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Abstract

We provide a theory of trading through intermediaries in OTC markets. The role

of intermediaries is to sustain unsecured trade. When agents trade without collateral,

total surplus can increase. In our model, traders are connected through a network.

Agents observe their neighbors’actions, and can trade with their counterparty in a

given period through a path of intermediaries in the network. If trade is unsecured,

agents can renege on their obligations. We show that trading through a network is

essential to support unsecured trade, when agents infrequently meet the same coun-

teparty in the market. However, intermediaries must receive fees to have the incentive

to implement unsecured trades. While trade without collateral can be sustained in

many networks, the effi ciency gains are higher in a star network. The center agent

in a star can receive higher fees as well. Moreover, concentrated intermediation is a

stable structure, when agents incur linking costs.
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1 Introduction

Many financial transactions take place in the over-the-counter (OTC) markets in a de-

centralized fashion. One prominent feature of various OTC markets is a concentrated

intermediation structure. For instance, Li and Schürhoff (2014) show that a relatively

small group of dealers intermediate persistently a majority of the trades in the municipal

bond market. Another documented feature is the prevalence of long-lived trading rela-

tions. Afonso, Kovner and Schoar (2014) find evidence that participants in the Fed Funds

market frequently choose to interact with the same counterparty over time. These find-

ings lead to questions about the role of intermediation and its connection to relationship

trading in OTC markets.

This paper proposes a theory of endogenous intermediation in OTC markets. In a

market where counterparties meet infrequently, trading through a network of intermedi-

aries allows agents to access more favorable terms of trade than those they would obtain

in direct, but one-shot, interactions. In particular, the role of intermediaries in our model

is to sustain trade without collateral, by providing monitoring services. While there are

positive gains from unsecured trade, intermediaries affect the division of the surplus. That

is, intermediaries must be compensated to ensure they have the incentive to implement

unsecured trades. The share of the surplus that accrues to intermediaries is endogenously

determined by incentive compatibility, and depends on the network structure. We show

that concentrated intermediation is both an effi cient and stable structure when agents

incur linking costs.

We consider a dynamic setting in which agents trade bilaterally. At each date half of

the agents have liquidity surpluses and half have investment opportunities. An agent with

a liquidity surplus is randomly paired with an agent with an investment opportunity at

the beginning of each period. A liquidity agent is endowed with one unit of cash, which

can be stored at no cost until the end of the period. An investment agent is endowed with

a riskless asset and has access to an investment opportunity, both maturing at the end of

the period. The investment opportunity represents a risky asset that yields a high return

in the good states of the world and nothing in the bad states of the world. The return

in the good states depends on the amount the agent invests in the project. To finance
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the investment the agent with an investment opportunity needs to borrow cash from the

agent with a liquidity surplus. The debt must be repaid at the end of the period.

In this environment, we consider two frictions. First, we assume that there is limited

commitment, and that agents can renege on due payments at the end of the period. The

idea is that agents in financial markets can strategically default and benefit from it at the

expense of their counterparties. For instance, in the Fed funds market banks can delay

the delivery of overnight loaned funds until the afternoon hours, while in the repo markets

agents strategically postpone the delivery of the collateral. More generally, agents can use

the funds borrowed to engage in excessive risk taking activities that would preclude them

from repaying their debts.

Second, we consider that agents have limited access to information about other agents’

past behavior. The interpretation is that, while over-the-counter markets are opaque and

information about the terms of trade is not public, financial institutions may nevertheless

have access to soft information about their long-term trading partners. In particular, we

consider that traders are connected through an informational network that allows each

agent to observe the repayments that his neighbors make.

To counteract the problem of limited commitment, agents can trade against collateral

or rely on self-enforcing contracts. Trading against collateral involves an opportunity cost

for the agent with an investment opportunity. More generally, there is a welfare loss when

trade is secured, as the value of collateral for the borrower is higher than the value of col-

lateral for the lender. For this reason, unsecured trading is desirable. When trade takes

place without collateral, repayments may be enforced if agents can be threatened with

exclusion from the unsecured market in case they default on their obligations. The infor-

mation observed through the network allows agents to implement trade without collateral.

For this, however, transactions must take place through intermediaries in the network.1

We obtain three sets of results. The first set of results highlights the role of intermedi-

aries in implementing better terms of trade. We start by showing that unsecured trade is

not sustainable for large economies without a network. At the same time, we show that a

1A credit bureau that collects and makes credit records public can make intermediaries redundant.
However, there are significant diffi culties associated with creating such institution. Typically, financial
market participants are reluctant to disclose to regulators not only information about themselves, but
also information about their counterparties. Indeed, financial institutions see putting a counterparty into
default as a very serious step.
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star network (i.e. a network in which one agent intermediates all transactions) can sustain

trade without collateral, independently of how large the number of market participants

is. In fact, unsecured trade can be sustained in many networks, as long as intermediation

chains are not too long. However, trading through a network involves a trade-off. On the

one hand, a higher level of investment in the risky project generates a higher expected

surplus. On the other hand, it is more diffi cult to implement. We show that the expected

surplus that can be generated when trading takes place without collateral in a star network

is higher than in many other networks, as the number of market participants grows large.

We also find that intermediaries must be compensated to ensure they have the in-

centive to implement unsecured trades. In particular, since intermediaries transfer funds

between liquidity and investment agents, they must receive appropriate fees to overcome

the temptation to retain the funds for themselves. The fees in our model are endogenously

determined by incentive compatibility. The incentive compatibility constraint for agents

who use the intermediation service sets an upper bound for the fees intermediaries receives,

while the incentive compatibility constraint for intermediaries sets a lower bound. When

intermediation is concentrated, this implies that a few dealers receive most of the fees.

Moreover, by comparing different network structure we highlight the relative advantage

that network positions offer some agents over others. We find that the center agent in a

star network can receive a higher fee than any intermediary in other classes of networks

we study.

The second set of results focuses on welfare improvements that trading through a

network can bring in the presence of linking costs. Maximizing expected welfare involves

a trade-off. On the one hand, a higher level of investment increases welfare. On the other

hand, in a network that implements a high level of investment there may be higher linking

costs as well. We show that the star network is a constrained effi cient network when it

can sustain a level of investment suffi ciently close to the first-best. However, it is more

beneficial for agents to trade directly against collateral if linking costs are too high, or if

the implementable investment level is too low.

The third set of results concerns network formation and stability, when agents incur

linking costs. In particular, we investigate whether agents have an incentive to participate

in a network and identify structures that are stable when traders are allowed to change
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their links. For this, we first propose a set-up for a dynamic network formation game,

and introduce an appropriate stability concept. We show that a star network is stable.

However, we find that networks in which there is more than one intermediary, such as

an interlinked star, can also be stable. Although in stylized, these results capture the

observed features of OTC markets we have described above.

Related Literature

This paper relates to several strands of literature. The more relevant studies are those on

intermediation in OTC markets, trading in networks and contract enforcement.

A series of papers, starting with Duffi e, Garleanu and Pedersen (2005), has studied

trading in over-the-counter markets. While initially these studies have been concerned

with explaining asset prices through trading frictions, several recent additions to the lit-

erature are interested in the role of intermediaries in OTC markets. Hugonnier, Lester

and Weill (2014), Neklyudov(2014) and Chang and Zhang (2015) propose models in which

intermediaries facilitate trade between counterparties that otherwise would need to wait

a long time to trade. In our model, agents also trade through intermediaries to overcome

frictions that arise from search. However, our focus is on informational frictions, as is

in Glode and Opp (2015) and Fainmesser (2014). While in the first paper the role of

intermediaries is to reduce adverse selection and restore effi cient trading, in the second

one intermediaries can informally enforce the repayment of loans by borrowers, as in our

model. In both studies, however, which agents are intermediaries remains exogenous. In

contrast, in the model we provide, certain agents endogenously assume the role of interme-

diaries to facilitate repeated interactions between traders in the market. Gofman (2014)

and Manea (2014) analyze how the presence of intermediaries affects the effi cient alloca-

tion of assets when agents bargain through intermediaries in a fixed network. We show

that intermediation can alleviate ineffi ciencies in over-the-counter markets. In addition,

we allow agents to choose how to form links and analyze which networks are stable.

There is a growing literature studying trading in a network (e.g. Kranton and Minehart

(2001), Gale and Kariv (2007), Condorelli and Galeotti (2012), Choi, Galeotti and Goyal

(2015), Babus and Kondor (2013), Malamud and Rostek (2014), Nava (2014)). These

papers typically model trades that take place either sequentially or in a spot market.
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Either way, trading relationships are not considered. In contrast, the role of repeated

interactions is at the core of our analysis.

The literature on contract enforcement is substantial. The general aim of this literature

is to show that repeated interactions alleviate problems that arise when there is limited

enforcement of contracts. Allen and Gale (1999), Kletzer and Wright (2000) and Levin

(2003) propose models where contracts are incomplete, either because transaction costs

make it too costly to write explicit contracts or simply because the terms of the contract

are not verifiable by a third party (i.e. a court). However, when two parties interact

repeatedly, they can implement the first-best contract. Shapiro (1984) adds a new angle

by assuming that consumers in the market observe with delay the quality of the product

being supplied, and hence reputation rewards high quality only with a lag. Other papers

depart from the assumption that the same two parties interact with each other, and

consider a large population of agents that are matched at random to interact every period.

In this case, whether contracts can be enforced or not depends crucially on how much

information is available to each agent. Klein (1992) approaches this issue in a model of

repeated interaction between businesses that decide whether to give credit, and consumers

who decide whether to pay her bill. The author suggests that a credit bureau can hold a

record of whether each consumer has ever defaulted or not. Greif (1993) and Tirole (1996)

propose an enforcement mechanism based on community reputation. Similarly, Klein and

Leffl er (1981) rely on costless communication between consumers to enforce that firms

supply a high quality product to the market. In this paper we also study whether it

is possible to enforce first-best contracts through repeated interactions when agents are

randomly matched to trade. However, we consider that agents have access to information

via a network of bilateral relationships. We provide conditions under which agents rely on

their network to trade the effi cient contracts. In addition, we allow agents to choose how

to form these relationships and analyze which networks structures are stable.

The paper is organized as follows. The next section introduces the model set-up. In

Section 3 we describe in detail the trading protocol and analyze when unsecured trade

is implementable, as well as the effi ciency of trading through networks. We propose con-

cepts for network formation and show which networks are stable in Section 4. Section 5

concludes.
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2 The Environment

Consider an infinite-horizon economy in which a set N = {1, ..., 2n} of agents participate

in the market at each date t. All agents are risk-neutral, infinitely lived, and discount

the future with the discount factor β = 1/(1 + φ), where φ is the discount rate. At the

beginning of each period, uniformly at random, half of the agents are assigned a liquidity

surplus, and the other half are assigned an investment opportunity. Let Lt be the set of

agents with liquidity surpluses in period t (henceforth, liquidity agents), and It be the

set of agents with investment opportunities in period t (henceforth, investment agents).

A liquidity agent is endowed with one unit of cash, which can be stored at no cost until

the end of the period. An investment agent is endowed with a riskless asset which yields

a return of r > 1 at the end of the period. In addition, an investment agent has an

opportunity to invest in a risky asset. The investment in the risky asset is scalable: if an

amount q ∈ [0, 1] is invested, the risky asset yields a return θtk ∈ {R(q), 0} by the end of

the period with probability p and (1− p), respectively. The returns of the risky asset are

independently distributed across agents, as well as over time. We assume that R′ > 0 and

pR′(1) ≥ 1, R′′ < 0, R(0) = 0, R(1) = R with pR > r.

To exploit the investment opportunity, an investment agent i ∈ It needs to borrow

funds from some liquidity agent ` ∈ Lt at the beginning of each period, t.2 Typically, in

OTC markets parties trade customized contracts. To capture this feature, we assume that

once agents have been assigned a type (liquidity or investment), liquidity and investment

agents are matched uniformly at random, and each liquidity agent can only lend to the

investment agent he is matched with. The debt must be repaid at the end of the period.

