
Financial Intermediation Chains

in a Search Market∗

Ji Shen

London School of Economics
shenjitoq@gmail.com

Bin Wei
Federal Reserve Bank of Atlanta

bin.wei@atl.frb.org

Hongjun Yan
Yale School of Management

hongjun.yan@yale.edu

March 12, 2015

∗We thank Briana Chang, Nicolae Garleanu, Ricardo Lagos, and Randall Wright for helpful
comments. The views expressed here are those of the authors and do not necessarily reflect the
views of the Federal Reserve Bank of Atlanta or the Federal Reserve System. The latest version
of the paper is available at http://faculty.som.yale.edu/hongjunyan/.



Financial Intermediation Chains
in a Search Market

Abstract

More and more layers of intermediaries arise in modern financial markets. What determines

this chain of intermediation? What are the consequences? We analyze these questions

in a stylized search model with an endogenous intermediary sector and intermediation

chains. We show that the chain length and the price dispersion among inter-dealer trades

are decreasing in search cost, search speed, and market size, but increasing in investors’

trading needs. Using data from the U.S. corporate bond market, we find evidence broadly

consistent with these predictions. Moreover, as the search speed goes to infinity, our search-

market equilibrium does not always converge to the centralized-market equilibrium. In the

case with an intermediary sector, prices and allocations converge, but the trading volume

remains higher than that in a centralized-market equilibrium. This volume difference goes

to infinity when the search cost approaches zero.
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1 Introduction

Financial intermediation chains are getting longer over time, that is, more and more layers

of intermediaries are involved in financial transactions. For instance, with the rise of secu-

ritization in the modern financial system in the U.S., the process of channeling funds from

savers to investors is getting increasingly complex (Adrian and Shin (2010)). This multi-

layer nature of intermediation not only exists in markets with relatively high transaction

costs and “slow” speeds (e.g., mortgage market), it is also prevalent in those with small

transaction costs and exceptionally “fast” speeds. For example, the average daily trading

volume in the Federal Funds market is more than ten times the aggregate Federal Reserve

balances (Taylor (2001)). The trading volume in the foreign exchange market appears

disproportionately large relative to international trade. According to the Main Economic

Indicators database, the annual international trade in goods and services is around $4 tril-

lion in 2013. In that same year, however, the Bank of International Settlement estimates

that the daily trading volume in the foreign exchange market is around $5 trillion.

These examples suggest that the multi-layer nature of intermediation is prevalent for

markets across the board. What determines the chain of intermediation? How does it

respond as the economic environment evolves? What is its influence on asset prices and

investor welfare? To analyze these issues, we need theories that endogenize the chain of

intermediation. The literature so far has not directly addressed these issues. Our paper

attempts to fill this gap.

The full answer to the above questions is likely to be complex and hinges on a variety of

issues (e.g., transaction cost, trading technology, regulatory and legal environment, agency

issues). As the first step, however, we abstract away from many of these aspects to analyze

a simple economic environment, and assess its predictions empirically.

Specifically, we analyze a search market, in which investors have heterogeneous valua-

tions of an asset. Their valuations change over time, leading to trading needs. When an

investor enters the market to trade, he faces a delay in locating his trading partner. In

the mean time, he needs to pay a search cost each period until he finishes his transaction.

Due to the delay and search cost, not all investors choose to stay in the market all the

time, giving rise to a role of intermediation. Some investors choose to be intermediaries.

They stay in the market all the time and act as dealers. Once they acquire the asset, they
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immediately start searching to sell it to someone who values it more. Similarly, once they

sell the asset, they immediately start searching to buy it from someone who values it less.

In contrast, other investors act as customers : once their trades are executed, they leave

the market to avoid the search cost. We solve the model in closed-form, and the main

implications are the following.

First, when the search cost is lower than a certain threshold, there is an equilibrium

with an endogenous intermediary sector. Investors with intermediate valuations of the

asset choose to become dealers and stay in the market all the time, while others with high

or low valuations choose to be customers, and leave the market once their transactions

are executed. Intuitively, if an investor has a high valuation of an asset, once he obtains

the asset, there is little benefit for him to stay in the market since the chance of finding

someone with an even higher valuation is low. Similarly, if an investor has a low valuation

of the asset, once he sells the asset, there is little benefit for him to stay in the market.

In contrast to the above equilibrium, when the search cost is higher than the threshold,

however, there is an equilibrium with no intermediary. Only investors with very high or

low valuations enter the market, and they leave the market once their trading needs are

satisfied. Those with intermediate valuations have weak trading needs, and choose to stay

out of the market to avoid the search cost.

Second, at each point in time, there is a continuum of prices for the asset. When a

buyer meets a seller, their negotiated price depends on their specific valuations. The delay

in execution in the market makes it possible to have multiple prices for the asset. Naturally,

as the search technology improves, the price dispersion reduces, and converges to zero when

the search technology becomes perfect.

Third, we characterize two equilibrium quantities on the intermediary sector, which

can be easily measured empirically. The first is the dispersion ratio, the price dispersion

among inter-dealer trades divided by the price dispersion among all trades in the economy.1

The second is the length of the intermediation chain, the average number of layers of

intermediaries for all customers’ transactions. Intuitively, both variables reflect the size

of the intermediary sector. When more investors choose to become dealers, the price

dispersion among inter-dealer trades is larger (i.e., the dispersion ratio is higher), and

1For convenience, we refer to the intermediaries in our model as “dealers,” the transactions among
dealers as “inter-dealer trades.”
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customers’ transactions tend to go through more layers of dealers (i.e., the chain is longer).

Our model predicts that both the dispersion ratio and the chain length are decreasing

in the search cost, the speed of search, and the market size, but are increasing in investors’

trading frequency. Intuitively, a higher search cost means that fewer investors find it prof-

itable to be dealers, leading to a smaller intermediary sector and hence a smaller dispersion

ratio and chain length. Similarly, with a higher search speed or a larger market size, inter-

mediation is less profitable because customers can find alternative trading partners more

quickly. This leads to a smaller intermediary sector (relative to the market size). Finally,

when investors need to trade more frequently, the higher profitability attracts more dealers

and so increases the size of the intermediary sector.

We test these predictions using data from the U.S. corporate-bond market. The Trade

Reporting and Compliance Engine (TRACE) database records transaction prices, and iden-

tifies traders as “dealers” and “customers.” This allows us to construct the dispersion ratio

and chain length. There is substantial cross-sectional variation in both variables. The

dispersion ratio ranges from 0 to 1, while chain length is 1 at the first percentile and is

7 at the 99th percentile. We run Fama-MacBeth regressions of the dispersion ratio and

chain length of a corporate bond on proxies for search cost, market size, the frequency of

investors’ trading needs. Our evidence is broadly consistent with the model predictions.

For example, we find that investment-grade bonds tend to have larger dispersion ratios and

longer intermediation chains. The regression coefficients for the investment-grade dummy

suggests that for investment-grade bonds, on average, the dispersion ratio is larger by 0.007

(t = 2.62), and the chain length is longer by 0.245 (t = 32.17). If one takes the interpre-

tation that it is less costly to make market for investment-grade bonds than for high yield

bonds (i.e., the search cost is lower for investment-grade bonds), then this evidence is con-

sistent with our model prediction that the dispersion ratio and chain length are decreasing

in search cost. We also include in our regressions five other variables as proxies for search

cost, the frequency of investors’ trading needs, and market size. Among all 12 coefficients,

11 are highly significant and consistent with our model predictions.2

Fourth, when the search technology approaches perfection, the search-market equilib-

2The only exception is the coefficient for issuance size in the price dispersion ratio regression. As
explained later, we conjecture that this is due to dealers’ inventory capacity constraint, which is not
considered in our model.
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rium does not always converge to a centralized-market equilibrium. Specifically, in the case

without intermediary (i.e., the search cost is higher than a certain threshold), as the search

speed goes to infinity, all equilibrium quantities (prices, volumes, and allocations) converge

to their counterparts in the centralized-market equilibrium. However, in the case with in-

termediaries (i.e., the search cost is lower than a certain threshold), as the search speed

goes to infinity, all the prices and asset allocations converge but the trading volume in the

search-market equilibrium remains higher than that in the centralized-market equilibrium.

Moreover, this difference in volume is larger if the search cost is smaller, and converges to

infinity when the search cost goes to 0.

Intuitively, in the search market, intermediaries act as middlemen and generate excess

trading. As noted earlier, when the search speed increases, the intermediary sector shrinks.

However, thanks to the faster search speed, each dealer executes more trades, and the

total excess trading volume is higher. As the search speed goes to infinity, the trading

volume in the search market remains significantly higher than that in a centralized market.

Moreover, the volume difference increases when the search cost becomes smaller because

a smaller search cost implies a larger intermediary sector, which leads to a higher excess

trading volume in the search market.

This insight sheds light on why a centralized-market model has trouble explaining trad-

ing volume, especially in an environment with a small transaction cost. We argue that even

for the U.S. stock market, it seems plausible that some aspects of the market are better

captured by a search model. For example, the cheaper and faster trading technology in the

last a few decades makes it possible for investors to exploit many high frequency oppor-

tunities that used to be prohibitive. Numerous trading platforms were set up to compete

with main exchanges; hedge funds and especially high-frequency traders directly compete

with traditional market makers. The increase in turnover in the stock market in the last a

few decades was likely to be driven partly by these “intermediation” trades.

Finally, the relation between dispersion ratio, chain length and investors’ welfare is

ambiguous. As noted earlier, a higher dispersion ratio and longer intermediation chain

may be due to a lower search cost. In this case, they imply higher investors welfare. On

the other hand, they may be due to a slower search speed. In that case, they imply lower

investors welfare. Hence, the dispersion ratio and chain length are not clear-cut indicators

of investors’ welfare.
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1.1 Related literature

Our paper belongs to the recent literature that analyzes over-the-counter (OTC) mar-

kets in the search framework developed by Duffie, Garleanu, and Pedersen (2005). This

framework has been extended to include risk-averse agents (Duffie, Garleanu, and Peder-

sen (2007)), unrestricted asset holdings (Lagos and Rocheteau (2009)). It has also been

adopted to analyze a number of issues, such as security lending (Duffie, Garleanu, and

Pedersen (2002)), liquidity provision (Weill (2007)), on-the-run premium (Vayanos and

Wang (2007), Vayanos and Weill (2008)), cross-sectional returns (Weill (2008)), portfo-

lio choices (Garleanu (2009)), liquidity during a financial crisis (Lagos, Rocheteau, and

Weill (2011)), price pressure (Feldhutter (2012)), order flows in an OTC market (Lester,

Rocheteau, and Weill, (2014)), commercial aircraft leasing (Gavazza 2011), high frequency

trading (Pagnotta and Philippon (2013)), the effect of the supply of liquid assets (Shen and

Yan (2014)) as well as the interaction between corporate default decision and liquidity (He

and Milbradt (2013)). Another literature follows Kiyotaki and Wright (1993) to analyze

the liquidity value of money. In particular, Lagos and Wright (2005) develop a tractable

framework that has been adopted to analyze liquidity and asset pricing (e.g., Lagos (2010),

Lester, Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012), Lagos and

Zhang (2014)). Trejos and Wright (2014) synthesize this literature with the studies under

the framework of Duffie, Garleanu, and Pedersen (2005).

