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Diamond and Dybvig (1983) is commonly understood as providing a formal rationale for the
existence of bank-run equilibria. It has never been clear, however, whether bank-run equilibria in
this framework are a natural byproduct of the economic environment or an artifact of suboptimal
contractual arrangements. In the class of direct mechanisms, Peck and Shell (2003) demonstrate
that bank-run equilibria can exist under an optimal contractual arrangement. The difficulty of
preventing runs within this class of mechanism is that banks cannot identify whether withdrawals
are being driven by psychology or by fundamentals. Our solution to this problem is an indirect
mechanism with the following two properties. First, it provides depositors an incentive to com-
municate whether they believe a run is on or not. Second, the mechanism threatens a suspension
of convertibility conditional on what is revealed in these communications. Together, these two
properties can eliminate the prospect of bank-run equilibria in the Diamond-Dybvig environment.

KEYWORDS: bank runs, optimal deposit contract, financial fragility.
JEL CLASSIFICATION: D82, E58, G21.

1. INTRODUCTION

BANKING is the business of transforming long-maturity illiquid assets into short-maturity
liquid liabilities. The demandable debt issued by commerical banks constitutes the quintessen-
tial example of this type of credit arrangement. The use of short-maturity debt to finance
long-maturity asset holdings is also prevalent in the shadow-banking sector.1 Demandable
debt or short-maturity debt in general has long been viewed by economists and regulators
as an inherently fragile financial structure—a credit arrangement that is susceptible to runs
or roll-over risk. The argument is a familiar one. Suppose that depositors expect a run—a
wave of early redemptions driven by fear, rather than by liquidity needs. By the definition of
illiquidity, the value of what can be recouped in a fire-sale of assets must fall short of existing
obligations.2 Because the bank cannot honor its promises in this event, it becomes insolvent.
In this manner, the fear of run can become a self-fulfilling prophecy.

If demandable debt is run prone, then why not tax it, or better yet, legislate it out of
existence?3 Bryant (1980) suggests that the American put option embedded in bank liabilities
is a way to insure against unobservable liquidity risk. In short, banking is an efficient
risk-sharing arrangement when assets are illiquid, depositors are risk averse, and liquidity
preference is private information. But if this is the case, then the solution to this one problem
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seems to open the door to another. Indeed, the seminal paper by Diamond and Dybvig
(1983) on bank runs demonstrates precisely this possibility: Demandable debt as an efficient
risk-sharing arrangement is also a source of indeterminacy and financial instability.

Diamond and Dybvig (1983) is most often viewed as a theory of bank runs, but it also
offers a prescription for how to prevent bank runs for the case in which aggregate risk is absent.
The prescription entails embedding bank liabilities with a suspension clause that is triggered
when redemptions exceed a specified threshold. This simple fix prevents bank runs.

As Diamond and Dybvig (1983) point out, a full suspension of convertibility—conditional
on a threshold level of redemption activity being breached—is not likely to be optimal
in the presence of aggregate risk.4 In the absence of aggregate uncertainty, redemptions
exceeding the appropriate threshold constitutes a signal that a run is occurring. With aggregate
uncertainty, the optimal redemption schedule is state contingent.5 As a consequence, it is not
possible to confirm whether heavy redemptions are driven by fundamentals or by psychology.
Threatening full suspension is desirable in the latter case, but not the former.

Our proposed solution to the bank-run problem under aggregate uncertainty is to exploit
the idea that while the bank may not know whether a run is on, there are agents in the
economy that do. That is, in equilibrium, the beliefs of agents in the economy are consistent
with the reality unfolding around them. Can the bank somehow elicit this information in an
incentive-compatible manner? If it can, then might the threat of suspensions conditional on
such information—and not on withdrawals—serve to eliminate run equilibria?

We provide a positive answer for both these questions, and by so doing depart from the
direct mechanism approach usual in the literature. In a direct mechanism, a depositor in
the sequential service queue simply requests to withdraw or not. That is, the depositor
communicates only his type; impatient if he withdraws or patient if he does not. Our indirect
mechanism expands the message space to accommodate additional communications. In this
way, we permit a depositor to communicate his belief that a run is on. We can show that the
threat of suspension conditional on this communication eliminates the possibility of a run
equilibrium.

In practice, such information could be gleaned by introducing a separate financial instru-
ment, the choice of which implicitly reveals what the depositor believes.6 Our mechanism
rewards the depositor for delivering such a message when a run is on. The reward is such
that his payoff is higher compared to the payoff associated with concealing his belief that a
run is on and making an early withdrawal—that is, misrepresenting his type and running
with the other agents. Upon receiving such a message, the mechanism fully suspends all
further redemptions. The design of our mechanism ensures that a patient agent never has an
incentive to either run when a run is on or announce that he believes a run is on when it is

4Diamond and Dybvig (1983) do not actually characterize the optimal contract for the case in which aggregate
risk is present.

5This property was suggested by Wallace (1988) and later confirmed by Green and Lin (2003).
6We elaborate on this in Section 8.
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not. At the end of the day, we are able to construct an indirect mechanism that implements
the constrained-efficient allocation in iterated elimination of strictly dominated strategies.

Literature Review
A number of papers have studied bank fragility under optimal arrangements in the Dia-

mond and Dybvig (1983) setting. Green and Lin (2003) were the first to characterize an optimal
bank contract under private information, sequential service, and aggregate uncertainty. In
their version of the Diamond-Dybvig model, the first-best allocation is implementable as a
unique Bayes-Nash equilibrium of a direct revelation game.

The allocation rule in Green and Lin (2003) allows early withdrawal payments in the
sequential service queue to depend on the history of announcements—"I want to withdraw"
or "I do not want to withdraw"—and payments to that point. The maximum withdrawal
amount faced by an agent in the service queue is lower the larger is the number of preceding
withdrawals. This partial suspension scheme is in stark contrast to Diamond and Dybvig
(1983), who restrict the maximum withdrawal amount to be insensitive to realized withdrawal
demand, so that resources are necessarily exhausted in the event of a run.7

Peck and Shell (2003) modify the Green and Lin (2003) environment in at least two impor-
tant ways. First, they alter the preferences so that incentive-compatibility constraints bind at
the optimum. This implies, among other things, that the first-best allocation cannot be imple-
mented. Second, they assume that depositors do not know (or are not told) their position in
the service queue. If depositors do not know their queue position, then it is not possible to use
backward induction argument of Green and Lin (2003) to eliminate a bank-run equilibrium.
It also turns out—and this was not recognized at the time—not revealing queue positions to
depositors is part of an optimal mechanism when incentive-compatibility constraints bind.8

Peck and Shell (2003) use a direct revelation mechanism and demonstrate by example that the
optimal direct mechanism can have a bank-run equilibrium.

Ennis and Keister (2009b) modify the Green-Lin environment by assuming the distribution
of depositors types is correlated; Green and Lin (2003) assume independence. Using a direct
revelation mechanism, Ennis and Keister (2009b) demonstrate that a bank-run equilibrium can
exist. But, it is no longer obvious, that a direct revelation mechanism is the “best” mechanism
since it does not deliver a uniqueness result. Indeed, Cavalcanti and Monteiro (2011) examine
indirect mechanisms in the Ennis and Keister (2009b) environment and demonstrate that
the best allocation can be uniquely implemented in dominant strategies. Unfortunately, the
backward induction argument implicitly embedded in their mechanism—which is key to
their uniqueness proof—will not work in the more general Peck and Shell (2003) environment
since depositors do not know their positions in the queue.

7Wallace (1990) reports that partial suspensions were prevalent in the banking panic of 1907, and that in one
form or another must have been a feature of other suspension episodes as well.