Formally, a matchingmt is a subset of Lt×It such that for each liquidity agent ` ∈ Lt,

there is a unique investment agent i ∈ It for which the pair mt = (`, i) ∈ mt. At each

date t, a matching mt is randomly drawn from the set of all possible matches at date t.

Then, the probability that a pair of agents (k, k′) ∈ N ×N is matched at date t is3

Pr[
(
k, k′

)
∈mt] =

1

2(2n− 1)
.

2The implicit assumption is that liquidating the riskless asset at the beginning of the period to self-
finance the investment is too costly.

3This is because the probability that k is a liquidity agent is 1
2
. Then, conditional on being a liquidity

agent, the probability that he is matched with k′ as an investment agent is 1/(2n− 1).
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For the remainder of the paper, we refer to a pair of agents before any uncertainty is

realized as (k, k′), and to a matched pair of liquidity and investment agents as (`, i).

In this environment, we consider two frictions. First, we assume that there is limited

commitment, and that agents can renege on due payments at the end of the period.

Second, we consider that agents have limited access to information about other agents’past

behavior. In particular, we consider that agents are connected through an informational

network that allows each agent to observe the unilateral actions that his neighbors take.

A network, gt, is a graph (N , E t), where N is the set of nodes, and E t ⊂ N ×N is the set

of links that exist between agents at date t. The set of agents that have a link with agent

k in the network gt is denoted by N t
k. The information that agents observe is described

in detail in Section 3.1.

To counteract the problem of limited commitment, agents can trade against collateral.

A transaction is secured when the agent with an investment opportunity pledges the

riskless asset as collateral at the beginning of the period. In this case, if the risky project

fails (θti = 0) then the agent with an investment opportunity cannot make any repayments.

At the same time, whenever the agent with a liquidity surplus liquidates the collateral at

the end of the period, he only obtains a return of one. Since the value of collateral for the

borrower is higher than the value of collateral for the lender, there is a welfare loss when

trade is secured.

Alternatively, agents can use the information they access through the network and

trade without collateral by relying on self-enforcing contracts. In particular, we consider

that agents have the option to trade through the informational network. Given a network

gt and a realization of the matching mt, the pairs that are matched at date t may or may

not be connected by a link. If a matched pair (`, i) has a link in the network gt, they

can trade directly through their link. If a matched pair (`, i) does not have a link in the

network gt, they can trade through a path of intermediaries. A path of intermediaries

between a pair (k, k′) ∈ N ×N in a network gt is a sequence of agents (j1, j2, ..., jv) such

that the links (k, j1), (j1, j2), ..., (jv, k
′) ∈ E t. We use Pt (k, k′) to denote the set of paths

from k to k′ in the network gt, and Pt(k, k′) to denote a generic path. Similarly, once the

matching mt is realized, we use Pt
(
mt
)
to denote the set of paths that can be used to

intermediate trade between a matched pair mt = (`, i), and Pt(mt) to denote a generic
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path. The trading protocol is described in detail in Section 3.1. The network has, thus,

both a trading and an informational function.

Links in the network are costly. In particular, each agent, k, incurs a linking cost for

each link he has in the network that has two components: a recurrent component, cl, that

is paid every period, and an idiosyncratic component, cm, that is paid only in the periods

in which the link is used in a transaction. A link can be used in a transaction when it

connects a pair of matched agents, or when it connects agents that intermediate trade

between a matched pair. Thus, the total cost that an agent pays in any given period t

depends not only on his position in the network, but also on the realized matching mt

and the path of intermediaries used to trade. The motivation behind the structure of

the linking costs is related to the two functions that a network has. The idiosyncratic

component, cm, can be interpreted as a transaction cost, while the recurrent component,

cl, can be interpreted as a cost to access information, or informational cost.

We study when the first-best allocation can be decentralized, and characterize second-

best outcomes as well.

3 The (Repeated) Trading Game

In this section we take the network g = (N , E) as given and we consider that it is fixed

for all periods.4 We investigate whether trading without collateral is beneficial, and ana-

lyze the set of financial contracts for which trade between any matched pair takes place

without collateral, when the level of investment is q ∈ [0, 1]. We consider that the level of

investment is q when each investment agent borrows an amount q from the liquidity agent

with whom he is matched, and invests it in the risky asset.

We begin by specifying the contracts and the trading game, and define strategies and

equilibrium. We characterize the level of investment that is implementable in equilibrium.

Then, we proceed to analyze the effi ciency of financial networks.

4 In Section 4 we relax this assumption and analyze issues related to network formation and stability.
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3.1 Financial contracts and trading procedure

The financial contract that determines the terms of trade between a matched pair has

two components. The first component specifies an amount, d ∈ [q, r], that an investment

agent should repay a liquidity agent with whom he is matched in exchange for borrowing

q units of funds. The second component allocates a fee f ∈ R+ to any agent that can be

an intermediary. Thus, if a pair (k, k′) is matched and trade through a path P(k, k′) =

(j1, j2, ..., jv) without collateral, then the investment agent should repay in total d+
∑v

s=1 f ,

such that an intermediary js receives f , for any s = 1, ..., v.

We consider financial contracts, (d, f), that are independent of the position of the

agents in the network. However, a crucial feature of our analysis is that the financial

contract depends on the network structure g. Thus, an agent’s position in the network

is only reflected in the total payoff he expects to receive in a given period. However, by

comparing different network structure we highlight the relative advantage that network

positions offer some agents over others. We also allow the financial contract to depend,

on the amount, q, that an investment agent borrows from the liquidity agent with whom

he is matched.

Since there is limited commitment, the incentive of intermediaries to transfer the re-

payments to the next agent depends on the future benefits they expect to receive from

trade. In particular, an agent with a liquidity surplus who is an intermediary may find it

optimal to keep the repayments for himself, without the expectation of receiving fees in

the future. However, for the fees to serve this purpose agents must use the information

obtained from the network adequately.

We define the trading procedure at date t, as follows. First each agent is assigned

a type (liquidity or investment), and the matching mt realizes. These realizations are

common knowledge among all agents.

Then, for each matched pair mt = (`, i) ∈ mt, the investment agent i proposes a

path P(mt) = (j1, j2, ..., jv) through which to trade with ` (including the empty path, i.e.

trade directly with `). We assume that this proposal is common knowledge to all agents.

Each agent on the path then sequentially responds with an yes or no, starting from j1

and ending with `. If all agents on the path respond with yes, then the liquidity agent,
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`, transfers q units of cash to the investment agent, i, through the path without asking

collateral. Otherwise, the liquidity agent, `, transfers directly one unit of cash to the

investment agent, i, and, in exchange, the investment agent transfers the riskless asset as

collateral to the liquidity agent.5

When trade is unsecured, each agent on the path has a debt obligations to the next

one according to the financial contract (d, f), as follows. The agent i is obligated to repay

[d+ v · f ] to j1. Further, each intermediary jv′ is supposed to receive [d+ (v − s′ + 1)]

from js′−1 and is obligated to repay [d+ (v − s′) · f ] to js′+1, with j0 = i and jv+1 = `.

After the risky project realizes its payoff, each agent on the path decides whether

he repays his debt obligation. We assume that the agent either repays in full or repays

nothing. This assumption will simplify our notation without losing any insights.

When trade is secured, and a pair of matched agents trade directly, the investment

agent has the obligation to repay one unit of cash to the liquidity agent. When the

project returns R(1), the investment agent repays his obligations and receives back the

collateral. However, when the project fails and returns 0, the investment agent has no

resources to repay and the liquidity agent liquidates the collateral, for which he receives

1. Intermediaries are not involved in trade and receive no fees.

Next, we explain the information structure in detail. As we discussed earlier, an agent j

can observe each of his neighbors’unilateral actions, as well as information that is common

knowledge, which is the type of the agents, the matching, and the proposed paths by each

investment agent. For each agent k, his unilateral actions in the network g at date t,

denoted by atk, include the following elements: (i) his responses on the proposed trading

paths that he is involved; (ii) whether he repays in full to each of his neighbors, if he is either

an intermediary and/or an agent with an investment opportunity. If two agents trade

directly, their repayment decision is not observed by their neighbors. Let atk =
(
a0k, ..., a

t
k

)
be the unilateral actions taken by agent k up to date t, and let at0 =

(
a00, ..., a

t
0

)
be the

commonly known information up to date t. Then, the history that an agent k observes

5Note that when trade is secured, we assume that the liquidity agent lends one unit of fund to the
investment agent instead of q. This assumption captures the idea that no gains from trade should be
left on the table. Indeed, when trade is secured, the first best quantity to be invested is 1, which is also
incentive compatible. However, all our results are robust to this assumption. That is, we can allow agents
to borrow q units of funds and to pledge a fraction of the riskless asset as collateral.
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at date t is given by htk =
{
atj : (j, k) ∈ E

}
∪ {at0}. The realization of the risky project is

private information and is observable only to the respective investment agent.

Because an agent may be involved in multiple trading paths, we need to specify a timing

for their responses and repayments. For each proposed trading path P = (j1, j2, ..., jv)

between a matched pair m = (i, `), agents in position j1 respond simultaneously first,

then agents in position j2, etc. Similarly, for repayment decisions, investment agents

decide first simultaneously, and then agents in position j1, depending on the resources

repaid by investment agents, and then agents in position j2, etc.

Next we introduce strategies and the equilibrium concept. First we define strategies.

For each agent k, his strategy in period t, denoted by stk, has three components:

• st,1k maps the history ht−1k he observes, the realization of agents’type, and the match-

ing mt to a proposed path, if he is an investment agent;

• st,2k maps the history ht−1k he observes, the commonly known information at0, and the

responses of his neighbors before him on the paths that involve him to his responses,

if he is a liquidity agent and/or an intermediary;

• st,3k maps the history ht−1k he observes, the commonly known information at0, and

the repayments of his neighbors before him on the paths that involve him to his

repayment decisions on all trading paths he is involved, if he is an investment agent

and/or an intermediary. Note that his repayment decision is constrained by repay-

ment decisions of agents before him on the trading paths.

We use Perfect Bayesian Equilibrium (PBE) in pure strategies as the solution concept.

We restrict attention to equilibria that satisfy the following properties.

(A1) No default. Every agent consents to trade the contract (d, f) without collateral

and there is no default in equilibrium plays.

(A2) Shortest path. The shortest paths in the network g are always proposed in equilib-

rium. When there are multiple shortest path between a matched pair, they are proposed

with equal probabilities in equilibrium.

(A3) Stationary equilibrium allocation. The level of investment, q, is constant across

realized matches and across periods.
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Definition 1 A PBE equilibrium satisfying (A1)-(A3) is called a simple equilibrium.

Condition (A1) is a symmetry requirement, as it rules out the possibility that trading

without collateral happens for a subset of agents. Similar considerations motivate con-

dition (A3). Condition (A2) requires that the equilibrium trading paths are the shortest

ones. This assumption simplifies our analysis, since in general networks multiple paths

may be used to trade, but only the shortest one minimizes the expected transaction cost,

cm. For most of our results, this requirement is not binding.

3.2 Implementation

In this section we explain in detail why trading without collateral is desirable, and explore

the role of networks in supporting unsecured trade in equilibrium. We first introduce the

gains from unsecured trading relative to trading against collateral. We then characterize

the investment level, q, that is implementable in a given network g. Focusing on the level

of investment, q, provides a rich metric to differentiate across those network structures in

which unsecured trade can be sustained.

Definition 2 A level of investment, q, is implementable in a network g if it is supported

in a simple equilibrium given a financial contract (d, f).

Abstracting from linking and transaction costs, unsecured trading is beneficial relative

to trading against collateral. This is because when trade is secured, agents forego some of

the return of the riskless asset in those states of the world in which the risky project fails.

Indeed, suppose that the level of investment is q. Then, the average surplus generated at

each date by trading without collateral is in expectation

pR (q)− q + r.