Our paper is related to the literature on the trading network of financial markets, see,

e.g., Gofman (2010), Babus and Kondor (2012), Malamud and Rostek (2012). Atkeson,

Eisfeldt, and Weill (2014) analyze the risk-sharing and liquidity provision in an endogenous

core-periphery network structure. Neklyudov (2014) analyzes a search model with investors

with heterogeneous search speeds to study the implications on the network structure.

There is a small but growing literature on financial intermediation chains. Li and

Schurhoff (2012) document the network structure of the inter-dealer market for munici-

pal bonds. Glode and Opp (2014) focuses on the role of intermediation chain in reducing

adverse selection. Afonso and Lagos (2015) analyze an OTC market for Federal Funds.

The equilibrium features an intermediation chain, although they do not focus on its prop-

erty. The model that is closest to ours is Hugonnier, Lester, and Weill (2014). They

analyze a model with investors with heterogenous valuations, highlighting that heterogene-
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ity magnifies the impact of search frictions. Our paper is different in that, in order to

analyze intermediation, we introduce search cost and derive the intermediary sector, price

dispersion ratio, and the intermediation chain, and also conduct empirical analysis of the

intermediary sector.

The rest of the paper is as follows. Section 2 describes the model and its equilibrium.

Section 3 analyzes the price dispersion and intermediation chain. Section 4 contrasts the

search market equilibrium with a centralized market equilibrium. Section 5 tests the em-

pirical predictions. Section 6 concludes.

2 Model

Time is continuous and goes from 0 to ∞. There is a continuum of investors, and the

measure of the total population is N . They have access to a riskless bank account with

an interest rate r. There is an asset, which has a total supply of X units with X < N .

Each unit of the asset pays $1 per unit of time until infinity. The asset is traded at an

over-the-counter market.

Following Duffie, Garleanu, and Pedersen (2005), we assume the matching technology

as the following. Let Nb and Ns be the measures of buyers and sellers in the market, both

of which will be determined in equilibrium. A buyer meets a seller at the rate λNs, where

λ > 0 is a constant. That is, during [t, t + dt) a buyer meets a seller with a probability

λNsdt. Similarly, a seller meets a buyer at the rate λNb. Hence, the probability for an

investor to meet his partner per unit of time is proportional to the population size of the

investors on the other side of the market. The total number of matching pairs per unit of

time is λNsNb. The search friction reduces when λ increases, and completely disappears

when λ goes to infinity.

Investors have different types, and their types may change over time. If an investor’s

current type is ∆, he derives a utility 1 + ∆ when receiving the $1 coupon from the asset.

One interpretation for a positive ∆ is that some investors, such as insurance companies,

have a preference for long-term bonds, as modeled in Vayanos and Vila (2009). Another

interpretation is that some investors can benefit from using those assets as collateral and

so value them more, as discussed in Bansal and Coleman (1996) and Gorton (2010). An

interpretation of a negative ∆ can be that the investor suffers a liquidity shock and so finds
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it costly to carry the asset on his balance sheet. We assume that ∆ can take any value in

a closed interval. Without loss of generality, we normalize the interval to
[
0,∆

]
.

Each investor’s type changes independently with intensity κ. That is, during [t, t+ dt),

with a probability κdt, an investor’s type changes and is independently drawn from a

random variable, which has a probability density function f (·) on the support
[
0,∆

]
, with

f (∆) < ∞ for any ∆ ∈
[
0,∆

]
. We use F (·) to denote the corresponding cumulative

distribution function.

Following Duffie, Garleanu, and Pedersen (2005), we assume each investor can hold

either 0 or 1 unit of the asset. That is, an investor can buy 1 unit of the asset only if he

currently does not have the asset, and can sell the asset only if he currently has it.

There is a search cost of c per unit of time, with c ≥ 0. That is, when an investor

searches to buy or sell in the market, he incurs a cost of cdt during [t, t+ dt). All investors

are risk-neutral and share the same time discount rate r. An investor’s objective function

is given by

sup
θτ

Et

[∫ ∞

t

e−r(τ−t) (θτ (1 + ∆τ )dτ − c1τdτ − Pτdθτ )

]
,

where θτ ∈ {0, 1} is the investor’s holding in the asset at time τ ; ∆τ is the investor’s type

at time τ ; 1τ is an indicator variable, which is 1 if the investor is searching in the market

to buy or sell the asset at time τ , and 0 otherwise; and Pτ is the asset’s price that the

investor faces at time τ and will be determined in equilibrium.

2.1 Investors’ choices

Since we will focus on the steady-state equilibrium, the value function of a type-∆ investor

with an asset holding θt at time t can be denoted as

V (θt,∆) ≡ sup
θτ

Et

[∫ ∞

t

e−r(τ−t) (θτ (1 + ∆τ )dτ − c1τdτ − Pτdθτ )

]
.

A non-owner (whose θt is 0) has two choices: search to buy the asset or stay inactive.

We use Vn(∆) to denote the investor’s expected utility if he chooses to stay inactive, and

follows the optimal strategy after his type changes. Similarly, we use Vb(∆) to denote the

investor’s expected utility if he searches to buy the asset, and follows the optimal strategy

after he obtains the asset or his type changes. Hence, by definition, we have

V (0,∆) = max(Vn(∆), Vb(∆)). (1)
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An asset owner (whose θt is 1) has two choices: search to sell the asset or stay inactive.

We use Vh(∆) to denote the investor’s expected utility if he chooses to be an inactive holder,

and follows the optimal strategy after his type changes. Similarly, we use Vs(∆) to denote

the investor’s expected utility if he searches to sell, and follows the optimal strategy after

he sells his asset or his type changes. Hence, we have

V (1,∆) = max(Vh(∆), Vs(∆)). (2)

We will verify later that in equilibrium, equation (1) implies that a non-owner’s optimal

choice is given by {
stay out of the market if ∆ ∈ [0,∆b),
search to buy the asset if ∆ ∈ (∆b,∆],

(3)

where the cutoff point ∆b will be determined in equilibrium. A type-∆b non-owner is

indifferent between staying out of the market and searching to buy the asset. Note that

due to the search friction, a buyer faces delay in his transaction. In the meantime, his type

may change, and he will adjust his action accordingly. Similarly, equation (2) implies that

an owner’s optimal choice is
{

search to sell his asset if ∆ ∈ [0,∆s),
stay out of the market if ∆ ∈ (∆s,∆],

(4)

where the ∆s will be determined in equilibrium. A type-∆s owner of the asset is indifferent

between the two actions. A seller faces potential delay in his transaction. In the meantime,

if his type changes, he will adjust his action accordingly. If an investor succeeds in selling

his asset, he becomes a non-owner and his choices are then described by equation (3).

Suppose a buyer of type x ∈
[
0,∆

]
meets a seller of type y ∈

[
0,∆

]
. The surplus from

the transaction is

S (x, y) = [V (1, x) + V (0, y)]︸ ︷︷ ︸
total utility after trade

− [V (0, x) + V (1, y)]︸ ︷︷ ︸
total utility before trade

. (5)

The pair can agree on a transaction if and only if the surplus is positive. We assume that

the buyer has a bargaining power η ∈ (0, 1), i.e., the buyer gets η of the surplus from the

transaction, and the price is given by

P (x, y) = V (1, x)− V (0, x)− ηS(x, y), if and only if S(x, y) > 0. (6)

The first two terms on the right hand side reflect the value of the asset to the buyer: the
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increase in the buyer’s expected utility from obtaining the asset. Hence, the above equation

implies that the transaction improves the buyer’s utility by ηS(x, y).

We conjecture, and verify later, that when a buyer and a seller meet in the market, the

surplus is positive if and only if the buyer’s type is higher than the seller’s:

S (x, y) > 0 if and only if x > y. (7)

That is, when a pair meets, a transaction occurs if and only if the buyer’s type is higher

than the seller’s type. With this conjecture, we obtain investors’ optimality condition in

the steady state as the following.

Vh (∆) =
1 + ∆ + κE [max {Vh (∆

′) , Vs (∆
′)}]

κ + r
, (8)

Vs (∆) =
1 + y − c

κ+ r
+

λ (1− η)

κ+ r

∫ ∆

∆

S (x,∆)µb (x) dx+
κE [max {Vh (∆

′) , Vs (∆
′)}]

κ+ r
, (9)

Vn (∆) =
κE [max {Vn (∆

′) , Vb (∆
′)}]

κ+ r
, (10)

Vb (∆) = − c

κ+ r
+

λη

κ+ r

∫ ∆

0

S (∆, x)µs (x) dx+
κE [max {Vb (∆) , Vn}]

κ+ r
, (11)

where ∆′ is a random variable with a PDF of f(·).

2.2 Intermediation

Decision rules (3) and (4) determine whether intermediation arises in equilibrium. There

are two cases. In the first case, ∆b ≥ ∆s, there is no intermediation. When an investor

has a trading need, he enters the market. Once his transaction is executed, he leaves the

market and stays inactive. In the other case ∆b < ∆s, however, some investors choose to

be intermediaries in equilibrium. If they are non-owners, they search in the market to buy

the asset. Once they receive the asset, however, they immediately search in the market to

sell the asset. For convenience, we call them “dealers.”

Details are illustrated in Figure 1. Panel A is for the case without intermediation, i.e.,

∆b ≥ ∆s. If an asset owner’s type is below ∆s, as in the upper-left box, he enters the

market to sell his asset. If successful, he becomes a non-owner and chooses to be inactive

since his type is below ∆b, as in the upper-right box. Similarly, if a non-owner’s type

is higher than ∆b, as in the lower-right box, he enters the market to buy the asset. If

successful, he becomes an owner and chooses to be inactive because his type is above ∆s,
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as in the lower-left box.

The dashed arrows in the diagram illustrate investors’ chooses to enter or exit the

market when their types change. Suppose, for example, an owner with a type below ∆s is

searching in the market to sell his asset, as in the upper-left box. Before he meets a buyer,

however, if his type changes and becomes above ∆s, he will exit the market and become an

inactive owner in the lower-left box. Finally, note that all investors in the interval (∆s,∆b)

are inactive regardless of their asset holdings.

Panel B illustrates the case with intermediation, i.e., ∆b < ∆s. As in Panel A, asset

owners with types below ∆s enter the market to sell their assets. However, they have two

different motives. If a seller’s type is in [0,∆b), as in the upper-left box, after selling the

asset, he will leave the market and become an inactive non-owner in the upper-right box.

For convenience, we call this investor a “true seller.” This is to contrast with those sellers

whose types are in (∆b,∆s), as in the middle-left box. We call them “intermediation sellers,”

because once they sell their assets and become non-owners (i.e., move to the middle-right

box), they immediately search to buy the asset in the market since their types are higher

than ∆b. Similarly, we call non-owners with types in (∆s,∆] “true buyers” and those with

types in (∆b,∆s) “intermediation buyers.”

