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Abstract

In practice, financial liabilities circulate acting as inside money. Suppose that financial li-
abilities backed by illiquid assets are used by households as inside money to trade in a
sequence of decentralized markets. We study how the liabilities’ usefulness in facilitating
trade depends on the time-structure and the risk-structure of the underlying illiquid assets.
We model trade in decentralized markets as subject to search frictions as in Rocheteau and
Wright (2005). If the underlying cash flows are too short term, then liabilities can only
support early trade. If the underlying cash flows face too much long-term risk, then the
liabilities will not support enough early period nor enough late period trade. The optimal
maturity structure trades off the costs of asset liquidation and long-term risk to maximize
the usefulness of the liabilities in facilitating trade. We examine how the severity of the
search frictions, the cost of early reversals, and the riskiness of the long-term real assets
impact optimal maturity.
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1 Introduction

Liabilities issued by financial intermediaries provide liquidity services to the broader econ-

omy by supporting decentralized exchange: those liabilities act as inside money. Typically

inside money has shorter maturity and different risk profiles than the liabilities issued by non-

intermediaries that do not act use inside money supporting decentralized exchange. How does

the usefulness of a liability used as a form of inside money impact the maturity and risk struc-

ture chosen by financial intermediaries? We develop a theory to analyze the interplay between

maturity structure, risk structure and the liquidity services provided by inside money. Our

theory provides implications for the structure of liabilities backed by productive assets. On

the margin, the ability to act as inside money changes the risk-return trade-off on the assets—

issuers distort productive efficiency by shortening maturity and reducing risk in order to pro-

vide greater liquidity services. We also explore the implications of our theory for unbacked

liabilities by studying financial intermediaries’ ability to engage in maturity transformation.

We study a finite-horizon economy where heterogeneous households trade in frictional

decentralized markets following Rocheteau and Wright (2005). As in Kocherlakota (1998),

anonymity of households and inability to enforce private credit arrangements leads to house-

hold demand for sources of liquidity. As in Cavalcanti and Wallace (1999), that liquidity comes

from inside money. Decentralized trade is facilitated by inside money backed by assets with

stochastic cash flows. We allow for the possibility of costly early liquidation that changes the

time and risk profile of the risky cash flows.

In our model, liquidation of long-term assets has two critical implications for the stochastic

process of the cash flows. First, and quite naturally, liquidation transfers cash flows from

future periods into the present. Second, liquidation changes the volatility of long-term asset

returns. While we impose this relationship exogenously, such a connection between the timing

of payments and the long-term riskiness of payments can emerge endogenously in a similar

model which incorporates agency frictions. For example, in Calomiris and Kahn (1991), the

ability of a bank manager to abscond with assets yields such a relation.

Implicitly, costly early liquidations resemble a shortening of the maturity of the claims
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issued by financial intermediaries. We use our model to examine optimal liquidation and

maturity policy. When long-term cash flows are sufficiently high in all histories, inside money

is valuable enough to support socially efficient trade in both early periods and late periods.

In this case, there is no liquidity premium in pricing of inside money. The early period value

of inside money is simply the early period cash flow plus the present value of long-term cash

flows. Aggregate welfare is independent of the timing of cash flows as long as the present

value of the cash flows is unaffected by liquidation.

Instead, when long-term cash flows are low enough in some histories to lead to inefficient

trade in the long-term, the pricing of inside money includes a liquidity premium. With enough

long-term risk aggregate welfare can be increased by early liquidations that reduce expected

present discounted value of long-term cash flows, that reduce the riskiness of the long-term

cash flows, and that shorten the maturity of the cash flows.

The result is driven by balancing two opposing forces. First, shortening the maturity is costly

for decentralized trading. Reducing future expected cash flows reduces the usefulness of the

inside money as a medium of exchange in future periods. Because the value of inside money

is forward looking, the reduction in future value implies that a reduction in future cash flows

also makes a claim to future cash flows less useful in facilitating current decentralized trade.

Indeed, in a model with no risk, the expected cash flow cost of maturity shortening actually

provides incentives for financial intermediaries to lengthen the maturity of their claims.

However, shortening the maturity of the asset may be beneficial for decentralized trade if

it reduces the riskiness of returns in future periods. When future cash flows are too low to

support socially efficient decentralized trade in future periods in all states, then households

become more risk-averse towards future cash flow shocks. A Ramsey planner would like to

transfer liquidity from states of excess where cash flows are high enough to support efficient

trade to states of scarcity where cash flows are not high enough to support efficient trade. As a

consequence, a Ramsey planner may be willing to bear the costs of shortening the maturity of

cash flows in order to mitigate long-term risk.

One interpretation of our results is that the usefulness of the inside money in facilitating

decentralized exchange leads to distortions to productive efficiency. In this sense, our findings
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are related to an existing literature on how search frictions lead to distortions on production

margins. For example, Lagos and Rocheteau (2008) show that when the socially efficient level

of the capital stock is not a sufficient source of liquidity, agents have private incentives to over-

accumulate capital. Such over-accumulation of capital provides a role for the government to use

monetary policy to induce agents to accumulate the same capital stock a social planner would

(see Aruoba et al. (2011) for a quantitative evaluation of the magnitude of these distortions.)

Gu et al. (2013) show that commitment problems endogenously lead to financial intermedi-

aries to make investment decisions and to have their liabilities act as inside money. We show

the impact of liabilities acting as inside money on the choice of the underlying assets. Our

results are also related to the large literature that studies the impact of liquidity premia on

equilibrium asset returns. Following the seminal work of Kiyotaki and Wright (1989) and more

recent contributions such as Rocheteau (2011), Lester et al. (2012), and Nosal and Rocheteau

(2013), liquidity premia may arise in environments with exogenous asset specific liquidity con-

straints, informational asymmetries, or asset liquidation costs. In these environments, scarcity

of real assets provides incentives of households to hold non-interest bearing assets to facilitate

decentralized trade. Implicitly, in our environment, we assume a scarcity of non-interest bear-

ing assets and examine the implications of the use of productive assets as a media of exchange

on the maturity and risk structure of the underlying assets.

2 The Model

The model has three periods, time 0, time 1 and time 2. Each of time 1 and time 2 are split

into two sub-periods, a decentralized market sub-period followed by a centralized market sub-

period. Time 0 features only a centralized market sub-period. There are two types of house-

holds in the economy, buyers and sellers.
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2.1 The Environment

The Information Structure. At the beginning of period 1 and at the beginning of period 2

a public signal is observed by all. Let zt ∈ {zl, zh} ≡ Z denote the public signal observed at

the start of period t. The signal determines the underlying cash flows paid by the underlying

assets in the economy with z1 ≡ (z1) and z2 ≡ (z1, z2) denoting the history of signals at each

date.