8By not revealing or knowing queue positions, multiple incentive compatibility constraints can be replaced by
a single incentive compatibility constraint. As a result, the set of implementable incentive compatible allocations
expands.
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There is a mechanism design literature that studies how indirect mechanisms can help to
implement optimal outcomes uniquely. Demski and Sappington (1984) examine a principal-
two-agent setting where agents separately make production decisions and their costs are
private and correlated. The optimal direct mechanism has two equilibria: A truth-telling
equilibrium and a “cheating” equilibrium, where the cheating equilibrium leaves both agents
better off and the principal worse off compared to the truth-telling equilibrium. Ma et al. (1988)
shows how an indirect mechanism can prevent agents from misrepresenting their types—or
stop agents from cheating—in the Demski and Sappington (1984) model.9 Mookherjee and
Reichelstein (1990) generalizes this approach. Unfortunately, these results cannot be directly
applied to the banking problem because sequential service, which is absent in the mechanism
design models, complicates the analysis.

The paper is organized as follows. The next section describes the economic environment.
Section 3 characterizes the best weakly implementable allocation. In Section 4 we provide a
stripped down version of model to illustrative the key features of our mechanism. In Section
5 we construct an indirect mechanism and provide sufficient conditions for unique implemen-
tation of the best weakly implementable allocation. In Section 6, we examine examples for
which the sufficient conditions are not valid and Section 7 examines an alternative indirect
mechanism that addresses these examples. Some policy remarks are offered in the final
section.

2. ENVIRONMENT

There are three dates: 0, 1 and 2. The economy is endowed with Y > 0 units of date-1
goods. A constant returns to scale investment technology transforms y units of date-1 goods
into yR > y units of date-2 goods. There are N ex-ante identical agents who turn out to be
one of two types: t ∈ T = {1,2}. We label a type t = 1 agent “impatient” and a type t = 2
agent “patient”. The number of patient agents in the economy is drawn from the distribution
π = (π0, . . . ,πN), where πn > 0, n ∈ N ≡ {0,1, . . . , N}, is the probability that there are n
patient agents.10 A queue is a vector tN = (t1, . . . , tN) ∈ TN, where tk ∈ T is the type of the
agent that occupies the kth position or coordinate in the queue. Let Pn =

{
tN ∈ TN| ntN = n

}
and Qn(tN) =

{
j | tj = 2 for tN ∈ Pn

}
, where ntN denotes the number of patient agents in the

queue tN . Pn is the set of queues with n patient agents and Qn(tN) is the set of queue positions
of the n patient agents in queue tN ∈ Pn.11 The probability of a queue tN ∈ Pn is πn/(N

n ),
where the binomial coefficient, (N

n ), is the number of queues tN ∈ Pn. In other words, all
queues with n patient agents are equally likely. Agents are randomly assigned to a queue
position, where the unconditional probability that an agent is assigned to position k is 1/N.

9Postlewaite and Schmeidler (1986) also produced an example where an indirect mechanism has a unique
equilibrium yielding the optimal outcome while the corresponding direct mechanisms possess multiple equilib-
ria.

10The full support assumption is not crucial to any result. It is imposed only for simplicity.
11We omit the argument of Qn(tN) throughout the paper to reduce notational burden.
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Label an agent assigned to position k agent k. The queue realization, tN, is observed by no
one; not by any of the agents nor the planner. Agent k does not observe his queue position,
k, but does privately observe his type t ∈ T. The utility function for an impatient agent is
U(c1, c2;1) = u

(
c1) and the utility function of a patient agent is U(c1, c2;2) = ρu

(
c1 + c2),

where c1 is date-1 consumption and c2 is date-2 consumption. The function u is increasing,
strictly concave and twice continuously differentiable, and ρ > 0 is a parameter.12 Agents
maximize expected utility.

The timing of events and actions are as follows. At date 0, the planner constructs a
mechanism that determines how date-1 and date-2 consumption are allocated among the N
agents. A mechanism consists of a set of announcements, M, and an allocation rule, c = (c1, c2),
where c1 = (c1

1, . . . c1
N) and c2 = (c2

1, . . . c2
N). The planner can commit to the mechanism.13 The

queue tN is realized at the beginning of date 1. Then agents meet the planner sequentially,
starting with agent 1. Each agent k makes an announcement mk ∈ M.14 Only agent k and the
planner can directly observe mk. There is a sequential service constraint at date 1, which means
the planner allocates date-1 consumption to agent k based on the announcements of agents
j ≤ k, (mk−1,mk), where mk−1 = (m1, . . . ,mk−1), and each agent k consumes c1

k(m
k−1,mk) at

his date-1 meeting with the planner. Date 1 ends after all agents meet the planner. In between
dates 1 and 2 the planner’s resources are augmented by a factor of R. At date 2, the planner
allocates the date-2 consumption good to each agent based on the date-1 announcements, i.e.,
agent k receives c2

k(m
N), where mN = (m1, . . . ,mN) ∈ MN. Figure 1 depicts the sequence of

actions.

Period 0

Bank announces{
M, (c1, c2)

}
Realization
of tN ∈ TN

Period 2Period 1

Sequential Service

announce mk and consume c1
k(m

k−1,mk)

︷ ︸︸ ︷ Return R realizes
and payment c2

k(m
N)

occurs

Figure 1: Sequence of Actions.

12These preferences are identical to the ones in Diamond and Dybvig (1983). In addition, they assume that
ρR > 1 and ρ ≤ 1.

13For a discussion of bank fragility in a setting without commitment, see Ennis and Keister (2009a).
14One could imagine that the planner makes announcement ak to agent k before k makes his announcement.

For example, the planner could tell agent k his queue position, as in Green and Lin (2003), or the set of all
messages sent in the previous k− 1 planner-agent meetings, as in Andolfatto et al. (2007), or “nothing”, ak = ∅,
as in Peck and Shell (2003). The optimal mechanism, however, will have the planner announcing nothing. To
reduce notation, and without loss of generality, we assume that the planner cannot make announcements to
agents, unless otherwise specified. See footnote 16 for a discussion.
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3. THE BEST WEAKLY IMPLEMENTABLE OUTCOME

An allocation is weakly implementable if it is an equilibrium outcome of a mechanism; it
is strongly or uniquely implementable if it is the unique equilibrium outcome of a mecha-
nism. Among the set of weakly implementable allocations, the best weakly implementable
allocation provides agents with the highest expected utility. To characterize the best weakly
implementable allocation, it is without loss of generality to restrict the planner to use a direct
revelation mechanism, where agents only announce mk = tk ∈ T = {1,2}. The welfare—which
we measure as the expected utility of an agent before he learns his type—associated with
allocation rule c when agents use strategies mk ∈ T is

N

∑
n=0

πn

(N
n )

∑
tN∈Pn

N

∑
k=1

U
[
c1

k

(
mk−1,mk

)
, c2

k

(
mN

1

)
; tk

]
.(1)

The allocation rule c = (c1, c2) is feasible if for all mN ∈ TN

N

∑
k=1

[
Rc1

k

(
mk−1,mk

)
+ c2

k

(
mM

)]
≤ RY.(2)

The best weakly implementable allocation has all agents k announcing truthfully, i.e.,
mk = tk. Allocation rule c must be incentive compatible in the sense that agent k has no
reason to announce mk 6= tk. Since impatient agents k only value date-1 consumption, they
always announce mk = 1.15 Patient agent k has no incentive to defect from the strategy mk = 2,
assuming that all other agents announce truthfully, if

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρ
{

u
[
c1

k

(
tk−1,2

)
+ c2

k

(
tN
)]
− u

[
c1

k

(
tk−1,1

)
+ c2

k

(
tk−1,1, tN

k+1

)]}
≥ δ,(3)

where, for any vector xN = (x1, . . . , xN), xj
i denotes

(
xi, . . . , xj

)
, δ > 0 is a parameter, and

π̂n =
πn/(N

n )

∑N
n=1 πn/(N

n )

is the conditional probability that agent k is in a specific queue with n patient agents.16 The

15 This anticipates the result that the best weakly implementable allocation provides zero date-1 consumption
to agents who announce that they are patient, which implies that the incentive compatibility constraint for
impatient agents is always slack.