In the intermediation region (∆b,∆s), investors always stay in the market. If they are

asset owners, they search to sell their assets. Once they become non-owners, however, they

immediately start searching to buy the asset. They buy the asset from those with low types

and sell it to those with high types, and make profits from their intermediation services.

What determines whether intermediation arises in equilibrium? Intuitively, a key de-

terminant is the search cost c. Investors are only willing to become intermediaries when

the expected trading profit is enough to cover the search cost. We will see later that the

intermediation equilibrium arises if c < c∗, and the no-intermediation equilibrium arises if

c ≥ c∗, where c∗ is given by equation (69) in the appendix.

2.3 Demographic analysis

We will first focus on the intermediation equilibrium case, and then analyze the no-

intremediation case in Section 4.3. Due to the changes in ∆ and his transactions in the

market, an investor’s status (type ∆ and asset holding θ) changes over time. We now de-

scribe the evolution of the population sizes of each group of investors. Since we will focus
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on the steady-state equilibrium, we will omit the time subscript for simplicity.

We use µb(∆) to denote the density of buyers, that is, buyers’ population size in the

region (∆,∆+ d∆) is µb(∆)d∆. Similarly, we use µn(∆), µs(∆), and µh(∆) to denote the

density of inactive non-owners, sellers, and inactive asset holders, respectively.

In the steady state, the cross-sectional distribution of investors’ type is given by the

probability density function f (∆). Hence, the total investor population in (∆,∆+ d∆) is

Nf (∆) d∆. Hence, the following accounting identity holds for any ∆ ∈
[
0,∆

]
:

µs (∆) + µb (∆) + µn (∆) + µh (∆) = Nf (∆) . (12)

Decision rules (3) and (4) imply that for any ∆ ∈ (∆s,∆],

µn (∆) = µs (∆) = 0. (13)

In the steady state, the group size of inactive holders remains a constant over time,

implying that for any ∆ ∈ (∆s,∆],

κµh (∆) = κXf (∆) + λNsµb (∆) . (14)

The left hand aside of the above equation is the “outflow” from the group of inactive

holders: The measure of inactive asset holders in interval (∆,∆+d∆) is µh (∆) d∆. During

[t, t+ dt), a fraction κdt of them experience changes in their types and leave the group.

Hence, the total outflow is κµh (∆) d∆dt. The right hand side of the above equation is the

“inflow” to the group: A fraction κdt of asset owners, who have a measure of X , experience

type shocks and κXf (∆) d∆dt investors’ new types fall in the interval (∆,∆+ d∆). This

is captured by the first term in the right hand side of (14). The second term reflects the

inflow of investors due to transactions. When buyers with types in (∆,∆ + d∆) acquire

the asset, they become inactive asset holders, and the size of this group is λNsµb (∆) d∆dt.

Similarly, for any ∆ ∈ [0,∆b), we have

µb (∆) = µh (∆) = 0, (15)

κµn (∆) = κ (N −X) f (∆) + λNbµs (∆) . (16)

For any ∆ ∈ (∆b,∆s), we have

µn (∆) = µh (∆) = 0, (17)

κµs (∆) = κXf (∆)− λµs (∆)

∫ ∆

∆

µb (x) dx+ λµb (∆)

∫ ∆

0

µs (x) dx. (18)
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2.4 Equilibrium

Definition 1 The steady-state equilibrium with intermediation consists of two cutoff points

∆b and ∆s, with 0 < ∆b < ∆s < ∆, the distributions of investor types (µb (∆), µs (∆),

µn (∆), µh (∆)), and asset prices P (x, y), such that

• the asset prices P (x, y) are determined by (6),

• the implied choices (3) and (4) are optimal for all investors,

• the implied sizes of each group of investors remain constants over time and satisfy

(12)–(18),

• market clears: ∫ ∆

0

[µs(∆) + µh(∆)] d∆ = X. (19)

Theorem 1 If c < c∗, where c∗ is given by equation (69), there exists a unique steady-state

equilibrium with ∆b < ∆s. The value of ∆b is given by the unique solution to

c =
λκηX

[κ+ r + λNb (1− η)] (κ+ λNb)

∫ ∆b

0

F (x) dx, (20)

the value of ∆s is given by the unique solution to

c =
λκ (1− η) (N −X)

(κ+ r + ληNs) (κ+ λNs)

∫ ∆

∆s

[1− F (x)] dx, (21)

where Nb and Ns are given by (50) and (51). Investors’ distributions are given by equations

(43)–(48). When a type-x buyer (x ∈ (∆b,∆]) and a type-y seller (y ∈ [0,∆s)) meet in the

market, they will agree to trade if and only if x > y, and their negotiated price is given by

(6), with the value function V (·, ·) given by (64)–(67).

This theorem shows that when the cost of search is smaller than c∗, there is a unique

intermediation equilibrium. Investors whose types are in the interval (∆b,∆s) choose to be

dealers. They search to buy the asset if they do not own it. Once they obtain the asset,

however, they immediately start searching to sell it. They make profits from the differences

in purchase and sale prices to compensate the search cost they incur. In contrast to these

intermediaries, sellers with a type ∆ ∈ [0,∆s) and buyers with a type ∆ ∈ (∆b,∆] leave the

market once they finish their transactions. We call them “true buyers” and “true sellers.”
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The difficulty in constructing the equilibrium lies in the fact that investors’ type distribu-

tions (µb (∆) , µs (∆) , µn (∆) , µh (∆)) determine the speed with which investors meet their

trading partners, which in turn determines investors’ type distributions. The equilibrium is

the solution to this fixed-point problem.3 The above theorem shows that the distributions

can be computed in closed-form, making the analysis of the equilibrium tractable.

To illustrate some properties of the equilibrium, we define R(∆), for ∆ ∈ [0,∆], as

R(∆) ≡ µs (∆) + µh (∆)

µb (∆) + µn (∆)
.

That is, R(∆) is the density ratio of asset owners (i.e., sellers and inactive holders) to

nonowners (i.e., buyers and inactive nonowners). It has the following property.

Proposition 1 In the equilibrium in Theorem 1, R(∆) is weakly increasing in ∆: R′(∆) >

0 for ∆ ∈ (∆b,∆s), and R′(∆) = 0 for ∆ ∈ [0,∆b) ∪ (∆s,∆].

The above proposition shows that high-∆ investors are more likely to be holding the asset

in equilibrium. The intuition is the following. As noted in (7), when a buyer meets a seller,

transaction happens if and only if the buyer’s type is higher than the seller’s. Hence, if a

nonowner has a high ∆ he is more likely to find a willing seller. On the other hand, if an

owner has a high ∆ he is less likely to find a willing buyer. Consequently, in equilibrium,

the higher the investor’s type, the more likely he has the asset.

Proposition 2 In the equilibrium in Theorem 1, we have ∂P (x,y)
∂x

> 0 and ∂P (x,y)
∂y

> 0.

The price of each transaction is negotiated between the buyer and the seller, and depends on

the specific types of both. Since there is a continuum of buyers and a continuum of sellers,

at each point in time, there is a continuum of equilibrium prices. The above proposition

shows that the negotiated price is increasing in both the buyer’s type and the seller’s type.

Intuitively, the higher the buyer’s type x, the more he values the asset. Hence, he is willing

to pay a higher price. On the other hand, the higher the seller’s type y, the less eager he

is in selling the asset. Hence, only a higher price can induce him to sell.

3Hugonnier, Lester, and Weill (2014) was the first to solve a problem of this nature in a model without
search cost.
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3 Intermediation Chain and Price Dispersion

If a true buyer and a true seller meet in the market, the asset is transferred without

going through an intermediary. On other occasions, however, transactions may go through

multiple dealers. A type-∆ dealer may buy from a true seller, whose type is in [0,∆b), or

from another dealer whose type is lower than ∆. Then, he may sell the asset to a true

buyer, whose type is in (∆s,∆], or to another dealer whose type is higher than ∆. Hence,

for an asset to be transferred from a true seller to a true buyer, it may go through multiple

dealers.

What is the average length of the intermediation chain in the economy? To analyze

this, we first compute the aggregate trading volumes for each group of investors. We use

TVcc to denote the total shares of the asset that are sold from a true seller to a true buyer

(i.e., “customer to customer”) per unit of time. Similarly, we use TVcd, TVdd, and TVdc to

denote the total shares of the asset that are sold, per unit of time, from a true seller to a

dealer (i.e., “customer to dealer”), from a dealer to another (i.e., “dealer to dealer”), and

from a dealer to a true buyer (i.e., “dealer to customer”), respectively.

To characterize these trading volumes, we denote Fb(∆) and Fs(∆), for ∆ ∈ [0,∆], as

Fb(∆) ≡
∫ ∆

0

µb(x)dx,

Fs(∆) ≡
∫ ∆

0

µs(x)dx.

That is, Fb(∆) is the population size of buyers whose types are below ∆, and Fs(∆) is

population size of sellers whose types are below ∆.

Proposition 3 In the equilibrium in Theorem 1, we have

TVcc = λFs(∆b) [Nb − Fb(∆s)] , (22)

TVcd = λFs(∆b)Fb(∆s), (23)

TVdc = λ [Ns − Fs(∆b)] [Nb − Fb(∆s)] , (24)

TVdd = λ

∫ ∆s

∆b

[Fs(∆)− Fs(∆b)] dFb(∆). (25)

The above proposition characterizes the 4 types of trading volumes. For example, true

sellers are those whose types are below ∆b. The total measure of those investors is Fs(∆b).

True buyers are those whose types are above ∆s, and so the total measure of those investors
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is Nb − Fb(∆s). This leads to the trading volume in (22). The results on TVcd and TVdc

are similar. Note that in these 3 types of trades, every meeting results in a transaction,

since the buyer’s type is always higher than the seller’s. For the meetings among dealers,

however, this is not the case. When a dealer buyer meets a dealer seller with a higher ∆,

they will not be able to reach an agreement to trade. The expression of TVdd in (25) takes

into account the fact that transaction occurs only when the buyer’s type is higher than the

seller’s.

With these notations, we can define the length of the intermediation chain as

L ≡ TVcd + TVdc + 2TVdd

TVcd + TVdc + 2TVcc

. (26)

This definition implies that L is the average number of layers of dealers for all the trades

in the economy. To see this, let us go through the following three simple examples. First,

suppose there is no intermediation in the economy and true buyers and true sellers trade

directly. In this case, we have TVcd = TVdc = TVdd = 0. Hence L = 0, that is, the

length of the intermediation chain is 0. Second, suppose a dealer buys one unit of the asset

from a customer and sells it to another customer. We then have TVcd = TVdc = 1 and

TVdd = TVcc = 0. Hence, the length of the intermediation chain is 1. Third, suppose

a dealer buys one unit of the asset from a customer and sells it to another dealer, who

then sells it to a customer. We then have TVcd = TVdc = 1, TVdd = 1, and TVcc = 0.

hence, Hence, the length of the intermediation chain is 2. In the following, we will analyze

the effects of search speed λ, search cost c, market size X , and trading need κ on the

intermediation chain.