In contrast, the average surplus generated at each date by trading against collateral is in

expectation

pR (1)− 1 + pr + 1− p.
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Therefore, the relative gains from unsecured trading are given by the following function

∆ (q) = [pR (q)− q]− [pR (1)− 1] + (1− p) (r − 1) . (1)

Since the return R (·) is a concave and increasing function, the condition pR′(1) ≥ 1

ensures that ∆ (·) is increasing in q ∈ [0, 1]. The relative gains from unsecured trade are

maximized and positive when q = 1. This implies that q = 1 represents the first-best level

of investment. At the same time, since ∆ (1) > 0, it follows that there are positive gains

from trading without collateral even for a level of investment q < 1.

Although trading without collateral may generate a higher expected surplus than se-

cured trade, it is not necessarily the case that it can be supported in equilibrium. Even

in the least restrictive case of complete information, when all histories are publicly ob-

servable, unsecured trade can be supported in equilibrium for an investment level q if and

only if6

φq ≤ 1

2
∆ (q) . (2)

The intuition is simple. When trade is unsecured, agents weigh the long-term benefit from

trading without collateral against the one time gain of retaining all the return of the assets

and paying 0. In particular, when an investment agent decides whether to repay at the

end of the period, he takes into consideration he will be required to pledge collateral at

all future dates as an investment agent, if he defaults on his obligations.

When there is incomplete information, condition (2) is no longer suffi cient. In this

case, the frequency with which an agent trades with counterparties that have access to his

private history affects his incentives to default or not on his obligations. Thus, whether

unsecured trade can be supported in equilibrium may depend on the size of the economy.

Since when trading in a network agents can access the private histories of their neighbors,

networks may facilitate the implementation of an investment level q if there are positive

gains from unsecured trade, particularly when the number of market participants grows

large.

To understand the role of networks in supporting trade without collateral, we first

explore the empty network benchmark. The trading procedure in the empty network is

6We do not provide a proof for this statement, as the result is standard.
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nested in the trading procedure described in Section 3.1. In particular, once the agents’

type has been assigned and the matching has been realized, an investment agent can

only propose to trade directly (i.e. the empty path) with the liquidity agent he has been

matched with. The liquidity agent can accept, and trade without collateral, or reject,

and trade against collateral. Clearly, no agent intermediate trades in the empty network.

Aside of the information that is common knowledge, each agent observes the action of his

counterparty at a given date t. The following lemma gives a full characterization of the

level of investment that is implementable in the empty network.

Proposition 1 Let agents trade in an empty network.

(i) A level of investment, q, is implementable if

φq ≤ 1

2(2n− 1)
∆ (q) . (3)

(ii) For any level of investment q > 0, there exists n̄ such that q is not implementable

for all n ≥ n̄.

The proposition shows that the level of investment that is implementable when no

information (other than agents’own past trades) is observable depends on how large the

economy is. This is because the market size affects how likely it is that two counterparties

who trade at date t, meet again in a given future period. When n grows large, the

probability of meeting the same agent in future periods is small. Thus, if an agent defaults

on his current obligation but repays in future trades with other counterparties, the threat

he will be required to trade against collateral as a consequence of this default is not binding

as n grows large. Hence, he cannot overcome his temptation to default.

As a result, when the market size increases, no level of investment is implementable

in an empty network. In other words, there is no q for which trade takes place without

collateral as n grows large, even though there may be positive gains from unsecured trade.

In a stark contrast with the empty network is the level of investment that is imple-

mentable in a star network, that we characterize next. A network is a star if there exists

an agent kC such that

E = {(kC , j) : j ∈ N , j 6= k}.
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Figure 1: This figure illustrates two types of networks with the same number of agents.
Panel (a) shows a star network. Panel (b) illustrates an inter-linked star network.

We refer to agent kC in a star network the center agent. All other agents in the star

network are periphery agents. A star network with 2n agents is denoted g∗n. Figure 1(a)

illustrates a star network.

When analyzing implementation in networks, such as the star or more general struc-

tures, we need to consider whether linking costs affect agents’incentives to make repay-

ments as well. Indeed, the transaction cost is consequential for agents’incentives, since

an agent incurs it for each of his links that is used in trade in a given period. In contrast,

an agent pays the informational cost, cl, for each link he has in the network every period,

independently on whether he trades through the network without collateral or directly

against collateral. Thus, the informational cost can be seen as sunk and does not con-

strain agent’s decision to make repayments. While both costs can be taken to zero when

we study implementation, they influence significantly welfare, as discussed in Section 3.3,

as well the stability of networks, as discussed in Section 4.

To characterize equilibria in networks for the remainder of the paper, we restrict our

attention to financial contracts with the property that d ≥ q+ cm. We use this restriction

for simplicity, as it ensures that the liquidity agent is willing to lend to the investment

agent through the network, provided that he believes that his counterparties will repay

their debts. No insights are lost if we relax the assumption.

The next proposition gives a full characterization of the level of investment that can

be implemented under a star network.
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Proposition 2 Let agents trade in a star network g∗n. Then, a level of investment, q, is

implementable if

φ(q + cm) + 2cm ≤
1

1/2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
. (4)

Proposition 2 provides a suffi cient condition for a star network to implement a given

level of investment q. Condition (4) shows that the level of investment that is imple-

mentable in a star network is independent of the number of market participants. Thus,

even as n grows large, agents can still trade without collateral when the level of investment

q satisfies (4).

We obtain condition (4) by ensuring that both center and periphery agents have the

incentive to repay their obligations. We consider first the incentives to repay of a periphery

agent. On the one hand, the largest amount that a periphery agent can retain if he reneges

on his obligations is (d+ f). On the other hand, the expected discounted future benefit

of trading without collateral relative to trading against collateral in the star network is

at least β
1−β

[
1
2∆(q)− 1

2f − cm
]
. Indeed, the first term, 12∆(q), reflects the relative gains

from unsecured trading weighted by the probability that the agent is an investment agent.

The second term, 12f , reflects the expected fee that an agent must pay to the center agent,

when he is an investment agent matched with another periphery agent. The third term

reflects the transaction cost. Thus, if

−(d+ f) +
β

1− β

[
1

2
∆(q)− 1

2
f − cm

]
≥ 0,

or

f ≤ 1

1/2 + φ

[
−φd+

1

2
∆(q)− cm

]
, (5)

then a periphery agent has the incentive to make repayments.

Next, we discuss the incentives to repay of the center agent. On the one hand, the

largest amount that the center agent can retain if he reneges on his obligations is nd. On

the other hand, the expected discounted future benefit of trading without collateral relative

to trading against collateral in the star network is β
1−β

[
1
2∆(q) + (n− 1) f − (2n− 1) cm

]
.

As before, the first term, 12∆(q), reflects the relative gains from unsecured trading weighted
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by the probability that the agent is an investment agent. In addition, every period he

receives an amount (n− 1)f in fees, while his total transaction cost is (2n− 1)cm. Thus,

the center agent has an incentive to make repayments if

−nd+
β

1− β

[
1

2
∆(q) + (n− 1) f − (2n− 1) cm

]
≥ 0,

which holds when

f ≥ φd+ 2cm, (6)

since −φd+ 1
2∆(q)− cm ≥ 0 from (5). Setting d = q+ cm, condition (4) ensures that there

exists a fee f that satisfies the inequalities (5) and (6) at the same time.

Ensuring the implementation of an investment level, q, in a star network is comparable

to the complete information case. Indeed, if we take f = 0 and cm = 0 in inequality (5)

we obtain condition (2) as when there is complete information. However, an important

distinction arises because of the asymmetry in the information that center and periphery

agents can access in a star network. While the center agent has information about all other

agents in the economy, any periphery agent has information only about the center. Thus,

the center agent has the incentive to repay only when he expects to receive a non-zero

fee. In fact, condition (6) is a lower bound and condition (5) is an upper bound for the

fee that the center agent must receive, in the limit as the number of market participants

grows large.

A star network improves on the empty network for large markets as reflected in the

level of investment that can be implemented. However, not all networks can implement

the first-best, or even lower investment levels if the number of market participants is too

large. The following result provides a class of counterexamples.

Proposition 3 Let agents trade in a connected network g. Suppose that n > 3, and let

υmax be the maximum number of intermediaries between any pair of agents. Then, the

investment level q is implementable only if

υ2max
4n
≤ ∆(q)

φ(q + cm)
.
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Proposition 3 shows that networks in which intermediation paths are too long cannot

sustain unsecured trades. When there is a long intermediation path, there can be a

realization of the matching so that there are agents on the path who intermediate trade

between many matched pairs. This implies that each of them has to transfer at the end of

the period a large amount of funds, in fees and repayments to liquidity agents. Hence, the

temptation to renege and retain the funds for themselves is stronger than the expected

benefits from the future trades.

Proposition 3 together with Proposition 2 suggest that some degree of concentration

in intermediating trades is necessary. However, there are networks that can implement the

first-best level of investment without relying on concentration in trades. For instance, the

complete network can implement the same level of investment as when there is complete

information if the linking costs are negligible. While concentration in intermediation may

not be necessary, the condition (4) is, nevertheless, necessary for a level of investment q

to be implemented in other two classes of networks, at least asymptotically.

Definition 3 Let {gn}n be a sequence of networks. Then, a level of investment, q, is

asymptotically implementable in {gn}n if there exists n̄ such that q is implementable

in gn for all n ≥ n̄.

The two classes of networks we consider allow us to highlight separately two properties

of a star network: low average number of links and small average number of intermediaries

between pairs. The first class of networks we consider are connected networks that have

the same number of links as a star, namely minimally connected networks. In a minimally

connected network there exists a unique path between any pair of agents. Such network

g have the property that the average number of links in g is ηg = 2n−1
2n ' 1.

The second class of networks we consider are connected networks in which the average

number of links, ηg, is bounded, but larger than in a star, while the average number of

intermediaries, υg, is low, close to a star. Given (A2), υg is the average number of in-

termediaries on the shortest path between pairs of agents in g. The following proposition

characterizes asymptotically implementable investment levels in these two classes of net-

works. Note that the star network belongs to both classes.
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Proposition 4

(i) Let {gn}n be a sequence of minimally connected networks. Then, the level of invest-

ment q is asymptotically implementable only if (4) holds.

(ii) Let {gn}n be a sequence of networks. There exist η̄ > 1 and ῡ > 1 such that, if

ηgn ≤ η̄ and υgn ≤ ῡ for all n, then the level of investment q is asymptotically

implementable only if (4) holds.

For the remainder of the paper, we refer to a network g with ηg ≤ η̄ and υg ≤ ῡ, with

η̄ > 1 and ῡ > 1 as given in Proposition 4, as a small network.

Proposition 4 shows that if a level of investment, q, is implementable in a network

belonging to either the small or minimally connected class, it must be implementable in a

star network as well. This implies that a star network can implement the highest level of

investment, at least relative to small and minimally connected networks.

The proof for both part (i) and part (ii) in Proposition 4 follows the same main

steps. First we show that there exists an agent whose trades are intermediated with high

probability, similar to a periphery agent in the star network. This implies that inequality

(5) is asymptotically necessary to ensure that he has incentives to repay. Second, we show

that there exists an agent who, at least for some realization of the matching, intermediates

a large number of trades, similar to the center agent in the star network. This implies

that inequality (6) is asymptotically necessary to ensure that he has incentives to repay.

Another interesting implication that arises from Proposition 4 is related to the fees that

the intermediaries receive. In particular, the following result illustrates how the network

structure favors some intermediaries with respect to the fees they receive.

Corollary 1 Let fmaxg (q) be the maximum fee an intermediary can receive in a network g,

for a given implementable investment level q. Then, for any sequence {gn}n of minimally

connected networks or small networks,

fmaxg∗n
(q) ≥ fmaxgn (q)

for all asymptotically implementable investment levels q in {gn}n and for all n suffi ciently

large.
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Corollary 1 shows that the center agent in a star network can receive a higher fee than

any intermediary in a minimally connected or small network. While the result holds when

the same level of investment is asymptotically implemented in the star network as in a

minimally connected or small network, an additional mechanism strengthens this finding.

