues explic-
itly that large-scale models may fit the data well
and yet provide misleading answers to (some)
questions because their estimates are based on
incredible identification restrictions.

Though it lacks novelty, my discussion about
the principle of fit serves three purposes. First,
the principle remains a dominant one among
policymakers and others (as my opening para-
graphs indicate). Given the recent excitement
about Smets and Wouters (2003) and other related
papers, it is worthwhile (I believe) to remind
everyone of the principle’s limitations.

Second, I want to make absolutely clear that
we cannot resolve the problem by using structural
models. Most macroeconomists are highly cog-
nizant of the Lucas critique (1976). It correctly
emphasizes that to assess a policy intervention a
model’s parameters should be structural—that is,
invariant to the intervention. In response, most
macroeconomists now use structural models to
analyze policy interventions. My paper demon-
strates that this response is not a panacea. In par-
ticular, I show that even if it is structural and
well-fitting, a model may provide misleading
answers to policy questions.

Finally, my argument is not just that better fit
can lead to worse answers but that we should
expect that obtaining better fit will lead to worse
answers. Archetypal macroeconomic models are
usually under-shocked relative to the data under
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consideration. Hence, to get macroeconomic
models that fit well, we need to add shocks. But
we generally know little about these shocks. It
should not be at all surprising if adding them
were to create new, possibly substantial, sources
of error.

AN ARTIFICIAL WORLD AND
POLICY INTERVENTIONS

The basic structure of this paper is akin to a
Monte Carlo study. I first set up an artificial world
over which I have complete control. I introduce
an investigator (econometrician) into this artificial
world who does not know the structure of the
artificial world but is instead limited to using
one of two possible (classes of) models. Both are
false because the artificial world is not a special
case of either model; however, the investigator
does not know that they are false. Based on data
from the artificial world, the investigator uses a
variety of possible methods to determine which
model has superior fit.

In this section, I describe the artificial world
and a class of policy interventions under consid-
eration in that world. In the artificial world, agents
decide how much to work at each date. Their deci-
sions are influenced by shocks to labor produc-
tivity, taxes, and preferences. The means of these
random variables are hit by observable shocks in
each period. Preference shocks and tax rates
covary; it is this covariance that makes estimation
of the parameters of the model challenging.

The Artificial World

Time is discrete and continues forever. There
is a unit measure of agents who live forever, and
preferences are given by

where ct is consumption in period t and nt is labor
in period t. Technology is given by

where yt is the amount of consumption produced
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in period t. Agents are taxed at rate τt, where τt is
governed by the policy rule

The proceeds of the taxes are handed back lump-
sum to the agents.

The random variables �At,ψt,εt� are i.i.d.,
over time. There is another random variable λt,
which is equally likely to be 0 or 1. Conditional
on λ t = i, the random variables �A,ψ,ε� are all
Gaussian and mutually independent, with
means �µA�i �,µψ�i �,µε�i ��1

i=0 and positive vari-
ances �σA

2,σψ
2,σε

2�. Note that the means depend
on i, but the variances do not.

It is easy to prove that, in this economy, there
is a unique equilibrium of the form

Interventions

Consider the following class of interventions,
indexed by the real variable ∆. With intervention
∆, the tax rate follows the rule

The policy question is this: How much does
average logged output change in response to a
change in the tax rate? Mathematically, let yt�∆�
denote per capita output under intervention ∆.
What is E �ln�yt�∆*��� – E �ln�yt��, where ∆* is a
given intervention? The true answer to this
question is ∆*/γ *.

TWO (IDENTIFIED) MODELS
There is an investigator who wants to know

the answer to the given policy question. The
investigator does not know the structure of the
artificial world, but does observe the following
data:

The investigator has two possible models to use
to answer the question. The basic economic ele-
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ments of the models are the same as that of the
artificial world itself. In each model, there is a
unit measure of identical agents who work to
produce output. The agents face a linear tax on
output, and the proceeds of this tax are handed
out lump-sum. However, the shock-generation
processes in the two models are different from
each other and from the artificial world.

