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Abstract

This paper constructs models where money and credit are alternative pay-
ment instruments, uses them to analyze sluggish nominal prices, and con-
fronts the data. Equilibria entail price dispersion, where sellers set nominal
terms they may keep fixed when aggregate conditions change. Buyers can
use cash or credit, with the former (latter) subject to inflation (transaction
costs). We provide strong analytic results and exact solutions for money
demand. The calibrated models match price-change data well, with realistic
durations, large average changes, many small and negative changes, and a
decreasing hazard. They can also match macro and micro observations on
money and credit.
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1 Introduction

This paper has two related goals: (1) construct a framework where money and
credit serve as alternative payment instruments; (2) pursue within this setting a
theory of endogenously sluggish prices that we can take to the data. It builds
on the analysis of price dispersion in frictional goods markets by Burdett and
Judd (1983), integrated into the general equilibrium monetary model of Lagos and
Wright (2005). This environment generates monetary equilibria with a distribution
of prices, and that means sellers can set prices in nominal terms that they may
keep fixed when aggregate conditions change. Consumers can use cash or credit,
where the former is subject to the inflation tax while the latter involves fixed or
variable transaction costs. This make the choice of payment method nontrivial
and, we think, realistic. In particular, buyers tend to use cash (credit) more
for small (large) purchases. Also, introducing costly credit allows us to avoid an
indeterminacy of equilibrium that plagues some similar models, as we now explain.

To begin, consider Diamond (1971), where each seller (firm) of an indivisible
good posts a price p, then buyers (households) sample sellers one at a time until
finding one below their reservation price p*. Clearly, for any seller, the profit

*

maximizing strategy is p = p*. Hence, there is a single price in the market.
The Burdett-Judd model makes one change in Diamond’s specification: buyers
sometimes sample multiple prices simultaneously, and when they do they obviously
choose the lowest. This implies there cannot be a single p, nor even a set of sellers
with positive measure charging the same p, since that would leave open a profitable
deviation to p — ¢ (see fn. 8 below for more discussion). In fact, one can compute
explicitly the Burdett-Judd distribution F' (p), where any p in the support F yields
the same profit: lower-price sellers earn less per unit, but make it up on the volume,
by making sakes with higher probability.

If one embeds Burdett-Judd in a monetary economy, it makes sense for firms

to post prices in dollars. Then, if the money supply M increases, F' (p) shifts so
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that the real distribution stays the same. Some firms can keep p fixed when M and
the average price increase, however, and that means sticky prices according to the
usage adopted here, even though sellers are allowed to adjust whenever they like
at no cost. For those that stick to their nominal prices, real prices fall, but profits
do not since sales increase. This much is similar to Head et al. (2012), but that
paper has a technical problem. As discussed below, the combination of indivisible
goods and price posting in monetary economies entails an indeterminacy — i.e., a
continuum — of stationary equilibria. Hence, the model uses divisible goods, but
then another problem pops up: what should firms post? Head et al. assume linear
menus: a seller sets p and lets buyers choose any ¢ as long as they pay pq. But
there is no reason to think that linear menus maximize profit.

We show that incorporating costly credit also eliminates the indeterminacy,
thus allowing us to avoid ad hoc linear pricing. Intuitively, holding more cash
reduces the probability of needing to use credit, which delivers a well-behaved
money demand function and unique monetary equilibrium. Hence we can revert
to the original Diamond-Burdett-Judd specification, with indivisible goods, and
get by with fewer “delicate” assumptions.! Also, to make a point, changing M
is by design neutral. The point is not that neutrality holds in reality; it is that
nominal stickiness does not logically imply nonneutrality. While we are not the
first to show this, it may be worth re-emphasizing, and in any case there are many
other reasons to construct a framework with both money and credit: (1) there is
a long tradition of trying to build models along these lines (see fn.6); (2) they
are relevant for applied work because they allow substitution between payment
methods as policy changes (Section 8); and (3) they allow us to confront the data
in novel ways (Section 7). Given that it is desirable to pursue theories with both

money and credit, the framework specified below provides a natural vehicle.

"'We do not take a stand on whether divisible or indivisible goods are more “realistic,” as that
depends on the context, but we would certainly argue that indivisibility is an assumption on the
physical environment and hence less “delicate” than a restriction on pricing strategies.



In terms of confronting data, Head et al. (2012) calibrate their model to match
some features of price-change behavior, and show it also accounts for other facts.
We perform a similar but more disciplined exercise, by calibrating to some features
of pricing behavior, plus observations on the fractions of cash and credit usage, and
money demand (the relation between real balances and interest rates). One speci-
fication involves a fixed cost of credit. It performs well in terms of money demand
and can match the key facts in the pricing data, including long durations, large
average price changes, many small changes, many negative changes, a decreasing
hazard, and repricing behavior that varies with inflation. It cannot match these
plus the shares of cash and credit in micro data, however. Hence, we also consider
a proportional cost of credit. That version can simultaneously match the pricing,
money demand and payment data.’

Section 2 reviews the literature. Section 3 describes our environment. Sections
4 and 5 consider fixed and variable costs. Section 6 discusses stickiness. Sections

7 and 8 discuss quantitative results and policy implications. Section 9 concludes.

2 Literature

Many sticky-price papers follow Taylor (1980) and Calvo (1983) by letting sellers
adjust p only at certain times, or Rotemberg (1982) and Mankiw (1985) by letting
them adjust only at a cost. Our sellers can change any time for free, but may choose
not to. A few papers push imperfect-information or rational-inattention theories;
see Mackowiak and Wiederhold (2009) for references. We are not against these
devices, and indeed our formalization can be interpreted as saying sellers may be
rationally inattentive to aggregate conditions. However, the focus is on search to
exclusion of menu costs, because when Burdett and Menzio (2014) combine them,

the analysis is much more difficult, and they find the majority of price dispersion

2To be clear, Head et al.(2012) match the price-change distribution and average duration,
but cannot match money demand data at all well, and cannot match the shares of money and
credit at all. Trying to be consistent with those data constitutes additional discipline.



in the data (about 70%) is due to search. Moreover, we want to see just how far
we get without menu costs.?

The literature on Burdett-Judd pricing is large, including many labor-market
applications following Burdett and Mortensen (1998). In monetary economics,
prior to Liu (2010), Wang (2011) and Head et al. (2012) putting Burdett-Judd
in Lagos and Wright (2005), Head and Kumar (2005) and Head et al. (2010) put
it in the related model of Shi (1997). Other theories of price dispersion include
Albrecht and Axel (1984) and Diamond (1987), where buyers differ not in terms of
what they observe but their intrinsic (e.g., preference) type. A monetary version
in Curtis and Wright (2004) delivers a two-point p distribution, for any number of
types, which is less useful for our purposes. Also, as in Shi (1995) or Trejos and
Wright (1995), and diametrically from us, that paper assumes goods are divisible
while money is not, which limits applicability for policy and empirical issues.