By Proposition 4, the level of investment that is asymptotically implementable in a star

network is at least as high as in a minimally connected or small network. This implies that

the relative surplus generated by trading without collateral, as defined in (1), is at least

as large in a star network. Since the fee represents a division of the surplus between the

center the periphery agents, a larger surplus makes it feasible for center agent to receive

higher fees.

Moreover, the center agent in a star can receive higher fees than intermediaries in

minimally connected or small networks, even for implementable (not only asymptotically)

investment levels. For instance, we show in Lemma A.1 in the appendix that maximum

fee each of the two intermediaries in an inter-linked star, represented in Figure 1(b), can

receive is strictly smaller than the maximum fee the center agent in a star can receive.

This is because a periphery agent in an inter-linked star needs to pay with probability

half fees to two intermediaries in any period he has an investment opportunity. Thus,

ensuring he has incentives to make repayments places a tighter constraint on the fees that

each intermediary receives.

3.3 Effi cient Networks

In this section we study issues related to welfare and effi ciency. Given a network g, an

investment level q, the expected aggregate welfare when trading without collateral is given

by

W (g, q) =
∞∑
t=0

βtn
{

(pR(q)− q + r + 1)− 4ηgcl − 2(υg + 1)cm
}

(7)

where ηg and υg have been defined above as the average number of links and the average

number of intermediaries between pairs of agents in g, respectively.

As it is evident from (7), the direct effect of a network structure, g, on welfare can be

summarized only by two variables, ηg and υg. Given the network g, the total informational

cost per period is |E| · (2cl) = (2n) · ηg · (2cl). The total transaction cost depends on the
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realization of the matching. However, in expectation, in any given period, it only depends

on the average number of intermediaries, and hence the total expected transaction cost is

n · (υg + 1) · (2cm).

Definition 4 A network g and an investment level q is a constrained effi cient arrangement

if it maximizes W (g, q) over the space of connected networks and investment levels such

that q is implementable in g.

Maximizing expected welfare involves a trade-off. On the one hand, the welfare func-

tion (7) is increasing in the level of investment, q. On the other hand, there may be high

linking costs associated with a network that implements q. For instance, while the com-

plete network can implement the first-best level of investment, the linking costs become

infinitely large as the number of market participants grows.

A good candidate for a constrained effi cient arrangement is a network that can im-

plement high levels of investment at low linking costs, such as the star network. Indeed,

let q∗ be the largest investment level that can be implemented asymptotically in the star

network, that is

q∗ = arg max ∆ (q)

s.t. φ(q + cm) + 2cm ≤
1

1/2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
.

Then, as it was anticipated by Proposition 4, q∗ is higher than investment levels that can

be implemented in small and minimally connected networks. The result is in fact more

general, as the next two propositions show.

Proposition 5 Suppose that q∗ = 1. Then, the arrangement (g∗n, q
∗) is uniquely con-

strained effi cient, for suffi ciently large n.

Proposition 5 shows that when the first-best level of investment is implementable in

a star network, then this is the most effi cient network. In other words, concentrated

intermediation maximizes social welfare.

The intuition is as follows. By construction, a star network can implement the first-

best investment level when (4) holds for q = 1. Thus, we only need to show that the

star minimizes the linking costs relative to all other connected networks. Since minimally
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connected networks have the lowest number of links among connected networks, the infor-

mational costs are also minimized. Moreover, transaction costs are the lowest in the star

among all minimally connected networks. In any other connected network, informational

costs are larger, while transactional costs can be lower. To show that a star network is

optimal, we show that it never pays off to decrease the transaction cost while increasing

informational costs for n large, independently of cm and cl.

When the first-best is not implementable in a star network (q∗ < 1), the trade-off

between the level of investment and linking costs that the welfare function (7) embeds is

even more pronounced. We analyze asymptotically the resolution of this trade-off. For

this, we first introduce the following definition.

Definition 5 The sequence {gn}n and the investment level q is an asymptotically con-

strained effi cient arrangement if for any sequence of connected networks {g′n}n and any

q′ asymptotically implementable under {g′n}n, we have that W (gn, q) ≥ W (g′n, q
′) for all

large n.

Since any network g can be summarized by the parameters ηg and υg, we re-write the

welfare function as

W (g, q) = W
(
ηg, υg, q

)
,

in order to introduce the next result.

Proposition 6 Suppose that q∗ < 1. Then, the arrangement (g∗n, q
∗) is asymptotically

constrained effi cient arrangement if

W (1, 1, q∗) ≥ max{W (1, ῡ, 1),W (η̄, 1, 1)}, (8)

where η̄ > 1 and ῡ > 1 are given in Proposition 4.

Essentially, Proposition 6 shows that if q∗ is suffi ciently close to 1, then the star is still

the constrained effi cient network. This result follows from the second part of Proposition

4, which shows that an investment level higher than q∗ is not implementable in networks

in which linking costs are bounded by η̄ and ῡ.7 Condition (8) ensures that for networks

7Since in a "small" network the average number of links and the average number of intermediaries
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outside the class of small networks, it does not pay off to increase the investment level if

this requires increasing linking costs.

While trading without collateral in a star network yields higher welfare gains than in

other connected networks, an interesting questions is whether it may be more beneficial

for agents to trade directly against collateral and save on linking costs. The following

result addresses this issue.

Corollary 2 Suppose that q∗ is suffi ciently close to 1. Then unsecured trade in a star

network yields higher welfare than secured trade in the empty network, if linking costs are

small.

The intuition is simple. When trade takes place without collateral in a star network,

there is a welfare loss because agents incur linking costs. In addition, when q∗ < 1, some

of the return of the risky asset is forfeited. When trade takes place in the empty network,

by Proposition 1, transactions must be secured if the number of market participants is

suffi ciently large. Trading against collateral involves a welfare loss because of the ineffi cient

liquidation of the riskless asset. The latter effect dominates if linking costs are small or if

q∗ is close to 1. In contrast, for lower q∗’s, secured trade in the empty network dominates.

4 Network Stability

In this section we investigate whether agents have an incentive to participate in a network

and identify structures that are stable when traders are allowed to change their links.

For this, we first introduce the network formation game, and the stability concept we are

employing. Then we proceed to characterize stable network structures.

4.1 The network-formation game

We consider the following network-formation game. At date 0, fix a network g. At the

beginning of each even period t = 0, 2, ..., one agent k, selected at random, is allowed to

sever one or more of his links. At the beginning of each odd period t = 1, 3, ...., one pair

are bounded by η̄ and ῡ, respectively, then aggregate informational is at most 4nη̄cl, while the aggregate
transaction cost is at most 2n (ῡ + 1) cm.
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of agents (k, k′), selected at random, are given the opportunity to form a link, if they do

not have one. If both agents agree, the link is formed. At each period t, agents’linking

decisions result in a new network gt.

After agents make their linking decisions, their types (liquidity or investment) are

assigned, and the matching is realized. In the new network gt, an agent only observes

each of his current neighbors’unilateral actions, as well as information that is common

knowledge. Thus, we assume that after after an agent severs a link he no longer accesses

the history of his former neighbor. Similarly, if two agents form a new link, they have

access to their respective complete histories.8

Then, the agents trade according to the trading procedure described in Section 3.1.

Consistent with the previous section, we allow the financial contract and the level of invest-

ment for unsecured trades to depend on the network structure. In particular, we consider

a function C(gt) that assigns to a network gt a contract, (dgt , fgt), and an investment level

qgt , that specify the terms of trade without collateral. The function C (·) allows agents to

evaluate their continuation payoff for each linking decision they can take at date t, as a

function of the distribution of networks that may arise at each future date τ , and given

the actions that agents take in the trading game in each possible network gτ .

We say that the function C (·) is tight if qgt is the highest level of investment that is

implementable in gt, provided the set of implementable investment levels is non-empty.

Given a tight function C (·), a trading strategy profile is tight w.r.t. C (·) if agents in any

connected component of the network gt trade without collateral among themselves, in

each period t when qgt is implementable in gt, and after any possible partial history of the

network-formation game (both on and off equilibrium paths).

Definition 6 A network g is stable under [q, (d, f)] if there exist a tight function, with

C(g) = [q, (d, f)], and a Nash equilibrium in the network-formation game such that no

agent severs a link and no pair of agents forms new links, and agents use a tight trading

strategy profile.

The notion of stability that we propose is consistent with the welfare analysis we

8This assumption is without loss of generality. While we could allow an agent to still access the history of
a former neighbor up to the date he severed the link, our results remain. This is because agents are forward
looking, and they are no able to optimally condition their trading strategy bases on partial histories.

25



have developed in Section 3.3. In particular, it allows us to check whether constrained

effi cient networks are also stable. Moreover, focusing on a function that selects the highest

implementable level of investment for a given network, we are able to conceptualize the

value of a link in a dynamic setting. Indeed, as agents change links, they are still able to

extract the maximum surplus in the new network. This implies that the relative benefit an

agent obtains by maintaining a link represents a lower bound for the value of the respective

link.

In addition, this notion of stability allows us to narrow down the set of stable networks

in a meaningful way. For instance, suppose we relax the requirement that agents use

a tight trading strategy. Instead, consider that agents ask for collateral in any trades

with other agents that have changed their links. Facing a severe punishment, agents may

be deterred from severing or forming new links. We conjecture that, in this case, most

networks that can implement positive levels of investment are stable. The requirement to

use a tight strategy rules out this type of unreasonable punishments.

4.2 Stable network structures

We proceed to characterize stable networks. A natural starting point is to consider the

star network. Let q∗n be the level of investment such that

q∗n = arg max ∆ (q)

s.t. min

{
1

n− 1

[
nφ(q + cm)− 1

2
∆(q) + 2ncm

]
, 0

}
≤ 1

n−1
2n−1 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
.

(9)

In the proof of Proposition 2 we provide in the appendix, we show that (9) is a necessary

and suffi cient condition for a level of investment q to be implementable in star network

with 2n agents. Thus, q∗n is the highest investment level that can be implemented in a

star network, for each n. Further, let fmaxg∗n
and fming∗n

to denote right-hand side and the

left-hand side of condition (9) evaluated at q∗n, respectively. Hence, f
max
g∗n

and fming∗n
are the

upper and lower bounds for the fee that the centre agent in a star with 2n agents receives.

Note that fmaxg∗n
> fming∗n

only if q∗n = 1. We have the following result.
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Proposition 7 Suppose that 0 < cl ≤ 1
2φ(q∗n + cm). Then, g∗n is stable under [q∗n, (q

∗
n +

cm, f
∗
n)] for any f∗n ∈ [fminn , fmaxn ], for n suffi ciently large.

Proposition 7 shows that a star network is stable, if the informational cost, cl, is small

and the economy size, 2n, is large. It is indeed expected that if cl is high, then agents are

better off trading against collateral in the empty network. Similarly, if n is small, agents

can enforce unsecured in the empty network, and save on linking costs.

The intuition for the stability result is as follows. To see whether a star network is

stable, we need to study agents’incentives to sever or form links. In particular, there are

two main cases we need to consider. First, we need to show that the center agent has

no incentive to delete any link. Second, we need to show that no periphery agent has an

incentive to form a new link with another periphery agent.