16 To characterize the best weakly implementable allocation, one wants to choose from the largest possible set
of incentive compatible allocations. This implies the planner should not make any announcements, as noted in
footnote 14. In particular, if the planner does not make any announcements, then there is only one incentive
compatibility constraint for all patient agents, (3). If, however, the planner did make an announcement ak
to agent k, there will be additional incentive constraints for the agent who received the announcement. For
example, suppose that ak = k for all k, i.e., the planner announces to each agent his place in the queue. Then
there would be N incentive compatibility constraints for patient agents, one for each queue position. Since an
appropriately weighted average of these distinct incentive constraints implies (3), the set of incentive compatible
allocations when the planner makes announcements is a subset of the set of incentive compatible allocations
when he does not. By not making any announcements, the planner is able to choose from a larger set of incentive



PREVENTING BANK RUNS 7

1/n term that appears in (3) reflects that a patient agent has a 1/n chance of occupying each
of the patient queue positions in Qn.

The best weakly implementable allocation is given by the solution to

max (1) subject to (2) and (3),(4)

where mk = tk for all k ∈ N. We restrict δ > 0 to those values that admit a solution to
problem (4). Let c∗ (δ) =

(
c1∗ (δ) , c2∗ (δ)

)
be a solution to problem (4) and let W∗(δ) denotes

its maximum. We consider δ > 0 to guarantee that the incentive compatibility holds in
an open neighbourhood of c∗. The existence of such neighbourhood is necessary for our
uniqueness result but δ > 0 can be made arbitrarily small. Therefore, we can apply Berge’s
maximum theorem, which says that W∗(0) is approximated by W∗(δ) when δ is close to zero.
The allocation rule c∗ (δ) has the following features: (i) an agent k who announces mk = 1
consumes only at date 1, that is, c2∗

k (m1, . . . ,mk−1,1,mk+1, . . . ,mN) = 0 for all k ∈N; (ii) an
agent k who announces mk = 2 consumes only at date 2, that is, c1∗

k (m1, . . . ,mk−1, 2) = 0 for all
k ∈N; and (iii) all agents j and k announcing mj = mk = 2 consume identical amounts at date
2, that is, c2∗

j (mN) = c2
k(m

N) for all mj = mk = 2. The best-weakly implementable allocation is
c∗ (0), which corresponds to the allocation rule derived in Peck and Shell’s (2003) Appendix
B.

Define a bank run as a non-truthtelling equilibrium for the mechanism {M, c}, where some
and possibly all k ∈ Qn(tN) announce mk = 1. Both Peck and Shell (2003) and Ennis and
Keister (2009b) demonstrate, by example, that the direct mechanism {T, c∗ (0)} can have two
equilibria: one where agents play truth-telling strategies, mk = tk for all k, and another where
all patient agents k play bank-run strategies, mk = 1.17 We claim that bank-run equilibria
arise in these examples because the direct revelation mechanism they use, {T, c∗(0)}, is not
an optimal one; there exists an indirect mechanism that strongly implements the best weakly
implementable allocation. Before we demonstrate this result, we provide a simple example
that illustrates the basic intuition underling our optimal mechanism.

4. A SIMPLE EXAMPLE

Consider a stripped-down version of a Diamond-Dybvig model where there are only 2
agents—column and row—and both agents are patient. Agents simultaneously announce
that they are either patient, m = 2, or impatient, m = 1. The payoffs to agents for this game
are given byThis simple normal form game captures two important insights of the Diamond-Dybvig
model. First, there are multiple equilibria: one where both agents announce the truth,
m = 2, one where both agents announce they are impatient, m = 1, and another where both
agents randomize between each strategy with probability half. And second, the truth-telling

feasible allocations.
17 The Ennis and Keister (2009b) bank-run example is in section 4.2 of their paper. There, agents do not know

their position in the queue, as in Peck and Shell (2003), and the utility functions of patient and impatient agents
are the same, ρ = 1, as in Green and Lin (2003).
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m = 1

m = 2

m = 1 m = 2

0 , 2 3 , 3

1 , 1 2 , 0

equilibrium generates the higher payoffs for agents than a bank-run equilibrium.
Consider now a normal form game that simply augments the announcement space of the

original game from {1,2} to {1,2, g}, with associated payoffs

m = 1

m = 2

m = g

m = 1 m = 2 m = g

1 , 1

0 , 2

1 + ε , 0

2 , 0

3 , 3

2 + ε , 3

0 , 1 + ε

3 , 2 + ε

ε , ε

There are three features of the augmented game that we would like to highlight. First, when
agents restrict their announcements to {1,2}, the payoffs they receive are identical to the
original game. Second, announcement m = g strictly dominates announcement m = 1. And
finally, the payoff to an agent who announces m = 2 is the same regardless if his opponent
announces m = 2 or m = g.

Since agents never play m = 1 in the augmented game—it is strictly dominated by playing
m = g—the relevant augmented game that agents play is

m = 2

m = g

m = 2 m = g

2 + ε , 3 ε , ε

3 , 3 2 , 0

But in this relevant augmented game, announcement m = g is strictly dominated by announce-
ment m = 2. Therefore, the unique iterated strict dominant equilibrium to the augmented
game is one of truthtelling, m = 2. Hence, by modifying the game that agents play, we get rid
of the “bad” bank-run equilibria that existed in the original game.

The best weakly implementable allocation described in Section 3, c∗(δ), is somewhat more
complicated than the payoff structure in the stripped-down example. Nevertheless, our
approach to eliminate the bad equilibria is the same: We construct an indirect mechanism
{M̂, ĉ} with the properties: (i) M̂ = {1,2, g}; (ii) announcing m̂k = 1 is strictly dominated by
announcing m̂k = g for patient agents; and (iii) after announcement m̂k = 1 is eliminated for
patient agents announcing m̂k = 2 strictly dominates announcing mk = g. The uniqueness
result is a bit more tricky to prove because we need enough resources to construct an allocation
rule ĉ that provides sufficiently high payoffs to patient agents so that announcing truthfully is
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the unique rational strategy. In the subsequent section, we characterize an indirect mechanism
and provide sufficient conditions under which this mechanism uniquely implements the best
weakly implementable allocation using dominance arguments similar to the simple example.

5. AN INDIRECT MECHANISM

Consider an indirect mechanism {M̂, ĉ}, where M̂ = {1,2, g} and ĉ is described below. The
basic construction of the allocation rule ĉ uses c∗ (δ). If agent j announces m̂k = 1, then

ĉ1
k

(
m̂k−1,1

)
=

{
c1∗

k (δ)
(
m̂k−1,1

)
if m̂j ∈ {1,2} for all j < k

0 if m̂j = g for some j < k
and ĉ2

k

(
m̂k−1,1, m̂N

k+1

)
= 0.(5)

An agent k announcing m̂k = 1 receives the date-1 consumption payoff under the direct
revelation mechanism {T, c∗(δ)} only if all earlier agents j < k announce either m̂j = 1 or m̂j = 2;
otherwise he receives zero. That is, there is a suspension of first period payments after an agent
j < k announces m̂j = g. The date-2 consumption payoff associated with the announcement
m̂k = 1 is zero, as in the direct revelation mechanism {T, c∗(δ)}. If agent k announces m̂k = g,
then