3.1 Search cost c

Proposition 4 In the equilibrium in Theorem 1, ∂∆b

∂c
> 0 and ∂∆s

∂c
< 0, that is, the total

population size of the intermediary sector is decreasing in c.

Intuitively, investors balance the gain from trade against the cost of search. When the search

cost c increases, fewer investors choose to be dealers. Hence, the size of the intermediary

sector becomes smaller (i.e., the interval (∆b,∆s) shrinks). When c increases to c∗, the

interval (∆b,∆s) shrinks to a point and the intermediary sector disappears. This intuition

leads to the following effect on the length of the intermediation chain.
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Proposition 5 In the equilibrium in Theorem 1, ∂L
∂c

< 0, that is, the length of the financial

intermediation chain is decreasing in c.

The search cost has a disproportionately large effect on dealers since they stay active in

the market constantly and so are more sensitive to the change in the search cost c. As c

decreases, more investors choose to be dealers, leading to more layers of intermediation and

a longer chain in the economy. What happens when c goes to zero?

Proposition 6 When c goes to 0, in the equilibrium in Theorem 1, the following holds:

∆b = 0, ∆s = ∆,

Ns = X, Nb = N −X,

L = ∞.

As the search cost c diminishes, the intermediary sector (∆b,∆s) expands. When c goes to

0, (∆b,∆s) becomes the whole interval (0,∆). That is, all investors (except zero measure of

them at 0 and ∆) are intermediaries, constantly searching in the market. Hence, Ns = X

and Nb = N −X , that is, virtually every asset holder is trying to sell his asset and every

non-owner is trying to buy. Since virtually all transactions are intermediation trading, the

length of the intermediation chain is infinity.

3.2 Search speed λ

Proposition 7 In the equilibrium in Theorem 1, when λ is sufficiently large, ∂∆s−∆b

∂λ
< 0,

that is, the intermediary sector shrinks when λ increases; ∂L
∂λ

< 0, that is, the length of the

financial intermediation chain is decreasing in λ.

The intuition for the above result is the following. As the search technology improves, a

customer has a higher outside option value when he trades with a dealer. This is because

the customer can find an alternative trading partner more quickly, if the dealer were to

turn down the trade. As a result, intermediation is less profitable and the dealer sector

shrinks. This leads to a shorter intermediation chain.
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3.3 Market size X

To analyze the effect of the market size X , we keep the ratio of investor population N and

asset supply X constant. That is, we let

N = φX, (27)

where φ is a constant. Hence, when the issuance size X changes, the population size N also

changes proportionally. We impose this condition to shut down the effect from the change

in the ratio of asset owners and non-owners in equilibrium.

Proposition 8 In the equilibrium in Theorem 1, under condition (27), when λ is suffi-

ciently large, ∂∆s−∆b

∂X
< 0, that is, the intermediary sector shrinks when the market size

increases; ∂L
∂X

< 0, that is, the length of the financial intermediation chain is decreasing in

the size of the market X.

Intuitively, when the market size gets larger, it becomes easier for an investor to meet

his trading partner. Hence, the effect is similar to that from an increase in the search

speed λ. From the intuition in Proposition 7, we obtain that the length of the financial

intermediation chain is decreasing in the size of the market.

3.4 Trading need κ

Proposition 9 In the equilibrium in Theorem 1, when λ is sufficiently large, ∂(∆s−∆b)
∂κ

> 0,

and ∂L
∂κ

> 0, that is, the intermediary sector expands and the length of the intermediation

chain increases when the frequency of investors’ trading need increases.

The intuition for the above result is as follows. Suppose κ increases, i.e., investors need to

trade more frequently. This makes it more profitable for dealers. Hence, the intermediary

sector expands as more investors choose to become dealers. Consequently, the length of

the intermediation chain increases.

3.5 Price dispersion

Theorem 1 shows that there is a continuum of prices for the asset in equilibrium. How

is the price dispersion related to search frictions? It seems reasonable to expect the price
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dispersion to decrease as the market frictions diminishes. However, this intuition is not

complete, and the relationship between price dispersion and search frictions is more subtle.

To see this, we use D to denote the price dispersion

D ≡ Pmax − Pmin, (28)

where Pmax and Pmin are the maximum and minimum prices, respectively, among all prices.

Proposition 2 implies that

Pmax = P (∆,∆s), (29)

Pmin = P (∆b, 0). (30)

That is, Pmax is the price for the transaction between a buyer of type ∆ and a seller of

type ∆s. Similarly, Pmin is the price of the transaction between a buyer of type ∆b and

a seller of type 0. The following proposition shows that effect of the search speed on the

price dispersion.

Proposition 10 In the equilibrium in Theorem 1, when λ is sufficiently large, ∂D
∂λ

< 0.

The intuition is the following. When the search speed is faster, investors do not have

to compromise as much on prices to speed up their transactions, because they can easily

find an alternative trading partner if their current trading partners decided to walk away

from their transactions. Consequently, the dispersion across prices becomes smaller when

λ increases.

However, the relation between the price dispersion and the search cost c is more subtle.

As the search cost increases, fewer investors participate in the market. On the one hand,

this makes it harder to find a trading partner and so increases the price dispersion as the

previous proposition suggests. There is, however, an opposite driving force: Less diversity

across investors leads to a smaller price dispersion. In particular, as noted in Proposition

4, ∆s is decreasing in c, that is, when the search cost increases, only investors with lower

types are willing to pay the cost to try to sell their assets. As noted in (29), this reduces the

maximum price Pmax. On the other hand, when the search cost increases, only investors

with higher types are willing to buy. This increases the minimum price Pmin. Therefore,

as the search cost increases, the second force decreases the price dispersion. The following

proposition shows that the second force can dominate.
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Proposition 11 In the equilibrium in Theorem 1, the sign of ∂D
∂c

can be either positive or

negative. Moreover, when c is sufficiently small, we have ∂D
∂c

< 0.

Price dispersion in OTC markets has been documented in the literature, e.g., Green, Holli-

field, and Schurhoff (2007). Jankowitsch, Nashikkar, and Subrahmanyam (2011) proposes

that price dispersion can be used as a measure of liquidity. Our analysis in Proposition 10

confirms this intuition that the price dispersion is larger when the search speed is lower,

which can be interpreted as the market being less liquid. However, Proposition 11 also

illustrates the potential limitation, especially in an environment with a low search cost.

If one takes the interpretation that a higher search cost means lower liquidity, then the

price dispersion may decrease when the market becomes less liquid (i.e., the search cost is

higher).

3.6 Price dispersion ratio

To further analyze the price dispersion in the economy, we define dispersion ratio as the

following

DR ≡ P d
max − P d

min

Pmax − Pmin
, (31)

where P d
max and P d

min are the maximum and minimum prices, respectively, among inter-

dealer transactions. That is, DR is the ratio of the price dispersion among inter-dealer

transactions to the price dispersion among all transactions.

This dispersion ratio measure has two appealing features. First, somewhat surprisingly,

it turns out to be easier to measure DR than D. Conceptually, price dispersion D is

the price dispersion at a point in time. When measuring it empirically, however, we have

to compromise and measure the price dispersion during a period of time (e.g., a month

or a quarter), rather than at an instant. As a result, the asset price volatility directly

affects the measure D. In contrast, the dispersion ratio DR alleviates part of this problem

since asset price volatility affects both the numerator and the denominator. Second, as

noted in Proposition 11, the effect of search cost on the price dispersion is ambiguous. In

contrast, our model predictions on the price dispersion ratio are sharper, as illustrated in

the following proposition.

Proposition 12 In the equilibrium in Theorem 1, we have ∂DR
∂c

< 0; when λ is sufficiently

large, we have ∂DR
∂λ

< 0, ∂DR
∂κ

> 0, and under condition (27) we have ∂DR
∂X

< 0.
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Intuitively, DR is closely related to the size of the intermediary sector. All these parameters

(c, λ,X, and κ) affect DR through their effects on the interval (∆b,∆s). For example, as

noted in Proposition 4, when the search cost c increases, the intermediary sector (∆b,∆s)

shrinks, and so the price dispersion ratio DR decreases. The intuition for the effects of all

other parameters (λ,X, and κ) is similar.

In summary, both DR and L are closely related to the size of the intermediary sector.

All the parameters of (c, λ,X, and κ) affect both DR and L through their effects on the

interval (∆b,∆s). Indeed, by comparing the above results with Propositions 5, 7, 8, and 9,

we can see that, for all four parameters (c, λ,X, and κ), the effects on DR and L have the

same sign.

3.7 Welfare

What are the welfare implications from the intermediation chain? For example, is a longer

chain an indication of higher or lower investors’ welfare? Propositions 5–12 have shed

some light on this question. In particular, a longer intermediation chain (or a larger price

dispersion ratio) is a sign of a lower c, a lower λ, a higher κ, or a lower X , which have

different welfare implications. Hence, the chain length and dispersion ratio are not clear-cut

indicators of investors’ welfare.

For example, a lower c means that more investors would search in equilibrium. Hence,

high-∆ investors can obtain the asset more quickly, leading to higher welfare for all in-

vestors. On the other hand, a lower λ means that investors obtain their desired asset

positions more slowly, leading to lower welfare for investors. Therefore, if the intermedia-

tion chain L becomes longer (or the price dispersion ration DR gets larger) because of a

lower c, it is a sign of higher investor welfare. However, if it is due to a lower search speed

λ, it is a sign of lower investor welfare. A higher κ means that investors have more frequent

trading needs. If L becomes longer (or DR gets larger) because of a higher κ, holding

the market condition constant, this implies that investors have lower welfare. Finally, if

L becomes longer (or DR gets larger) because of a smaller X , it means that investors

execute their trades more slowly, leading to lower welfare for investors. To formalize the

above intuition, we use W to denote the average expected utility across all investors in the

economy. The relation between investors’ welfare and those parameters is summarized in

the following proposition.
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Proposition 13 In the equilibrium in Theorem 1, we have ∂W
∂c

< 0; when λ is sufficiently

large, we have ∂W
∂λ

> 0, ∂W
∂κ

< 0, and under condition (27) ∂W
∂X

> 0.

4 On Convergence

When the search friction disappears, does the search market equilibrium converge to the

equilibrium in a centralized market? Since Rubinstein and Wolinsky (1985) and Gale

(1987), it is generally believed that the answer is yes. This convergence result is also

demonstrated in Duffie, Garleanu, and Pedersen (2005), the framework we adopted.

However, we show in this section that as the search technology approaches perfection

(i.e., λ goes to infinity) the search equilibrium does not always converge to a centralized

market equilibrium. In particular, consistent with the existing literature, the prices and

allocation in the search equilibrium converge to their counterparts in a centralized-market

equilibrium, but the trading volume may not.