The Assets. The underlying assets in the economy are modeled as a Lucas (1978) tree with the

possibility of a liquidation decision. The tree generates stochastic cash flows of d1(z1, L) in the

first period and d2(z2, L) in the second period. The second argument L denotes the liquidation

decision, where 0 ≤ L ≤ 1 is fraction of the tree liquidated in the firm period: L = 0 means that

the tree is not liquidated and L > 0 means that a positive fraction of the the tree is liquidated in

the first period. The liquidation decision can also affect the conditional probability distribution

of the signals:

γ(z) = Prob (z1 = z)

γ(z|z1, L) = Prob (z2 = z|z1, L) , (1)

with γ(z2, L) the unconditional distribution of the signals.

We use p0(L) to denote the initial price of claims on the tree, p1(z1, L) to denote the ex-

coupon claim price at time 1 so that p1(z1, L) + d1(z1, L) is the time-1 cum-coupon claim price.

Similarly p2(z2, L) is the ex-coupon claim price of at time 2 and p2(z2, L) + d2(z2, L) is the

cum-coupon claim price at time 2.

To start with, we will take the liquidation decision as given. In later sections of the paper

we endogenize the liquidation decision. To reduce notation we write

{dt(zt), pt(zt), γ(z|z1)} ≡ {dt(zt, L), pt(zt, L), γ(z|z1, L)} (2)

when we take the liquidation decision as given.
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Households. There are two types of households: buyers and sellers. We use the superscripts b

to denote buyers and s to denote sellers throughout. Let qt denote goods produced or consumed

in the decentralized sub-periods, let xt denote consumption of goods in the centralized sub-

periods, and let yt denote production of goods in the centralized sub-periods. There is a

measure 1 of buyers with period t preferences:

Ub
t (qt, xt, yt) = u(qt) + [v(xt)− yt] , (3)

and there is a measure n of sellers with preferences

Us
t (qt, xt, yt) = −c(qt) + [v(xt)− yt] . (4)

The buyers’ utility for decentralized market consumption is u, the sellers’ disutility cost

for production is c, and the utility of consuming the centralized market good is v. Buyers

and sellers have linear disutility of labor in the centralized market, and β is the discount rate

between periods.1

There are gains to trade in decentralized markets. Buyers enjoy utility of u(qt) from con-

suming qt in the decentralized market while sellers have an ability to produce these goods at

utility cost c(qt)and do notenjoy utility from consuming them in the decentralized market. The

gains from trade are u(qt)− c(qt).

Trading Frictions. Buyers and sellers face matching fractions in decentralized markets. Specif-

ically, the same number of buyers and sellers match and trade in equilibrium. Let α(n) denote

the probability that a buyer meets a seller and therefore α(n)/n is the probability a seller meets

a buyer. 2 When a buyer and a seller meet in a decentralized market, they engage in pro-

portional bargaining to determine the terms of trade. We describe the bargaining process and

outcomes in more detail in the next section.
1Rocheteau and Wright (2005) allow a discount rate of βd between the centralized and decentralized sub-

periods. For simplicity, we abstract from between sub-period discounting in our model.
2The matching probability satisfies: α′(n) > 0, α′′(n) < 0, α(n) ≤ min{1, n}, α(0) = 0, α′(0) = 1, α(∞) = 1.
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2.2 Equilibrium with Fixed Liquidation

Recursive Definition of the Household’s Problem. We now describe the recursive formula-

tion of the buyers and sellers problems, begining in the period 2 centralized market. In period

2 the history z2 is fully known so the only relevant state for the household is the total number

of claims to the tree they hold. Let a2 denote the number of claims that the household owns so

that the value of the claims is a2 ×
(

p2(z2) + d2(z2)
)
. A household of type i ∈ {b, s} solves

W i
2(a2; z2) = max

x,y
v(x)− y, (5)

subject to

x ≤ y + a2(p2(z2) + d2(z2)).

The notation reflects that the equilibrium cum-coupon claim price will depend on the history.

Since buyers and sellers are symmetric in the centralized market, the decision problem is the

same for both types of households.

When buyers and sellers enter the period 2 decentralized market the history z2 is realized.

Let ai
2 denote the claims held by a household of type i ∈ {b, s}. In a match between a buyer with

claims ab
2 and a seller with claims as

2, the functions (q2, m2) denote the terms of trade, where q2

is the amount produced for the buyer and m2 is the amount of valued claims transferred from

the buyer to the seller.

We use a proportional bargaining rule to determine the terms of trade. In proportional

bargaining, a buyer’s surplus from a match is equal to η/(1− η) times the seller’s surplus,

with η ∈ [0, 1]. In other words, in a match between a buyer and seller with claims
(
ab

2, as
2
)

and

in history z2, the terms of trade (q2, m2) solve

max
q2,m2

u(q2) +
[
Wb

2 (ab
2 −m2; z2)−Wb

2 (ab
2; z2)

]
, (6)
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subject to

u(q2) +
[
Wb

2 (ab
2 −m2; z2)−Wb

2 (ab
2; z2)

]
=

η

1− η

[
−c(q2) +

(
Ws

2(as
2 + m2; z2

)
−Ws

2(as
2; z2)

]
,

and

m2 ≤ ab
2.

Let Ωi
2 denote the period 2 distribution over claims held by households of type i ∈ {b, s}

at the start of the period 2 decentralized market. Then, in the period 2 decentralized market

sub-period, given claims ab held by a buyer, the buyer’s value function is

Vb
2 (ab

2; z2) = α(n)
∫

as
2

{
u[q2(ab

2, as
2; z2)] + Wb

2

[
a2

b −m2(ab
2, as

2; z2); z2
]}

dΩs
2(as

2)

+ (1− α(n))Wb
2 (ab

2; z2), (7)

and the seller’s value function is

Vs
2 (as

2; z2) =
α(n)

n

∫
ab

2

{
−c[q2(ab

2, as
2; z2)] + Ws

2

[
as

2 + m2(ab
2, as

2; z2); z2
]}

dΩb
2(ab

2)

+

(
1− α(n)

n

)
Ws

2(as
2; z2). (8)

Suppose a household of type i enters the period 1 centralized market in history z1 and

holding a1 assets that pay d1(z1) at time 1 with price p1(z1). The value of the portfolio is

a1 ×
[
d1(z1) + p1(z1)

]
. Each household’s value function is

W i
1(a1; z1) = max

x,y,ai
2

v(x)− y + β ∑
z2∈Z

γ(z2|z1)Vi
2(ai

2; (z1, z2)), (9)

subject to

x + ai
2p(z1) ≤ y + a1

[
p(z1) + d1(z1)

]
.