Papers by Caplin and Spulber (1987) and Eden (1994) make a point similar
to one of our messages, yet are also different in several ways: (1) They do not
try to match data, which is big part of this project. (2) We have endogenous
price dispersion while Caplin and Spulber proceed by assuming, not deriving, a
distribution of prices they take to be uniform. (3) We build on the foundation for
monetary economics in Lagos-Wright, which itself builds on Kiyotaki and Wright
(1989,1993), Kochelakota (1998), Wallace (2001,2010) and others (see Williamson
and Wright 2010, Nosal and Rocheteau 2011 and Lagos et al. 2014 for surveys). We
adopt this approach because we think it is best to analyze monetary phenomena in
environments that are explicit about the frictions that money-like institutions are
meant to ameliorate. Moreover, while similar points can be made in, e.g., cash-
in-advance or overlapping-generations models, it is natural here to use monetary
theory based on search because it is already a key element of the environment —

search is what drives price dispersion and sluggishness.

3Nonmonetary search models with menu costs, where prices are sticky in unit of account as
in Benabou (1988,1992) or Diamond (1993), are special cases of Burdett and Menzio (2014).
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There is much empirical work on price adjustment. Recently, Campbell and
Eden (2014) find in grocery-store data an average duration between price changes
of around 10 weeks, but we do not want to focus exclusively on groceries. Going
back to Bils and Klenow (2004), in BLS data at least half of prices last less than 4.3
months, or 5.5 months if one excludes sales. Klenow and Kryvtsov (2008) report
durations from 6.8 to 10.4 months, while Nakamura and Steinsson (2008) report
8 to 11 months, excluding substitutions and sales. These papers also find large
fractions of small and negative price changes, plus some evidence of a decreasing
hazard. Eichenbaum et al. (2011) report a duration of 6 months for “reference”
prices, which are those most often quoted in a quarter (presumably to avoid record-
ing Saturday Night Specials as two changes in a week). Cecchetti (1986) finds
durations for magazine prices from 1.8 months to 14 years, while Carlton (1986)
finds durations for wholesale prices from 5.9 months for household appliances to
19.2 for chemicals, and also finds many small changes, with about 2/3 below 2%.
More empirical work is surveyed by Klenow and Malin (2010).*

One empirical issue emphasized in the literature is that average price changes
are fairly big, suggesting high menu costs, but there are also many small changes,
suggesting low menu costs. Midrigan (2011) accounts for this by having firms sell
multiple products, and paying a cost to change one price lets them change the rest
for free. That is nice, but it does not mean one should not consider alternatives.
Our model accounts for realistic durations, large average changes, many small
changes, and many negative changes. It also delivers a decreasing hazard, and
pricing behavior that depends on inflation, both of which are obvious problems

for some alternative models. It also naturally generates price dispersion at low or

4In conversations with people in the area, there is more or less agreement that these are
the stylized facts: (1) Prices change slowly, but exact durations vary across studies. (2) The
frequency and size of changes vary across goods. (3) Two sellers changing at the same time
usually do not pick the same p. (4) Many changes are negative. (5) Hazards decline slightly with
duration. (6) There are many small (beow 5%) and many big (above 20%) changes. (7) The
frequency and size of changes, and fraction of negative changes, vary with inflation. (8) There is
price dispersion even at low inflation. Our models are consistent with all these facts.



zero inflation, consistent with the experience (Campbell and Eden 2014). Given
this, we think that the approach in this paper should be part of the conversation
on sticky prices and their implications.

The paper may also be considered a contribution to pure monetary economics.
We deliver exact money demand functions expressing real balances in terms of
interest rates, similar to the well-known results of Baumol (1952), Tobin (1956),
Miller and Orr (1966) and Whalen (1966). The economic intuition is also similar,
involving a comparison between the opportunity cost of holding cash and the cost of
using financial services. However, those earlier papers involve partial-equilibrium
analysis, or, more accurately, decision-theoretic analyses of how to manage one’s
inventory of cash given that it — as opposed to barter, credit or something else
— must be used for transactions. While such inventory-theoretic models are still
being applied to good effect (e.g., Alvarez and Lippi 2009,2014), and we recognize
that this is partly a matter of taste, we like the Lagos-Wright structure because
it is tractable, it is easy to integrate with mainstream macroeconomics, and it has
proved useful in variety of other applications.’

The above-mentioned multiplicity of monetary equilibria in models with indi-
visible goods and posting occurs in a series of papers spawned by Green and Zhou
(1998). Jean et al. (2010) provide citations and further discussion, but here is the
idea: If all sellers post p then buyers’ best response is to bring m = p dollars to the
market as long as p is not too big. If all buyers bring m then sellers’ best response
is post p = m as long as m is not too small. Hence, any p = m in some range
is an equilibrium, and the selection matters for payoffs. Note that this involves a
continuum of stationary equilibria, very different from the multiplicity of dynamic

equilibria in most monetary models. Head et al. (2012) avoid this because, even if

Incorporating price posting with indivisible goods and costly credit is also a further step in
understanding this monetary framework, which has become a workhorse in the area. Previous
analyses use Nash, Kalai or strategic bargaining, posting with random or directed search, com-
petitive price taking, auctions and pure mechanism design. See the surveys cited above for more
discussion and applications in finance, labor, international, growth, etc.



all sellers post p, buyers need not bring m = p when ¢ is divisible, but as we said
that leads to other problems. In our alternative approach, even if all sellers post
p, buyers need not bring m = p when they have access to credit.

It is also relevant to discuss heterogeneity up front. As is well understood in
other applications (e.g., Mortensen and Pissarides 1999), if firms are homogeneous,
as they are here, theory does not pin down which one charges which p, but only the
distribution F' (p). With heterogeneity, however, low cost firms prefer low p since
they are more interested in high volume. Still, for any subset of firms with the same
marginal cost, it does not matter which one posts which p. Hence, heterogeneity
eliminates neither dispersion nor stickiness within sets of similar sellers. This is
especially relevant for retail, where the marginal cost is the wholesale price. Even
if a few retailers get better deals — e.g., one can imagine that Kmart has a quantity
discount — many others face the same wholesale terms. Irrespective of fixed costs,

wages etc., these sellers are homogeneous for our purposes.’

3 Environment

Each period in discrete time has two subperiods: first there convenes a decentralized
market, called BJ for Burdett-Judd; then there is a frictionless centralized market,
called AD for Arrow-Debreu. There is a set of firms interpreted as retailers with
measure 1, and a set of households with measure b. Households consume a divisible
good z; and supply labor ¢; in AD, while in BJ they consume an indivisible good
y; produced by firms at unit cost v > 0. As agents are anonymous in the BJ

market, they cannot use credit, unless they access a technology to authenticate

6As a final note on literature, we alluded above to the venerability of work on money and
costly credit. This includes Prescott (1987), Freeman and Huffman (1991), Chatterjee and Cor-
bae (1992), Lacker and Schreft (1996), Freeman and Kydland (2000), Dong (2011), Nosal and
Rocheteau (2011) and Lucas and Nicolini (2013). See also Gomis-Porqueras and Sanches (2013),
Li and Li (2013), Lotz and Zhang (2013), Araujo and Hu (2014), Gu et al. (2014) and Bethune et
al. (2015). None of these consider our applications. It is also worth highlighting that while costly
credit resolves technical problems in monetary posting models, price dispersion makes it natural
for money and credit to coexist — i.e., sticky prices and costly credit are symbiotically related.



identity and record transactions at a cost. By incurring the cost, households can
get BJ goods in exchange for commitments to deliver d; dollars in the next AD;
otherwise cash is required at point of sale.” We consider both a fixed cost of credit
0 and a proportional cost 7. To nest these, let the transaction cost in general be
C(dy) = 01 (dy) + 7d;, where 1 (d;) is an indicator function that is 1 iff d; > 0.