ĉ1
k

(
m̂k−1, g

)
= 0 and ĉ2

k

(
m̂k−1, g, m̂N

k+1

)
= ĉ1

k

(
m̂k−1,1

)
+ ε,(6)

where ε > 0 is an arbitrarily small number. To keep the presentation simple, we assume
throughout the paper that ε is taken small enough so all results hold. If agent k announces
m̂k = g, then he receives a zero payoff at date 1. At date 2, he receives a payoff that is
slightly bigger than the date-1 payoff he would receive by announcing m̂k = 1—see (5)—
which implies that ĉ2

k
(
m̂k−1, g, m̂N

k+1

)
= ĉ1

k
(
m̂k−1,1

)
+ ε. Hence, announcing m̂k = g strictly

dominates announcing m̂k = 1 for any patient agent k. Finally, if agent k announces m̂k = 2,
then

ĉ1
k

(
m̂k−1,2

)
= 0 and ĉ2

k

(
m̂k−1,2, m̂N

k+1

)
=

R
[
Y−∑N

j=1 ĉ1
j (m̂

j)
]
−∑N

j=1 ĉ2
j (m̂

N)1m̂j=g

nm̂N
(7)

where nm̂N represents the number of agents who announced m̂ = 2 in the announcement
vector m̂N and 1m̂j=g is an indicator function, where 1m̂j=g = 1 if mj = 1 and 0 otherwise. If
agent k announces m̂k = 2, then he receives a 1/nm̂N share of the total date-2 output that
remains after payments to agents j who announced either mj = 1 or mj = g are made. Since
the allocation rule ĉ, given by (5)-(7), depends on δ and ε, we will denote it as ĉ (δ,ε).

Generally speaking, a patient agent j who announces mj = 1 adversely affects the payoffs
of truthfully announcing patient agents in two ways. First, the payments to an agent who
announces mj = 1 are made in period 1 which implies that these resources cannot benefit from
the investment opportunity, R, available between dates 1 and date 2. Second, if impatient
agents have a relatively high marginal utility of consumption compared to patient agents, i.e.,
ρ is small, then, due to risk-sharing considerations, payments to agents who announce mj = 1
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can be quite high, leading to less resources available to the patient agents. Interestingly, the
story is a bit different when patient agent j announces m̂j = g and impatient agents have
a relatively low marginal utility of consumption compared to patient agents. Following
a g announcement there is a suspension of date 1 payments and agents who announce g
receive their payments at date 2. Hence, all suspended payments benefit from the investment
opportunity that is available between dates 1 and 2, and patient agents who announced
truthfully will receive a fraction of the investment return, R. In addition, if ρ is relatively
large, then the date-2 payment to agent j will be relatively low, which benefits truth-telling
patient agents.

Patient agent k who announces truthfully will benefit from announcement mj = g if alloca-
tion rule ĉ(δ,ε) has the following property

ĉ2
k(δ,ε)(m̂k−1,2, m̂N

k+1) ≥ ĉ2
k(δ,ε)(t̂k−1,2, t̂N

k+1) = c2∗
k (δ)(t̂k−1,2, t̂N

k+1),(P1)

where t̂i ∈ Ti (t̂N
i ∈ TN

i ) is a vector of length i (T − i) such that for each j ≤ i (i ≤ j ≤ N), t̂j = 1
if m̂j = 1 and t̂j = 2 if either m̂j = 2 or m̂j = g. In words, vector t̂i (t̂N

i ) is constructed from
the message vector m̂i (m̂N

i ) by replacing all of the g’s with 2’s. The first term in (P1) is the
payoff to a truthfully announcing patient agent when some (patient) agents announce g. The
second term is the payoff to patient players when those g announcements are replaced by 2,
which, by construction, also equals the payment from the best implementable allocation. If
the contract ĉ(δ,ε) is characterized by property (P1), then, clearly, a truthfully announcing
patient agent benefits if some other (patient) agent announces g. In fact, his payoff will exceed
that associated with the best weakly implementable allocation, c∗(δ).

Under what circumstances will the allocation rule ĉ(δ,ε) have property (P1)? The above
discussion suggests that truthfully announcing patient agents benefit from a mj = g announce-
ment the larger is R and/or the larger is ρ. (Recall that the higher is ρ, the smaller will be the
payments to impatient agents.) Our first proposition verifies this intuition.

PROPOSITION 1: If ρR > 1, then property (P1) holds.

PROOF: See Appendix.

Property (P1) seems to imply that, since more resources are available to patient players
who announce truthfully and less to patient players who announce g, it is rational for patient
players to announce truthfully. Our main proposition demonstrates that this intuition is, in
fact, correct.

PROPOSITION 2: If property (P1) holds, then the indirect mechanism {M̂, ĉ(δ,ε)} strongly imple-
ments allocation c∗(δ) in rationalizable strategies.

PROOF: The mechanism {M̂, ĉ(δ,ε)} induces a symmetric Bayesian game Γ = {T,S} where,
T = {1,2} is the set of types, st ∈ M̂ is the player’s message contingent on his type t ∈ T and
S = {(s1, s2) ∈ M̂2} is the set of pure strategies. We solve the game by iterated elimination of
strictly dominated strategies in two rounds.
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Round 1 - Any strategy (s1, s2) ∈ S, with s1 6= 1, is strictly dominated by (1, s2) since,
contingent on being impatient, an agent only derives utility from period 1 consumption.
Additionally, any strategy (s1,1) is strictly dominated by (s1, g) since, contingent on being
patient, agents are indifferent between period 1 or period 2 consumption and announcing
g always gives a total payment that is ε higher than announcing 1. Let S1 = {(1,2), (1, g)}
denote the set of strategies that survive the first round of elimination of strictly dominated
strategies.

Round 2 - When strategies are restricted to S1, impatient agents announce 1 and patient
agents announce either 2 or g. From property (P1), the lower bound on the expected payoff to
a patient player who announces 2 is

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c2∗
k (δ)(tk−1,2, tN

k+1)
)

.

Since the payment to agent k who announces mk = g is either c1∗
k
(
tk−1,1

)
+ ε or ε, the

expected payoff to a patient player who announces g is bounded above by

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c1∗
k (δ)

(
tk−1,1

)
+ ε
)

.

Since u is continuous, there exists an ε > 0 sufficiently small so that

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

{
ρu
(

c1∗
k (δ)

(
tk−1,1

)
+ ε
)
− ρu

(
c1∗

k (δ)
(
tk−1,1

))}
< δ.

The incentive compatibility condition (3) can be rewritten as

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c2∗
k (δ)

(
tk−1,2, tN

k+1
))
≥

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c1∗
k (δ)

(
tk−1,1

))
+ δ.

Combining the above two inequalities, we get

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c2∗
k (δ)(tk−1,2, tN

k+1)
)
>

N

∑
n=1

π̂n ∑
tN∈Pn

1
n ∑

k∈Qn

ρu
(

c1∗
k (δ)(tk−1,1) + ε

)
.(8)

Therefore, the strategy (1, g) is strictly dominated by the strategy (1,2) in S1. Let S2 be the
set of strategies that survive the second round of elimination of strictly dominated strategies.
Since S2 = {(1,2)} is a singleton, the game is iterated strict dominance solvable. The unique
equilibrium strategy is the truth-telling s = (1,2), which implies the same outcome as the
truth-telling equilibrium of the direct mechanism {T, c∗(δ)}.

If allocation ĉ(δ,ε) has property (P1), then, just as in the stripped-down example from
Section 4, mechanism {M̂, ĉ(δ,ε)} admits only one equilibrium characterized by truthtelling
for all agents. Hence, mechanism {M̂, ĉ (δ,ε)} does not allow bank runs. In addition, the
allocation delivered by the mechanism, ĉ (δ,ε), can be made arbitrarily close to the best weakly
implementable allocation c∗ (0) by choosing δ arbitrarily close to zero.
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Together, Propositions 1 and 2 imply that a sufficient condition for unique implementation
is ρR > 1. This is quite interesting and, perhaps, even remarkable. Diamond and Dybvig
(1983) construct a model where fractional reserve banks endogenously arise and use the
model to help us understand the notion that banks are inherently unstable. Their 1983 article
requires that ρR > 1. Propositions 1 and 2 in this article, however, indicates that for this
parametrization banks are always stable.