We start with the center agent, kC . We illustrate how he evaluates his continuation

payoff when he makes a linking decision, given the notion of stability we proposed in

Definition 6. Suppose that at the beginning of an even date t, the center agent, kC , is

given the opportunity to sever one or more of his links. If he severs links with a set

KC of his neighbors, the new network is gt− = g∗n − {(kC , k′) : k′ ∈ KC}. As usual in an

equilibrium analysis, he considers that all other agents respect their equilibrium linking

strategy at future dates. We construct equilibrium linking strategies with the property

that agents do not sever or form new links after any partial history. This implies that

the center agent considers that gτ = gt− for any τ > t. Further, he understands that the

function C (·) selects the highest level of investment, qgt− , that is implementable in g
t
−, that

qgt− is implemented and trade takes place without collateral forever after. Otherwise, if

he maintains all his links, the new network is gt = g∗n, and he reasons in the same way

to evaluate his continuation payoff. For the star network to be stable he must find it

beneficial to maintain all his links. We show that this is the case by proving that the

marginal value of a link for the center is bounded away from zero. Indeed, we find that

the highest level of investment in the new network gt− can only be lower than q∗n. In

consequence, there exists a function C (·) that allocates a fee, f , to agent kC in the new

network gt−, which ensures a positive lower bound for the marginal value of a link. This

implies that the centre has no incentive to sever any link provided that cl is small.
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Next, we discuss the case of periphery agents. When a periphery agent, k, considers

whether to form a link with another periphery agent, k′, he evaluates his continuation

payoff following a similar reasoning process as described above. If, at an odd period t,

the agents consent to form a link, the new network is gt+ = g∗n + {(k, k′)}. Otherwise,

the new network is gt = g∗n. In the network g
t
+, both agents k and k

′ are able to trade

directly through their link, without paying a fee to center agents in those periods when

they are matched to trade. However, as n grows large, the probability of avoiding the fee

diminishes, which makes the link too expensive to maintain. Thus, the new network gt+

would be more attractive than g∗n only if the fee paid to agent kC is lower. We show that

there exists a function C (·) that allocates a fee, f , to agent kC in the new network gt+

which is higher than, or arbitrarily close to f∗n, as n goes infinity. This insures that two

periphery agents do not have an incentive to form a new link.

We have shown that a star network is both an effi cient as well as a stable outcome.

An interesting question is whether other networks that we know are not effi cient can

nevertheless be stable. We illustrate that this is case by providing conditions under which

a interlinked star is stable.

Formally, a network is an interlinked star with two centers if there exist agents kC1

and kC2 such that

E = {(kC1, kC2), (kC1, j), (kC2, l) : j ∈ NkC1 , k ∈ NkC2},

where {{kC1, kC2},NkC1 ,NkC2} forms a partition of N with |NkC1 | = |NkC2 | = n− 1. We

refer to agents kC1 and kC2 as the center agents. All other agents in the star network are

periphery agents. We denote an interlinked star network with 2n agents by g∗∗n . Figure

1(b) illustrates an interlinked star network.

As in the case of the star network, a necessary and suffi cient condition for a level of

investment to be implementable in an interlinked star is that the fee a center agent receives

is bounded from below and from above. Lemma A.1 in the appendix states the precise

condition. Let fmaxg∗∗n
denote the upper bound for fee that a center can agent receives. Then

we can introduce the following result.

28



Proposition 8 Suppose that q = 1 is implementable under an interlinked star network

g∗∗n .Then, there exists c̄l > 0 such that g∗∗n is stable under [(q+ cm, f
∗∗
n ), q], with q = 1 and

f∗∗n close to fmaxg∗∗n
, if 0 < cl ≤ c̄l, and n suffi ciently large.

The intuition is as follows. To see whether an interlinked star network is stable, we

need to study agents’incentives to sever or form links. In particular, there are three main

cases to consider. First, we show that neither of the two center agents has an incentive

to delete any link. Second, we show that no periphery agent has an incentive to form

a new link with another periphery agent. Third, we check whether a periphery agent

that is a neighbor of kC1 (kC2) has an incentive to form an additional link with the other

center agent kC2 (kC1). The argument for the first two cases is very similar to the one

provided above for the star network. To rule out the third case, we show that there exists

a function C (·) that allocates a fee, f , to the center agents in the new network (where

the periphery has a link with both center agents) which is arbitrarily close for f∗∗n . This

implies, however, that the neither of the center agents is willing to incur the cost for the

additional link. Thus, neither of them consents to form the additional link, even though

it benefits the periphery agent.

These arguments suggest that the periphery agents may find it desirable to trade in a

star network. In other words, they may prefer paying a higher fee to one intermediary, than

paying a lower fee to two intermediaries some fraction of the time. Thus, an interlinked

star is stable because center agents’incentives are binding.

An alternative, stronger, notion of stability departs from Definition 6 and requires that

a network is stable for any function C (·). Thus, under Definition 6, a tight function can

assign any fee, f , to intermediaries in a network g such that the level of investment q is

implementable in g. In contrast, under this stronger stability concept, a network is stable

only if agents maintain their links for all fees (subject to implementability) that can be

assigned in the current network, as well as in networks that arise on the continuation paths

that follow deviations.

For instance, consider the star network and suppose that the inequality (4) is slack.

Then, there may exist a function C (·) which assigns fees to intermediaries in the network

resulting from a deviation, in a way that favors the agents who are deviating. Thus,
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suppose that the center agent deletes one or more of his links. Consider a function C (·)

that assigns to the center agent a higher fee than in the original star network. At the

same time, the function C (·) can assign a lower fee to the center agent when two periphery

agents form a link. If the star network is stable, than the center agent must not find it

beneficial to delete links, which implies that the fee he receives in the original network is

suffi ciently high. Similarly, if the star network is stable, the periphery agents must not

find it beneficial to form a link, which implies that the fee they pay to the center agent in

the original network is suffi ciently low. Since a fee that meets both requirement may not

exist, a star network may not be stable. A similar line of reasoning can be used to argue

that an interlinked star is not stable either. In fact, strong stability of networks is a very

demanding property, and we expect that many networks do not satisfy it. Nevertheless,

the proof of Proposition 7 suggests that the star is stable when condition (4) holds with

equality for q = 1, as this narrows the set of fees a function C (·) can assign.

5 Conclusion

Our results demonstrate that intermediation can be welfare-improving when OTC trades

take place through neworks if the market size is large. In our model, the effi ciency gains

arise when trade against collateral is costly, as networks can provide adequate monitoring

to sustain unsecured trade. We characterize the set of investment levels that are imple-

mentable when trade is unsecured for two broad classes of networks, namely the minimally

connected and the small networks. We also show that trade without collateral is not sus-

tainable in networks with long intermediation chains. Hence, we infer that a certain degree

of concentration in intermediation is necessary. In our analysis intermediaries must receive

fees to ensure they have the incentive to sustain unsecured borrowing. We characterize

an upper and lower bound for the fees intermediaries receive in various networks. We also

show that the fee the intermediary receives in the star network is the highest relative to

how intermediaries in various other networks can be compensated. The way the compen-

sation of intermediaries is determined in our model may provide an explanation for the

rents intermediaries receive in OTC markets.

Our analysis of the constrained effi cient arrangement highlights a trade-off between the
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cost of maintaining and using a network, and the investment level that is implementable

in a network. We provide conditions under which the star is the constrained effi cient

arrangement among all possible arrangements. We obtain this result when the market

size is large, and when the star can implement a level of investment that is close to the

first-best level. Finally, we show that various networks structures are stable, including

star and interlinked star.
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A Appendix

Proof of Proposition 1

(i) First we prove suffi ciency. Set d = q. We construct a strategy profile and show that it

is a simple equilibrium, as follows. For each possible match m = (`, i), we summarize the

observed history of the match at the end of period t (which is observable to the match)

with a state sm,t ∈ {G,B}. We use mr to denote the match with the same pair of agents

but with their roles reversed, i.e., mr = (i, `). The state is such that sm,t = smr,t for all t,

and it evolves as follows: sm,0 = smr,0 = G; sm,t+1 = G if sm,t = G and if either one of the

following two conditions holds: (a) neither m or mr realizes at period t+ 1, (b) either m

or mr is realized, and the agent assigned to the investment role repays his debt if traded

without collateral; sm,t+1 = B otherwise. Note that for any match m = (`, i) at period t,

the pair’s actions have no effect on states sm′,t with m′ having agents other than the pair.

For any realized match m = (`, i) at period t, the strategy for the pair only depends

on sm,t−1 as follows: ` accepts the proposed trade without collateral from i if sm,t−1 = G

and rejects it otherwise; i repays his debt if sm,t−1 = G and does not repay otherwise.

Now we show that this strategy is sequentially optimal. Consider a realized match

m = (`, i) at period t. Because state B is self-absorbing, if sm,t−1 = B, i has no incentive

to repay his debt and hence it is optimal for ` to reject his proposal. Now, suppose

that sm,t−1 = G. By the equilibrium strategy of i, he will repay if his trade if accepted.

Moreover, accepting or rejecting the trade has no impact on future states of the match.

Thus, the current-period payoff for ` to accept the trade without collateral is (d+ (1− q))

while the current-period payoff to reject the trade is p(d− 1) + 1 ≤ d+ (1− q) since d ≥ q.

Hence, it is optimal for agent ` to accept the trade without collateral. Finally, assuming

that the proposed trade without collateral from i was accepted by `, by not repaying the

debt, i’s equilibrium strategy follows the deviation considered in the proof of necessity.

Thus, by (3), it is optimal for him to repay his debt.

(ii) Now we show that, for any given q > 0, it is not implementable for large n’s.

Recall that ∆(q) = 1/2{p[R(q)+r]+(1−p)r+(1−q)} is the expected surplus from trades

without collateral. Here we assume that β > 1
2 ; the other case can be proved in a similar
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fashion. Let N be so large that if K = log2(2N − 1)− 1, then

βK

2β − 1
+

βK

1− β <
q

∆(q)
. (A.1)

Suppose, by contradiction, that q is implementable with 2n ≥ 2N agents. Now, at period

zero, consider an agent with the investment role at the end of period 0 and is supposed to

repay his promise, d ≥ q.

Consider the deviation to default now and, in all future period, behave as a non-

defector. The worst scenario for this deviation would be that his current trading partner

defects in all future periods, and all who are defected also defect. Thus, at period t, the

probability of meeting a defector is at most

pt ≡
min{2t−1, 2n− 1}

2n− 1
.

Hence, the expected payoff, relative to secured trades all the time, is at least
∑∞

t=1 β
t(1−

pt)∆(q), and, for the agent to prefer the equilibrium action than this deviation, it must

be the case that

−d+
∞∑
t=1

βt∆(q) ≥
∞∑
t=1

βt(1− pt)∆(q),

that is,

d ≤
∞∑
t=1

βtpt∆(q). (A.2)

Now, for any n ≥ N (recall that N is defined by (A.1)) and for k = log2(2n − 1) − 1, we

have

∞∑
t=1

βtpt ≤
(2n− 1)βk − 1

(2n− 1)(2β − 1)
+

βk

1− β

≤ βK

2β − 1
+

βK

1− β <
q

∆(q)
≤ d

∆(q)
,

a contradiction to (A.2). �
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Proof of Proposition 2

We claim that q is implementable under star if and only if (9) holds. Note that (4) implies

(9) for any n > 0: first,

1
1
2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
≤ 1

n−1
2n−1 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]

since 1
2 + φ ≥ n−1

2n−1 + φ for any n; second,

nφ(q + cm)− 1

2
∆(q) + (2n− 1)cm ≤ (n− 1) [φ(q + cm) + 2cm]

since −φ(q + cm) + 1
2∆(q)− cm ≥ 0.