Similar to the period 2 decentralized market, in the period 0 decentralized we need only

specify a terms of trade mechanism, q1(ab
1, as

1; z1), m1(ab
1, as

1; z1) and distributions Ωi
1(ai

1) to fully
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determine buyers and sellers values. As in the period 1 decentralized market, the terms of

trade are determined by proportional bargaining; the terms of trade (q1, m1) are the solution to

max
q1,m1

u(q1) +
[
Wb

1 (ab
1 −m1; z1)−Wb

1 (ab
1; z1)

]
, (10)

subject to

u(q1) +
[
Wb

1 (ab
1 −m1; z1)−Wb

1 (ab
1; z1)

]
=

η

1− η

[
−c(q1) +

(
Ws

1(as
1 + m1; z1

)
−Ws

1(as
1; z1)

]
,

and

m1 ≤ ab
1.

The value function for a buyer is

Vb
1 (ab

1; z1) = α(n)
∫

as
1

{
u[q1(ab

1, as
1; z1)] + Wb

1

[
a1

b −m1(ab
1, as

1; z1), z1
]}

dΩs
1(as

1)

+ (1− α(n))Wb
1 (ab

1, z1), (11)

and for a seller is

Vs
1 (as

1, z1) =
α(n)

n

∫
ab

1

{
−c[q1(ab

1, as
1; z1)] + Ws

1

[
as

1 + m1(ab
1, as

1; z1); z1
]}

dΩb
1(ab

1)

+ (1− α(n)
n

)Ws
1(as

1; z1). (12)

The value functions for buyers and sellers in the period 0 centralized market are

W i
0(a0) = max

x,y,a1
v(x)− y + β ∑

z1∈Z
γ(z1)Vi

1(ai
1; z1), (13)

subject to

x + ai
1p0 ≤ y + ai

0p0,

where ai
0 is type i households initial endowment of claims.
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Given a fixed liquidation rule, we define an equilibrium in the standard fashion.

Definition 1. An equilibrium is a list of value functions {(W i
t)i=0,1,2, (Vi

t )i=1,2}, policy functions

{(xi
t, yi

t, ai
t)i=0,1,2}, terms of trade, {(qt, mt)i=0,1}, and asset prices {p0, p1(z1), p2(z2)} such that

1. Given prices and value functions, the policy functions are optimal;

2. Given prices and policy functions, the value functions satisfies Equations (5), (9), (8) and (7);

3. The terms of trade are the proportional bargain solutions in Equations(6) and (10);

4. Goods and asset markets clear:

xb
0 + nxs

0 = yb
0 + nys

0,

∀z1, xb
1(z1) + nxs

1(z1) = yb
1(z1) + nys

1(z1) + d1(z1),

∀z2, xb
2(z

2) + nxs
2(z

2) = yb
2(z

2) + nys
2(z

2) + d2(z2),

∀t, zt, ab
t (z

t) + nas
t(z

t) = 1. (14)

Appendix A provides a characterization of the equilibrium. As in Lagos and Wright (2005),

quasi-linearity of preferences ensures that in any centralized market, a household’s optimal

choice of claims to purchase is independent of the claims they bring into the centralized mar-

ket. In equilibrium, the distributions of asset holdings for buyers and sellers are therefore

degenerate. Following Rocheteau and Wright (2005), we characterize equilibrium in which in

each centralized market the buyers purchase all of the claims to the Lucas Tree and use these

claims to facilitate trade in the subsequent decentralized market. As a consequence, buyers

marginal decision to hold the assets determine the equilibrium asset price in each period and

after every history.

In order to describe the equilibrium, let d∗ denote the value of cash flows in period 2 which

are sufficient to support efficient trade in decentralized markets when each buyer holds 1 unit

of the asset:

d∗ = (1− η)u(q∗) + ηc(q∗), (15)
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with q∗ the efficient level of production, satisfying

u′ (q∗) = c′ (q∗) . (16)

Equilibrium production in the second period is:

qeq
2 (z2) =


(
q
∣∣(1− η)u(q) + ηc(q) = d2

(
z2)) , if d2

(
z2) < d∗,

q∗ if d2
(
z2) ≥ d∗,

(17)

and equilibrium production in the first period is:

qeq
1 (z1) =


(
q
∣∣(1− η)u(q) + ηc(q) = p1(z1) + d1

(
z1)) , if p1(z1) + d1

(
z2) < d∗,

q∗ if p(z1) + d1
(
z1) ≥ d∗.

(18)

Production in the second period is constrained when the second period cash-flow is low

enough and efficient when the second period cash flow is high enough. Production in the first

period is constrained when the first period cum-coupon price is low enough and efficient when

the first period cum-coupon price is high enough.

2.3 Period 1 Asset Prices

The final period asset price is p2
(
z2) = 0. The first period ex-coupon asset price following a

realization of shock z1 is

p1 (z1) = β ∑
z2∈Z

γ (z2|z1) d2 (z2, z1)

+ βα(n)η ∑
z2∈Z

γ (z2|z1) d2 (z2, z1)
u′
(
q2
(
ab

2, as
2; z2))− c′

(
q2
(
ab

2, as
2; z2))

(1− η)u′
(
q2
(
ab

2, as
2; z2

))
+ ηc′

(
q2
(
ab

2, as
2; z2

)) , (19)

with ab
2 = 1 and as

2 = 0. The asset price is the asset’s discounted expected coupons plus the

discounted liquidity premium. The discounted liquidity premium is strictly positive only when

decentralized trade is constrained, which occurs when d2
(
ab

2, as
2; z2) < d∗ so that q2

(
ab

2, as
2; z2) <
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q∗. Equation (19) is familiar models with no decentralized trade and risk-neutral agents in

which the asset price is equal to the discounted expected value of the coupons. Equation (19)

is also familiar in monetary models where asset prices reflect not only their coupons but also

their usefulness in relaxing trading frictions–see Lagos (2010) for example.

3 The Ramsey Problem

Up to this point, we take the liquidation decision as given. We now generalize the stochastic

process for cash flows and allow them to depend on a liquidation choice. Let L ∈ [0, 1] denote

the liquidation chosen in period 0 to apply to the cash flow process. We then index the Lucas

Tree cash flows in each period as a function of the history zt and the liquidation choice L:

dt(zt, L) denotes the cash flows generated by the Lucas Tree in period t in history zt given a

choice, L. Recall that the state variables zt are binomial, with state space {zl, zh} ordered with

zl < zh. Liquidation changes the maturity structure and risk structure of the cash flows. Specif-

ically, liquidation increases time 1 cash flows, decreases time 2 cash flows and also changes

the riskiness of discounted cash flows. Below, we provide a specific example of a liquidation

technology.