We want to emphasize that conditions stated in Propositions 1 and 2 are only sufficient
conditions. Regarding Proposition 1, one can see from the proof that if incentive compatibility
condition (3) does not bind, then condition the ρR > 1 is not necessary. This means that
contract ĉ(δ,ε) can be consistent with property (P1) even if ρR < 1. In the subsequent section,
we provide an example of this (even when the incentive compatibility condition (3) binds).
Regarding Proposition 2, property (P1) allows us to derive a lower bound on the expected
payoff of a patient agent announcing m = 2 and, therefore, to use dominance arguments
to demonstrate uniqueness. But neither, such lower bound or dominance arguments, are
necessary for uniqueness. In the subsequent section we provide an example where contract
allocation ĉ(δ,ε) does not have property (P1) but the indirect mechanism {M̂, ĉ(δ,ε)} uniquely
implements ĉ(δ,ε).

6. SOME EXAMPLES

In this section we provide some examples that show the sufficient conditions described in
Propositions 1 and 2 are not necessary for unique implementation of the allocation rule c∗(δ).
The first example shows that property (P1) can hold when ρR < 1. A second example shows
that allocation rule c∗(δ) can be uniquely implemented when property (P1) is violated.

Common to all examples are: (i) R = 1.05; (ii) Y = 6; (iii) ρR < 1; (iv) δ = 10−10; and (v) the
general structure of preferences is given by 18

u(x) =
(x + 1)1−γ − 1

1− γ
, γ > 1.(9)

In the first example, N = 2, ρ = 0.9, γ = 1.01 and (π0,π1,π2) = (0.005,0.4975,0.4975).
Notice that ρR < 1. The best weakly implementable allocation, c∗(0), which is obtained by
solving (4), has c∗11 (1) = 3.1487 and c∗12 (2,1) = 3.1481. The other payments can be derived
from the resource constraint (2) holding at equality. It is straight forward to show that the
direct mechanism {T, c∗(0)} admits a bank-run equilibrium for this example. For ε arbitrarily
small, property (P1) holds, even though ρR < 1. Therefore, although ρR > 1 is a sufficient
condition for property (P1), it is not a necessary one. Since property (P1) is satisfied in this
example, Proposition 2 implies that {M̂, ĉ(δ,ε)} uniquely implements allocation c∗(δ) for δ

and ε small. In this example, constraint (3) binds. This implies that incentive constraints
in the Green and Lin (2003) environment—where agents know their queue positions—will

18 Notice that u(0) = 0.
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also bind and that the best implementable allocation from that environment is not equal to
c∗(0).19 Hence, the Green and Lin (2003) mechanism is unable to even weakly implement the
allocation c∗(δ), where δ is arbitrarily small.

The second example replicates the Peck and Shell (2003) example in Appendix B. The only
difference between the examples is the specification of preferences. Peck and Shell (2003)
assume that u(x) = c1−γ/(1 − γ), which implies that u(0) = −∞. For these preferences,
our mechanism trivially uniquely implements allocation c∗(δ), since patient agent k will
never announce mk = g if there is a probability, however small, that some other agent j will
announce mj = g. The parameters for our second example are N = 2, ρ = 0.1, γ = 2 and
(π0,π1,π2) = (0.25,0.5,0.25). Notice that ρR < 1. The best weakly implementable allocation,
c∗(0), is characterized by c∗11 (1) = 3.0951 and c∗12 (2,1) = 3.1994. Allocation c∗(0) features
bank runs and a binding incentive constraint (3). (This implies that a Green and Lin (2003)
mechanism cannot weakly implement c∗(0).) It is straightforward to demonstrate that the
mechanism {M̂, ĉ(δ,ε)} uniquely implements allocation c∗(δ), for δ and ε arbitrarly close
to zero. For this example c∗11 (2,1) + c∗2(2,2) > RY, which implies that property (P1) is not
satisfied for all m̂N ∈ M̂N. Hence, property (P1) is not necessary for unique implementation.
We are not aware of any mechanism in the literature that can implement the best weakly
implementable allocations from these two examples. We have experimented with many
combinations of model parameters. We are unable to find a set of parameters for which the
indirect mechanism {M̂, ĉ(δ,ε)} cannot uniquely implement an allocation that is arbitrarily
close to the best weakly implementable allocation. Our search, however, was restricted to
N ∈ {2,3}. It is, of course, possible that the indirect mechanism {M̂, ĉ(δ,ε)} does not uniquely
implement the best weakly implementable allocation for some set of parameters—that we
were unable to recover—when ρR ≤ 1. In the next section, we propose an alternative indirect
mechanism to deal with this case.

7. AN ALTERNATIVE MECHANISM

The indirect mechanism {M̂, ĉ(δ,ε)} uniquely implements allocation c∗(δ) for the N ∈
{2,3} examples we considered, but there may exist primitives for which it does not. To
address this issue, we construct an alternative mechanism that uniquely implements c∗(δ)
in pure and symmetric strategies. The mechanism, however, does rule out the existence of
mixed or asymmetric Nash equilibria.20

The alternative indirect mechanism is denoted by {M̃, c̃}, where M̃ = {1,2, g} and c̃ is
described below. For a given m̃k−1 ∈ M̃k−1, define t̃k−1 ∈ Tk−1 as a vector of length k − 1,
where for each j ≤ k− 1, t̃j = 1 if either m̃j = 1 or m̃ = g; and t̃j = 2 if m̃j = 2. It is important

19Our environment can be turned into the Green and Lin (2003) environment by allowing the planner to tell
agent k his queue position, k, before agent k makes sends his message.

20 Mechanism {M̂, ĉ(δ)} does rule out these equilibria when ρR > 1. It is interesting to note, however, that in
the literature virtually all of the analyses of the Diamond-Dybvig model focus on pure and symmetric equilibria.
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to emphasize that the relationship between m̃j and t̃j is different from that of m̂j and t̂j.
Specifically, the vector t̃k−1 is constructed from m̃k−1 by replacing any g’s with 1’s, while
vector t̂k−1 is constructed from m̂k−1 by replacing any g’s with 2’s.

The construction of the allocation rule c̃ uses the best weakly implementable allocation
rule, c∗ (0). If agent k announces m̃k = 1, then

c̃1
k(m̃

k−1,1) = c1∗
k (0)

(
t̃j−1,1

)
and c̃2

j (m̃
k−1,1, m̃N

k+1) = 0.(10)

When agent k announces m̃k = 1 he receives the consumption associated with announcing
mk = 1 in the direct revelation mechanism {T, c∗ (0)}, where announcement m̃j = g in the
indirect mechanism is treated as if it is m̃j = 1. If agent k announces m̃k = g, then

c̃1
k(m̃

k−1, g) = 0 and c̃2
k(m̃

k−1, g, m̃N
k+1) =

{
c1∗

k (0)
(
t̃k−1,1

)
+ ε if m̃j = 1 for all j 6= k

0 otherwise
,(11)

where ε > 0 is arbitrarily small. If agent k announces m̃k = g, he receives a zero date 1 payoff.
His date 2 payoff is slightly bigger than what he would receive by announcing m̃k = 1 but
only if all other agents j announce mj = 1; otherwise, he receives a payoff of zero. Finally, if
agent k announces m̃k = 2, then

c̃1
k

(
m̃k−1,2

)
= 0 and c̃2

k

(
m̃k−1,2, m̃N

k+1

)
=

R
[
Y−∑N

j=1 c̃1
j (m̃

k)
]
−∑N

j=1 c̃2
j (m̃

N)1m̃j=g

nm̃N
,(12)

where nm̃N represents the number of agents j who announced m̃j = 2. If agent k announces
m̃k = 2, then he receives an equal share of date-2 output net of any payments made to agent j
who announce m̃j = g. Since the allocation rule c̃ given by (10)–(12) depends on δ, we will
denote it as c̃(ε).