4.1 Centralized market benchmark

Suppose we replace the search market in Section 2 by a centralized market and keep the

rest of the economy the same. That is, investors can execute their transactions without

any delay. The centralized market equilibrium consists of an asset price Pw and a cutoff

point ∆w. All asset owners above ∆w and nonowners below ∆w stay inactive. Moreover,

each nonowner with a type higher than ∆w buys one unit of the asset instantly and each

owner with a type lower than ∆w sells his asset instantly, such that all investors find their

strategies optimal, the distribution of all groups of investors remain constant over time,

and the market clears. This equilibrium is given by the following proposition.

Proposition 14 In this centralized market economy, the equilibrium is given by

∆w = F−1

(
1− X

N

)
, (32)

Pw =
1 +∆w

r
. (33)

The total trading volume per unit of time is

TVw = κX

(
1− X

N

)
. (34)
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In this centralized market economy, the asset price is determined by the marginal investor’s

valuation ∆w. Asset allocation is efficient since all investors whose types are higher than ∆w

are asset owners, and all investors whose types are lower than ∆w are nonowners. Trading

needs arise when investors’ types change. In particular, an asset owner becomes a seller if

his new type is below ∆w and a nonowner becomes a buyer if his new type is above ∆w. In

this idealized market, they can execute their transactions instantly. Hence, at each point in

time, the total measure of buyers and sellers are infinitesimal, and the total trading volume

during [t, t+ dt) is TVwdt.

4.2 The limit case of the search market

Denote the total trading volume in the search market economy in Section 2 as

TV ≡ TVcc + TVcd + TVdc + TVdd. (35)

The following proposition reports some properties of the search equilibrium in the limit.

Proposition 15 When λ goes to infinity, the equilibrium in Theorem 1 is given by

lim
λ→∞

∆b = lim
λ→∞

∆s = ∆w, (36)

lim
λ→∞

P (x, y) = Pw for any x < y, (37)

lim
λ→∞

µh(∆) =

{
Nf(∆) if ∆ > ∆w,

0 if ∆ < ∆w,
(38)

lim
λ→∞

µn(∆) =

{
0 if ∆ > ∆w,

Nf(∆) if ∆ < ∆w,
(39)

lim
λ→∞

µb(∆) = lim
λ→∞

µs(∆) = 0, (40)

lim
λ→∞

TV− TVw

TVw

= log
ĉ

c
, (41)

where ĉ is a constant, with ĉ > c, and is given by

ĉ =

√∫ ∆w

0

F (x)

F (∆w)
dx

√∫ ∆

∆w

1− F (x)

1− F (∆w)
dx. (42)

As λ goes to infinity, the many aspects of the search equilibrium converge to their counter-

parts in a centralized market equilibrium. First, the interval (∆b,∆s) shrinks to a single

point at ∆w (equation (36)), and the size of the intermediary sector goes to zero. Second,

all transaction prices converge to the price in the centralized market, as shown in equation
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(37). Third, the asset allocation in the search equilibrium converges to that in the central-

ized market. As shown in equations (38)–(40), almost all investors whose types are higher

than ∆w are inactive asset holders, and almost all investors whose types are lower than ∆w

are inactive nonowners. The population sizes for buyers and sellers are infinitesimal.

However, there is one important difference. The equation (41) shows that as λ goes to

infinity, the total trading volume in the search market equilibrium is significantly higher

than the volume in the centralized market equilibrium. This is surprising, especially given

the result in (36) that the size of the intermediary sector shrinks to 0.

It is worth emphasizing that this is not a mathematical quirk from taking the limit.

Rather, it highlights an important difference between a search market and an idealized

centralized market. Intuitively, the excess trading in the search market is due to intermedi-

aries, who act as middlemen, buying the asset from one investor and selling to another. As

λ increases, the intermediary sector shrinks. However, thanks to the faster search technol-

ogy, each intermediary can execute more trades such that the total excess trading induced

by intermediaries increases with λ despite the reduction in the size of the intermediary

sector. As λ goes to infinity, the trading volume in the search market remains significantly

higher than that in a centralized market.

As illustrated in (41), the difference between TV and TVw is higher when the search

cost c is smaller, and approaches infinity when c goes to 0. As noted in Proposition 4, the

smaller the search cost c, the larger the intermediary sector. Hence, the smaller the search

cost c, the larger the excess trading generated by middlemen.

These results shed some light on why a centralized market model has trouble explaining

trading volume, especially in markets with small search frictions. Even in the well-developed

stock market in the U.S., some trading features are perhaps better captured by a search

model. It is certainly quick for most investors to trade in the U.S. stock market. However,

the cheaper and faster technology makes it possible for investors to exploit opportunities

that were prohibitive with a less developed technology. Indeed, over the past a few decades,

numerous trading platforms were set up to compete with main exchanges; hedge funds and

especially high-frequency traders directly compete with traditional market makers. It seems

likely that the increase in turnover in the stock market in the past a few decades was driven

partly by the decrease in the search frictions in the market. Intermediaries, such as high

frequency traders, execute a large volume of trades to exploit opportunities that used to
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be prohibitive.

In summary, our analysis suggests that a centralized market model captures the behavior

of asset prices and allocations when market frictions are small. However, it is not well-

suited for analyzing trading volume, even in a market with a fast search speed, especially

in the case when the search cost is small.

4.3 Equilibrium without Intermediation

In the above analysis, TV does not converge to TVw because intermediaries serve as the

middlemen and generate excess trading volume. We now highlight this intuition by showing

that TV does converge to TVw in the case where there is no intermediary in equilibrium.

Let’s consider the case of c ≥ c∗. Following the analysis in Section 2, we can construct

an equilibrium that is similar to the one in Theorem 1. The only difference is that as

described in Panel A of Figure 1, two cutoff points ∆b and ∆s are such that ∆b ≥ ∆s. In

the equilibrium in Theorem 1, investors with intermediate valuations become intermediaries

and stay in the market all the time. In contrast, in this case with a higher search cost,

investors with intermediate valuations choose not to participate in the market. Only those

with strong trading motives (buyers with types higher than ∆b and sellers with types lower

than ∆s) are willing to pay the high search cost to participate in the market. In the limit

case where λ goes to infinity, as in Proposition 15, equations (36)–(40) still hold. However,

we now have

lim
λ→∞

TV = TVw.

This is, as λ goes to infinity, both ∆b and ∆s converge to ∆w. The inactive sector shrinks

to a point. Moreover, the prices, allocation, and the trading volume all converge to their

counterparts in a centralized market equilibrium. This further confirms our earlier intuition

that, in the intermediation equilibrium in Section 2, the difference between TV and TVw

is due to the extra trading generated by intermediaries acting as the middlemen.

4.4 Alternative matching functions

Section 4.2 shows that the non-convergence result on volume is due to the fact that while λ

increases, the intermediary sector shrinks but each one can trade more quickly. The higher

trading speed dominates the reduction in the size of the intermediary sector. One natural
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question whether this result depends on the special matching function in our model. As

explained in Section 2, for tractability, we adopt the matching function λNbNs. Does our

non-convergence conclusion depend on this assumption?

To examine this, we modify our model to have a more general matching function: We

now assume that the matching function is λQ(Nb, Ns), where Q is homogeneous of degree k

(k > 0) in Nb and Ns. The matching function in our previous analysis, λNbNs, is a special

case with homogeneity of degree 2. The rest of the model is kept the same as in Section 2.

We construct an intermediation equilibrium that is similar to the one in Theorem 1, and let

λ go to infinity to compare the limit equilibrium with the centralized market equilibrium.

The conclusions based on this general matching function remain the same as those in

Section 4.2. When λ goes to infinity, both the prices and allocation converge to their

counterparts in a centralized market equilibrium, but the trading volume does not. Inter-

estingly, the trading volume in this generalized model converges to exactly the same value

as in our previous model, and is given by (41).

5 Empirical Analysis

In this section, we conduct empirical tests of the model predictions on the length of the

intermediation chain L and the price dispersion ratio DR. We choose to analyze the U.S.

corporate bond market, which is organized as an OTC market, where dealers and customers

trade bilaterally. Moreover, a large panel dataset is available that makes it possible to

conduct the tests reliably.

5.1 Hypotheses

Our analysis in Section 3 provides predictions on the effects of search cost c, market size X ,

trading need κ, and search speed λ. Our empirical analysis will focus on the cross-sectional

relations. Hence, there is perhaps little variation in the search speed λ across corporate

bonds. It is of course faster to trade a large corporate bond than a small one. However, it

seems natural to attribute this difference to the fact that there are more investors searching

in this market, rather than to the search technology.

Our analysis below will focus on the effects of c, X , and κ. Specifically, we obtain

a number of observable variables that can be used as proxies for these three parameters.
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Table 1 summarizes the interpretations of our proxies and model predictions. We use

issuance size as a proxy for the market size X . Another variable that captures the effect of

market size is bond age. The idea is that after a corporate bond is issued, as time goes by,

a larger and larger fraction of the issuance reaches long-term buy-and-hold investors such

as pension funds and insurance companies. Hence, the active size of the market becomes

smaller as the bond age increases. With these interpretations, Propositions 8 and 12 imply

that the intermediation chain length L and price dispersion ratio DR should be decreasing

in the issuance size, but increasing in bond age.

We use turnover as a proxy for the frequency of investors’ trading need κ. The higher

the turnover, the more frequent the trading needs are. Propositions 9 and 12 imply that

the intermediation chain length L and price dispersion ratio DR should be increasing in

turnover.

As proxies for the search cost c, we use credit rating, effective bid-ask spread, and time

to maturity. The idea is that these variables are related to the cost of market making. For

example, all else being equal, it is cheaper for dealers to make market for investment-grade

bonds than for high-yield or non-rated bonds, perhaps because dealers face less inventory

risk and less capital charge for holding investment-grade bonds. Hence, our interpretation

is that the search cost c is smaller for investment-grade bonds. Moreover, everything else

being equal, a larger effective bid-ask spread implies a higher profit for dealers (i.e., c is

lower). Finally, bonds with longer maturities are more risky, and so more costly for dealers

to make market (i.e., c is higher). With these interpretations, Propositions 4 and 12 imply

that L and DR should be larger for investment-grade bonds, and for bonds with larger

bid-ask spreads and shorter time to maturity.

5.2 Data

Our sample consists of corporate bonds that were traded in the U.S. between July 2002 and

December 2012. We combine two databases: the Trade Reporting and Compliance Engine

(TRACE) and the Fixed Income Securities Database (FISD). TRACE contains information

about corporate bond transactions, such as date, time, price, and volume of a transaction.

All transactions are categorized as either “dealer-to-customer” or “dealer-to-dealer” trans-

actions. The FISD database contains information about a bond’s characteristics, such as

bond type, date and amount of issuance, maturity, and credit rating. We merge the two
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databases using 9-digit CUSIPs. The initial sample from TRACE contains a set of 64,961

unique CUSIPs; among them, 54,587 CUSIPs can be identified in FISD. We include in

our final sample corporate debentures ($8.5 trillion total issuance amount, or 62% of the

sample), medium-term notes ($2.2 trillion total issuance amount, or 16% of the sample),

and convertibles ($0.6 trillion issuance amount, or 4% of the sample). In total, we end up

with a sample of 25,836 bonds with a total issuance amount of $11.3 trillion.