We solve the problem of a Ramsey planner who chooses an optimal liquidation amount tak-

ing into consideration the impact that liquidation has on cash flows and equilibrium outcomes.

The planner chooses a physical maturity structure and then allocates resources to buyers and

sellers in centralized and decentralized markets, subject to the decentralized trading frictions.

When choosing trade in decentralized markets, the planner is constrained by the proportional

bargaining constraints and the asset prices that would emerge in the competitive equilibrium

associated with the given liquidation decision.

Before discussing the effects of the liquidation, we note that the equilibrium outcomes dis-

cussed in Section 2 are the same as the outcomes chosen by the planner: Conditional on the

liquidation choice, the resulting competitive equilibrium attains the same level of ex ante wel-

fare that the planner can attain.
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Lemma 1. For a fixed liquidation, welfare in a competitive equilibrium is the same as that obtained in

the Ramsey problem.

Lemma 1 implies that the the value to the planner in each period after each history is the

same as the sum of the values of the individual consumers in the competitive equilibrium.

Using the characterization in Appendix A, we characterize the welfare obtained by the Ramsey

planner using backward induction. Such a characterization helps illustrate how the liquidation

decision, and implicitly the maturity structure, impacts the ex ante value the Ramsey planner

obtains. In the last centralized market, the planner’s value is

WP
2 (z

2, L) = (1 + n)v̄ + d2(z2, L), (20)

where the superscript P indicates a value of the planner, and v̄ is a constant defined in the

Appendix. The planner’s value in the last period decentralized market is

VP
2 (z2, L) = α(n)

[
u(qP

2 (z
2, L))− c

(
qP

2 (z
2, L)

)]
+ WP

2 (z
2, L), (21)

where production in the second period is

qP
2 (z

2, L) =


(
q
∣∣(1− η)u(q) + ηc(q) = d2

(
z2, L

))
, d2

(
z2, L

)
< d∗

q∗ else.
(22)

Consider the value function in equation (21). Suppose that d2 (z1, zl, L) < d∗ < d2 (z1, zh, L).

Since decentralized trade is constrained in the history (z1, zl), social surplus is lower in that

history than social surplus in the history (z1, zh). Moreover, since WP
2 is linear in the realized

cash flows, d2(z2, L), the decentralized market value function VP
2 is concave only if d2(z2, L) <

d∗. In this case, because claims to the Lucas Tree are used to facilitate decentralized trade and

that there are histories where the cash flows are not sufficient to support efficient trade, the

Ramsey Planner’s value function exhibits additional risk aversion relative to the states in which

d2(z2, L) > d∗.
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The planner’s value function in the centralized market in period 1 is

WP
1 (z

1, L) = d1(z1, L) + (1 + n)v̄ + β ∑
z2∈Z

γ (z2|z1)VP
2 (z2, L), (23)

and, similar to period 2, in the decentralized market is

VP
1 (z1, L) = α(n)

[
u(qP

1 (z
1, L))− c

(
qP

1 (z
1, L)

)]
+ WP

1 (z
1, L). (24)

First period production is

qP
1 (z

1, L) =


(
q
∣∣(1− η)u(q) + ηc(q) = p1(z1, L) + d1(z1, L)

)
, p1(z1, L) + d1(z1, L) < d∗,

q∗ else,
(25)

where p1(z1, L) satisfies equation (19) after re-writing the Lucas Tree cash flows to depend

explicitly on L. If d2 (z1, zl, L) < d∗, then trade is constrained in period 2 decentralized markets,

implying that the liquidity premium component of the asset price is strictly positive in that

history. Any change in the period 2 cash flow in history z2 will then impact the liquidity

premium and, therefore, asset prices. Changing the cash flows to increase in the asset price

through liquidation may prove useful for the planner to relax constraints on decentralized

trade in period 1.

The Ramsey planner chooses the liquidation L to solve

max
L

WP
0 (L) = max

L
(1 + n)v̄ + β ∑

z1

γ (z1)VP
1 (z1, L). (26)

4 A Liquidation Example

We now further specialize the liquidation technology to examine the Planner’s optimal choice

of liquidation. First, we assume that the probability distribution of the histories is independent

of the planner’s liquidation choice. Second we assume that Prob(z2 = z1) = 1 so that all cash-

flow risk is resolved in period 0. Third, we assume that liquidation raises period 1 cash flows
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in all histories z1 and lowers period 2 cash flows in all histories z1. Specifically, period 1 cash

flows are

d1(z1, L) = βκL + d1(z1, 0) (27)

for κ > 0 and d1(z1, 0) ≥ 0, and the second period cash flows are:

d2(z1, L) =

 d2(z1, 0)− L
(

d2(z1, 0)− d∗
β

)
, if d2(z1, 0) > d∗

β ,

d2(z1, 0)− Ld2(z1, 0), else,
(28)

for d2(z1, 0) ≥ 0. Liquidation always increases period 1 cash flows and reduces period 2 cash

flows in both states. If there is enough liquidity to support efficient trade after history z1 in

the second period with no liquidation, then cash-flows after the liquidation dividends will still

support efficient trade in that state. The smaller κ is, the costlier the liquidation is. We assume

that liquidation always reduces the present value of the cash flows:

Assumption 1.
d

dL
E [d1(z1, L) + βd2(z1, L)] < 0, ∀L ∈ [0, 1]. (29)

With our choice of liquidation technology, Assumption 1 holds if

κ + ∑
z1

γ(z1)
d

dL
d2(z1, L) < 0, ∀L ∈ [0, 1]. (30)

We also restrict the liquidation decision to be independent of the period 1 history. Liqui-

dation reduces period 2 cash flows at potentially different rates depending on the riskiness of

period 2 cash flows.

We also assume that in history z1 = zh time 2 cash flows are sufficient to support efficient

trade in both periods for all liquidation choices.

Assumption 2. d2(zh, 0) > d∗
β

Assumption 2 implies that for all L, d2(zh, L) ≥ d∗ and therefore supports efficient decen-

tralized trade in period 2 so that period 1 asset prices have no liquidity premium. Moreover,

the assumption implies that for all L, p1(zh, L) + d1(zh, L) ≥ d∗ and therefore supports efficient

14



decentralized trade in period 1 also. Indeed, Assumption 2 ensures that there is excess liquidity

in history zt = zh. We maintain Assumptions 1 and 2 throughout.

Ramsey Optimal Liquidation. We now describe the Planner’s trade-offs in the liquidation

decision, and show when liquidation is optimal and when liquidation is not optimal.