When considering only pure and symmetric equilibria, the indirect mechanism {M̃, c̃(ε)}
is quite powerful. Specifically,

PROPOSITION 3: The indirect mechanism {M̃, c̃(ε)} uniquely implements the best weakly imple-
mentable allocation c∗ (0) in pure and symmetric Nash equilibrium.

PROOF: All impatient agents k announce truthfully since announcing m̃k = 1 results in a
strictly positive date-1 payoff and announcing m̃k 6= 1 results in a date-1 payoff equal to zero.

First, there cannot exist an equilibrium where all patient agents k announce m̃k = 1. Suppose
such an equilibrium exists. Then some patient agent j can defect from proposed equilibrium
and announce m̃j = g. Agent j’s payoff is strictly greater than the payoff associated with
announcing m̃j = 1 by the amount ε > 0; a contradiction.

Second, there cannot be an equilibrium where all patient players k announce m̃k = g. To
see this, note that if agent k announces m̃k = g, then his payoff will be zero if there are other
patient agents in the economy. The (proposed) equilibrium payoff, therefore, is

(13)
π̂1

N

N

∑
k=1

ρu
[
c1∗

k (0)
(

1k−1,1
)
+ ε
]
+ (1− π̂1)ρu (0) .
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If instead, agent k defects from proposed play announces m̃k = 1, his payoff will be

(14)
1
N

N

∑
k=1

ρu
[
c1∗

k (0)
(

1k−1,1
)]

.

Since π̂1 < 1, for ε > 0 sufficiently small (14) exceeds (13); a contradiction.
Third, there is an equilibrium where all patient agents k announce m̃k = 2. By construction,

patient agent j has no incentive to announce m̃j = 1 when all other agents announce truthfully,
i.e., allocation rule c∗(0) is incentive compatible for patient agents when m̃j is restricted to the
set {1,2}. Suppose, instead, that patient agent j defects from equilibrium play and announces
m̃j = g. In this case, his payoff will be only slightly greater than the payoff associated with
announcing m̃j = 1 if and only if he is the only patient agent in the economy—an event that occurs
with probability π̂1. With probably 1− π̂1, there are other patient agents k who announce
m̃k = 2, which implies that patient agent j receives a zero payoff. For any π̂1 < 1, there exists
an ε > 0 sufficiently small so that the expected payoff associated with announcing m̃j = g is
strictly less than that associated with announcing m̃j = 1, when all other agents announce
truthfully.

The unique symmetric and pure equilibrium strategy for mechanism {M̃, c̃} is character-
ized by truth-telling, i.e., m̃k = tk for all k. By construction, these strategies implement the
best weakly implementable allocation in c∗ (0).

There is an interesting tradeoff between the two indirect mechanisms that have been
studied. Mechanism {M̂, ĉ} has a very weak equilibrium concept, rationalizability. However,
unique implementation is guaranteed only if the restriction ρR > 1 is satisfied. Unique
implementation is possible when ρR≤ 1, as our examples demonstrate, but it has to be verified
on a case-by-case basis. Mechanism {M̃, c̃} has a very strong equilibrium concept, pure and
symmetric Nash equilibria. However, no restrictions are required on model parameters to
guarantee unique implementation. Unique implementation is possible for when mix strategies
are allowed, but it has to be verified on a case-by-case basis.

Finally, the indirect mechanism (M̂, ĉ) relies on both punishments and suspension for
unique implementation. Since strategies are restricted to be pure and symmetric, indirect
mechanism (M̃, c̃) only relies on punishments for unique implementation.

8. POLICY DISCUSSION

The most common prescription for enhancing the stability of demandable debt is to
modify the contract to include a partial suspension clause. For example, Cochrane (2014),
suggests that if securities are designed so debtors have the right to delay payment, suspend
convertibility, or pay in part, then it is much harder for a run to develop. Santos and Neftci
(2003) recommend the use of extendable debt—which is a suspension in payments—in the
sovereign debt market to help mitigate the frequent debt crises that have afflicted emerging
economies and, recently, more advanced economies as well. In June 2013, the Securities and
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Exchange Commission (SEC) announced a set of proposals to help stabilize money market
funds (MMFs). One of the key proposals recommends that the MMF board of directors have
the discretion to impose of penalty redemption fees and redemption gates—or suspsension of
payments—in times of heavy redemption activity.

The effect of such proposals is to render demandable debt more state-contingent. In this
sense, the proposals above are consistent with the properties of the optimal debt contracts
described in Diamond and Dybvig (1983), Green and Lin (2003), and Peck and Shell (2003).
But given that bank-run equilibria remain a possibility in the latter model, one is led to
question whether the the use of such measures constitute only necessary, and not sufficient
conditions, for stability.

The key question concerns the issue of precisely what information is be used to condition
the suspension/extension clause. In the Diamond and Dybvig (1983) model without aggregate
risk, suspension is triggered when “reserves” are reach a well-specified critical level. Evidently,
this conditioning factor is sufficient to prevent runs in that environment. Similarly, the partial
suspension schedules described in Green and Lin (2003) and Peck and Shell (2003) are
triggered by measures of reserve depletion (more precisely, the history of reported types). In
reality, the volatility of redemption rates varies across different classes of MMFs. Schmidt et al.
(2013), for example, report that MMFs with volatile flow rates prior to the financial crisis of
2008 were more likely to experience runs during the crisis. How are directors of these funds
to ascertain whether a spike in redemptions is attributable to fear rather than fundamentals?
Our indirect mechanism suggests that information beyond some measure of redemption
activity or resource availability is needed to prevent the possibility of a bank-run. We need
to know why depositors are exercising their redemption option. For better or worse, this
information is private and must therefore be elicited directly—as in our model—or inferred
indirectly—through some other means. Of course, information revelation must be incentive
compatible.

Just how realistic is this idea? There is, in fact, historical precedence for the practice of
soliciting additional information in periods of heavy redemption activity. For example, banks
would sometimes permit limited redemptions to occur for depositors that could demonstrate
evidence of impatience, e.g., a need to meet payroll. Gorton (1985, fn 7) reports that 19th
century clearinghouses would regularly investigate rumors pertaining to the financial health
of member banks.

As a practical matter, the spirit of our mechanism could be implemented in several different
ways. One way would be to permit depositors to pay a small fee for the right to have their
funds diverted to a segregated, priority account.21 Such an action could be interpreted as
a communication of an impending run. The priority debt differs from other debt only in
the event of failure and the ratio of priority to non-priority debt outstanding informs the
issuer on the degree to which depositors expect the bank to fail. In principle, the suspension

21This is effectively what happens in our mechanism when a depositor reports m = g.
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clause could be made conditional on this ratio hitting some specified threshold. It does not
need to be official as long as there is a mutual understanding that it will be used. And along
the lines suggested by our mechanism, if one knows that the bank will suspend before any
rumor-induced trouble affects their balance sheet, then depositors know that there will be no
reason, in equilbrium, to actually exercise the option of converting their claims to priority
debt.

To summarize, current policy proposals designed to prevent, or at least mitigate, bank
runs in demandable debt structures focus on enhancing state-contingency, with contingencies
dictated by some measure of redemption activity or resource depletion. Our analysis suggests
that while state contingency is necessary, it may not be sufficient to prevent bank runs.
Suspension clauses should be conditioned on information relating to depositor beliefs about
what they perceive to be happening around them. The desired information could be elicited in
an incentive compatible manner through an appropriate modification of the deposit contract—
an example of which we described above. If we are wrong in our present assessment, the
inclusion of such a clause would be inconsequential. But if we are correct, then the inclusion
of such a clause may help to prevent bank runs in debt structures that are presently run prone.