Model 1

In model 1, preferences are of the form

technology is given by yt = exp�A1t�nt; and agents
are taxed at rate τt, where ln�1 – τt� = ε1t. The
random variables �A1t,ψ1t,ε1t� are i.i.d. over time
and mutually independent. The random variable
λt has support {0,1}; the probability that λt equals
1 is given by p1. Conditional on λt = i, the random
variables �A1t,ψ1t,ε1t� are Gaussian, with means
�µ1A�i�,µ1ψ�i�,µ1ε�i��1

i=0 and variances �σ 2
1A,σ 2

1ψ,σ 2
1ε�.

The investigator does not know these means
and variances; they will have to be estimated in
some fashion from the data. Put another way,
this is actually a class of models indexed by the
11 parameters �γ1, �µ1A�i �,µ1ψ�i �,µ1ε�i ��1

i=0,
σ 2

1ε ,σ 2
1A,σ 2

1ψ ,p1�.
Model 1 implies that in equilibrium

How does model 1 differ from the artificial
world? It is alike in all respects except one: In
model 1, the parameter β has been set to zero. As
we shall see, this additional restriction allows
the investigator to estimate γ1 from the available
data.

Model 2

In model 2, preferences are given by

and technology is given by yt = exp[A2�1�λt +
A2�0��1 – λt�]nt. Here, ψ2, A2�1�, and A2�0� are all

t
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constants; λt is a random variable; and agents are
taxed at rate τt, where

The random variable λt is i.i.d. over time, with
support {0,1}, and the probability that λt equals 1
is given by p2. The parameters ε2�1� and ε2�0� are
both constants. Hence, in model 2, there are seven
unknown parameters, �γ2,ψ2,A2�1�,A2�0�,ε2�1�,
ε2�0�,p2�. The model implies that

How does model 2 differ from the artificial
world? In model 2, tastes do not vary at all. As
well, the variances of the other shocks around their
means are both set to zero. Like many modern
macroeconomic models, model 2 has relatively
few sources of uncertainty compared with what
is true of the (artificial) world.

THE FALLACY OF FIT
The investigator has two models available.

He wants to use his infinitely long sample to
decide which model to use in order to answer
the policy question. The sample �ln�yt�, ln�nt�,
ln�1–τ ���

t = 1 is jointly Gaussian conditional on
λt = i, for i = 0,1. The means of the conditional
distributions depend on λt; the conditional dis-
tributions have the same variance-covariance
matrix. Hence, the sample can be fully summa-
rized by 13 moments: the probability p that λt

equals 1, the means �µy�i �,µn�i �,µτ�i �� of �ln�y�,
ln�n�, ln�1–τ �� conditional on λt = i, and the vari-
ance-covariance matrix Σ of �ln�y�, ln�n�, ln�1–τ ��
conditional on λ .

Note that in these data, there are two distinct
kinds of variation. The first kind is because of λ.
Movements in λ generate changes in �µy�i �,µn�i �,
µτ�i ��; these changes can provide information
about the unknown parameters of the two models.
At the same time, �ln�y�, ln�n�, ln�1–τ �� vary
around these fluctuating means. This information
is summarized by the six moments of Σ. The goal
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of the investigator is to use these two sources of
variation to estimate the unknown parameter γ.

Given this information, the investigator has
available three methods of estimating/evaluating
the models.

Method 1: Maximum Likelihood

In this subsection, I suppose that the investi-
gator estimates the unknown parameters of each
model by maximum likelihood, and then com-
pares the models’ abilities to fit the 13 population
moments.

Model 2 implies that, conditional on λt = i, the
data is deterministic. In other words, according
to model 2, the conditional variance-covariance
matrix of �ln�yt�, ln�nt�, ln�1–τ t�� contains only
zeros. It follows that the likelihood of the data,
conditional on any specification of model 2, is
zero.2

For model 1, the maximum-likelihood esti-
mates of the 11 unknown parameters are given by

(1)

Given the infinitely long sample, these estimates
are very precise; the likelihood of the sample is 1
given this parameter setting and zero given all
others. Note that under this parameter setting,
the model fits all 13 moments of the data exactly.