We follow the definition in (26) to construct the chain length L for each corporate bond

during each period, where TVcd +TVdc is the total dealer-to-customer trading volume and

TVdd is the total dealer-to-dealer trading volume during that period. In our data, TVcc = 0,

that is, there is no direct transaction between two customers. Hence, the chain length is

always larger than or equal to 1.

We obtain the history of credit ratings on the bond level from FISD. For each bond, we

construct its credit rating history at the daily frequency: for each day, we use credit rating

by S&P if it is available, otherwise, we use Moody’s rating if it is available, and use Fitch’s

rating if both S&P and Moody’s ratings are unavailable. In the case that a bond is not

rated by any of the three credit rating agencies, we consider it as “not rated.” We use the

rating on the last day of the period to create a dummy variable “IG”, which equals one if

a bond has an investment-grade rating, and zero otherwise.

To measure the effective bid-ask spread of a bond, denoted as Spread, we follow Bao,

Pan, and Wang (2011) to compute the square root of the negative of the first-order autoco-

variance of changes in consecutive transaction prices during the period, which is based on

Roll (1984)’s measure of effective bid-ask spread. Maturity refers to the time to maturity

of a bond, measured in years. We use Age to denote the time since issuance of a bond,

denominated in years, use Size to denote issuance size of a bond, denominated in million

dollars, and use Turnover to denote the total trading volume of a bond during the period,

normalized by its Size.

We follow the definition in equation (31) to construct the price dispersion ratio, DR,

for each bond and time period, where P d
max and P d

min are the maximum and minimum

transaction prices among dealer-to-dealer transactions, and Pmax and Pmin are the maximum

and minimum transaction prices among all transactions.
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5.3 Analysis

Table 2 reports the summary statistics for variables measured at the monthly frequency.

To rule out extreme outliers, which are likely due to data error, we winsorize our sample by

dropping observations below the 1st percentile and above 99th percentile. For the overall

sample, the average chain length is 1.73. There is significant variation. The chain length is

7.00 and 1.00 at the 99th and 1st percentiles, respectively. Investment-grade bonds tend to

have longer chains. For example, the average chain length is 1.81 and the 99th percentile

is 7.53. The average price dispersion ratio is 0.50 for the overall sample, and 0.51 for

investment-grade bonds. For the overall sample, the average turnover is 0.08 per month

and the average issuance size is $462 million. Investment-grade bonds have a larger average

issuance size of $537 million, and a turnover ratio of 0.07. The effective bid-ask spread is

1.43% for the overall sample, and 1.32% for the investment-grade subsample. The average

bond age is around 5 years and the time to maturity is around 8 years.

We first run Fama-MacBeth regressions of chain length on the variables in Table 1, and

the results are reported in Table 3. As shown in column 1, the signs of all coefficients are

consistent with the model predictions, and all coefficients are highly significantly different

from 0. The coefficient for IG is 0.245 (t = 32.17) implying that, holding everything else

constant, the chain length for investment-grade bonds is longer than that for other bonds

by 0.245 on average. The coefficient for Spread is 0.073, with a t-statistic of 17.17. Hence,

when the effective bid-ask spread increases from the 25th percentile to the 75th percentile,

the chain length increases by 0.091 (= 0.073× (1.81− 0.56)). With the interpretation that

a higher spread implies a lower cost for dealers, this is consistent our model that the chain

length is decreasing in the search cost. The coefficient for Turnover is 0.199 (t = 11.48),

suggesting that the chain length increases with the frequency of investors’ trading needs.

The coefficients for Size and Age are −0.012 (t = 3.73) and 0.025 (t = 23.92), implying

that the chain length is decreasing in the size of the market. Also consistent with the model

prediction, the coefficient for Maturity is significantly negative.

We then run another Fama-MacBeth regression, using the price dispersion DR as the

dependent variable. Our model predicts that the signs of coefficients for all the variables

should be the same as those in the regression for L. As shown in the third column of Table

3, five out of the six coefficients have the same sign as those in the regression for L in
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column 1. For example, as shown in the third column of Table 3, the coefficient for IG is

0.007 (t = 2.62) implying that, holding everything else constant, the price dispersion for

investment grade bonds is larger than that for other bonds by 0.007 on average. Similarly,

as implied by our model, the coefficients for other variables such as Spread, Turnover, Age,

and Maturity are all significant and have the same sign as in the regression for L.

The only exception is for Size. Contrary to our model prediction, the coefficient is

strongly negative. Intuitively, our model implies that, for a larger bond, it is easier to find

trading partners. Hence, it is less profitable for dealers, leading to a smaller intermediary

sector, and consequently a shorter intermediation chain and a smaller price dispersion ratio.

However, our evidence is only consistent with the implication on the chain length, but not

the one on the price dispersion ratio. One conjecture is that our model abstracts away from

the variation in transaction size and dealers’ inventory capacity constraints. For example,

in our sample, the monthly maximum transaction size for the largest 10% of the bonds

is more than 50 times larger than that for the smallest 10% of the bonds. When facing

extremely large transactions from customers, with inventory capacity constraints, a dealer

may have to offer price concessions when trading with other dealers, leading to a larger

price dispersion ratio. However, this channel has a much weaker effect on the chain length,

which reflects the average number of layers of intermediation and so is less sensitive to the

transactions of extreme sizes. As a result, our model prediction on the chain length holds

but the prediction on the price dispersion does not.

As a robustness check, we reconstruct all variables at the quarterly frequency and repeat

our analysis. As shown in the second and fourth columns, the results at the quarterly

frequency are similar to those at the monthly frequency. The only difference is that the

coefficient for Maturity becomes insignificant.

6 Conclusion

We analyze a search model with an endogenous intermediary sector and an intermediation

chain. We characterize the equilibrium in closed-form. Our model shows that the price

dispersion ratio and the length of the intermediation chain are decreasing in the search

cost, search speed, market size, but are increasing in investors’ trading need. Based on

the data from the U.S. corporate bond market, our evidence is largely consistent with the
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model predictions.

As search frictions diminish, the search market equilibrium does not always converge

to a centralized market equilibrium. In particular, the prices and allocations in the search

market equilibrium converge to their counterparts in a centralized market equilibrium, but

the trading volume does not. The difference between the two trading volumes across the

two equilibria increases when the search cost becomes smaller, and approaches infinity when

the search cost goes to zero. These results suggest that a centralized market model captures

the behavior of asset prices and allocations when market frictions are small. However, it

is not well-suited for analyzing trading volume, even in a market with a fast search speed,

especially in the case when the search cost is small.
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7 Appendix

Proof of Theorem 1

The proof is organized as follows. Step I, we take ∆b, ∆s and decision rules (3) and (4) as

given to derive densities µs (∆), µb (∆), µn (∆), µh (∆), and value functions Vh (∆), Vn (∆),

Vb (∆), Vs (∆). Step II, from the two indifference conditions, we obtains equations (20) and

(21) that pin down ∆b and ∆s. Step III, we verify that decision rules (3) and (4) are indeed

optimal for all investors.

Step I. We first show that investors’ distributions are the following. For ∆ ∈ [0,∆b],

we have µb (∆) = µh (∆) = 0 and

µn (∆) =
κ (N −X) + λNbN

κ + λNb
f (∆) , (43)

µs (∆) =
κX

κ + λNb
f (∆) . (44)

For ∆ ∈ (∆b,∆s), we have µn (∆) = µh (∆) = 0, and

µs (∆) =
Nf (∆)

2


1− N −NF (∆)−X − κ

λ√[
N −NF (∆)−X − κ

λ

]2
+ 4κ

λ
(N −X) [1− F (∆)]


 ,(45)

µb (∆) =
Nf (∆)

2


1 + N −NF (∆)−X − κ

λ√[
N −NF (∆)−X − κ

λ

]2
+ 4κ

λ
(N −X) [1− F (∆)]


 .(46)

For ∆ ∈
[
∆s,∆

]
, we have µn (∆) = µs (∆) = 0, and

µb (∆) =
κ (N −X)

κ+ λNs
f (∆) , (47)

µh (∆) =
κX + λNsN

κ + λNs
f (∆) . (48)

Let’s first derive the densities for ∆ ∈
[
∆s,∆

]
. Decision rules (3) and (4) imply (13),

(15), and (17). Substituting (13) into (12), we obtain

µb (∆) + µh (∆) = Nf (∆) .

From the above equation and (14), we obtain (47) and (48). The market clearing condition

(19), together with (15) and (17), implies that

∫ ∆

∆s

µh (∆) d∆+Nb = X.
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Substituting (48) into the above equation, we get an equation of Nb,

N2
b +

(κ
λ
−N +X +NF (∆b)

)
Nb −

κ

λ
(N −X) [1− F (∆b)] = 0. (49)

Solving the above equation for Nb, we obtain

Nb =
N−NF (∆b)−X− κ

λ

2
+
1

2

√[
N −NF (∆b)−X− κ

λ

]2
+ 4

κ

λ
(N −X) [1−F (∆b)]. (50)

The derivation for ∆ ∈ [0,∆b) is similar, and we obtain (43) and (44), with

N2
s +

(κ
λ
+N −X −NF (∆s)

)
Ns −

κX

λ
F (∆s) = 0

from which we get

Ns =
1

2

√[κ
λ
+N −X −NF (∆s)

]2
+ 4

κX

λ
F (∆s)−

1

2

[κ
λ
+N −X −NF (∆s)

]
. (51)

The derivation for ∆ ∈ (∆b,∆s) is the following. We rewrite (18) as

κ
dFs (∆)

d∆
= κXf (∆)− λ [Nb − Fb (∆)]

dFs (∆)

d∆
+ λFs (∆)

dFb (∆)

d∆
. (52)

After some algebra, we get

κ
dFs (∆)

d∆
= κXf (∆)− d

d∆
[λ (Nb − Fb (∆))Fs (∆)] .

Integrating both sides from ∆b to ∆ ∈ (∆b,∆s), we have

κ [Fs (∆)−Fs (∆b)] = κX [F (∆)−F (∆b)]−λ [(Nb − Fb (∆))Fs (∆)−NbFs (∆b)] , (53)

where we have used the fact that Fb (∆b) = 0.

Substituting (44) into the definition of Fs (·), we have

Fs (∆b) =
κX

κ + λNb
F (∆b) . (54)

Substituting (17) into (12), we get

µs (∆) + µb (∆) = Nf (∆) . (55)

We can rewite the above equation as

dFb (∆)

d∆
+

dFs (∆)

d∆
= Nf (∆) .
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Integrating both sides from ∆b to ∆ ∈ (∆b,∆s], after some algebra, we obtain

Fs (∆) = Fs (∆b)− Fb (∆) +N [F (∆)− F (∆b)] . (56)

Substituting (56) into (53), we get a quadratic euqation of Fb (∆), from which we obtain

the solution for Fb (∆). Differentiating it with respect to ∆, we obtain µb (∆) in (46). From

(55) we obtain µs (∆) in (45).