APPENDIX: PROOF OF PROPOSITION 1
In order to prove proposition 1 we first establish the following result.

LEMMA 1: If ρR > 1 then c1∗
k (δ)

(
t̄k−1,1

)
< c2∗(δ)

(
t̄k−1,2N−k+1) for all k ∈N and t̄k−1 ∈ Tk−1.

Where 2n denotes the n−dimensional vector of twos.

PROOF: Since c∗(δ) solves problem (4), it satisfies the implied first-order conditions.22 Let λtN

denote the Lagrange multiplier of the feasibility constraint (2) for each tN ∈ TN and µ denotes
the Lagrange multiplier of the incentive compatibility (3). By simplicity, λtN is normalized by
πntN /( N

ntN
), where ntN denotes the number of type 2 players in queue tN . And µ is normalized

by π̄ = ∑N
n=1 πn/(N

n ). Since u′(0) = ∞ the constraint c1 ≥ 0 and c2 ≥ 0 are not binding and the
respective Lagrange multipliers can be ignored. The first order conditions of the problem are
given below.[

c1
k
(
t̄k)] :

N

∑
n=0

πn

(N
n )

∑
tN∈Pn
tk=t̄k

{
u′
[
c1

k
(
t̄k)]− λtN R

}
−

N

∑
n=1

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN
u′
[
c1

k
(
t̄k)] = 0(15)

for all k ∈N and t̄k−1 ∈ Tk−1 such that t̄k = 1; and[
c2(tN)] :

πn(
N

ntN

) {ρu′
[
c2(tN)]− λtN +

µρ

ntN
u′
[
c2(tN)]} = 0(16)

22 From now on we will denote c∗(δ) just by c in order to keep the notation short.
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for all tN ∈ TN such that ntN > 0. We can solve the above equations for λtN and obtain

λtN =

{
ρ
(

1 + µ
ntN

)
u′
[
c2(tN)] if nt̄N > 0

1
R u′

[
c1

N
(
tN)] if nt̄N = 0

.

Note that c2 (tN) is not defined if tN = 1N = (1,1, . . . ,1)—there is no second period payments
when every depositor announces to be of type impatient in the first period. In order to keep
the notation short, let us define u′

[
c1

N
(
1N)] = ρRu′

[
c2 (1N)] and 1/n1N = 0. Then, λtN is

given by

λtN = ρ

(
1 +

µ

ntN

)
u′
[
c2(tN)] .(17)

After replace equation (17) in equation (15) we obtain that for all k ∈N and t̄k = (t̄k−1,1) ∈
Tk−1:

N

∑
n=0

πn

(N
n )

∑
tN∈Pn
tk=t̄k

u′
[
c1

k
(
t̄k)]− N

∑
n=1

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN
u′
[
c1

k
(
t̄k)] = N

∑
n=0

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,1)

Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)]

which is equivalent to{
P
[
tk = (t̄k−1,1)

]
−

N

∑
n=1

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN

}
u′
[
c1

k
(
t̄k)] = N

∑
n=0

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,1)

Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)] .

We can also write the equation in expectations, which yields to the formula[
1− γ

(
t̄k−1)]u′

[
c1

k
(
t̄k)] = EtN |tk=(t̄k−1,1)

{
Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)]}(18)

where γ
(
t̄k−1) = P

[
tk = (t̄k−1,2)

]
EtN |tk=(t̄k−1,2) [µρ/ntN ]

/
P
[
tk = (t̄k−1,1)

]
.

The result will be derived from equation (18). Let us use induction on k ∈N starting from
k = N and going down until k = 1.
Proof for k = N: Fix any t̄N = (t̄N−1,1). From equation (18) we have that[

1−
P
[
tN = (t̄N−1,2)

]
P
[
tN = (t̄N−1,1)

] × µρ

n(t̄N−1,2)

]
u′
[
c1

N
(
t̄N−1,1

)]
= Rρ

(
1 +

µ

n(t̄N−1,1)

)
u′
[
c2(t̄N−1,1

)]
.

which implies that u′
[
(c1

N
(
t̄N−1,1

)]
> u′

[
c2(t̄N−1,1

)]
. Thus, c1

N
(
t̄N−1,1

)
< c2(t̄N−1,1

)
. We

know that the resources constraints holds at equality because u is strictly increasing. Therefore,

n(t̄N−1,2)c
2(t̄N−1,2

)
= [nt̄N + 1] c2(t̄N−1,2

)
= nt̄N c2(t̄N−1,1

)
+ Rc1

N
(
t̄N−1,1

)
And after reorganize the equation above we have that

c2(t̄N−1,2) =
n(t̄N−1,1)

n(t̄N−1,1) + 1
c2(t̄N−1,1) +

1
n(t̄N−1,1) + 1

Rc1
N(t̄

N−1,1) > c1
N(t̄

N−1,1).
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Hence, for the case k = N, we can conclude that c1
k
(
t̄k−1,1

)
< c2(t̄k−1,2N−k+1).

Proof for k < N: Assume the result holds for all j > k and t̄j = (t̄j−1,1) ∈ T j. That is, for
all j > k we have c1

j
(
t̄j−1,1

)
< c2(t̄j−1,2N−j). Let us show it also holds for k. Fix some

t̄k = (t̄k−1,1) ∈ Tk−1, then equation (18) is given by

u′
[
c1

k
(
t̄k)] = 1

1− γ
(
t̄k−1

)EtN |tk=(t̄k−1,1)

{
Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)]} .

Note that, for any function X : TN →R, the conditional expectation can be decomposed as

E
tN
∣∣tk=t̄k

{
X
(
tN)} =

N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
]

E
tN
∣∣tj=
(

t̄k,2j−k−1,1
) {X

(
tN)} +

P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
X
(
t̄k,2N−k).

Applying this decomposition to equation (18) we obtain

u′
[
c1

k
(
t̄k)] ={ N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
]

E
tN
∣∣tj=
(

t̄k ,2j−k−1,1
) {Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)]} +

P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k ,2N−k)

)
u′
[
c2(t̄k,2N−k)]} 1

1− γ
(
t̄k−1

) .

By equation (18) we know that[
1− γ

(
t̄k,2j−k−1)]u′

[
c1

j
(
t̄k,2j−k−1,1

)]
= E

tN
∣∣tj=
(

t̄k,2j−k−1,1
){Rρ

(
1 +

µ

ntN

)
u′
[
c2(tN)]}

for j = k + 1, . . . , N. Hence,

u′
[
c1

k
(
t̄k)] ={ N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
][

1− γ
(
t̄k,2j−k−1)]u′

[
c1

j
(
t̄k,2j−k−1,1

)]
+

P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k ,2N−k)

)
u′
[
c2(t̄k,2N−k)]} 1

1− γ
(
t̄k−1

) .