Incorporating the liquidation decision and the assumption that z2 = z1 in each history, the

planner’s value conditional on time 1 information is:

VP
1 (z1, L) = α(n)

[
u(qP

1 (z
1, L))− c(qP

1 (z
1, L))

]
+ d1(z1, L) + (1 + n)v̄ + βVP

2 (z1, L), (31)

where qP
1 (z1, L) satisfies equation (25). To analyze the effect of changes in L, we differentiate

VP
1 (z1, L) with respect to L:

d
dL

VP
1 (z1, L) = α(n)

[
u′
(

qP
1 (z

1, L)
)
− c′

(
qP

1 (z
1, L)

)] d
dL

qP
1 (z

1, L) +
d

dL
d1(z1, L)

+β

[
α(n)

[
u′
(

qP
2 (z

1, L)
)
− c′

(
qP

2 (z
1, L)

)] d
dL

qP
2 (z

1, L) +
d

dL
d2(z1, L)

]
.(32)

If the assets are not used in decentralized trade, then we claim that the marginal impact

of liquidation, under Assumption 1 is strictly negative for all L. If we interpret α(n) as the

probability that the inside money is accepted in decentralized trade, then to say that inside

money is not used is to assume that α(n) = 0. In this case, equation (32) implies that the effect

of liquidation satisfies

∀L ∈ [0, 1] , ∑
z1

γ (z1)
d

dL
VP

1 (z1, L) =
d

dL ∑
z1

γ (z1) [d1(z1, L) + βd2(z1, L)] < 0 (33)

where the inequality follows from Assumption 1.

Lemma 2. If Assumption 1 holds and α(n) = 0, then any liquidation is suboptimal.

When assets are used in decentralized trade, then whether liquidation is useful or not de-

pends on the extent to which liquidity is plentiful or scarce following different histories. To see

this, consider first the impact liquidation has in the history z1 = zh. When Assumption 2 holds,
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it is immediate that (d/dL) qP
t (z

1, L) = 0 for t = 1, 2 since cash-flows are always sufficient to

support efficient decentralized trade. Hence, the impact of liquidation in this history is simply

d
dL

VP
1 (zh, L) =

d
dL

[d1(zh, L) + βd2 (zh, L)] . (34)

Next, consider the impact liquidation has in the history z1 = zl. Suppose first that liquidity

is plentiful in this history also. In other words, suppose that d2(zl, 0) > d∗
β : there is excess liq-

uidity in both states. Then, as in history z1 = zh, decentralized terms of trade are independent

of L ((d/dL) qP
t (zl, L) = 0 for t = 1, 2) and the impact of liquidation in this history satisfies

d
dL

VP
1 (zl, L) =

d
dL

[d1(zl, L) + βd2 (zl, L)] . (35)

As a result, the overall effect of liquidation again satisfies inequality (33) so that liquidation is

suboptimal.

Lemma 3. If Assumptions 1 and 2 hold and d2(zl, 0) > d∗/β, then any liquidation is suboptimal.

Finally, suppose that liquidity is scarce in the history z1 = zl. In particular, suppose that

d2(zl, 0) < d∗ so that for all L, d2(zl, L) < d∗. Given that there is excess liquidity in history

z1 = zh, from equation (32) and (34), the expected impact of liquidation satisfies

d
dL

E [d1(z1, L) + βd2(z1, L)]

+βγ(zl)α(n)
([

u′(qP
2 (zl, L))− c′(qP

2 (zl, L))
] d

dL
qP

2 (zl, L)
)

+γ (zl) α(n)
([

u′(qP
1 (zl, L))− c′(qP

1 (zl, L))
] d

dL
qP

1 (zl, L)
)

. (36)

Equation (36) shows that the expected impact of liquidation depends on the size of the

direct costs of liquidation on the present value of cash flows on the first line, the indirect

impact of liquidation on the second period terms of decentralized trade on the second line, and

the indirect impact of liquidation on the first period terms of decentralized trade on the third

line.

When d2(zl, L) < d∗, time 2 cash flows are not sufficient to support efficient decentralized
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trade in period 2 so that u′
(
qP

2 (z
1, L)

)
> c′

(
qP

2 (z
1, L)

)
. Since liquidation reduces time 2 cash

flows, liquidation will affect the time 2 terms of trade:

d
dL

qP
2 (zl, L) =

1
(1− η)u′

(
qP

2 (zl, L)
)
+ ηc′

(
qP

2 (zl, L)
) d

dL
d2(zl, L). (37)

In our liquidation example, when d2(zl, 0) < d∗, (d/dL) d2(zl, L) = −d2(zl, 0) < 0 so that the

indirect impact of liquidation on second period terms of trade is negative, of the same order

of magnitude as d2(zl, 0) and converges to 0 as d2(zl, 0) tends to 0. Thus, the second line in

equation (36) converges to 0 as d2(zl, 0) converges to 0.

Liquidation may also impact the time 1 terms of trade if at a given L, d1(zl, L) + p1(zl, L) <

d∗ so that

d
dL

qP
1 (zl, L) =

1
(1− η)u′

(
qP

1 (zl, L)
)
+ ηc′

(
qP

1 (zl, L)
) d

dL
[d1(zl, L) + p1(zl, L)] . (38)

We now show that if d1(zl, 0) and d2(zl, 0) are both sufficiently small, then some amount of

liquidation is optimal. To see this, suppose that d1(zl, 0) = 0. We show that (d/dL)VP
1 (zl, L)

is strictly positive near L = 0 when d2(zl, 0) is sufficiently small. For L near 0, d1(zl, L) +

p1(zl, L) < d∗ so that liquidation impacts the time 1 terms of trade. The impact of liquidation

on the planner’s value function depends on the impact of liquidation on the cum-coupon price

of the Lucas Tree:

d
dL

[d1(zl, L) + p1(zl, L)] (39)

= βκ − βd2(zl, 0)

−βα(n)ηd2 (zl, 0)
u′(qP

2 (zl, L))− c′
(
qP

2 (zl, L)
)

(1− η)u′
(
qP

2 (zl, L)
)
+ ηc′

(
qP

2 (zl, L)
)

−βα(n)η(1− L) [d2 (zl, 0)]2
u′′(qP

2 (zl, L))c′(qP
2 (zl, L))− u′(qP

2 (zl, L))c′′(qP
2 (zl, L))[

(1− η)u′(qP
2 (zl, L)) + ηc′(qP

2 (zl, L))
]3 .

Recall from equation (19) that the time 1 ex-coupon asset price is simply the discounted cash

flow plus the discounted liquidity premium. Therefore, the impact of liquidation on the cum-

coupon price of the asset is the marginal impact on discounted cash flows shown in line 2 of
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equation (39) plus the marginal impact on the discounted liquidity premium shown in lines 3

and 4 of equation (39).