Hence, according to maximum likelihood,
only model 1 should be used to answer the policy
question (with the parameter estimates (1)); no
specification of model 2 should be used. The lack
of fit is because model 2 is “under shocked” rela-
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tive to the data. The world has four distinct shocks
generating the data, but model 2 has only one.
Maximum likelihood punishes this kind of dis-
crepancy severely; from a statistical point of
view, it is the most readily detectable form of
misspecification.

Method 2: Bayesian Estimation

In this subsection, I suppose that the investi-
gator applies Bayesian estimation methods to the
available data from the artificial world. Obviously,
models 1 and 2 are nested—if model 2 is true,
model 1 is also true. Consider an econometrician
who has a prior over the 11 unknown parameters
of model 1. The prior is such that it puts proba-
bility q on the parameters being consistent with
model 2 and puts probability �1 – q� on the param-
eters being inconsistent with model 2.

Now suppose the econometrician observes
an infinite sequence of data from the artificial
world. The data bleaches out the effect of the ini-
tial prior; the econometrician’s posterior will be
concentrated on the parameter estimates (1). A
Bayesian econometrician with an infinitely long
sample will reach the same policy conclusions
as does a classical econometrician using maxi-
mum likelihood.

Method 3: Method of Moments

As we have seen, maximum likelihood and
Bayesian estimation simply discard all under-
shocked models. Now, we consider a less severe
measure of fit: method of moments, by which I
mean the following. Consider the 13 population
moments that characterize the sample. Pick 13
positive weights that sum to 1. Estimate the
unknown parameters in each model by minimiz-
ing the weighted sum of squared deviations
between model-generated moments and sample
moments. Then compare model 1 and model 2
by the value of the minimized objective.

Note again that the models are nested. Because
we are minimizing the same objective for each
model, model 1 must do at least as well as model
2. By setting the parameters in model 1 according
to (1), the objective is set equal to zero. Because
model 2 (incorrectly) generates a non-invertible
variance-covariance matrix for any parameter
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setting, the objective must be strictly larger than 0.
Model 1 must fit the data better than model 2,
according to this measure of fit.

However, using method of moments, we can
now actually estimate parameters for model 2, as
opposed to simply discarding it as maximum
likelihood does. For model 2, regardless of the
weights, the estimated seven parameters are

The seven parameters are set so that the model
generates the values in the data for the moments
�p,µy�1�,µy�0�,µτ�1�,µτ�0�,µn�1�,µn�0��. Model 2
predicts that the other moments are zero for any
choice of parameters, so that part of the minimiza-
tion problem is irrelevant for parameter estimation.

Using the Estimated Models to Answer
the Policy Question

Recall that the policy question is this: What
is the value of

when taxes are changed so that ln�1–τt�∆*�� –
ln�1–τt� = ∆*? The true answer to this question is
given by ∆*/γ *.

Here is what the two models deliver. Under
model 1, the answer is ∆*/γ̂ 1 = ∆*Σnτ /Στ τ , where
Σnτ is the population covariance of ln�nt� and
ln�1–τt� in the artificial world, and Στ τ is the
population variance of ln�1–τt� in the true world.
(This is ∆* multiplied by the population regres-
sion coefficient.) We can calculate these popula-
tion moments to find that that answer in model 1
is given by

which is too large in absolute value relative to
the true answer of ∆*/γ *.
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Under model 2, the answer is given by

Note that if �µψ�1� – �µψ�0�� is sufficiently close
to zero in absolute value, ANS2 is nearer to 1/γ *

than is ANS1. Even though model 2’s fit is worse
than that of model 1, model 2 may still deliver a
superior answer to the policy question.

Why Doesn’t Fit Work?

In the above discussion, we have seen that
the model that fits better—indeed, the model
that fits the available data perfectly—may well
deliver a worse answer to the policy question.
What is going on here? The policy question is
this: What happens to hours worked if we increase
the tax rate on labor? The answer is wholly gov-
erned by the elasticity of labor, which is equal to
1/γ * in the artificial world. To answer the ques-
tion the investigator has to estimate γ * well, but
there is a traditional difficulty associated with
doing so. If there are no shifts in the labor supply,
then the comovement in hours and tax rates will
pin down the elasticity of the labor supply. How-
ever, if the labor supply shifts (that is, movements
in ψ ) are correlated with the variation in tax rates,
then the investigator will achieve biased estimates
of 1/γ *.