First we prove necessity of (9). Let kC be the center agent. Suppose that (d, f) with

d ≥ q + cm implements q under the star. Consider an agent assigned to the investment

role in the periphery, deciding whether to repay his debt, f + d. We consider two choices:

(a) repay the debt and follow the equilibrium strategies; (b) do not repay and propose

direct trades in all following periods. By (A1), the choice (a) has to be better than the

choice (b), and hence we have

−(d+ f) +
β

1− β

{
1

2

(
pR(q) + r + (1− q)− 2n− 2

2n− 1
f

)
− cm

}
≥ β

1− β
1

2
[p(R(1)− 1 + r) + 1] , (A.3)

that is,

f ≤ 1
n−1
2n−1 + φ

[
−φd+

1

2
∆(q)− cm

]
. (A.4)

Now consider the center agent, kC , assigned to the investment role and who is at the

moment deciding whether to repay his debt, nd. Again, we consider two choices: (a)

repay all the debts and follow the equilibrium strategies; (b) do not repay (to any debt)

and propose direct trades in all following periods. By (A1), the choice (a) has to be better
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than the choice (b), and hence we have

−nd+
β

1− β

{
1

2
[pR(q) + r + (1− q)] + (n− 1)f − 2ncm

}
≥ β

1− β
1

2
[p(R(1)− 1 + r) + 1] ,

that is,

f ≥ 1

n− 1

[
nφd− 1

2
∆(q) + 2ncm

]
. (A.5)

Combining (A.4) and (A.5) and the fact that d ≥ q + cm, we obtain (9).

Now we prove suffi ciency. Suppose that (9) holds. First we specify the financial

contracts. For unsecured trades on the equilibrium path, let d = q + cm and let f ≥ 0

satisfy

1

n− 1

[
nφd− 1

2
∆(q) + 2ncm

]
≤ f ≤ 1

n−1
2n−1 + φ

[
−φd+

1

2
∆(q)− cm

]
.

For secured trades on off-equilibrium paths, as mentioned in the main text, the investment

level is q = 1, and that the investment agent repays 1 to the liquidity agent when the

return is θ = R(1). Given the contracts, the liquidity agent is indifferent between secured

and unsecured trades, assuming that the investment agent will repay in unsecured trades.

We construct equilibrium strategies as follows. Each periphery agent can be one of the

two states, G and B. At date 0, all agents are in state G. A periphery agent stays in

state G if and only if he repays all his debts to kC when assigned to the investment role

in the previous periods; otherwise, he enters state B. An agent who enters state B stays

there forever. The state of these agents is only observable to the center agent, kC . Note

that if a periphery agent trades directly then this choice does not affect his state and a

periphery agent’s action in liquidity role does not affect his state. Similarly, the center

agent, kC , can also be in of the two states, G and B. He stays in state G if and only if

he repays all his debts in the previous periods; otherwise, he enters state B. His state is

then observable to all agents.

The strategy of a periphery agent j assigned to the liquidity role in state G is as follows:

if kC is in state G and if j is in state G, then he accepts any trade through kC ; otherwise,
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he demands collateral for any trade. Moreover, he always asks for collateral if asked to

trade directly. A periphery agent j assigned to the liquidity role in state B always asks

for collateral. The strategy of a periphery agent j in investment role is as follows: if both

himself and jC are in state G, then he propose to trade through kC and repay his debt;

otherwise, he proposes to trade directly and, if his trade without collateral is accepted, he

does not repay anything. Finally, the strategy of kC is as follows: if he is in state B, then

he never repays anything; otherwise, he accepts trades from a match m = (`, i) if and only

if both ` and i are in state G and rejects it otherwise, and he repays all debts if and only

if it is feasible and the number of periphery agents in state G who repays at the current

period, denoted by K1, and the number of loans kC has, denoted by K2 (including his

own), satisfy

−K2d+
β

1− β
K1

2(2n− 1)
[pR(q) + r + (1− q) + (K1 − 1)f ] (A.6)

+
β

1− β
2n− 1−K1

2(2n− 1)
[p(R(1) + r) + (1− p)] (A.7)

≥ β

1− β
1

2
[p(R(1) + r) + (1− p)] . (A.8)

Note that when there are still K1 periphery agents in state G, the expected fees for each

such agent is (K1 − 1)f/2(2n − 1) and since any such fee is paid to kC , the expected fee

revenue is K1(K1 − 1)f/2(2n − 1). Moreover, only with those agents kC can expect to

have unsecured trades.

We also need to construct equilibrium beliefs. As agent kC has complete information,

his belief is the actual history. For an periphery agent j, his belief is such that if kC is

in state G, then he believes that all other agents are also in state G. Note that once kC

enters state B, his belief does not matter to his equilibrium strategy any more.

To show that these strategies form a simple equilibrium, first notice that (A1)-(A3)

are satisfied. Moreover, the agents’beliefs are consistent with equilibrium strategies. In

particular, when a proposed trade is rejected with kC in state G, it is believed to be a

mistake and agents are all in state G and will continue to accept trades and repay from

next period on. We use the one-shot-deviation principle to verify sequential rationality.

By (A.4) and (A.5) and the previous discussion no agent has incentive to deviate along
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the equilibrium path. On the off-equilibrium path, the history is summarized by the

configuration of states. For a periphery agent assigned to the liquidity role, because kC

will not accept any trade from an investment agent in state B, he is indifferent between

accepting a unsecured trade with kC and having a secured trade so long as kC is in state

G and it is optimal to reject any other trade (note that a periphery investment agent will

not repay any debt incurred through direct trading). For a periphery agent in investment

role, as their state only depends on whether they repay kC , their incentive is determined

by (A.4). Note that as they believe all other agents are in state G, the continuation payoff

is given by the left side of (A.3). Finally, for kC , (A.6) determines whether he has incentive

to remain in state G or not. �

Proof of Proposition 3

Let g be a given network with 2n > 6 agents. For any pair of agents, (j, j′), let dist(j, j′)

be the distance between them. Then, if the pair is matched, by (A2), the number of

intermediaries between them is dist(j, j′)− 1. Define

D = xmax{dist(j, j′) : j, j′ ∈ N}
2

y,

i.e., either 2D or 2D + 1 is the longest distance between any two nodes in g. Thus,

2D − 1 ≤ υmax ≤ 2D. Here we assume that the path corresponding to this distance is

given by P = (j1, ..., j2D); the other case is similar. Suppose that the investment level q

is implementable under g with financial contract (d, f), d ≥ q + cm. Note that by (A2),

the investment agent always choose the shortest path to intermediate trades, and hence,

when (j1, j2D) forms a match, they use the path P with a positive probability. Moreover,

if (jk, jk′) forms a match with 1 ≤ k < k′ ≤ 2D, they use the path (jk, ..., jk′) with a

positive probability.

Thus, there exists a realization of matching and proposed paths such that, for each

k = 1, ..., D, the maximum debt the agent jk has is at least kd. By symmetry, the

maximum sum of total debts j1, ..., j2D have are at least

2

D∑
k=1

kd = (D + 1)Dd.
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However, because all the fees cannot exceed the total future gains from trade relative to

secured trades, 1φn∆(q), we have

−D(D + 1)d+
1

φ
n∆(q) ≥ 0

for the first-best to be implementable, i.e.,

D(D + 1)

n
≤ ∆(q)

φd
.

The result follows from the fact that d ≥ q+cm. Now, note that νmax ≤ 2D and we obtain

the desired result. �

Proof of Proposition 4

(i) Let g be a given minimally connected network with 2n agents under which q is imple-

mentable under g with financial contract (d, f), d ≥ q + cm. We show that

φd− 3

4n
∆(q) + 2cm ≤ f ≤

−φd+ 1
2∆(q)− cm

n−1
2n−1 + φ

. (A.9)

By taking n to infinity in the above inequality and replacing d with q+ cm, we obtain (4).

First we show the necessity of the first inequality in (A.9). We show this by finding an

agent who intermediates “many”unsecured trades.

For each agent j and a neighbor j′ to j, define L(j,j′) as the number of agents who have

a path to j through j′, and let Lj = maxj′ links to j L(j,j′). Let χ be the largest integer less

than 2n/3.

Claim 1. There exists an agent j with Lj < 2n− χ.

Proof. We prove the claim by contradiction. Suppose such an agent j does not exist, that

is, for any non-leaf agent j, Lj ≥ 2n − χ. Then we construct a path that is arbitrarily

long. Take an arbitrary non-leaf agent j1. Then, there exists an agent j2, a neighbor of

j1, such that L(j1,j2) ≥ 2n−χ. Then, remove all the agents who have a path to j1 without

passing through j2, and call the remaining graph g1. g1 is then still a minimally connected

network with at least 2n − χ > 4n/3 agents. Moreover, since L(j1,j2) ≥ 2n − χ > n, and

since Lj2 ≥ 2n−χ, there exists j3 such that j3 is in g1 and L(j1,j2) ≥ 2n−χ. Then, remove
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all the agents who have a path to j2 without passing through j3, and call the remaining

graph g2. Suppose that we have constructed j1, ..., jν and jν ∈ gν−1, with gν−1 has at

least 2n − χ agents. Then, jν has a neighbor jν+1 with L(jν ,jν+1) ≥ 2n − χ. Remove all

the agents who have a path to jv without passing through jv+1, and call the remaining

graph gv; note that jν+1 is in gv. Therefore, we may continue the process indefinitely, a

contradiction to the finiteness of the graph g. �

By Claim 1, there exists an agent j with Lj < 2n−χ. Let (j1, ..., jν) be his neighbors,

ordered in a way such that

L(j,j1) ≥ L(j,j2) ≥ .... ≥ L(j,jν).

Then we claim that we can find a realization of matching such that j intermediates at

least χ matches. Consider two cases.

(a) 2n− χ > L(j,j1) ≥ χ. In this case we can have χ agents that has a path to j through

j1 with investment role, and match each of them to an agent that has a path to j without

going through j1 with liquidity role.

(b) L(j,j1) < χ. Then, we can find ν∗ such that

2χ > L(j,j1) + ...+ L(j,jν∗ ) > χ.

Then, we can take χ agents that has a path to j through j1, ..., jν∗ with investment role,

and match each of them to an agent that has a path to j without going through j1, ..., jν∗

with liquidity role.

Now we consider the incentive to repay for the agent j. Let K ≥ χ be the largest

number of trades j intermediates. Then, the expected number of fees for j is at most K.

Hence, we have

−Kd+
β

1− β

[
1

2
∆(q) +Kf − 2Kcm

]
≥ 0,

that is,

f ≥ φd− 1

2K
∆(q) + 2cm > φd− 3

4n
∆(q) + 2cm,

which gives the first inequality in (A.9).
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To prove the necessity of the second inequality in (A.9), consider the incentive for a leaf

agent. Since the leaf agent has degree one, he has to pay the fee f with probability n−1
2n−1

and he never serves as an intermediary. Thus, it is optimal to repay his largest possible

debt, d+ f , when assigned to the investment role, it must be the case that

−(d+ f) +
β

1− β

[
1

2
∆(q)− cm −

n− 1

2n− 1
f

]
≥ 0,

and hence

f ≤
−φd+ 1

2∆(q)− cm
n−1
2n−1 + φ

.

This proves the second inequality in (A.9).

(ii) Here we choose η = 1.05 and ν = 1.05. Let

Λ̃n = (2n− 1)
2− ν

6η
− 1. (A.10)

For n ≥ 100, Λ̃n ≥ 0.3n. Let g be a given network with 2n agents with ηg ≤ η and νg ≤ ν

under which q is implementable under g with financial contract (d, f), d ≥ q + cm. We

show that, for n ≥ 100,

φd− 1

0.15n
∆(q) + 2cm ≤ f ≤

−φd+ 1
2∆(q)− cm

n−1
2n−1 + φ

. (A.11)

By taking n to infinity in the above inequality and replacing d with q+ cm, we obtain (4).

To show the first inequality in (A.11), we find an agent whose incentive is similar to

that of the center agent in the star network. We first need a claim about existence of an

agent j with large degrees.

Claim 2. Let Λ be the maximum degree in g. We show that

Λ ≥ (2n− 1)
2− νg

6ηg
− 1. (A.12)
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Proof. Let δj be the degree of agent j. Then,

2n(2n− 1)(νg + 1) ≥ 3×

∑
j∈N

2n− 1− δj −
∑

j′ linked to j

δj′


≥ 3× {2n[2n− 1]− 2|E(gn)| − 2|E(gn)|Λ}

≥ 3× (2n)× [2n− 1− 2ηg(1 + Λ)].