Household utility within a period is U(z:) + pl (y:) — €, where U'(z¢) > 0 >
U" (), p > v+ and 1 (y;) is again an indicator function. Let 8 = 1/ (1 4 r), with
r > 0, be a discount factor between AD today and BJ tomorrow; any discounting
between BJ and AD can be subsumed in the notation. We impose 7 > g — 1,
where in stationary equilibrium 7 is the inflation rate, and the nominal interest
rate is given by the Fisher equation 14 ¢ = (1 + 7) (1 + ). Notice i > 0, and the
Friedman rule is the limiting case i — 0. As usual, 1 + 7 is the amount of money
agents require in the next AD market to give up a dollar in the current AD market,
whether or not such trades occur in equilibrium. Let x; be AD numeraire, and
assume it is produced one-for-one with ¢;, so the real wage is 1, merely to reduce
notation. The AD price of money in numeraire is ¢,, and therefore 1/¢, is the
nominal price level.

Firms enter the BJ market for free, but households must pay cost k, which
determines participation b, < b. However, in the baseline model k = 0, so b, =
b. Firms use BJ profits to buy AD goods, over which they have linear utility,
but nothing of interest changes if instead they disburse profits to households as
dividends. Each firm posts a price taking as given household behavior and the CDF
of other firms’ prices, F;(p), with support F;. Every household in BJ randomly
samples n firms — i.e., sees n independent draws from F; (p) — with probability
a, = ay(b), depending on the buyer-seller ratio (market tightness). For our

purposes it suffices to have aj,as > 0 and «,, = 0 Vn > 3, but this can be

"While the cost is paid by households, it is not hard to show the allocation is identical if it
is instead paid by firms, as in elementary tax-incidence theory. Also, it does not matter if debt
due in the frictionless AD market is denominated in dollars or numeraire.



generalized easily enough (e.g., Burdett et al.2014). In terms of policy, let the
money supply per buyer evolve according to My = (1+ m) M, with changes
implemented in AD via lump-sum transfers, although the relevant results are the

same if instead government uses new money to buy AD goods.

3.1 The Firm Problem
Expected real profit for a firm posting p at date t is

u(p) = be [on (be) + 202 (b)) B ()] (6, =) &)

where F, (p) = 1 — F, (p). Thus, net revenue per unit is pé, — v, and the number
of units is determined as follows: The probability a household contacts this firm
and no other is a; (b;). Then the firm makes a sale for sure. The probability a
household contacts this firm plus another is 2ay (b;), as it can happen in two ways,
this one first and the other second, or vice versa. Then the firm makes a sale iff it
beats the other’s price, which occurs with probability bl (p). This is all multiplied
by tightness b; to convert buyer probabilities into seller probabilities.

Profit maximization means every p € F; yields the same profit and no p ¢ F;
yields higher profit. As is standard in this kind of model, F;(p) is continuous and
Fi = [p,, ] is an interval.® Taking as given for now p,, and that p, is not so high

that buyers reject it, Vp € F; profit must equal the profit from p;, which is

11 (pe) = bra (be) (e, — ) - (2)
As in Burdett-Judd, equating (1) to (2) and rearranging immediately yields:

Lemma 1 Vp € F; = [p,, D]

o (b) ¢pr— ip
205 (b)) ¢ —7

8There cannot be a mass of firms with the same p because any one of them would have a
profitable deviation to p — ¢, since they lose only € per unit and make discretely more sales by
undercutting others at p. Similarly, if there were a gap between p; and ps > p1, a firm posting
p1 can deviate to p; + & and earn more per unit without losing sales. These results are standard
in BJ models, although later the analysis is complicated by the possibility of paying with money
and the transaction costs of paying without money.

Fy(p) = (3)

9



It is easy to check F} (p) > 0 and F’ (p) < 0 for p, < p < p;. Also, since the
lower limit satisfies F'(p,) = 0, (3) implies

o (by) Bepr + 20 (by)
B = 75 o (bn) + 202 (00)] @)

Now, to translate from dollars to numeraire, let ¢; = ¢,p; and write the distribution

of real BJ prices as

Gula) = Fi (o) = 1~ L B0, )

The support is G; = [gt, Gi], and we define G, (@) =1 -G (q).

3.2 The Household Problem

Consider stationary equilibrium, where real variables are constant and nominal
variables grow at rate m. This makes it convenient to frame the household problem
in real terms. The state variable in AD is net worth, A = ¢m — ¢d — C(d) + T,
where ¢pm and ¢d are real money balances and debt carried over from the previous
round of BJ trade, C(d) is the transaction cost of having used credit, and T is a
lump sum transfer by which new money is injected. Since preferences are linear in
¢, we assume with no loss in generality that all obligations are settled in AD and
households start BJ debt free. The state variable in BJ is real balances carried
into that market, z. The AD and BJ value functions are W(A) and V(z).

Let W (A) and W° (A) be the AD value functions for households that enter and
skip the next BJ market, resp. Then W (A) = max {W* (A), W°(A)} = W' (A)

as long as some buyers enter. If k is the BJ entry cost, then
W (A) :r:??i({,u(x) — U+ PV (2)} ste=A—k+{(—(1+m)z.
Eliminating ¢ and letting x* solve U’ (z*) = 1, we get
W(A):A—i-U(x*)—x*—k—l—ﬁmZaXOi(z), (6)

where the objective function for the choice of z is O; (z) =V (2) — (1 + i) z, with

7 again given by the Fisher equation. As in Lagos-Wright, we immediately have:
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Lemma 2 W’ (A) =1 and the choice of z does not depend on A.

The BJ value function satisfies (see the Appendix for more details):

V() =W (2 +T)+ a1 (b) + az (b)] [M —Eyq—6H (2) — 7 (Byq — z)] (7)
where H (q) =1 — H (), and H (q) is the CDF of transaction prices,

RICLICAEI0 1-G(a)] “
V= a1 (b) + s (b) '
Notice H (¢) differs from the CDF of posted prices G (gq), because buyers with

multiple draws of ¢ pick the lowest. From (7), the benefit of higher z is that it
reduces the expected cost of having to use credit.
For the BJ entry decision, it is easy to see ® = (1 +r) [W?! (A) — WO (A)] is

independent of A and satisfies
® = [on (b) + a2 (0)] | — Bug — 6H (2) — 7 (Bug — 2)| — & — iz, (9)

where k = k/[3. The first term is the expected benefit of participating in BJ, as in
(7), while k + iz is the cost. Then

b=b=®>0;b=0=d<0;b€e(0,b) = d=0. (10)

3.3 Equilibrium

The above discussion characterizes the behavior of all agents given ¢, which will

be determined presently.

Definition 1 A stationary equilibrium is a list (G (q) , b, z) such that: given G (q),
(b, z) solves the household’s problem; and given (b, z), G (q) solves the firms’ prob-

lem with q determined as in Lemma 3 below.

Definition 2 (i) A nonmonetary equilibrium, or NME, has z = 0, so all BJ trades
use credit. (i) A mized monetary equilibrium, or MME, has 0 < z < ¢, so BJ
trades use cash for q < z and credit for q > z. (iii) A pure monetary equilibrium,

or PMFE, has z > @, so all BJ trades use cash.
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It is implicit in these definitions that payoffs are positive, so the BJ market does
not shut down; this is always checked in the analysis below. Also, in NME prices
must be described in numeraire ¢, while in MME or PME they can equivalently be
described in numeraire or dollars, where F; (p) = G (¢,p) and ¢, = 2;/M;. Other
variables that can be computed include AD consumption x and labor supply /,
but we do not need these in what follows.