How do the two models estimate γ *? In the
artificial world, there are two sorts of variation
in the data. The first is that the means of the dis-
tributions of �A,ψ, ln�1–τ �� fluctuate over time.
The second is that the realizations of the random
variables fluctuate around their means. The
good news is that, because λ is observable, the
two kinds of variations are distinct. The bad
news is that both kinds of fluctuations feature
potential comovement between ψt andτt—
comovement that makes our task of estimating γ
more difficult.

The two models differ in their estimates of γ
because each one relies on a different type of
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fluctuation to pin down γ . Model 1 assumes
(incorrectly) that the fluctuations of ln�1–τt� and
ψt around their means are independent. It then
exploits the fluctuations in tax rates and hours
around their means to estimate γ. Model 2 assumes
(incorrectly) that the mean of ψt does not fluctuate
at all. It then uses the shifts in the means of hours
and tax rates over time to estimate γ. Which one
works better depends on which incorrect assump-
tion is a better approximation to reality. Nothing
in the data answers this question.

The key point is that the relative fit of the
models does not tell us which of these assump-
tions is closer to being right. More generally,
parameter estimation of any kind always relies
on two sources of information: the data and non-
testable identification assumptions. The fit of a
model tells us nothing about the reliability of the
latter.3 Yet their reliability is essential if one is to
obtain accurate parameter estimates.

PRIOR CARE
The problem with model 1 is that it includes

a false restriction, which is included solely to
identify the unknown parameter. In this section,
I consider a richer model than model 1, in which
I dispense with the false identification restriction.
By construction, this model is only partially
identified. I argue that one way to interpret the
problem with model 1 is that the investigator is
using an incorrect prior over the larger parameter
space of this richer model. I suggest a simple fix
to these problems: estimate the larger, partially
identified model in a Bayesian fashion while
being meticulous in building the prior explicitly
from auxiliary information.

As before, assume that there is an investiga-
tor who has an infinite sample �ln�yt�, ln�nt�,
ln�1–τt�,λt�

�
t =1 from the artificial world described

in the first section. The investigator does not use
model 1 or model 2 though. Instead, the investi-
gator uses a new model, model 3.

Model 3

In model 3, preferences are of the form

technology is given by yt = exp�A3t�nt; and agents
are taxed at rate τt, where

The random variables �A3t,ψ3t,ε3t� are i.i.d. over
time and mutually independent. The collection
of random variables {λt}

�
t =1 are i.i.d., with support

{0,1}; the probability that λt equals 1 is given by p3.
Conditional on λt = i, the random variables �A3t,
ψ3t,ε3t� are Gaussian, with means �µ3A�i�,µ3ψ�i�,
µ3ε�i��1

i=0 and variances �σ 2
3A,σ 2

3ψ,σ 2
3ε�. In this class

of models, there are 12 unknown parameters
�γ3,β3, �µ3A�i �,µ3ψ�i �,µ3ε�i ��1

i=0, σ 2
3A,σ 2

3ψ,σ 2
3ε,p3�.

Model 3 implies that in equilibrium

Model 3 is exactly the same as model 1,
except that, in model 3, tax rates may be corre-
lated with the preference shock ψ3. This change
means that model 3 is sufficiently rich—to nest
both model 1 and the artificial world.

Model 3 is only partially identified. Suppose
γ3 = γ̂ 3.Then, there is a unique specification of
the other 11 parameters so that model 3 fits the
available data exactly. In particular, let
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3 Model 1 is a just-identified model; the number of identifying
restrictions is equal to the number of estimated paramaters. More
generally, there may be more identifying restrictions than unknown
parameters. It is commonplace to construct tests of the overidentify-
ing restrictions in such models. However, it is important to keep
in mind that these are tests only of some linear combinations of
the restrictions. The other linear combinations are being used to
estimate the parameters and are, as in the just-identified case,
nontestable.



and then the 13 moments generated by model 3
correspond to the moments of the sample. (Note
that all parameter estimates that are supposed to
be non-negative [that is, variances] are in fact
non-negative.) Hence, for each specification of
the parameter γ̂ 3, there exists a specification of
the other 11 parameters so that the model exactly
fits the data.