Step II. Let’s first determine Vn (∆) and Vh (∆) for ∆ ∈
[
0,∆

]
. Equation (10) implies

that Vn (∆) is a constant for all ∆. We denote it by Vn ≡ Vn (∆). Equation (8) implies

that Vh (∆) is linear in ∆ with a positive slope

dVh (∆)

d∆
=

1

κ+ r
. (57)

We now compute the slope for Vs (∆). Suppose ∆ ∈ [0,∆b]. From (9), we have

Vs (∆) =
1 + ∆− c

κ+ r
+

κE [max {Vh (∆
′) , Vs (∆

′)}]
κ+ r

+
λ (1− η)

κ+ r

∫ ∆s

∆b

[Vs (x) + Vn − Vb (x)− Vs (∆)]µb (x) dx

+
λ (1− η)

κ+ r

∫ ∆

∆s

[Vh (x) + Vn − Vb (x)− Vs (∆)]µb (x) dx.

Differentiating both sides of the equation with respect to ∆, we obtain

dVs (∆)

d∆
=

1

κ+ r + λ (1− η)Nb
. (58)

Similarly, for ∆ ∈ [∆b,∆s], we get

dVs (∆)

d∆
=

1

κ+ r
− λ (1− η)

κ+ r

[
dVs (∆)

d∆
− dVb (∆)

d∆

] ∫ ∆

∆

µb (x) dx. (59)

Let’s now determine the slope for Vb (∆). Suppose ∆ ∈
[
∆s,∆

]
. From (11), we have

Vb (∆) = − c

κ+ r
+

κE [max {Vb (∆
′) , Vn}]

κ+ r

+
λη

κ+ r

∫ ∆b

0

[Vh (∆) + Vn (x)− Vb (∆)− Vs (x)]µs (x) dx

+
λη

κ+ r

∫ ∆s

∆b

[Vh (∆) + Vb (x)− Vb (∆)− Vs (x)]µs (x) dx.

Differentiating both sides with respect to ∆, after some algebra, we obtain

dVb (∆)

d∆
=

1

κ + r

ληNs

κ + r + ληNs

for ∆ ∈
[
∆s,∆

]
. (60)
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Similarly, for ∆ ∈ [∆b,∆s], we have

dVb (∆)

d∆
=

λη

κ+ r

[
dVs (∆)

d∆
− dVb (∆)

d∆

] ∫ ∆

0

µs (x) dx. (61)

From (59) and (61), we can solve for the dVs(∆)
d∆

and dVs(∆)
d∆

for ∆ ∈ [∆b,∆s]. Therefore, we

have the following

dVs (∆)

d∆
=

{
1

κ+r+λ(1−η)Nb

for ∆ ∈ [0,∆b]
1

κ+r
κ+r+ληFs(∆)

κ+r+λ(1−η)[Nb−Fb(∆)]+ληFs(∆)
for ∆ ∈ [∆b,∆s]

. (62)

dVb (∆)

d∆
=

{
1

κ+r
ληFs(∆)

κ+r+λ(1−η)[Nb−Fb(∆)]+ληFs(∆)
for ∆ ∈ [∆b,∆s]

1
κ+r

ληNs

κ+r+ληNs
for ∆ ∈

[
∆s,∆

] . (63)

From the above expressions for the slopes, we obtain the following

Vn =
κ

r

∫ ∆s

∆b

dVb (z)

dz
[1− F (z)] dz +

κ

r

1

κ+ r

ληNs

κ+ r + ληNs

∫ ∆

∆s

[1− F (z)] dz. (64)

Vb (∆) = Vn +

{ ∫ ∆

∆b

dVb(z)
dz

dz for z ∈ [∆b,∆s]∫ ∆s

∆b

dVb(z)
dz

dz + 1
κ+r

ληNs

κ+r+ληNs
(∆−∆s) for z ∈

[
∆s,∆

] , (65)

Vh (∆) = Vh (∆s) +
∆−∆s

κ + r
, (66)

where

Vh (∆s) =
1+∆s

r
− κ

r

∫ ∆b

0
F (z) dz

κ+ r + λNb (1− η)
− κ

r

∫ ∆s

∆b

dVs (z)

dz
F (z) dz +

κ

r

∫ ∆

∆s
[1− F (z)] dz

κ + r
,

Vs (∆) = Vs (∆b) +

{
∆−∆b

κ+r+λNb(1−η)
for z ∈ [0,∆b]∫ ∆

∆b

dVs(z)
dz

dz for z ∈
[
∆b,∆

] , (67)

where

Vs (∆b) = Vh (∆s)−
∫ ∆s

∆b

dVs (z)

dz
dz.

We now verify the conjecture in (7). Suppose x ∈ [∆b,∆s] and y ∈ [∆b,∆s]. Define

ξ (∆) for ∆ ∈ [∆b,∆s] as

ξ (z) ≡ dVs (z)

dz
− dVb (z)

dz
. (68)

Then we have S (x, y) =
∫ x

y
ξ (z) dz. Hence, S (x, y) > 0 if and only if x > y. The

verification for other values for x and y is straightforward.
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We now derive ∆b and ∆s. Substituting ∆ = ∆b into (11), we then obtain

Vb (∆b) = − c

κ + r
+ Vn +

λη

κ+ r

κX

κ+ λNb

∫ ∆b

0
F (x) dx

κ + r + λ (1− η)Nb
.

Substituting the indifference condition Vb (∆b) = Vn into the above equation, we obtain

(20). From the monotonicity of the right hand side of (20) and its boundary conditions

at ∆b = 0 and ∆b = ∆, we know that equation (20) has a unique solution ∆b ∈ [0,∆].

Similarly, substituting ∆ = ∆s in (9), after some algebra, we obtain

Vs (∆s) = Vh (∆s)−
c

κ+ r
+

λ (1− η)

κ + r

κ (N −X)

κ + λNs

∫ ∆

∆s
[1− F (x)] dx

κ+ r + ληNs
.

Substituting the indifference condition Vs (∆s) = Vh (∆s) into the above equation, we obtain

(21). From the monotonicity of the right hand side of (20) and its boundary conditions at

∆s = 0 and ∆s = ∆, we know that equation (21) has a unique solution ∆s ∈ [0,∆].

Equation (20) implies that ∆b is increasing in c. Let’s denote the function as ∆b(c).

Similarly, equation (21) implies that ∆s is decreasing in c. Let’s denote the function as

∆s(c). Define c∗ as the solution to

∆b(c
∗) = ∆s(c

∗). (69)

From the monotonicity and boundary conditions, it is easy to see that the above equation

has a unique solution. Moreover, for any c < c∗, we have ∆b < ∆s.

Step III. Finally, we verify that a non-owner’s optimal choice is given by (3) and that

an owner’s optimal choice is given by (4). We can prove them by contradiction.

Let’s first consider the case for an owner with ∆ ∈
(
∆s,∆

]
. Suppose this owner deviates

from the equilibrium choice (4), i.e, rather than staying inactive, he searches in the market

during a period [t, t+ dt) and then returns to the equilibrium strategy (3) and (4). Let’s

use V̂o (∆) to denote the investor’s expected utility if he follows this alternative strategy:

V̂o (∆) = (1 + ∆− c) dt+ κE [max {Vh (∆
′) , Vs (∆

′)}] dt

+λdt (1− η)

∫ ∆

∆

Ŝ (x,∆)µb (x) dx+ e−rdt (1− κdt) Vh (∆) ,

where Ŝ (x,∆) denotes the trading surplus if this owner meets a buyer of type x > ∆:

Ŝ (x,∆) = Vh (x) + Vb (∆)− Vb (x)− V̂o (∆) ,
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where we have used the result that the trading surplus is negative if the buyer’s type is

lower than the owner. For the owner to deviate, it has to be the case that V̂o (∆) > Vh (∆).

Hence, the trade surplus is bounded by

Ŝ (x,∆) < Vh (x) + Vb (∆)− Vb (x)− Vh (∆) .

Substituting (65) into the right hand side of the above inequality, we obtain

Ŝ (x,∆) <
x−∆

κ+ r + ληNs
. (70)

By comparing V̂o (∆) and Vh (∆), we obtain

V̂o (∆)− Vh (∆) = −cdt + λdt (1− η)

∫ ∆

∆

Ŝ (x,∆)µb (x) dx. (71)

Substituting (70) and (47) into the above equation, we obtain

V̂o (∆)− Vh (∆) < −
λ (1− η) κ (N −X)

∫ ∆

∆s
[1− F (x)] dx

(κ + λNs) (κ+ r + ληNs)
dt < 0. (72)

This contradicts V̂o (∆) > Vh (∆). The proofs for other values for ∆ and the decision rule

(3) are similar.

Proof of Propositions 1–3

Propositions 1 and 2 can be obtained by differentiation. To prove Proposition 3, note that

TVcc is the total volume of trades between sellers with types [0,∆b), whose population size

is Fs (∆b), and buyers with types
(
∆s,∆

]
, whose population size is Nb−Fb (∆s). Note that

any meeting between the two groups will result a trade. Hence, the total volume is given

by (22). By the same logic, we obtain TVcc and TVdc in (23) and (24).

TVdd is the total volume of trades between sellers with types y ∈ (∆b,∆s) and buyers

with types x ∈ (∆b,∆s). However, trade occurs if and only if x > y. For any ∆ ∈ (∆b,∆s),

the density of buyers is dFb (∆). They only trade with sellers whose types are below ∆,

and whose population size is Fs (∆)− Fs (∆b). Hence, type-∆ investors’ trading volume is

λ [Fs (∆)− Fs (∆b)] dFb (∆). Integrating this volume for ∆ ∈ (∆b,∆s), we obtain (25).

Proof of Proposition 4–6

Equations (20) and (50) immediately imply d∆b

dc
> 0 and dNb

dc
< 0. Similarly, Equations (21)

and (51) imply d∆s

dc
> 0 and dNs

dc
< 0. Differentiating L with respect to c, we can obtain
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dL
dc

< 0. From (20) and (21), we can see that c = 0 implies that ∆b = 0, and ∆s = ∆. This

immediately implies that Nb = N −X, Ns = X, and L = ∞.

Proof of Proposition 7

Let’s first conduct asymptotic analysis when λ is sufficiently large. Denote the limit of ∆b

and ∆s under λ → ∞ by

∆∞
b ≡ lim

λ→∞
∆b,

∆∞
s ≡ lim

λ→∞
∆s.

We can rewrite (20) as

λN2
b +

(
κ+

κ+ r

1− η

)
Nb +

κ (κ+ r)

(1− η)λ
=

κηX

(1− η) c

∫ ∆b

0

F (x) dx. (73)

When λ goes to infinity, the right hand side of (73) converges to a positive constant (it is

easy to see that ∆∞
b 6= 0):

lim
λ→∞

κηX

(1− η) c

∫ ∆b

0

F (x) dx =
κηX

(1− η) c

∫ ∆∞

b

0

F (x) dx.