The next step is to describe ¢, depending on the type of equilibrium. The
following is proved in the Appendix:

Lemma 3 (i) NME implies = = 0 < ¢ = (u—20) /(1 +7). (ii) MME implies
z<pu—06and = (u—>6+72)/(1+7). (i) PME implies § = z > p — 6.

Furthermore, by virtue of (7) and (5), the following is immediate:

Lemma 4 In MME, O; (z) is continuous; it is smooth and strictly concave Vz €

(¢,q); and it is linear Vz ¢ (q,q).

Additional results hold in special cases considered below. Also, as a benchmark,
let us set k = 0 for now, so that b = b is fixed and the argument can be omitted

from v, (b); the case k£ > 0 is considered in Section 8.

4 Fixed-Cost Model

Consider first 7 = 0 < 6. Given < p — v, when k& = 0 there is a nonmonetary
equilibrium with b = b, where all households participate, and all transactions use
credit — basically, the original Burdett-Judd equilibrium. We are more interested
in monetary equilibrium. For this, consider the objective function O; (z). As shown
in Figure 1, as a special case of Lemma 4, O; (2) is linear Vz ¢ (¢, ) with slope
O} (z) = —i < 0. Intuitively, a marginal unit of real balances will only affect the
expected cost of having to use credit when z € G;, and cash is a poor savings

vehicle when 4 > 0. It is also easy to derive O} (z) < 0 Vz € (¢, q).

12
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Figure 1: Possible Equilibria with a Fixed Cost

These results imply a unique 2; = argmax.e(, g Oi (2). If z; € (¢, ), as required

for MME, we have the FOC
(a1 4+ ag) 6H' (z;) = i. (11)

To check z; € (q,7), let Z; be the global maximizer of O; (z), and let O; (z) and
Of (2) be the left and right derivatives. If O] (¢) < 0 then 2; = 0, as in the left
panel of Figure 1. If O] (¢) > 0 then we need to check O; (¢). If O; (7) > 0 then
either 2, = 0 or 2; = @, as in the center panel. If O; () < 0 then either Z; = 0

or Z; = z;, as in the right panel. As a result of this analysis, with details in the

Appendix, we have the following:

Proposition 1 In the fized-cost model:
(i) 3! a unique NME;
(1) 3 MME iff 6 < 0 and i € (i,7);
(iii) 3 PME iff either 6 <6 < pu—~ andi <14, or§ <9 andi < i;

where the thresholds satisfy 7 € (z, ),

v (202 + 201a0)
202 + 2a105 — a2

and 6 = pu —

Proposition 1 is illustrated in Figure 2, where one sees that money can be

valued only if 7 is not too high. Note that while there is a continuum of PME

13



=1

Figure 2: Equilibria in Parameter Space with Fixed Cost

when they exist, Proposition 1 still provides sharp existence conditions. In any
case, we are mainly interested in MME, which exists for intermediate values of
(0,7). Note however that the region for MME appears relatively small, as is made
precise in calibration below. In terms of analytics, the simplicity of MME arises
because buyers have a unique best response Z; to G (¢), and sellers’ best response
conditions hold by construction at G (¢) and § = p — 0, independent of Z;.

In MME, inserting G (¢q) into (11) and rearranging, we get the explicit solution

for money demand:
A 2 2 1/3 _1/3
=+ [0dd(n—0—7)" /2] i (12)

This expresses real balances in terms of the cube-root of ¢, reminiscent of Baumol
(1952), Tobin (1956), Whalen (1966) or Miller and Orr (1966).° Our result derives
from similar economic forces. The usual story behind Baumol-Tobin has an agent
sequentially incurring expenses assumed to need currency, with a fixed cost of
rebalancing z. The decision rule compares 7, the opportunity cost of cash, with
the benefit of reducing the number of financial transactions interpretable as trips

to the bank. Our buyers make at most one transaction in BJ before rebalancing

9 Actually, the first two get a square-root rule, while the latter two also get a cube-root. We
get something more like a square-root in Section 5.
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z, but its size is random, and spending beyond z (accessing credit) is costly. Still,
they compare ¢ with the benefit of reducing the use of financial services, again
interpretable as trips to the bank, although one might say they now go there to

get a loan and not to make a withdrawal.!”

5 Variable Cost

Now consider 7 > 0 = §. One but not the only interpretation of 7 is a proportional
tax that can be avoided by using cash (see the calibration discussion below). Re-
gardless of interpretation, variable costs are in some respects easier, make certain
results more transparent, and avoid a technical issue that we waited until now to
raise. The issue is that in economies with nonconvexities, like fixed costs, it can
be desirable to use lotteries (Berentsen et al. 2002). Thus, a seller can post: “you
get my good for sure if you pay p; if you pay p < p then you get my good with
probability P = P (p).” In Section4, when a buyer with m = p — € meets a seller
posting p, he pays p — ¢ in cash, € in credit and ¢ in fixed costs; if ¢ is small,
both parties would prefer to trade using cash only, to avoid d, and have the good
delivered with probability P < 1.

Now, one might try to argue that lotteries are infeasible, unrealistic or other-
wise unwarranted — but that would be awkward, because ruling out randomized
exchange may be considered uncomfortably close to ruling out nonlinear menus,
something we criticized above. We cover the fixed-cost case since it has a tradition
in the literature (recall fn.6), but do not want to tackle lotteries in this exercise.
To the extent that this is problematic, we now turn to the variable-cost case, which
has no such problem. It is also useful to compare the two environments in terms

of their analytic money demand functions and their quantitative performance.

10See Berentsen et al. (2007) or Chiu and Meh (2011) on explicitly adding banking to Lagos-
Wright in a way consistent with our application (e.g., Chiu and Meh incorporate a fixed cost of
going to the bank). We could do this, too, but prefer to remain agnostic as to the exact nature
of credit; trips to the bank are only being used heuristcally, just like in Baumol-Tobin.
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Figure 3: Possible Equilibria with a Variable Cost

The price distribution emerging from the firms’ problem is the same as above.

In particular, once one calculates

u—l—zTand oag (ptem) 2007 (1 4+ 7)
1+7 4 (n+200)(14+7)

q:

it is easy to check that O;(z) is now, conveniently, differentiable everywhere, in-
cluding ¢ = g and ¢ = g. As Figure 3 shows, this means there are only two possible
types of equilibria, NME and MME. If i > (a; + a9)7 there is a unique candidate
NME, which is an actual NME iff payoffs are positive which holds iff 7 < p/v — 1.
If i < (o1 + a2)7 there is a unique candidate MME, which is an actual MME iff
payoffs are positive which holds iff

¢ = (Oél+062)[M+T2i—<1+T)EHq]—Z'ZA’i
= ay[p+7Z5—v(1+71)]—1i% >0.
It can be shown that iZ; increases and ® decreases with i. Letting i* = i* (1)

be the ¢ that solves ® = 0, this proves:

Proposition 2 In the variable-cost model

(i) 3! a unique NME iff T < pu/v —1;

(i) 3! a unique MME iff i < min{7(aq + ag),i*};
(iii)  a PME.
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Figure 4: Equilibria in Parameter Space with Variable Cost

In MME, (11) yields a demand function somewhat different from (12),

(1 —") [7‘ +(1+7)4/1 +4a2i/a%7}

1427 + 40y (1 +7)%i /02T

Zi=7+ (13)

As Figure 4 illustrates, MME exists V7 iff 7 is not too big. Note that credit is used
only if ¢ > 2;, and the maximum debt ¢ — 2; increases with i. One can also show
0%; /0T >0 and 0 (g — 2;) /O < 0. As 7 — 00, § — %; and buyers asymptotically
stop using credit. We conclude that this model, like the fixed-cost version, is
tractable and delivers a money demand function with natural properties. Plus it
avoids completely the issue of lotteries, and as suggested by Figures 2 and 4 it
allows MME for a larger set of parameters. As shown below, this leads to better

quantitative performance.