Then, (A.12) follows directly by rearranging terms. �

Since ηg ≤ η and νg ≤ ν, (A.12) also implies that Λ ≥ Λ̃n. Hence, we can find an

agent j who has degree at least Λ̃n ≥ 0.3n. Now, consider, S, the set of j’s neighbors.

Since by deleting all the links between agents in S the network is still connected, it follows

that the number of those links has to be at most

2nη − (2n− 1) = 2n(η − 1) + 1 ≤ 0.1n+ 1.

Thus, there are at least 0.15n agents in the set S who has no link with any other agent in

S. Thus, the maximum number of intermediations for agent j is at least K ≥ 0.15n. Note

that the expected number of fees for j is less than K. To ensure that a simple equilibrium

exists, considering j’s incentive, it must be the case that

−Kd+
β

1− β

[
1

2
∆(q) +Kf − 2Kcm

]
≥ 0. (A.13)

Since K ≥ 0.15n, (A.13) implies the first inequality in (A.11).

Now we show the second inequality in (A.11). Since |E(gn)| = 2nηg ≤ 2nη = 2.1n and

hence the sum of all agents’degrees is less than 4.2n, and since there exists one agent

with degree at least 0.3n, there exists an agent with degree less than (4.2− 0.3)/2 = 1.95.

Hence, there exists some agent with only one link. Since he has only one link, he cannot

serve as an intermediary but has to go through an intermediary with probability at least

n−1
2n−1 , that is, his incentive to repay is exactly the same as a leaf agent in the proof of (i).

Hence, his incentive requires

−(d+ f) +
β

1− β

[
1

2
∆(q)− n− 1

2n− 1
f − cm

]
≥ 0. (A.14)
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By rearranging terms, (A.14) implies the second inequality in (A.11). �

Proof of Corollary 1

By Proposition 4, if investment level q is asymptotically implementable in {gn}, then (4)

holds for q, and, by Proposition 2, it is also implementable in {g∗n}. Moreover, by the

proof of Proposition 4 (the second inequality in (A.9) and (A.11)),

fmaxgn (q) ≤
−φ(q + cm) + 1

2∆(q)− cm
n−1
2n−1 + φ

,

and, by the the proof of 2 (the second inequality in (9)),

fmaxg∗n
(q) =

−φ(q + cm) + 1
2∆(q)− cm

n−1
2n−1 + φ

.

Thus, fmaxgn (q) ≤ fmaxg∗n
(q). �

Proof of Proposition 5

First note that under the star network, g∗n, with 2n agents, ηg∗n = 1 − 1/2n and νg∗n =

1 − 1/n. Since q∗ = 1 and hence the first-best level of investment is implementable, the

average welfare is given by

W ∗ =
1

2

{
[R(1)− 1] + (1 + r)− 4

(
1− 1

2n

)
cl − 2

(
1− 1

n

)
cm

}
.

Since the star network already implements the first-best level of investment, it remains to

show that it minimizes linking costs (both recurrent and idiosyncratic) among all connected

networks.

First it is easy to verify that transaction costs are minimized under star among all

minimally connected networks.

Next, we show that for any connected network gn with 2n agents,

νgn + 1 ≥ 2− 2

2n− 1
ηgn .

To see this, note that for each agent j, any agent who is directed connected to him has
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distance 1 but every other agent has distance at least 2, and hence

νgn + 1 ≥
∑

j∈N {deg(j) + 2[2n− 1− deg(j)]}
2n(2n− 1)

=
4n(2n− 1)− 2(2n)ηgn

2n(2n− 1)

= 2− 2

2n− 1
ηgn ,

where deg(j) is the degree of agent j.

Thus, the network costs of gn per capita, denoted by Cn, satisfies

Cn = 4υgncl + 2ηgncm ≥ 4υgncl + 2

[
2− 2

2n− 1
ηgn

]
cm.

Now, let C∗n = 4(1− 1
2n)cl − 2(2− 1/n)cm be the corresponding cost for the star network,

we have

Cn − C∗n ≥ S(ηgn , n) ≡ 4

{[
ηgn −

(
1− 1

2n

)]
cl +

(
1

2n
− 1

2n− 1
ηgn

)
cm

}
.

Now, for each n, S1(ηgn , n) = 4{cl − 1
2n−1cm}. Then, for all n > N2, S1(ηgn , n) > 0 and

hence is strictly increasing in ηgn . Since we are only concerned with networks other than

the minimally connected one, we may assume that ηgn ≥ 1. Now, for all n > N2,

S(1, n) ≡ 4

{
1

2n
cl +

(
1

2n
− 1

2n− 1

)
cm

}
> 0.

This implies that Cn − C∗n > 0. �

Proof of Proposition 6

Let {gn} be a sequence of networks and let q∗ be defined in the main text. Consider two

cases. First, suppose that ηgn ≤ η and νgn ≤ ν infinitely often. Then, by Proposition

4 (ii), q ≤ q∗. Since, by the arguments in Proposition 5, the star minimizes the linking

costs among all connected networks for large n’s, the candidate arrangement dominates

that sequence. Next, suppose that ηgn > η or νgn > ν for all suffi ciently large n. Since

W (1, 1, q∗) ≥ max{W (η, 1, 1),W (1, ν, 1)}, q∗ and the star network performs better for
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large n’s. �

Proof of Corollary 2

The aggregate welfare under secured trade and empty network with 2n agents is given by

W e
n =

∞∑
t=0

βtn {p[R(1) + r] + (1− p)} ,

and hence

W (g∗n, q
∗)−W e

n ≥
n

1− β {∆(q∗)− 4cl − 4cm} ,

and the last term is strictly positive if q∗ is suffi ciently close to 1 and if (cl + cm) is

suffi ciently small. �

Proof of Proposition 7

We consider the following strategies and show they constitute a Nash equilibrium and use

a tight trading strategy profile. First, agents never sever existing links or form new links

in equilibrium. After any deviation, they also never sever existing links or form new links

in equilibrium. In the trading game, all connected agents accept unsecured trades from

other connected agents as long as the set of implementable investment levels under gt at

period t is non-empty (and conduct secured trades otherwise), both on and off equilibrium

paths.

First we show that the center agent has no incentive to delete any link. We begin

with a claim about the implementable investment levels in networks where the center has

deleted some of his links.

Claim 1. Let gK be the resulting network by deleting K links from the star. If the set of

implementable investment levels is non-empty in gK , then, the highest level implementable

under gK , denoted by qK , satisfies qK ≤ q∗n for n large.

Proof. First we give necessary conditions for implementability. Fix some candidate in-

vestment level and contract, [q, (d, f)]. Consider the incentive of a connected periphery:

−(d+ f) +
β

1− β

{
2n−K − 1

2(2n− 1)
∆(q)− 2n−K − 2

2(2n− 1)
f − 2n−K − 1

2n− 1
cm

}
≥ 0.
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This implies that

G(f,K) ≡ −
{
φ+

2n−K − 2

2(2n− 1)

}
f − φd+

2n−K − 1

2(2n− 1)
[∆(q)− 2cm] ≥ 0,

and that the upper bound for f given q is given by the implicit function f = g(K) such

that G(g(K),K) = 0. Now, for K ≤ 2n− 2,

Gf = −
[
φ+

2n−K − 2

2(2n− 1)

]
≤ 0

and

GK =
1

2(2n− 1)
f − 1

2(2n− 1)
[∆(q)− 2cm].

Since g′(K) = −Gf/GK , to show that g′(K) ≤ 0, it suffi ces to show that GK ≤ 0, that is,

g(K) ≤ ∆(q)− 2cm, which in turn is equivalent to

−φd+
2n−K − 1

2(2n− 1)
[∆(q)− 2cm] ≤

[
φ+

2n− 2−K
2(2n− 1)

]
[∆(q)− 2cm].

Rearranging the terms and taking d = q + cm, it suffi ces to show that

−φ(q + cm) +
1

2(2n− 1)
[∆(q)− 2cm] ≤ φ[∆(q)− 2cm].

Note that if −φ(q + cm) + 1/2[∆(q) − 2cm] < 0, then trade without collateral is not

implementable. Let q be the lowest q for which −φ(q+ cm) + 1/2[∆(q)− 2cm] ≥ 0. Given

that q ≥ q, we may replace the right-side with zero and the above inequality holds if

2(2n− 1)φ(q + cm)− [∆(q)− 2cm] ≥ 0,

which holds for large n and q ≥ q.

Now, consider the incentive for the center agent. We have

−2n−K
2

d+
β(2n− 1−K)

(1− β)(2n− 1)

{
∆(q)

2
+

2n− 2−K
2

f − (2n− 1−K)cm

}
≥ 0.
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This implies that

H(f,K) ≡ (2n− 2−K)f + ∆(q)− (2n−K)(2n− 1)

(2n− 1−K)
φd− 2(2n− 1−K)cm ≥ 0.

The lower bound for f given q is then given by the implicit function f = h(K) such that

H(h(K),K) = 0, and h′(K) = −HK/Hf . Now,

Hf = 2n− 2−K ≥ 0

and

HK = −f − −(2n− 1)(2n− 1−K) + (2n−K)(2n− 1)

(2n− 1−K)2
φd+ 2cm.

Note that h′(K) ≥ 0 if HK ≤ 0, which holds if

h(K) ≥ − 2n− 1

(2n− 1−K)2
φd+ 2cm.

This holds if

−∆(q) +
(2n−K)(2n− 1)

2n− 1−K φ(q + cm) + 2cm ≥ 0.

Again, we have this inequality if q ≥ q and n large.

Combining these incentives, we have

−∆(q) + (2n−K)(2n−1)
(2n−1−K) φd+ 2(2n− 1−K)cm

2n− 2−K ≤
−φd+ 2n−K−1

2(2n−1) [∆(q)− 2cm]

φ+ 2n−K−2
2(2n−1)

. (A.15)

By taking derivatives with respective to K, we have verified that the left-hand side is

increasing in K while the right-hand side is decreasing in K. Thus, qK , defined as the

maximizer to maxq ∆(q) subject to (A.15) with d = q+ cm, must satisfy qK ≤ q0 = q∗n. �

Now, for each K where the set of investment levels is non-empty under gK , let C(gK) =

[qK , (qK + cm, fK)], where fK corresponds to the left-hand side of (A.15) with q = qK .

Note that when qK may not be sustainable as its benefit may be lower than secured trades;

in that case, we have agents trade with collateral and the center receives no fee.

Then, the benefit per period by deleting K links (relative to the star network) is less
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than

{
2n− 1−K
2(2n− 1)

∆(qK) +
(2n− 1−K)(2n− 2−K)

2(2n− 1)
fK −

(2n− 1−K)2

2n− 1
cm

}
−

{
1

2
∆(q) + (n− 1)fminn − (2n− 1)cm

}
+Kcl

=
2n−K

2
φ(qK + cm)− nφ(q∗n + cm) +Kcl.

Now, by Claim 1, qK ≤ q∗n; hence,

2n−K
2

φ(qK + cm)− nφ(q∗n + cm) +Kcl ≤ K
[
−φ

2
(q∗n + cm) + cl

]
≤ 0,

provided that cl ≤ 1
2φ(q∗n + cm). This shows that the center agent does not want to sever

any link.

Next, we show that when a pair of two leaf agents are chosen in the linking stage,

they have no incentive to form a link. Let g′ denote the network by having exactly two

periphery agents forming a new link between them.

Claim 2. Let g′ be the network by having exactly two periphery agents forming a new

link between them, and let q′ be the highest level of investment implementable under g′.

(a) Suppose that (4) holds for q = 1 with strict inequality. Then, for n large, q′ = 1 and

there is a corresponding fee f ′ ≥ f∗n.

(b) Suppose that (4) does not hold for q = 1 with strict inequality. Then, for any fee f ′

corresponding to q′, both |f ′ − f∗n| and |q′ − q∗n| converge to zero as n goes to infinity.

Proof. Fix a candidate contract, [q, (d, f)] with d = q + cm. Consider the center agent.