To the extent that d2(zl, 0) < κ, the impact on cash flows may be strictly positive and improve

time 1 terms of decentralized trade. Since liquidation causes the period 2 cash flows to decrease,

liquidation induces a downward movement in the liquidity premium – with fewer cash flows

in period 2, the asset supports less decentralized trade in period 2 which makes the asset less

valuable in period 1. This downward movement is line 3 of equation (39). On the other hand,

since more claims against the Lucas Tree are needed to support efficient decentralized trade in

period 2, buyers have stronger incentives to acquire these claims in period 1 which induces an

upward movement in the liquidity premium and makes the asset more valuable in period 1.

This upward movement is line 4 of equation (39). The net effect on the liquidity premium is

negative since the upward price movement on line 4 of equation (39) is of second order.

Nonetheless, the overall impact of liquidation on the cum-coupon price of the asset in time

1 converges to κ as d2(zl, 0) converges to 0. As a consequence, the indirect impact of liquidation

on the first period terms of decentralized trade in equation (36) converges to

α(n)ηγ(zl)βκ
1

1− η
> 0 (40)

as d2(zl, 0) converges to 0 and L converges to 0. We have shown that when the direct costs of

liquidation are small enough and d2(zl, 0) is close enough to 0, then the Ramsey planner would

always want some strictly positive amount of liquidation.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then, there exists a κ such that for all κ ≥ κ there

exists a threshold, d̄ such that for all d2(zl, 0) < d̄ < κ, L = 0 is suboptimal for the Ramsey Planner.

The two thresholds in the above Proposition ensure that the direct liquidation costs are small

– that is, κ is large – and that the indirect liquidation costs are small – that is, d2(zl, 0) is small.

Equation (36) also makes clear why risk is essential to our argument. In the absence of risk,

say, for example, if γ(zh) = 0, then even when d2(zl, 0) < d∗, liquidation is suboptimal. In this

case, even when there is no cost in present discounted value to liquidation, so that κ = d2(zl, 0),

qP
1L(zl, 0) < 0. Note that when γ(zh) = 0, κ = d2(zl, 0) is the largest κ such that Assumption 1
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is satisfied. Consequently, the planner would never liquidate in this case. In fact, the planner

would prefer to move assets into the future if possible. We state this result in the following

lemma.

Lemma 4. Suppose γ(zh) = 0 and d2(zl, 0) < d∗. Then the planner prefers not to liquidate, or L = 0.

Lemmas 2 to 4 and Proposition 1 identify necessary conditions for the Ramsey planner to

choose to liquidate long-term assets and shorten maturity. We find that two conditions are

critical. First, risk is essential. In the absence of risk, even if long-term cash flows are not

sufficient to support efficient decentralized trade, the planner prefers to lengthen the maturity

and avoid liquidation. When there are liquidity states with excess or shortage of liquidity, the

planner is willing to bear the costs of maturity shortening in order to reduce risk in expected

cash flows and relax trading constraints in decentralized markets. Second, with risk, the costs

of liquidation must not be too large. Interesting, we find two different costs of liquidation. The

first is the direct cost of reduced expected discounted cash flows. The second cost is the losses

associated with reduced decentralized trade in future periods.

5 Implementation with Competitive Intermediaries

In this section we examine liquidation decisions which occur in a decentralized environment

with a competitive banking sector. Specifically, we introduce a new set of agents, whom we

refer to as bankers, who have the capability of committing to a liquidation strategy, L, as the

Ramsey planner studied in Section 3 above. In this environment, bankers purchase Lucas trees

from households, decide on a liquidation strategy, and then issue claims backed by their Lucas

trees. To the extent that a different liquidation, or maturity structure is preferred by households

over the default liquidation structure (associated with L = 0), these bankers are able to improve

upon allocations obtained without bankers.

We begin by augmenting our notion of a competitive equilibrium in Section 2 to include

period 0 decisions by households and bankers. Given that bankers can commit to a liquidation

strategy, each claim offered by a banker is indexed by the particular liquidation strategy chosen
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by the banker who issued the claim. We assume that the liquidation choices are perfectly

observably by households. Let L denote the set of liquidation strategies chosen by bankers.

Each household in period 0 then decides how much to work, how much to consume of the

general good, and how many of each type of claims to purchase in the period 0 centralized

market to solve the following maximization problem.

max
x,y,a(L)

v(x)− y + βEVi
1((a(L))L∈L, z1), (41)

subject to the budget constraint

x + ∑
L∈L

p0(L)a(L) ≤ y + p̂0ei
0 (42)

for each i ∈ {b, s} where ei
0 denotes a household of type i’s endowment of the Lucas Tree and

p̂0 is the period 0 price of a Lucas tree..

The value function, Vi
1(·, z1) is defined as in Section 2 . Here, terms of trade between a

buyer and a seller are a function of the total value of the buyer’s assets, which is equal to

∑L∈L ab
0(L)[p1(L, z1) + d1(z1, L)].

In period 0, each bank decides how many Lucas trees to purchase, a liquidation strategy

to apply to all trees purchased by the banker, and the number of claims to issue. Each banker

solves

max
bd,As,L

− p̂0bd + p0(L)As + (bd − As)E ∑
t

βtdt(zt, L), (43)

subject to

As ≤ bd. (44)

In period 0, the banker earns revenues p0(L)As from issuing As claims at price p0(L) and

pays the cost of purchasing bd trees, p̂0bd. In future periods, the banker enjoys any promised

cash flows not promised to the claim holders and discounts at the same rate as households.

The banker is constrained to have positive consumption in future periods which yields the

constraint.

20



A Competitive Equilibrium with Endogenous Liquidation Choices is defined analogously to to

that with exogenous liquidation choices augmented by the period 0 prices of Lucas Trees as

well as bankers’ period 0 demand for Lucas Trees and supply and demand for bankers’ claims

such that bankers’ choices are optimal and markets for Lucas Trees and bankers’ claims clear.

Before describing the differences between competitive outcomes and constrained efficient

outcomes, we first provide a brief characterization of the bankers’ optimal choices. Because

of the quasi-linearity of households’ preferences, in an equilibrium with bounded demand for

bankers’ claims, for any L the price of the banker’s liabilities must be larger than E ∑t βtdt(zt, L).

Since the price of the banker’s claim is larger than the discounted value of the dividends

associated with the banker’s assets, the banker’s positive consumption constraint binds so that

As = bd. Hence, the banker’s problem can be simplified to

max
bd,L

bd [p0(L)− p̂0] . (45)

The banker will therefore choose the liquidation policy to maximize the period 0 price of her

liabilities.