6 Sticky Prices

With either a fixed or variable cost, the nominal price distribution F; (p) is uniquely
determined, but individual-firm price dynamics are not. Consider Figure 5, drawn
for the calibrated parameters in Section 7. With m > 0, the density F},, is a right

shift of F/. Firms with p < p

p,., att (Region A) must reprice at t + 1, because,
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while p maximized profit at ¢, it no longer does so at t + 1. But as long as the

supports JF; and at F;,; overlap, there are firms with p > p . at t (Region B)

Lit1
that can keep the same p at ¢t + 1 without reducing profit.

L ft

Probability Density

t+1 Nominal Price

Figure 5: The Nominal Price Density Shifting with Inflation

Since equilibrium puts weak restrictions on an individual firm’s pricing strategy,
we add a payoff-irrelevant tie-breaking rule: if p; ¢ F;yq then p;1(p:) = p where
p is a new price; and if p, € F;,1 then:

p; with prob o
_ 14
Prs1(pe) { p with prob1— o "

Hence, firms that are indifferent stick with probability o to their current p.!!
Then we focus on symmetric equilibrium, where all changers pick a new p from the
same repricing distribution R;,1(p). As in Head et al. (2012), given o, the unique

symmetric equilibrium repricing distribution that generates Fj 1 (p) is:

Ft(ﬁ)—U[Ft(P)—Ft(I_?Hl)]

1—o+4oFi(p, )
R - o 15
t+1(p) Fi(12)-oll-F(p,, )] if p € [y, Fras] (15)
1otoFilp. ) 'p < Pt Pt+1

=t+1

!Tn case it is not obvious, this is very different from Calvo pricing, where firms can be desperate
to change p but are, by fiat, not allowed. Here any firm that wants to can adjust p, but there
are some that are indifferent, and they are happy to randomize.
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Varying o generates a wide range of price dynamics, certainly wide enough
to line up broadly with the facts, as demonstrated below. Hence, we content
ourselves with stationary-symmetric equilibrium given o, and let data inform us
about appropriate values for ¢. It is then routine to compute statistics from the
model and compare these to the data. While it could be interesting to examine
directly the distribution of prices, in the present exercise the concentration is on
the distribution of price changes, (p;+1 — pt)/pt, because that is very much the

topic of discussion in the research to which we are trying to contribute.!?

7 Quantitative Results

Given an interest in the dynamics of nominal pricing, it seems appropriate to bring
to bear monetary observations. Therefore, we try to match the fractions of money
and credit usage in the micro payment data, plus some statistics derived from a
standard empirical notion of money demand. As in Lucas (2000), this notion is
L;=2%/Y,where Y = 2"+ (o + a2) Egq is output aggregated over AD and BJ. If
U (z) = log(x) then z* = 1.13 Explicit formulae for L; and its elasticity n; are given
in the Appendix, and we target these at i in the data. Another key statistic is the
average BJ markup Eqq/v (computed here using posted prices, but the results are
similar using transaction prices). This is a key statistic because, as is well known,
BJ equilibrium can deliver anything from monopoly to marginal-cost pricing as
oy /ag varies. Two moments from price-change data are also used: the average
absolute change; and the average duration between changes, which pins down o in

the tie-breaking rule.

2Moreover, to take F (p) or G (g) to the data one would have to decide which commodities
to consider, or somehow aggregate them. It is of course interesting that pricing behavior in the
model depends on the utility, cost and search specifications, but this makes direct empirical study
of price distributions a challenge deferred to future research.

130bviously #* = 1 is a normalization. Also, generally utility can be written log(x)+ul (y)—Y,
with p capturing the relative importance of BJ vs AD consumption and ¢ the importance of
leisure. As in standard business cycle applications, ¥ can be set to match average hours in the
data E/, but as the results below are independent of Ef this is ignored.
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7.1 Data

We focus on 1988-2004 because the price-change observations are from that period,
although in principle information from other periods can also be used to calibrate
parameters. For money, the best available data is the M1J series in Lucas and
Nicolini (2012) that adjusts M1 for money-market deposit accounts, similar to the
way M1S adjusts for sweeps as discussed in Cynamon et al. (2006). Lucas-Nicolini
provide an annual series from 1915-2008 and a quarterly series from 1984-2013, and
make the case that there is a stable relationship between these and (3-month T-Bill)
nominal interest rates. We use their quarterly series, because we prefer a higher
frequency, for reasons mentioned below, and because the years better correspond
to the price-change sample. In these data the average annualized nominal rate is
i = 0.048, which implies Lg; = 0.279 and 7y, = —0.149.1

Markup information comes from the U.S. Census Bureau Annual Retail Trade
Report 1992-2008. In these surveys, at the low end, in Warehouse Clubs, Su-
perstores, Automotive Dealers and Gas Stations, gross margins over sales range
between 1.17 and 1.21; at the high end, in Specialty Foods, Clothing, Footwear
and Furniture, they range between 1.42 and 1.44. Our target for the gross margin
is 1.3, in the middle of these numbers. A gross margin of 1.3 implies a markup
1.39, exactly as in Bethune et al. (2014). While this number is above what macro
people used to use (see Lagos and Wright 2005), it is very much consistent with
the recent micro data analyzed by Stroebel and Vavra (2015). Moreover, the exact
value does not matter too much over a reasonable range, similar to the findings in
Aruoba et al. (2011). Although their markup comes from bargaining, not posting,
Aruoba et al. suggest an intuition that still applies: any markup above a fairly
low number leads to sellers having enough market power to be decidedly different

from competitive price takers.

YTn the longer annual sample, Ei = 0.038, Lg; = 0.257 and 7, = —0.105. Using these instead
does not affect the results much. We also tried truncating the data in 2004, to better match the
pricing sample and eliminate the recent crisis; that did not affect the results much either.
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On the fraction of transactions using money and credit, there are various micro
data sources. First, in terms of concept, we follow much of the related literature
by interpreting monetary transactions broadly to include cash, check and debit
card purchases. As rationale, we offer these points: (1) Checks and debit cards
use demand deposits, which like currency are quite liquid and pay basically no
interest, and it is irrelevant for this theory whether the money is in one’s pocket
or one’s checking account. (2) A key feature of credit here is that it allows buyers
to pay for BJ goods by working in the mext AD market, while cash, check and
debit purchases require working in the previous AD market, which can matter a
lot because BJ transactions are random. (3) Importantly, we think, this notion of
money in the micro data is consistent with the use of M1J.