His incentive requires

−nd+
β

1− β

{
1

2
∆(q) + (2n− 3)

2n− 2

2(2n− 1)
f + 2

2n− 3

2(2n− 1)
f − cm −

n(2n− 3)

2n− 1
cm

}
≥ 0.

This implies that

f ≥
φnd− 1

2∆(q) + cm + n(2n−3)
2n−1 cm

n(2n−3)
2n−1

.
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Consider the two periphery agents who are linked. Their incentives require

−(d+ f) +
β

1− β

{
1

2
∆(q)− 2n− 3

2(2n− 1)
f − cm

}
≥ 0,

and hence

f ≤
−φ(q + cm) + 1

2∆(q′)− cm
φ+ 2n−3

2(2n−1)
.

Thus, [q, (d, f)] is implementable if and only if

φn(q + cm)− 1
2∆(q) + cm + n(2n−3)

2n−1 cm
n(2n−3)
2n−1

≤
−φ(q + cm) + 1

2∆(q′)− cm
φ+ 2n−3

2(2n−1)
. (A.16)

(a) Note that by taking n to infinity, (A.16) coincides with (4). Hence, if (4) holds for

q = 1 with a strict inequality, (A.16) holds for q = 1 for large n. Thus, q′ = 1 for large n.

However, note that
−φ(q + cm) + 1

2∆(q)− cm
φ+ 2n−3

2(2n−1)
≥ fmaxn

for q = 1, and hence we can pick a fee f ′ ≥ fmaxn .

(b) If (4) fails for q = 1 with a strict inequality, then (A.16) fails for q = 1 for large

n. Then, for large n, both constraints are binding for the second-best allocations. Since

the two conditions, (A.16) and (9), coincide at the limit, the convergence follows. Now,

suppose that (4) holds for q = 1 with an equality. Then both fmaxn and fminn converge to

the same limit as f ′. �

Now, the benefit of forming this new link per period is then less than

−cl +
1

2
|∆(q∗n)−∆(q′)|+ 1

2(2n− 1)
f +

2n− 2

2(2n− 1)
|f∗n − f ′| ≡ −cl + T (n).

However, Claim 2 implies that we can choose f ′ such that T (n)→ 0 as n goes to infinity.

Finally, for a leaf agent to sever a link and trade with collateral, the gain per period

is less than

−
[
0.5∆(q)− cm −

n− 1

2n− 1
f − cl

]
≤ 0,

as long as cl ≤ φ(d+ f) by (9). �
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Implementability for Interlinked Stars with Two Centers

Here we give a characterization of implementable investment levels in the interlinked star

network with two centers, g∗∗n . Note that by comparing the characterization to (9), it is

straightforward to verify that the upper bound for the fees is lower under interlinked star

than that under star for any given q.

Lemma A.1 Consider the interlinked star with two centers and with 2n agents. Then,

[(d, f), q] is implementable if and only if

n
n−1φd−

1
2(n−1)∆(q) + 3n−1

2(2n−1)cm
3n−2
2(2n−1) − φ

≤ f ≤
−φd+ 1

2∆(q)− cm
2φ+ 3(n−1)

2(2n−1)

. (A.17)

Proof. First consider the periphery incentive:

−(d+ 2f) +
β

1− β

{
1

2
∆(q)− n− 1

2(2n− 1)
2f − n− 1

2(2n− 1)
f − cm

}
≥ 0,

and this gives the upper bound on f . Second, consider the center agent’s incentive.

−nd− (n− 1)f +
β

1− β

{
1

2
∆(q)

}
+

β

1− β

{
(n− 1)

2n− 2

2(2n− 1)
f + n

n− 1

2(2n− 1)
f − (n− 1)cm −

n(n− 1)

2n− 1
cm

}
≥ 0.

Now we prove suffi ciency. Suppose that (A.17) holds. The financial contracts are given

as follows. For unsecured trades on the equilibrium path, let d = q + cm and let f ≥ 0

be in between the two numbers in (A.17). For secured trades on off-equilibrium paths,

the investment level is q = 1, and the investment agent repays 1 to the liquidity agent

when the return is θ = R(1) (when θ = 0, the liquidity agent liquidates the collateral

and obtains payoff 1). Given the contracts, the liquidity agent is indifferent between

secured and unsecured trades (both of which give him a zero surplus), assuming that the

investment agent will repay in unsecured trades.

We construct equilibrium strategies as follows. Each periphery agent can be in one of

the two states, G and B, and each center can also be in one of the two states, G and B.

At date 0, all agents are in state G. For l = 1, 2, a periphery agent in NkCl stays in state
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G if and only if he repays all his debts to kCl when assigned to the investment role in

the previous periods; otherwise, he enters state B. The state of an agent in NkCl is only

observable to the center agent kCl. Similarly, a center agent kCl stays in state G if and

only if he repays all his obligations, including those to kC(−l) and his debtor when assigned

to the investment role in the previous periods; otherwise, he enters state B. Any agent

who enters state B stays there forever. Note that if a periphery agent trades directly then

this choice does not affect his state and a periphery agent’s action in liquidity role does

not affect his state.

For l = 1, 2, the strategy of a periphery agent jl in Nkcl assigned to the liquidity role

in state G is as follows: if kCl is in state G, then he accepts any trade through kCl; if kCl

is in state B, he demands collateral for any trade. Moreover, he always asks for collateral

if asked to trade directly. A periphery agent jl in NkCl assigned to the liquidity role in

state B always asks for collateral.

The strategy of a periphery agent jl in NkCl assigned to investment role is as follows:

if both himself and kCl are in state G, then he propose to trade through kCl (and kC(−l),

if needed) and repay his debt; if himself or kCl is in state B (or both), he proposes to

trade directly, and, if his trade without collateral is accepted (following off-equilibrium

behavior), he does not repay anything.

Finally, for l = 1, 2, the strategy of kCl is as follows: if he is in state B, then he

never accepts any trade without collateral and he never repays anything. Instead, if he

is in state G, he accepts trades from a match m = (`, i) if and only if both ` and i are

in state G (and, when trade has to go through kC(−l), kC(−l) is in state G as well) and

rejects it otherwise, and he repays all debts if and only if it is feasible and (i) kC(−l) is in

state G and the number of periphery agents in NkCl in state G who repays at the current

period, denoted by K, and the total obligation kCl has to agents in state G, denoted by

L (including the fees owe to kC(−l)), satisfy

−φL+
1

2

[
p(R(q) + r) + (1− p)

(
K + n

2n− 1
r +

n− 1−K
2n− 1

)
+ (1− q)

]
+

(
K(K + n)

2n− 1
+

nK

2n− 1

)
f ≥ 1

2
[p(R(1)− r) + (1− p)] ;
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or, (ii) kC(−l) is in state B and the number of periphery agents in Pl in state G who repays

at the current period, denoted by K ′, and the total obligation kCl has to agents in state

G, denoted by L′, satisfy

−φL′ + 1

2

[
p(R(q) + r) + (1− p)

(
K ′

2n− 1
r +

2n− 1−K ′
2n− 1

)
+ (1− q)

]
+

K ′(K ′ − 1)

2n− 1
f ≥ 1

2
[p(R(1)− r) + (1− p)] .

We also need to construct equilibrium beliefs. For a central agent kCl, his belief about

a periphery agent in NkCl or kC(−l) is the actual history, his belief about an agent in

NkC(−l) is that he is in state G if kC(−l) is in state G. For a periphery agent jl in Pl, his

belief is such that if kCl is in state G, then he believes that all other agents are also in

state G (and hence, he treats any rejection of unsecured trades from kCl as mistakes).

To show that these strategies form a simple equilibrium, first notice that (A1)-(A3)

are satisfied. Moreover, the agents’beliefs are consistent with equilibrium strategies. In

particular, when a proposed trade is rejected by kCl in state G, it is believed to be a

mistake and agents are all in state G and will continue to accept trades and repay from

next period on. We use the one-shot-deviation principle to verify sequential rationality.

No agent has incentive to deviate along the equilibrium path. On the off-equilibrium

path, the history is summarized by the configuration of states and we verify sequential

rationality as follows.

(i) Consider a periphery agent jl in NkCl assigned to the liquidity role. Since kC1
and kC2 will not accept any trade from an investment agent in state B, he is indifferent

between accepting a unsecured trade with kCl and having a secured trade so long as kCl

is in state G and it is optimal to reject any other unsecured trade (note that a periphery

investment agent will not repay any debt incurred through direct trading). Thus, it is

optimal for jl to accept unsecured trades from kCl when kCl has state G and to reject

unsecured trades from kCl when kCl has state B.

(ii) Consider a periphery agent jl in NkCl assigned to the investment role. Since jk’s

state only depends on whether they repay kCl and since jl will only have secured trades

once entering state B, his incentive to repay is determined by the previous arguments.
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(iii) Finally, consider the center agent kCl. By construction, his strategy is optimal. �

Proof of Proposition 8

We use the same candidate equilibrium strategy profile as that in the proof of Proposition

7.

First we show that either center agent does not want to sever any link.

Let gK be the resulting network when one center severs K links to the peripheries. To

ensure repayments, the periphery incentive requires

−(d+ 2f) +
β

1− β

{
2n− 1−K
2(2n− 1)

∆(q)− (n− 1−K) + 2(n− 1)

2(2n− 1)
f − 2n− 1−K

2n− 1
cm

}
≥ 0,

and this inequality gives an upper bound on f . Using the same arguments as in the proof

of Proposition 7, we can show that this upper bound is decreasing in q and in K. Thus,

when f∗ is close to fmax, we can choose the fee under gK , fK , to be lower than f∗. Similar

arguments hold when severing the link to the other center.

Now, for the incentive to sever links, we distinguish two cases.

(a) The star severs K links with peripheries. The benefit of doing so is less than

S(K) =

[
(n− 1−K)(2n− 2−K)

2(2n− 1)
+
n(n− 1−K)

2(2n− 1)

]
fmax

− (3n− 2)(n− 1)

2(2n− 1)
fmax +Kcl +

(n− 1)(3n− 1)

2(2n− 1)
cm.

Now, S′′(K) = fmax/(2n− 1) > 0, and hence it suffi ces to show that 0 ≥ S(n− 1), which

holds if

cl ≤ 0.7(f + cm). (A.18)

(b) The star severs K links with peripheries, together with the link to the other star. The

benefit of doing so is less than

S2(K) =
(n− 1−K)(n− 1−K)

2(2n− 1)
fmax

− (3n− 2)(n− 1)

2(2n− 1)
fmax + (K + 1)cl +

(n− 1)(3n− 1)

2(2n− 1)
cm.
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Now, S′′2 (K) = fmax/(2n− 1) > 0, and hence it suffi ces to show that 0 ≥ S2(n− 1), which

holds by (A.18).

Second, we show that each star kCl does not want to form a new link with a periphery in

j−l ∈ NkC(−l) . Consider the network after that new link. For n large, it can be shown that

the constraints for implementability converges to the same limit as the original network,

and hence we can choose a fee that is arbitrarily close to the original one for n large.

Moreover, if kCl is linked with j−l, the expected total fee revenue is also arbitrarily close

to that in the original network, since the fee is paid by j−l, in either case, if and only if

j−l is linked to someone on NkCl , but kCl has to pay the information cost. Thus, forming

such link is not profitable for kCl when n is large.

Third, no two peripheries want to form a new link. Again, the incentives in the new

network is arbitrarily close to the original one and hence we can pick a fee f ′ that is

arbitrarily close to f . Hence, the benefit of forming this new link per period is then less

than

−cl +
1

2(2n− 1)
f +

2n− 2

2(2n− 1)
|f − f ′| ≡ −cl + T (n).

However, T (n)→ 0 as n goes to infinity, and hence it is not profitable to form such a link

for n large.

Finally, each j ∈ NkCl does not want to sever his link. This follows exactly the same

reasoning as in the proof of Proposition 7. �
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