Next, we demonstrate that when the Ramsey planner chooses an interior level of liquidation,

the planner’s allocation cannot be decentralized as a competitive equilibrium without policy.

We prove this result by contradiction. Suppose that the planner’s allocation is an equilibrium

and let L∗ ∈ (0, 1) denote the planner’s optimal liquidation choice. In an equilibrium which

decentralizes this outcome, each bank purchases 1 unit of the Lucas tree and issues 1 unit of

backed claims.

If such an allocation were an equilibrium, then it must be that L∗ maximizes the period 0

asset price. Suppose an individual, deviating banker chooses an arbitrary choice of liquidation

L̂ ∈ [0, 1] but continues to purchase 1 unit of period 0 Lucas trees and sell 1 unit of claims. We

prove that the banker can increase her asset price above p0(L∗) and therefore make a strictly

greater profits than in the conjectured equilibrium.

Since buyers must be indifferent between holding all assets offered in equilibrium, the de-
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viating banker’s asset price satisfies

p0(L̂) = Eβ
d
da

Vb
1 (ab

0(L̂), z1) (46)

with ab
0(L̂) = 1. so that if some buyer holds 1 unit of the deviating banker’s claims, the marginal

benefit is equal to the price, p0(L̂). We claim that L∗ does not solve maxL̂ p0(L̂).

The social planner chooses L to solve

max
L

EβVb
1 (L, z1). (47)

As we will see, when liquidity premia are strictly positive, maximizing prices may not be

equivalent to maximizing welfare.

We focus on the stylized liquidation example from Section 4. In this case, the deviating

banker’s asset price is

p0(L̂) = βγ(zh)[d1(zh, L) + βd2(zh, L)]

+ βγ(zl) [p1(zl, L) + d1(zl, L)]
[

1 + α(n)η
u′(q1)− c′(q1)

(1− η)u′(q1) + ηc′(q1)

]
. (48)

Of course, there always exists an equilibrium in which each bank purchases one unit of the

Lucas Tree, issues 1 unit of claims, and chooses a liquidation strategy LCE which maximizes the

price level given in equation (48)). We summarize these results in the following proposition.

Proposition 2. Suppose the constrained efficient liquidation choice, L∗ is strictly interior (L∗ ∈ (0, 1)).

Then, liquidation choices in the decentralized equilibrium is strictly lower, LCE < L∗ and is constrained

inefficient.

Proof to be Completed.

Proposition 2 illustrates that there is a role for regulative policy when α(n) > 0 and the

Ramsey planner’s optimal choice of L is strictly interior. In this case, in the absence of policy,

bankers choose to issue claims which promise too many cash flows in period 2 and too little

cash flows in period 1. Inside money issued by banks in the unregulated competitive equilib-
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rium feature too much risk in the sense that the variance of expected discounted cash flows is

larger than that which the Ramsey planner would select.

Figure 5 illustrates welfare and the price level p0(L̂) for various values of d2(zl, 0) = ε for a

numerical example. For ε sufficiently small, the Ramsey planner’s optimal choice of liquidation

is strictly positive. Indeed, in the example L∗ = 1. For each value, however, the asset price is

maximized at a weakly lower level of liquidation. In particular, when the planner chooses an

interior level, L∗ ∈ (0, 1), the asset price is maximized at a strictly lower value of L.

0 0.5 1

Welfare as fn of L

L

W

ε1

ε2

ε3

0 0.5 1

Price as fn of L

L

P
0

ε1

ε2

ε3

Figure 1: The figure provides numerical examples of the Planner’s value function and the
Banker’s price function, both plotted against amount liquidated. The parameters are: u(q) =
(q+0.0001)1−.2

(1−0.2) − (0.0001)1−.2

(1−0.2) , c(q) = q, α(n) = n = 0.5, η = 0.5, γ(zl) = γ(zl) = 0.5, d1(zl, 0) = 0
d2(zh, 0) = 1.5d∗ where d∗ solves equation (15), and d2(zl, 0) = ε, ε1 < ε2 < ε3.

These concerns give rise to a role for policy to regulate the maturity decisions of banks. By

imposing a liquidation floor, that banks are free to choose L larger than L∗, policy can induce

banks to select the constrained efficient level of liquidation and, therefore, the constrained

efficient maturity structure.
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6 Conclusions

We develop a theory that links the usefulness of financial intermediaries’ liabilities as a medium

of exchange to the maturity and risk structure of those liabilities. Shortening the maturity of

the liabilities can only increase social surplus if shortening also reduces the riskiness of the

long-term cash flows. Our finding provides a novel rationale for why financial intermediaries

predominantly issue short maturity liabilities. The difference in maturity structure of financial

intermediaries and non-financial firms arises in our model only because liabilities of the finan-

cial sector act as inside money. In the our model, liabilities are backed by real assets–there is no

maturity mismatch between the assets and liabilities. But even in the absence of roll-over risk,

there is a social incentive to shorten maturity and distort productive margins.
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A Equilibrium Characterization

In this Appendix, we characterize equilibrium outcomes and asset prices with a fixed maturity

structure We proceed by backward induction. Clearly, the ex-dividend price of the Lucas tree

in the centralized market of period 2 is necessarily zero, or p2
(
z2) = 0. This result implies that

the value functions for both buyers and sellers satisfy

W i
2(a, z2) = ad2

(
z2
)
+ v̄, (1)

where v̄ ≡ maxx v(x)− x.

In the decentralized market in period 2, in any match between a buyer and seller, the terms

of trade, q2(ab
2, as

2, z2), m2(ab
2, as

2, z2) are chosen to solve the proportional bargaining problem.

Using the form of the value function in equation (1), note that for either a buyer or a seller, and

for any amount of shares exchanged, m, the net continuation surplus for the consumer is

W i
2(a + m, z2)−W i

2(a, z2) = (a + m) d2

(
z2
)
+ v̄− ad2

(
z2
)
− v̄ = md2

(
z2
)

. (2)

Requiring buyers to receive total surplus equal to a fraction of the surplus of the seller then is

equivalent to requiring that

u(q2)−m2d2(z2) =
η

1− η

[
−c(q2) + m2d2

(
z2
)]

, (3)

or

(1− η)u(q2) + ηc(q2) = m2d2

(
z2
)

. (4)

Hence, for a given amount of production q2, the number of claims to the Lucas tree that must

be transferred from the buyer to the seller is

m2 =
(1− η)u(q2) + ηc(q2)

d2 (z2)
, (5)

Substituting this amount of claims exchanged into the surplus of the buyer, the production

27



choice is

max
q2

η [u(q2)− c(q2)] , (6)

subject to

(1− η)u(q2) + ηc(q2) ≤ d2

(
z2
)

ab
2. (7)

Importantly, q2 and, therefore, m2 is determined independently of as
2. So the seller’s asset

holdings have no impact on the terms of trade and we write

q2(ab
2, as

2, z2) = q2

(
ab

2, z2
)

, and m2

(
ab

2, as
2, z2

)
= m2(ab

2, z2). (8)

.