Older calibrations of monetary models (Cooley 1995, chapter 7) target 16% for
credit purchases, but much more information is now available. In detailed grocery-
store data from 2001, Klee (2008) finds credit cards account for 12% of purchases,
but that is just for groceries. In 2012 Boston Fed data, discussed by Bennett et
al. (2014) and Schuh and Stavins (2014), credit cards account for 22% of purchases
in the survey and 17% in the diary sample. In Bank of Canada data, discussed by
Arango and Welte (2012), the number is 19%. While there are some differences
across studies, the comprehensive Boston Fed and Bank of Canada data are actu-
ally fairly close, and suggest a target of 20%. Also note that this number does not
change very much over time, where the bigger evolution has been into debit cards,
out of checks and to some extent out of currency.!®

For price-change data we mainly use Klenow and Kryvtsov (2008), and bench-

mark their average duration of 8.6, but alternatives are also considered, since there

15These numbers are shares of credit transactions by volume. In Canadian data the fraction by
value is double, 40%, since as theory predicts credit is used for larger purchases: “Cash [accounts]
for 76 per cent of all transactions below $15, and for 49 per cent of those in the $15 to $25 range ...
whereas credit cards clearly dominate payments above $50” (Arango and Welte 2012). However,
in Boston Fed data, the fractions by value and volume are basically the same, 16% and 17% in
the diary sample, resp. In conversations with analysts there was no clear consensus as to why
American and Canadian data differ on value; in any case, we use volume, where they agree.
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are differences across and within studies depending on details. Their average ab-
solute price change is 11.3%, above average inflation due to many negative changes.
Also, since the Klenow-Kryvtsov data are monthly, the model period is a month,
and model-generated money demand data are aggregated to quarterly to line up
with Lucas-Nicolini. A month is also natural because it is typically the period
during which credit card debt can be paid without interest charges. As discussed
below, different observations pin down different parameters, but they are actually
determined jointly by minimizing the distance between model and data. While we

cannot hit the targets exactly, we get very close except where indicated.

7.2 Findings

Calibration results are in Table 1. Consider first the fixed-cost model, which hits
all of the targets except the fraction of credit transactions, because parameters
are constrained to stay in the region where MME exists. In particular, trying to
set 0 to get 20% BJ credit transactions implies MME does not exist for some of
values of 7 in the sample. Hence, we use the smallest 0 consistent with MME
at the maximum observed i = 0.085, which only yields 8% credit transactions.
This ¢ is only about 1.5% of the BJ utility parameter p. The value of i comes
primarily from matching average real balances. The value of v, about half of p,
comes primarily from the markup. The probability of sampling one price (two
prices) in BJ is ay = 0.18 (ay = 0.23), somewhat lower than calibrations in related

studies, because our period is a month.'

BJ utility | BJ cost | credit cost | pr(n = 1) | pr(n = 2) | tie-break
1 vy d/T oy Qo o
Fix 104.06 57.37 1.643 0.18 0.23 0.90
Var 21.47 11.53 0.063 0.12 0.17 0.90

Table 1: Baseline Calibration

16 As usual a convenient feature of search models is that they can be fit to different frequencies

simply by scaling parameters like arrival and discount rates.
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Now consider the variable-cost model. In contrast to the fixed-cost model, this
one approximates all targets well, including 20% for BJ credit, without compro-
mising existence of MME. Note p and ~ are lower than the fixed-cost case, so
BJ goods are now less important relative to AD goods, but v/u is very similar.
With Egxqg around 15.4, average transaction cost 7Eyq is about 0.97. Scaled by
BJ utility, 7TExq/p = 0.045, compared to 6/ = 0.016 in the fixed-cost case. To
judge whether a value of 7 = 0.063 is reasonable, note the average US sales tax is
0.064. Adding fees on credit cards that average around 1.5-2% (without counting
small fixed costs per transaction), we are still very much in the ballpark. Also
notice oy and «p are lower than in the fixed-cost model. However, one result that
is constant across specifications is the tie-breaking parameter o = 0.9, implying

that indifferent sellers reprice a mere 10% of the time.

Money Demand

1 1 ! 1 1 ! ! 1
u] 0.0 0oz 003 004 00s 008 007 008 0.09
Nominal Interest Rate

Figure 6: Money Demand for Different Specifications

Figure 6 shows money demand, with the solid curve from the fixed-cost model
and the dashed curve from the variable-cost model. The fit is obviously good in
both cases, although the curves are somewhat different at low values of . While
this difference could be quite important for other issues — e.g., the welfare cost of
inflation — it seems less relevant for our purposes. In terms of the price-change

evidence, Figure 7 shows the predicted distributions for the two specifications and
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the Klenow-Kryvtsov data. Both models capture the overall shape of the empirical
histogram, although the fit is not perfect. We now argue, however, that the models

are broadly consistent with several facts deemed important in the literature.

30
i Fixed
Data
25 :
& Variable
w
o
g
£ 20
=
[5]
Q |
=)
& 15
: - o i
=
un 1 ’—‘
o 10 - N
o
o
ES
5 -
0 U T T T - T
<-20 -20to-10 -10to -5 -5to0 Oto5 5to 10 10 to 20 >20
Size of regular price changes (%)

Figure 7: Distribution of Price Changes

In particular, the average absolute change is 11.5% in the fixed-cost model,
12.3% in the variable-cost model and 11.3% in the data. While this is a calibration
target, again, we only approximately hit it. Statistics not targeted include the
fraction of small changes (below 5% in absolute value), which is 44% in the data,
31% in the fixed- and 30% in the variable-cost model. So, on this, theory is slightly
off, but not dramatically so.!'” Similarly, the fraction of big changes (above 20% in
absolute value) is 16% in the data, 20% in the fixed- and 23% in the variable-cost
model, while the fraction of negative changes is 37% in the data and 43% in both
models. So, on these, theory is not too far off. It is not trivial to match these

facts in other models. Our setup does fairly well, even without complications, like

I"Eichenbaum et al. (2015) find a fraction of small prices changes lower than other studies, and
suggest this is because others did not correctly correct for measurement error. Here we take the
Klenow-Kryvtsov numbers at face value, but it is perhaps worth mentioning that their fraction
of small changes may be an overestimate.
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Figure 8: Price Change Hazards

heterogeneity, idiosyncratic shocks or multi-product firms. Basically, a shifting F;
and a tie-breaking rule calibrated to duration generate large average, many small,
many big and many negative adjustments.

Figure 8 shows the hazard (probability of changing p as a function of time
since the last change). The left panel shows the hazard decreasing over 18 months
from the data in Nakamura and Steinsson (2008), who argue this is interesting,
and from the model with either a fixed or variable cost since on this they are
virtually identical. We do not generate enough action at low durations, evidently,
but at least our hazard slopes downward, something Nakamura and Steinsson say
is hard to get with other theories. Of course, one should not expect to explain
every nuance, as there may be a lot going on in actuality that is not in the model
and that could increase adjustments at low durations — e.g., experimentation by
sellers trying to learn market conditions. Even without such complications, our
hazard decreases initially, before turning up at around 3 years, as shown in the
right panel. It is U-shaped over a longer horizon, naturally, as inflation makes any
p leave the moving support F; eventually. Yet even at 10 years the model hazard
is only up to 14%. Hence, some firms can stick to prices for a very long time, easily

as long Cecchetti’s (1986) mucilaginous magazines mentioned in Section 2.