By the inductive hypothesis we know that c1
j
(
t̄k,2j−k−1,1

)
< c2(t̄k,2N−k), which implies that

u′
[
c1

k
(
t̄k)] > 1

1− γ
(
t̄k−1

) { N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
][

1− γ
(
t̄k,2j−k−1)]u′

[
c2(t̄k,2N−k)]

+ P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k ,2N−k)

)
u′
[
c2(t̄k,2N−k)]}

=
1

1− γ
(
t̄k−1

) { N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
][

1− γ
(
t̄k,2j−k−1)]

+ P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k ,2N−k)

)}
u′
[
c2(t̄k,2N−k)]
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=
1

1− γ
(
t̄k−1

){ N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
]

−
N

∑
j=k+1

P
[
tj =

(
t̄k,2j−k−1,1

)∣∣∣tk = t̄k
] P

[
tj = (t̄k,2j−k)

]
P
[
tj = (t̄k,2j−k−1,1)

]EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]

+ P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k ,2N−k)

)}
u′
[
c2(t̄k,2N−k)]

After simplify the above equation we obtain

u′
[
c1

k
(
t̄k)] > 1

1− γ
(
t̄k−1

){1−P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
(19)

−
N

∑
j=k+1

P
[
tj = (t̄k,2j−k)

]
P
[
tk = t̄k

] EtN |tj=(t̄k,2j−k)

[
µρ

ntN

]

+ P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k,2N−k)

)}
u′
[
c2(t̄k,2N−k)] .

The fact that the queue position is withdrawn uniformly implies that

P
[
tj = (t̄k,2j−k)

]
= P

[
tj = (t̄k−1,1,2j−k)

]
= P

[
tj = (t̄k−1,2j−k,1)

]
and

EtN |tj=(t̄k,2j−k)

[
µρ

ntN

]
= EtN |tj=(t̄k−1,1,2j−k)

[
µρ

ntN

]
= EtN |tj=(t̄k−1,2j−k,1)

[
µρ

ntN

]
.

This implies that

N

∑
j=k+1

P
[
tj = (t̄k,2j−k)

]
P
[
tk = t̄k

] EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]
=

N

∑
j=k+1

P
[
tj = (t̄k−1,1,2j−k)

]
P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,1,2j−k)

[
µρ

ntN

]
(20)

=
N

∑
j=k+1

P
[
tj = (t̄k−1,2j−k,1)

]
P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,2j−k ,1)

[
µρ

ntN

]

=
N

∑
j=k+1

P
[
tj = (t̄k−1,2j−k,1)

]
P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,2j−k ,1)

[
µρ

ntN

]

+
P
[
tk = (t̄k−1,2N−k)

]
P
[
tk = (t̄k−1,1)

] µρ

n(t̄k−1,2N−k)

−
P
[
tk = (t̄k−1,2N−k)

]
P
[
tk = (t̄k−1,1)

] µρ

n(t̄k−1,2N−k)

=
P
[
tk = (t̄k−1,2)

]
P
[
tk = (t̄k−1,1)

]EtN |tk=(t̄k−1,2)

[
µρ

ntN

]
−

P
[
tk = (t̄k−1,2N−k)

]
P
[
tk = (t̄k−1,1)

] µρ

n(t̄k−1,2N−k)
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=γ
(
t̄k−1)− P

[
tk = (t̄k−1,2N−k)

]
P
[
tk = (t̄k−1,1)

] µρ

n(t̄k−1,2N−k)

.

Replacing equation (20) in inequality (19) and reorganising the terms in the inequality, we
obtain

u′
[
c1

k
(
t̄k)] > 1

1− γ
(
t̄k−1

){1− γ
(
t̄k−1)+ P

[
tk = (t̄k−1,2N−k)

]
P
[
tk = (t̄k−1,1)

] µρ

n(t̄k−1,2N−k)

(21)

+ P
[
tN =

(
t̄k,2N−k)∣∣∣tk = t̄k

]
Rρ

(
1 +

µ

n(t̄k,2N−k)

− 1
Rρ

)}
u′
[
c2(t̄k,2N−k)] .

Because Rρ > 1, the inequality (21) implies that

u′
[
c1

k
(
t̄k−1,1

)]
= u′

[
c1

k
(
t̄k)] > u′

[
c2(t̄k,2N−k)] = u′

[
c2(t̄k−1,1,2N−k)] .

And since u is concave, it implies that c1
k
(
t̄k−1, 1

)
< c2(t̄k−1, 1,2N−k). The resources constraint

implies that[
n(t̄k−1,1,2N−k) + 1

]
c2(t̄k−1,2N−k+1) = n(t̄k−1,1,2N−k)c

2(t̄k−1,1,2N−k)+ Rc1
k
(
t̄k−1,1

)
.

And finally we can conclude that

c2(t̄k−1,2N−k+1) = n(t̄k−1,1,2N−k)

n(t̄k−1,1,2N−k) + 1
c2(t̄k−1,1,2N−k)+ 1

n(t̄k−1,1,2N−k) + 1
Rc1

k
(
t̄k−1,1

)
> c1

k
(
t̄k−1,1

)
.

We have shown that the result holds for k = N and that if it holds for all j ∈ {k + 1, . . . , N}
it holds for k. Therefore, by induction, we can conclude that the result holds for all k ∈N.

Proposition 1

PROOF: We know that for any vector of announcements m̂N ∈ M̂N, if either m̂N ∈ TN or
m̂k 6= 2 for all k, the result is trivial. Consider a realized vector of announcements m̂N ∈ M̂N,
with m̂N /∈ TN, m̂k = 2, and let j be the queue position of the first agent to announce g. As
before, t̂N ∈ TN denotes the vector m̂N we replace all g’s with 2’s. When agent j announced g
the in the first period payments were suspended, hence, the total resources in the beginning
of period 2 is

R

[
Y−

N

∑
i=1

ĉ1
i (m̂

i)

]
= R

[
Y−

j

∑
i=1

ĉ∗1i (t̂i)

]
= n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1).

Where n(t̂j−1,2N−j+1) is the number of 2’s in the vector (t̂j−1,2N−j+1). Let dm̂N denote the number
of agents who have announced g and nm̂N the number of agents who announced 2. The total
payments in the second period to agents who announced g is given by

N

∑
k=1

ĉ2
k(m̂

N)1m̂k=g = c∗1j (t̂j−1,1) + dm̂N ε.
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Hence, payment to agent k is

ĉ2
k

(
m̂k−1,2, m̂N

k+1

)
=

R
[
Y−∑N

k=1 ĉ1
k(m̂

k)
]
−∑N

k=1 ĉ2
k(m̂

N)1m̂k=g

nm̂N

=
n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1)− c∗1j (t̂j−1,1)− dm̂N ε

nm̂N
.

By lemma (1) we know that c∗1j
(
t̄j−1,1

)
< c∗2j (t̂j−1,2N−j+1). Thus, by taking ε > 0 small

enough, we have that,

ĉ2
k

(
m̂k−1,2, m̂N

k+1

)
≥
[n(t̂j−1,2N−j+1) − 1]c∗2k (t̂j−1,2N−j+1)

nm̂N
.

By construction we have that

ĉ2
k

(
t̂k−1,2, t̂N

k+1

)
= c∗2k

(
t̂k−1,2, t̂N

k+1

)
=

R
[
Y−∑N

i=1 ĉ∗1i (t̂i)
]

nm̂N + dm̂N
≤

R
[
Y−∑

j
i=1 ĉ∗1i (t̂i)

]
nm̂N + 1

=
n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1)

nm̂N + 1
.

Note that,
n(t̂j−1,2N−j+1) − 1

nm̂N
≥

n(t̂j−1,2N−j+1)

nm̂N + 1
⇐⇒

n(t̂j−1,2N−j+1)nm̂N + n(t̂j−1,2N−j+1) − nm̂N − 1≥ n(t̂j−1,2N−j+1)nm̂N ⇐⇒ n(t̂j−1,2N−j+1) ≥ nm̂N + 1.

The last inequality holds because n(t̂j−1,2N−j+1) ≥ nt̂N = nm̂N + dm̂N . Hence,

ĉ2
k

(
m̂k−1,2, m̂N

k+1

)
≥

[n(t̂j−1,2N−j+1) − 1]c∗2k (t̂j−1,2N−j+1)

nm̂N

≥
n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1)

nm̂N + 1
≥ ĉ2

k

(
t̂k−1,2, t̂N

k+1

)
.

Which concludes the proof.
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