Hence, the left hand side of (73) also converges to this postive constant, which implies

Nb =
Mb√
λ
+ o

(
λ−1/2

)
, where Mb =

√
κηX

(1− η) c

∫ ∆∞

b

0

F (x) dx. (74)

Substituting the above equation into (49),

[NF(∆b)−N+X ]

(
Mb√
λ
+ o(λ−1/2)

)
+

1

λ

(
M2

b − κ (N −X) [1− F (∆∞
b )]

)
+o(

1

λ
) = 0. (75)

The above equation implies that

NF (∆b)−N +X = O(
1√
λ
).

From the above equation, we have

∆∞
b = ∆w,

∆b −∆∞
b = O(

1√
λ
). (76)

where ∆w ≡ F−1
(
N−X
N

)
. Hence, we can write (76) as

∆b = ∆w +
mb√
λ
+ o

(
λ−1/2

)
, (77)
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where mb is a constant. Substituting this expression of ∆b into (75), and setting the

coefficient of 1/λ to zero, we obtain

mb =
1

Nf (∆w)

[
κX

(
1− X

N

)

Mb
−Mb

]
.

Following a similar logic, we obtain

∆∞
s = ∆w

Ns =
Ms√
λ
+ o

(
λ−1/2

)
with Ms =

√
κ (1− η) (N −X)

ηc

∫ ∆

∆w

[1− F (x)] dx, (78)

∆s = ∆w +
ms√
λ
+ o

(
λ−1/2

)
with ms =

1

Nf (∆w)

[
Ms −

κX
(
1− X

N

)

Ms

]
. (79)

Finally, we can verify that ∆s > ∆b in the asymptotic case if ms > mb, which can be

shown as equivalent to c < ĉ. With the expressions of ∆b, ∆s, Nb, Ns we can obtain all

other equilibrium quantities in the asymptotic case.

With the above results, we can now prove Proposition 7 by expanding L as the following

L = ln
ĉ

c
+

Z√
λ
g
(c
ĉ

)
+ o

(
λ−1/2

)
, (80)

where Z is a positive constant and is given by

Z ≡ κ

2Nc



√

ηX

(N −X) (1− η)

∫ ∆w

∆

F (y)

F (∆w)
dy +

√
(N −X) (1− η)

ηX

∫ ∆

∆w

1− F (x)

1− F (∆w)
dx


 ,

and g (·) is the following function

g (x) ≡ 3x−
(
1 +

1

x

)
ln x− 1, for x ∈ [0, 1].

It is easy to show that g (x) > 0. Hence, (80) implies dL
dλ

< 0 when λ is sufficiently large.

Proof of Propositions 8–9

Equation (80) implies that when λ is sufficiently large, we have ∂L
∂κ

> 0, and that under

condition (27), we have ∂L
∂X

< 0. To prove the rest of the two propositions, we expand

∆s −∆b as the following

∆s −∆b =
Y√
λ
+ o

(
λ−1/2

)
,
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where Y is given by

Y =
1− c

ĉ

φ
√
Xf (∆w)



√

κη

(1− η) c

∫ ∆w

∆

F (y) dy +

√
κ (1− η)

ηc
(φ− 1)

∫ ∆

∆w

[1− F (x)] dx


 .

The above equation implies that ∂(∆s−∆b)
∂κ

> 0, and under condition (27), ∂(∆s−∆b)
∂X

< 0.

Proof of Proposition 10 and 11

When λ is sufficiently large, we can expand D as

D =

√
c√
λ


 ∆w√

κ(1−η)X
η

∫ ∆w

0
F (x) dx

+

(
∆−∆w

)
√

κη(N−X)
(1−η)

∫ ∆

∆w
[1− F (x)] dx


+ o

(
1√
λ

)
.

It is direct to see that ∂D
∂λ

< 0 and ∂D
∂c

> 0 in this case.

If c is close to zero, D can be expanded as

D =

∫ ∆s

∆b

ξ (z) dz +O
(√

c
)
,

where ∆s = ∆− O (
√
c) and ∆b = O (

√
c). It can be shown that ∂

∂c

(∫ ∆s

∆b

ξ (z) dz
)
< 0, so

we obtain ∂D
∂c

< 0 when c is sufficiently small.

Proof of Proposition 12

From the definition, we have

P d
max = P (∆s,∆s) ,

P d
min = P (∆b,∆b) .

Substituting them and (29) and (30) into (31), and differentiating it, we obtain ∂DR
∂c

< 0.

It is easy to show that

P d
max − P d

min = O
(
λ−1

)
,

Pmax − Pmin = O
(
λ−1/2

)
.

It follows that DR = O(λ−1/2). Therefore, ∂DR
∂λ

< 0 when λ is sufficiently large. Similarly,

we can show that, when λ is sufficiently large, we have

∂

∂κ

(
P d
max − P d

min

)
> 0,

∂

∂κ
(Pmax − Pmin) < 0,
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which implies ∂DR
∂κ

> 0. Furthermore, under the condition in (27), we can show

P d
max − P d

min = O

(
1

λX

)
,

Pmax − Pmin = O

(
1√
λX

)
,

which implies that DR = O( 1√
λX

). Therefore, when λ is sufficiently large, we have ∂DR
∂X

< 0.

Proof of Proposition 13

The average expected utility across all investors in the economy is defined by

W ≡ 1

N

∑

i∈{b,s,h,n}

[∫ ∆

0

Vi (∆)µi (∆) d∆

]
.

When λ is sufficiently large, we have the following

W = Ww − mW√
λ
+ o

(
λ−1/2

)
,

where Ww is average expected utility in a frictionless centralized market and is given by

Ww =
1

r

∫ ∆

∆b

(1 + ∆) d∆,

and mW is given by

mW =
1

r

√
κc

η (1− η)X



√

1

φ

(
1− 1

φ

)∫ ∆

∆w

[1− F (x)] dx+
1

φ

√∫ ∆w

∆

F (x) dx


 .

By examining mW, we can easily obtain all the conclusions in this proposition.

Proof Proposition 14

In a centralized market, transactions can be executed instantly, hence, all investors whose

types are higher than ∆w are holding the total X units of the asset. This implies

F (∆w) = 1− X

N
, (81)

which leads to (32). Similar to the proof for Theorem 1, we can obtain the expected utility

of an asset owner V c
o (∆) and of an non-owner V c

n (∆)

V c
o (∆) =

1 + ∆+ κE [max {Vn (∆) , Vn (∆) + Pw}]
κ+ r

,

V c
n (∆) =

κE [max {Vo (∆)− Pw, Vn (∆)}]
κ+ r

.
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The indifference condition of a type-∆w investor is

V c
o (∆) = V c

n (∆w) + Pw.

The above three equations lead to (33). During [t, t + dt), κXdt investors’ types change.

F (∆w) of them have new types below ∆w, and sell their assets. Hence, the trading volume

is given by (34).

Proof Proposition 15

From the asymptotic analysis in the proof of Proposition 7, we immediately obtain (36)–

(40). Substituting them into (22)–(25), we obtain (41).
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Table 1: Model Predictions

This table summarizes the model predictions. The first column are the variables that we
will measure empirically. The second column reports the variables in our model, for which
the variable in the first column is a proxy. The third column reports the predicted relation
with the length of the intermediation chain L and the price dispersion ratio DR. L is the
ratio of the volume of transactions generated by dealers to that generated by customers,
and is defined in (26). DR is the price dispersion among inter-dealer trades divided by
the price dispersion among all trades, and is defined in (31). IG is a dummy variable,
which is 1 if the bond is rated as investment grade, and 0 otherwise. Spread of a bond is
the square root of the negative of the first-order autocovariance of changes in consecutive
transaction prices of the bond. Maturity is the the time until maturity of a bond, measured
in years. Turnover is the total trading volume of a bond in face value during the period,
normalized by Size, which is the initial face value of the issuance size of the corporate bond,
denominated in million dollars. Age is the time since the issuance, denominated in years.

Variable Proxy for Relation with L and DR
IG c +
Spread c +
Maturity c −
Turnover κ +
Size X −
Age X +
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Table 2: Summary Statistics

This table reports the summary statistics of the variables defined in Table 1, all of which
are measured at the monthly frequency. For each variable, the table reports its mean,
standard deviation, the 99th, 75th, 50th, 25th, and 1st percentiles, as well as the number
of observations.

Mean S.D. 99% 75% 50% 25% 1% Obs.
L All 1.73 0.96 7.00 2.10 1.36 1.02 1.00 862109

IG 1.81 0.97 7.53 2.25 1.48 1.05 1.00 526272
DR All 0.50 0.31 1.00 0.76 0.54 0.25 0.00 683379

IG 0.51 0.31 1.00 0.75 0.54 0.27 0.00 436993
Turnover All 0.08 0.12 1.02 0.10 0.04 0.01 0.00 866831
(per month) IG 0.07 0.11 0.76 0.08 0.03 0.01 0.00 528698
Spread All 1.43 1.46 14.88 1.81 1.02 0.56 0.05 590883
(%) IG 1.32 1.24 6.77 1.69 0.97 0.54 0.04 372473
Size All 462 1645 3000 500 275 150 2.00 866832
($million) IG 537 2029 3000 600 300 175 3.11 528698
Age All 4.86 4.50 18.91 6.91 3.73 1.64 0.02 866832
(year) IG 5.06 4.56 18.89 7.32 3.91 1.71 0.04 528698
Maturity All 8.19 9.35 33.37 9.57 5.08 2.37 0.08 866523
(year) IG 8.67 9.91 35.17 10.08 5.00 2.25 0.08 528434
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Table 3: Regression Results

This table reports the estimated coefficients from Fama-MacBeth regressions of intermedi-
ation chain length L and price dispersion ratio DR on a number of independent variables,
at monthly and quarterly frequencies. All variables are defined in Table 1. T -statistics are
reported in parentheses. The superscripts ∗, ∗∗, ∗ ∗ ∗ indicate significance levels of 10%,
5%, and 1%, respectively.

L DR
Monthly Quarterly Monthly Quarterly

IG 0.245∗∗∗ 0.239∗∗∗ 0.007∗∗∗ 0.004
(32.17) (20.43) (2.62) (1.14)

Spread 0.073∗∗∗ 0.049∗∗∗ 0.004∗∗∗ 0.003∗∗

(17.17) (8.22) (4.47) (2.54)
Turnover 0.199∗∗∗ 0.118∗∗∗ 0.217∗∗∗ 0.107∗∗∗

(11.48) (10.47) (26.58) (15.59)
Size(×10−3) −0.012∗∗∗ −0.008∗ 0.021∗∗∗ 0.016∗∗∗

(3.73) (1.66) (15.17) (8.88)
Age 0.025∗∗∗ 0.019∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(23.92) (13.92) (5.39) (5.47)
Maturity −0.001∗∗∗ 0.000 −0.001∗∗∗ 0.000

(3.72) (0.08) (6.00) (0.40)
Const. 1.383∗∗∗ 1.311∗∗∗ 0.490∗∗∗ 0.573∗∗∗

(163.14) (136.07) (69.71) (50.47)
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Figure 1: The evolution of demographics.

Panel A: The case without intermediation: ∆b ≥ ∆s

Panel B: The case with intermediation: ∆b < ∆s
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