25



-
g

w Data m Data
Variable Variable
25
g ]
0 20
: :
8 8
5 15 515 |
& 5
a 3
210 g 10
B B
R ®
0
<20 -20t0-10 -10to-5 -Sto0 Oto5 Stol0 10to20  >2 <20 -20t0-10 -10to-5 -Sto0 Oto5 Stol0 10to20 >20
Size of regular price changes (%) Size of regular price changes (%)
: 9410 .
a. Average Duration 1 Month, 0 =1.3xe b. Average Duration 16 Months, 0=0.95

Figure 9: The Effect of Varying Duration

30

-1

u Data = Data
Variable Variable
F] ]
5 5
g 20 5
o
k] k]
& 1s & 15
5 5
3 3
&1 £ 10
T k]
* I I I * I I I
20 -20t0-10 -10te-5 -5to0 Oto5 5tol0 10te20 >20 «20 -20t0-10 -10te-5 -5to0 Oto5 S5teld 10te20  »20
Size of regular price changes (%) Size of regular price changes (%)
a. 0% Annual Inflation b. 22.5% Annual Inflation

Figure 10: The Effect of Varying Inflation

Figures 9 and 10 show the results of changing duration and inflation in the
variable-cost model. The left panel of Figure 9 comes from ¢ ~ 0 and an expected
duration of 1 month; the right comes from choosing o to fit the histogram, implying
o = 0.95 and an expected duration of 16 months. Clearly, the left panel fits worse
and the right better than a benchmark duration of 8.6 months. With too much
stickiness, the fit gets very bad: at ¢ = 0.9999, e.g., the fraction of negative
changes drops to 1.5%, far from the facts. The left panel of Figure 10 sets 7 to
0, and the right to 22.5% (the maximum consistent with MME). One can check,

not surprisingly, that the fraction of negative adjustments decreases while both
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Figure 11: Distribution of Changes Ignoring Money Demand

the frequency and size increase with 7. This is consistent with the evidence, as
shown by Klenow and Kryvtsov’s (2008) regressions of negative adjustments, of
size, and of frequency on inflation. Therefore, we emphasize, price adjustments in
these models are not invariant to policy, but react to it in realistic ways.

Overall, while the models may miss a few details, we submit that they perform
reasonably well. At least, it would be hard to say there is anything especially puz-
zling about the behavior of price changes in the data — it is pretty much what one
should expect from rudimentary search theory. It would be even harder to argue
there is anything definitively informative about Mankiw costs or Calvo arrivals in
the data, given outcomes generated without such devices. We also emphasize the
discipline imposed by macro and micro observations on money and credit, which
at least the variable-cost model matches. Ignoring these observations, we can do
even better, as shown in Figure 11, which comes from a calibration that does not
try to match money demand. The histogram obviously fits well in this picture,
but we are way off in terms of money demand. A conclusion is that it is not
hard to capture the evidence on sluggish price adjustment, but we do a bit more,

simultaneously capturing this plus the evidence on credit and money demand.
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8 Participation and Policy

With k£ = 0, all buyers enter the BJ market and «,, (6) is fixed exogenously. Since
y is indivisible, BJ output in each transaction is fixed, too, and AD output is fixed
by U’ (z) = 1. Hence changes in the level of M, or in 7w and i, have no impact
on output: monetary policy is neutral as well as superneutral. However, we now
show how to amend the setup following Liu et al. (2011), by letting & > 0, so
that b adjusts until the marginal entrant is indifferent. This makes BJ output
endogenous. First, note that if prices were sticky for Calvo or Mankiw reasons,
a one-time unanticipated jump in M can have real effects. This is because at
least some firms could not (with Calvo) or would not (with Mankiw) adjust p,
and so the nominal distribution F'(p) may not change enough to keep the same
real distribution G (¢). Hence, the real distribution can turn in favor of buyers,
increasing b, and thus stimulating output.

By contrast, in our economy jumps in M affect neither G (¢) nor b. A policy
advisor seeing only a fraction of sellers adjusting p each period, while Ep rises, may
conclude that jumps in M would have real effects. That would be wrong (another
example of the Lucas critique). Of course, this does not mean all monetary policy is
irrelevant. To see this in a simple way, suppose that every period BJ buyers attempt
to solicit two price quotes, and succeed in each try with probability s = s(b).
Assume s(0) = 1, s(b) = 0, &'(b) < 0, and s”(b) > 0 to capture the congestion
effects standard in search theory. Then a;(b) = 2s(b)[1 — s(b)] and ax(b) = s(b)?.
Inserting these into (12), we get

L=+ 20) P L= s O (p—6 -7, (16)

defining a relation between Z; and b called the RB (real balance) curve. Similarly,

(10) defines a relation called the FE (free entry) curve,

01— s())* (n—56—~)* 15— iz (17)
(2 — 7)2 Z

r=s(b)?(p—0-7) -
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Figure 12: Real Balances and Free Entry

As shown in Figure 12, RB is increasing and convex, with 2; = v at b = 0, while
FE is slopes up (down) to the left (right) of RB, with b € (0,b) at 2; = 0. Hence
there is a unique MME at (Z7,b0*). An increase in ¢, which ultimately comes from
higher 7, given the Fisher equation, shifts both curves toward the origin, so output
falls. Monetary policy matters, not because prices are sluggish, but because 7 is a
tax on decentralized exchange. This is a good environment to study such effects,
we think, because consumers can endogenously substitute between cash and credit
as policy changes. However, the bigger point is that the underlying reason why

prices are sticky can make a huge difference.!®

9 Conclusion

One contribution of search theorists is to show how certain observations that look
anomalous from the perspective of “standard” theory can be more readily under-
stood once frictions are incorporated. An example is price dispersion: deviations

from the law of one price, something that cannot occur in frictionless economies,

18We do not calibrate the model with entry for the following reason: If we specify a matching
technology s (b) = bX, it introduces a new parameter x, plus there is entry cost x, but we also lose
two parameters because a1 and «as are now endogenous. Given (y, ) leads to the same (aq, as)
as direct calibration, the observable results will be identical.
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can emerge naturally in search equilibrium. The same is true for price rigidity.
It is a weighty puzzle for “standard” theory when sellers let their real prices slide
in arbitrary ways by not responding to changes in economic conditions. Yet once
one sees the path to price dispersion, stickiness is a small additional step. Theory
predicts that letting real prices vary over some range is inconsequential for profit.
This is not because of a knife-edge specification where profit functions just hap-
pen to be flat; it is because economic forces shape equilibrium so that profit is
endogenously flat over an interval.

One component of the project was to exploit that idea to build general equi-
librium models with sluggish nominal prices. Others mentioned above previously
made related points, including Caplin and Spulber (1987), Eden (1994) and Head
et al. (2012). It may even be true that, based on those contributions, it is now well
known that sticky prices imply neither nonneutrality nor the existence of menu

costs.!?

In any case, we tried go beyond the earlier papers. As insightful and
clever as the Caplin-Spulber analysis may be, neither we nor the authors regard
it as a serious treatment of monetary theory, and the substantive results are sen-
sitive to details (Caplin and Leahy 1991). Also, neither they nor Eden attempt
to match any data. The setup in Head et al. uses similar monetary theory, but is
stuck between a rock and a hard place when it comes to either admitting payoff-
relevant indeterminacy or imposing the ad hoc restriction of linear menus. Further,
while that exercise does a good job matching price-change observations, it cannot
simultaneously match this plus the evidence on money and credit.