Recently, there has been a great deal of work
on classical methods to estimate partially identi-
fied models (see Manski, forthcoming, for a use-
ful survey). However, I believe it is most useful
to consider the estimation of model 3 from a
Bayesian perspective.4 Specifically, let θ = �β3,
�µ3A�i �,µ3ψ�i �,µ3ε�i ��1

i=0, σ 2
3A,σ 2

3ψ,σ 2
3ε,p3� represent

the parameters of the model other than γ3. Sup-
pose that the parameter space for �γ3,θ3� is given
by R+ × Θ, where Θ = R7 × R3

+ × [0,1]. This param-
eter space is a 12-dimensional manifold. I assume
that the investigator has a prior density over this
manifold such that γ3 is stochastically independ-
ent from θ. I will let the marginal prior density
over γ3 be denoted by f and the prior density over
θ be denoted by g.

A basic intuition in Bayesian estimation/
learning is that the prior is essentially irrelevant
if one has a large amount of data. Intuitively, the
impact of the data is sufficiently large to bleach
out the initial information in the prior. However,
this intuition applies only when the model is
identified. As we shall see, when one uses the
partially identified model 3, the prior over �γ3,θ�
affects the posterior distribution over γ3, even
though the investigator has access to an infinite
sample.
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A Mistaken Prior: The Case of Model 1

Suppose g is such that the prior puts proba-
bility 1 on the event β3 = 0. In this case, after see-
ing the available data, the investigator’s posterior
is concentrated on the vector (1). With this kind
of prior, model 3 is equivalent to model 1.

We have seen that using model 1 gives mis-
leading answers to the policy question. A prior
like g implicitly contains a great deal of informa-
tion, because no amount of data can shift the
investigator from his belief that β3 = 0. It should
not be used unless the investigator actually has
this information about the world.

An Arbitrary Prior

Suppose instead that g and f are such that
the support of the investigator’s prior is the
entire parameter space. Let h�γ̂ 3;Data� represent
the parameter estimates (2) when γ3 = γ̂ 3. Then,
after seeing the infinite sample, the investigator’s
posterior is concentrated on a one-dimensional
manifold �γ̂ 3,h�γ̂ 3;Data�� indexed by γ̂ 3 ∈ [γL,γH].
His posterior over this one-dimensional manifold
is proportional to φ �γ̂ 3�, where

(Here, hn represents the nth component of the
function h.) Given this posterior uncertainty, the
investigator’s answer to the policy question is no
longer a single number. Instead, the investigator’s
answer is now a random variable, with support
equal to the interval [∆*/γH,∆*/γL] and density
proportional to

where x represents the answer to the policy
question.

Because the model is only partially identified,
the investigator’s posterior over the answer to
the policy question is influenced by his marginal
prior f over the preference parameter γ3 and his
prior g over the other parameters. This dependence
exists even though he sees an infinite sample.5
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4 Lubik and Schorfheide (2004) use a Bayesian procedure to estimate
a partially identified model. As Schorfheide (forthcoming) empha-
sizes, identification problems—that is, the presence of ridges or
multiple peaks in the likelihood—do not create any problems for
Bayesian estimation: “Regardless, the posterior provides a coher-
ent summary of pre-sample and sample information and can be
used for inference and decision making.” 5 Note that in (2), the estimates �σ̂ 2

3A, µ̂0
3A, µ̂1

3A, p̂3� depend only on the



This means that the investigator cannot count on
the available data to eventually correct all misin-
formation in his initial prior. Instead, he must be
sure that his prior truly represents information
about these parameters derived from auxiliary
sources.

No Prior Information About Shock
Processes

It is easy to see how to construct a prior f over
the preference parameters (or over technology
parameters in a more general context). We can
derive information about such behavioral param-
eters from other data sources, from introspection,
or from experiments. However, it is more difficult
to obtain this information about the joint shock
process (A,τ,ψ ). In at least some, and perhaps
most, cases, there will be no auxiliary information
available about these processes. What should be
done?6

In this subsection, I assume that the investi-
gator has information that leads to a prior f with
support [γL,γH], where γL > 0. The investigator
has no auxiliary information about the shock
processes.