We now determine q2. Recall that q∗ satisfies u′(q∗) = c′(q∗). In a match between a buyer

and a seller where the buyer has assets ab
2 such that

ab
2 ≥

1
d2 (z2)

[(1− η)u(q∗) + ηc(q∗)] , (9)

then q2(ab
2, z2) = q∗. Otherwise, the constraint in equation (7) binds so that q2 is determined by

equation (7) holding with equality.

The value functions Vb
2 and Vs

2 therefore are

Vb
2 (ab

2, z2) = α(n)
[
u
(

q2

(
ab

2, z2
))

+ Wb
2 (ab

2 −m2

(
ab

2, z2), z2
)]

+ (1− α(n))Wb
2 (ab

2, z2)

= α (n)
[
u
(

q2

(
ab

2, z2
))

+ Wb
2 (ab

2 −m2

(
ab

2, z2), z2
)
−Wb

2 (ab
2, z2)

]
+ Wb

2 (ab
2, z2)

= α(n)η
[
u(q2

(
ab

2, z2)
)
− c(q2

(
ab

2, z2)
)]

+
[

ab
2d2

(
z2
)
+ v̄
]

, (10)
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and

Vs
2 (as

2, z2) =
α (n)

n

∫
ab

2

[
−c
(

q2

(
ab

2, z2
))

+ Ws
2(as

2 + m2

(
ab

2, z2), z2
)
−Ws

2(as
2, z2)

]
dΩb

2(ab
2)

+ Ws
2(as

2, z2)

=
α (n)

n
(1− η)

∫
ab

2

[
u(q2

(
ab

2, z2)
)
− c(q2

(
ab

2, z2)
)]

dΩb
2(ab

2) +
[

as
2d2

(
z2
)
+ v̄
]

. (11)

We determine the value functions and asset price in the period 1 centralized market.

Given the quasi-linearity of preferences in the centralized market, the problem of choosing

asset holdings to carry into period 2 is independent of the number and value of the claims the

consumer brings into the centralized market. The value function for either type of consumer is

W i
1(a, z1) = (p1(z1) + d1(z1)) a + v̄ + max

a′
−p1(z1)a′ + β ∑

z2

γ(z2|z1)Vi
2(a′, (z1, z2)). (12)

By construction, the seller’s value function Vs
2 is linear in a′ implying that the seller’s optimal

choice of a′ is bounded only if

p1(z1) ≥ β ∑
z2

γ(z2|z1)d2(z1, z2). (13)

Inequality (13) holds in equilibrium with strict inequality so that all sellers choose as
2 = 0 for

all z1. Next consider the optimal choice of a′ for a buyer. Assuming an interior solution, the

optimal choice for a buyer satisfies:

p1(z1) = β ∑
z2

γ (z2|z1) d2 (z1, z2)

+ βα(n)η ∑
z2

γ (z2|z1)
[
u′(q2(a′, (z1, z2))− c′(q2(a′, (z1, z2))

] dq2(a′, (z1, z2))

da′
(14)

where
dq2(a′, z2)

da′
=

d2
(
z2)

(1− η)u′(q2(a′, d2 (z2))) + ηc′(q2(a′, d2 (z2)))
. (15)

Under conditions on preferences and bargaining weights, Vb
2 (ab

2, z2) is strictly concave for
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ab
2 ≤ a∗ where a∗ satisfies inequality (9) with equality. This ensures a unique optimal choice of

a′ for buyers so that Ωb
2(ab

2) is degenerate. We focus on equilibrium in which ab
2 = 1 implying

that the asset price is

p1(z1) =

β ∑
z2

γ (z2|z1) d2 (z1, z2)

[
1 + α(n)η

u′(q2(1, (z1, z2))− c′(q2(1, (z1, z2))

(1− η)u′(q2(1, (z1, z2))) + ηc′(q2(1, (z1, z2)))

]
. (16)

We proceed iteratively to determine the period 1 decentralized market value functions as

well as the period 0 centralized market value functions and the asset price p0. It is straight-

forward to show that the terms of trade are independent of the seller’s holdings of claims and

satisfy

q1(ab
1, z1) =

 q∗ if ab
1 ≥ a∗1 = [(1− η)u(q1) + ηc(q1)] / (p1 (z1) + d1(z1))

q̂(ab
1, z1) otherwise

(17)

where q̂(ab
1, z1) is the value of q that satisfies

(1− η)u(q) + ηc(q) = (p1 (z1) + d1(z1)) ab
1. (18)

Moreover, m1(ab
1, z1) is

m1(ab
1, z1) =

(1− η)u(q1
(
ab

1, z1
)
) + ηc(q1

(
ab

1, z1
)
)

(p1(z1) + d1(z1))
. (19)

These terms of trade imply the value functions for buyers and sellers in the period 1 decentral-

ized market are:

Vb
1 (ab

1, z1) = α(n)η
[
u(q1

(
ab

1, z1

)
)− c(q1

(
ab

1, z1)
)]

+ Wb
1 (ab

1, z1), (20)

Vs
1 (as

1, z1) =
α(n)

n
(1− η)

∫
ab

1

[
u(q1

(
ab

1, z1

)
)− c(q1

(
ab

1, z1)
)]

dΩb
1(ab

1) + Ws
1(as

1, z1). (21)
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Buyers and sellers problems in the period 0 Centralized Market are

W i
0(a) = p0a + v̄ + max

a′
−p0a′ + β ∑

z1

γ(s1)Vi
1(a′, z1). (22)

To determine the period 0 asset price, note that the seller’s demand for the asset is finite, when

p0 ≥ β ∑
s1

(p1(z1) + d1(z1)) (23)

and at an interior solution for the buyer, we require that

p0 = β ∑
s1

γ (s1) (p1(z1) + d1 (z1))

+ βα(n)η ∑
s1

γ (s1)
[
u′(q1(a′, z1))− c′(q1(a′, z1))

] dq1(a′, z1)

da′
, (24)

where for a′ ≤ a∗1 ,
dq1(a′, z1)

da′
=

(p1 (z1) + d1(z1))

(1− η)u′(q1(a′, z1)) + ηc′(q1(a′, z1)
. (25)
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