In addition, perhaps a bigger component of the project was to confront the

pricing data in a setting where money and credit coexist. Rigorous monetary

9Tn constructive comments, Fernando Alvarez argued it is well known, but certainly this was
not always the case. Consider Ball and Mankiw (1994): “We believe that sticky prices provide the
most natural explanation of monetary nonneutrality since so many prices are, in fact, sticky” and
“As a matter of logic, nominal stickiness requires a cost of nominal adjustment.” Also consider
Golosov and Lucas (2003): “menu costs are really there: The fact that many individual goods
prices remain fixed for weeks or months in the face of continuously changing demand and supply
conditions testifies conclusively to the existence of a fixed cost of repricing.”
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theory is nontrivial, and indeed money is another anomaly for “standard” theory
that is better understood when frictions are modeled carefully. Our approach is
based on lessons from the literature. We embedded a Burdett-Judd goods market
in a Lagos-Wright monetary economy, then added costly credit because it resolves
the indeterminacy problem, and, of course, because it is interesting for its own
sake. With either a fixed or variable cost of credit, we generated exact money
demand functions that fit the data well, and resemble classic (e.g., Baumol-Tobin)
results in terms of algebra and in terms of economics. It is in the context of this
setting that we address the pricing facts summarized above in fn. 4.

An unanticipated finding was that the model with a fixed cost performed less
well than with a variable cost, mainly because it was harder with a fixed cost to
satisfy the conditions for MME. Therefore, in calibrating that version, we gave
up on matching credit’s share in payment data. To say it differently, if inflation
increases much in that formulation, consumers switch entirely to credit, and while
some people see this as the wave of the future, at least for now currency is very
much in circulation.?’. However, we do not take too seriously the prediction of a
flight from currency at moderate inflation, even though this certainly might happen
at hyper inflation. In reality, there are certain buyers that always use cash and
sellers that only take cash for reasons not in the model, and they may continue
to do so at moderately high inflation. This suggests that it would be useful to
incorporate heterogeneity. While it is important to emphasize the variable-cost
model does not have this problem, allowing money and credit to coexist for a
larger range of parameters, it still may be interesting to add heterogeneity to that

version, too. This is left for future research.

20Cash usage has decreased in some countries, as it like checking gradually gets crowded out
by debit cards, but the ratio of currency in circulation to GDP is flat or even increasing in many
places, as discussed by Jiang and Shao (20144,b) and references therein. In any case, debit cards,
cash and checks are close subsitutes for our purposes.
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Appendix

Derivation of (7): Consider § > 0 = 7 to reduce notation. Then write

V<z>=W<z+T>+a1<b>/zw—q)dGl(q)+al<b>/q<u—q—5>d61<q>

+a2<b>/z<u—q>da2<q>+a2<b>/q<u—q—5>da2<q>,

~

where G, (¢) = 1 — G (¢)" is the CDF of the lowest of n draws from G (¢). The
first term is the continuation value if a buyer does not trade. The second is the
probability of meeting a seller with ¢ < z, so only cash is used, times the expected
surplus, which is simple because W’ (A) = 1. The third is the probability of
meeting a seller with ¢ > 2, so credit must be used, which adds cost . The last

two terms are similar except the buyer meets two sellers. The rest is algebra.

Proof of Lemma 3: (i) In NME, buyers’ BJ surplusis ¥ = yp—g—0—7q. Note ¥ =
Oat g = (u—9)/(1+7), sono buyer pays more than this. If § < (u—0) /(1 4+ 7)
then the highest price seller has profitable deviation toward (@ — ) / (1 4+ 7), which
increases profit per unit without affecting sales. Hence ¢ = (u —0) /(1 + 7). (ii)
In MME, for ¢ > 2, as it is near ¢, ¥ = p—q— 6 — 7(¢ — 2). Note ¥ = 0
at ¢ = (u—0+72)/(1+7), and repeat the argument for NME to show ¢ =
(0 —06+72) /(14 7). The definition of MME has z < g = (u—d+72) /(1 +7),
which reduces to z < p — 4. (iii) In PME, given buyers bring z to BJ, they
would pay z. Hence ¢ > z, as ¢ < z implies the highest price seller has profitable
deviation. We also have to be sure there is no profitable deviation to ¢ > z, which
requires buyers using some credit. The highest such ¢ a buyer would pay solves
Y=p—q—0—7(¢q—2)=0,0rq=(u—0+7z)/(1+7). There is no profitable
deviation iff (u —§+72) /(14 7) < z, which reduces to z > p— 6. B

Proof of Proposition 1: (i) With fiat currency ¢ = 0 is always self-fulfilling, so
we simply set G (¢) according to (5), corresponding to equilibrium in the original
BJ model.

(ii) From Figure 1, MME exists iff three conditions hold: (a) O; (§) < 0; (b)
O (q) > 0; and (c) O;(2;) > 0;(0). Now (a) is equivalent to (a; + az) dH(q) < 1,

which holds iff ¢ > i. Then (b) is equivalent to (ay + a2) dH(q) > i, which holds

iff i < 7 where 7 = 8 (g + 20)" /201005 (1 — 6 — ) > i. Also, (c) is equivalent to

32



(o + ag) 0H (2;) —iz; > (a1 + ) 0H (0), which holds iff A (i) > 0 where

d(ag + 2a2)2

2 1
— i%(S%QfCXQ S (p—0— 7)% (275 +273).
40[2

A (i) = —iy +
Notice A(0) > 0 > A(7) and A’ (i) < 0. Hence 3! 7 such that A (z) = 0, and
A (i) > 0iff i < 2. It remains to verify that 7 > i, so that (a) and (c) are not
mutually exclusive. It can be checked that this is true iff § < 6. Hence a MME
exist under the stated conditions. It is unique because § = 1 — d, which pins down
G (g), and then 2; = arg max.e(q.q) Oi (2).

(iii) From Figure 1, PME exists iff three conditions hold: (a) O; (g) > 0; (b)
Of (q) > 0; and (c) Oi(7) > 0;(0). Now (a) holds iff i < i and (b) holds iff i < 7.
Condition (c) holds iff i < 7. For § > 4, it can be checked that i < i and i < 7, so
the binding condition is i < i. For § < 4, it is easily checked that 7 > 7, and i < 7,

so the binding condition is 7 < 7. W

Formulae for Calibration: Consider the fixed-cost model. Inserting ¢ and ¢, we

reduce the posted-price and transaction-price CDF’s to

ay L—0—q
Glg) = 1_27412ﬁ7

a?(u—0 — —04+q—2
Hig) = 1- 1 (p q) (1 1 )

dag (o1 +a2) (¢ — )

The the fraction of monetary transactions and the markup are

(01/2 + as)® — [anay (1 — 6 — 7))/ %3

H(3) =
(%) as (o + o) (46)3
Beg _ 1+041(M—5—7)10g(1+2042/041)
vy 20097 .

The Lucas-style money demand function and its elasticity are

7+ [a26 (1 — 6 =) /2a5) 113
L+ay (p—9)+ axy
-1

3437y [a26 (u—0—7)? /20s] s

Li:

The variable cost case is similar but more algebraically intense. B
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