The Bayesian Approach. One possible
response to this no-information situation is to
formulate a purely subjective prior belief over
the 11 parameters of the shock process and then
proceed in a standard Bayesian fashion. In doing
so, it is important to keep two issues in mind.
First, as we have seen above, when the model is
partially identified, the prior impacts the answer
to the policy question regardless of how large the
sample is. The subjective beliefs always matter.

Second, every prior—regardless of how neu-
tral it may seem—has some information embed-
ded in it. To appreciate this last point, suppose
there is a parameter α. All that an investigator

truly knows about α is that α lies in [0,1]; he wants
his prior over α to be neutral over its location
within that interval. It is tempting to conclude
that we can capture this neutrality by using a
uniform distribution over [0,1]. But now con-
sider y = α1000. What does the investigator know
about y? Presumably, all that the investigator
knows about y is that it lies in [0,1]—if he knew
more, he would have known more about α. How-
ever, if the investigator has a uniform prior over α,
then the investigator’s prior over y is proportional
to y–999/1000. This density is far from uniform over
[0,1]; it places a lot more weight on low values of
y than on high values of y. The uniform density
over α actually does smuggle information about
α into the analysis.

An Agnostic Approach. The Bayesian
approach weds the investigator to a single
prior g. As I suggest above, this prior contains
information that the investigator does not liter-
ally have. One response to this problem is to
use what I would call an agnostic approach: Be
flexible about the choice of g and compute a
posterior density for each possible prior g over
γ3. By doing so, the investigator’s answer to the
policy question is no longer a single number, or
even a single posterior, but rather a collection of
posteriors generated by varying g. All of these
posteriors have support [∆*/γH,∆*/γL].

The resulting collection of posteriors is large.
In particular, let p be any continuous probability
density function over [∆*/γH,∆*/γL]. Let gp be a
continuous function mapping Θ into R+ such that

for all x in [1/γH,1/γL]. (This pins down the
behavior of gp only on a given line in Θ.). If the
investigator’s prior over Θ is given by gp, then his
posterior over [∆*/γH,∆*/γL] is given by p. Thus,
the agnostic approach imposes no discipline on
the question of interest beyond the upper or lower
bounds on γ3 imposed by the prior f.

This kind of agnostic analysis is reminiscent
of calibration. Under calibration, an investigator
uses information from auxiliary sources to pin
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data and not on γ̂ 3. Hence, the posterior over these four parame-
ters is concentrated on a single vector after the investigator sees
an infinite sample.

6 Recently, del Negro and Schorfheide (2006) have suggested using
prior beliefs about endogenous variables (such as output and infla-
tion) as a way to construct legitimate priors about exogenous shocks.
This approach is potentially interesting. One concern is that usu-
ally our prior beliefs about endogenous variables come from the
macroeconomic data that will, in fact, be used for estimation.



down a range of possible values for behavioral
parameters. He then reports answers to the policy
question for all of the parameter settings in this
range. It is exactly this information that the inves-
tigator ends up reporting under the agnostic
approach: a range of possible values for the policy
question given the range of possible values for
the behavioral parameters.

It is important to emphasize that this conclu-
sion does not mean that the data is useless under
the agnostic approach. Estimation collapses the
support of the original joint prior from a 12-
dimensional manifold to the 1-dimensional sup-
port of the posterior. Hence, the prior information
about γ3, combined with the data, does help the
investigator learn a great deal about the nature of
the shocks hitting the economy. It is true that
this information is irrelevant given the policy
question posed. For other potential questions,
though, this information may well be valuable.

The Agnostic Approach and Decisionmaking.
Of course, more generally, the investigator may
have some information about the underlying
shocks that restricts the possible specifications
of g. Then, the agnostic approach is not equiva-
lent to calibration. In this general case, the agnos-
tic approach implies that each policy interven-
tion (each ∆) leads to a set of posterior probability
distributions over outcomes.

It is interesting to consider the problem of
choosing ∆ in this setting. Suppose there is a
social welfare W�p� associated with a given pos-
terior p over the set of outcomes. Let Π�∆� repre-
sent the set of possible posteriors implied by a
given ∆. Then, choosing ∆ is akin to optimizing
under Knightian uncertainty, as opposed to risk.
It is standard in such settings to use a maximin
approach, under which the choice of ∆ solves
the problem:

Hurwicz (1950, p. 257) provides a similar resolu-
tion to the problem of decisionmaking with par-
tially identified models.7

max min
p∆ ∆∈ ( )

( )
Π

W p .

RELATIONSHIP TO SMETS AND
WOUTERS (2003)

As reported in the introduction, Smets and
Wouters (2003) estimate a DSGE monetary model.
They note that their model is highly similar to
that of Christiano, Eichenbaum, and Evans (2005).
The big difference between the two specifications
is in the number of shocks: Smets and Wouters
allow for 10 different shock processes. None of
these shock processes represent measurement
error. Instead, they all play a substantive economic
role.

Smets and Wouters use a Bayesian procedure
to estimate their model. As argued above, the
prior plays an important role in this kind of esti-
mation. Smets and Wouters correctly spend a
great deal of time in their paper discussing the
specification of the prior over the preference and
technology parameters. They motivate this part
of the prior thoroughly using explicit auxiliary
information.

The motivation for their choice of prior over
the 10 shock processes is quite different. They
write (p. 1140), “Identification is achieved by
assuming that each of the structural shocks [is]
uncorrelated and that four of the ten shocks...
follow a white noise process.” In other words,
they choose the prior over the 10 shock processes
in order to achieve identification, not because of
auxiliary information. The first example makes
clear the problems with this approach. Like Smets
and Wouters, the user of model 1 chooses the
prior over the shock processes to achieve identi-
fication. Because this prior does not truly reflect
auxiliary information, the resulting estimates are
severely biased, even though the model fits the
data exactly. Smets and Wouters give us no rea-
son to believe why the same should not be true
of the estimates of their model.8

The second part of the current paper suggests
an alternative approach. The investigator should
not pick a prior that is designed to achieve iden-
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7 See Gilboa and Schmeidler (1989) for an axiomatization of this
approach to uncertainty.

8 In their recent discussion of identification of DSGE models, Canova
and Sala (2006, p. 40) write that “resisting the temptation to arbi-
trarily induce identifiability is the only way to make DSGE models
verifiable and knowledge about them accumulate on solid ground.”
I agree.



tification. Instead, the prior—or collection of
priors—over the shock processes should reflect
the investigator’s actual beliefs about those
processes. The resulting set of posteriors will
naturally contain less information—but also be
more reliable. The key property of model 3 is
that it is sufficiently rich to include as a special
case the artificial world that is actually generat-
ing the data. It is certainly difficult to build such
a class of models in the real world. Nonetheless,
Bayesian estimation techniques (or any other for
that matter) are only reliable if one does so.9

CONCLUSIONS
A model-based analysis of a policy interven-

tion has two steps. The first is to figure out the
key parameters that shape the quantitative impact
of the intervention. The second is to gather infor-
mation about these parameters. This information
can come in two forms: prior information and
information derived from estimating the model
using a particular data set. The first part of this
paper argues that the fit of a model tells us little
about the quality of information coming from
either source. The second part of the paper argues
that the latter source of information (estimation)
is not useful unless the investigator has reliable
prior information about shock processes.

There is an important lesson for the analysis
of monetary policy. Simply adding shocks to
models in order to make them fit the data better
should not improve our confidence in those
models’ predictions for the impact of policy
changes. Instead, we need to find ways to improve
our information about the models’ key parameters
(for example, the costs and the frequency of price
adjustments). It is possible that this improved
information may come from estimation of model
parameters using macroeconomic data. However,
as we have seen, this kind of estimation is only
useful if we have reliable a priori evidence about
the shock processes. My own belief is that this
kind of a priori evidence is unlikely to be avail-

able. Then, auxiliary data sources, such as the
microeconometric evidence set forth by Bils and
Klenow (2004), will serve as our best source of
reliable information about the key parameters in
monetary models.
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