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Abstract

I characterize the constrained efficient or planner’s allocation in a directed (com-

petitive) search model with adverse selection. In this economy, buyers post contracts

and sellers with private information observe all postings and direct their search toward

their preferred contract. Then buyers and sellers match bilaterally and trade. I define

a planner whose objective is to maximize social welfare subject to the information and

matching frictions of the environment. I show in my main result that if the market

economy fails to achieve the first best, then the planner, using a direct mechanism,

achieves strictly higher welfare than the market economy. I also derive conditions un-

der which the planner achieves the first best. I show that the planner can implement

the direct mechanism by imposing submarket-specific taxes and subsidies on buyers

conditional on trade (sales tax).

In an asset market application, I show that in general the efficient sales tax schedule

is non-monotone in the price of assets. This non-monotonicity makes the implemen-

tation of the direct mechanism difficult in practice. I show that if in addition to sales

tax the planner can use entry tax, submarket-specific taxes and subsidies imposed on

buyers conditional on entry to each submarket whether they find a match or not, then

the planner can implement the direct mechanism by using monotone tax schedules,

increasing sales tax and decreasing entry tax.
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1 Introduction

There are search frictions and private information in asset, labor, housing and other mar-

kets. For example consider markets for assets which are traded over the counter (OTC) like

mortgage-backed securities, structured credit products and corporate bonds. It is natural to

think that sellers in these markets have private information about the value of their assets.

Also, they must incur search costs to find buyers for their assets.

Specially after 2008, there has been a lot of discussion about the role of private informa-

tion in causing the financial crisis and consequently, many policy questions have arisen. One

of these questions is whether subsidizing asset purchases is a “good” policy or not from a

social point of view. No paper has studied socially efficient policies in this context, although

some papers like Chang (2012), Guerrieri and Shimer (2014) and Chiu and Koeppl (2011)

have studied positive implications of those policies. In particular, Chang (2012) shows that if

there are fire sales in the asset market, subsidizing the purchase of low price assets increases

the liquidity of all assets in the market. In an application of my model, I contribute in this

literature by studying the socially efficient policy in an environment similar to Chang (2012).

I characterize the optimal taxation policy in the asset market and show that in general the

optimal tax schedule is non-monotone in the price of assets. In particular, I show if there are

fire sales in the asset market, then taxing high price assets and subsidizing low price ones is

not optimal.

From a theoretical point of view, this paper studies the constrained efficient allocation in

economies with directed (competitive) search and adverse selection. My environment is the

same as one in Guerrieri, Shimer and Wright (2010) (GSW henceforth). They define and

characterize equilibrium and show its existence and uniqueness. I define and characterize the

planner’s problem for that environment and show in my main result that if the equilibrium

fails to achieve the first best1, then the equilibrium is generally constrained inefficient2. That

is, the planner can achieve strictly higher welfare than the equilibrium. I also derive sufficient

conditions under which the planner can achieve the first best.

1The first best allocation is the solution to the planner’s problem when the planner faces only search

frictions, but he has complete information about the type of agents.
2In three examples, GSW introduce some pooling or semi-pooling allocations that Pareto dominate the

equilibrium allocations. They do not characterize the constrained efficient allocation nor do they define it.
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In this economy, there is a large number of homogeneous buyers on one side of the market

whose population is endogenously determined through free entry. There is a fixed population

of sellers on the other side of the market who have private information about their types.

Buyers and sellers match bilaterally and trade in different locations, called submarkets. In

each submarket, there are search frictions in the sense that buyers and sellers on both sides

get matched generally with probability less than one.

In order to define the planner’s problem for this environment, I take a mechanism design

approach. The planner’s objective is to maximize social welfare and he is subject to the

same information and search frictions present in the market economy. That is, the planner

cannot observe types of sellers and also cannot force sellers or buyers to participate in the

mechanism that the planner designs. In the language of mechanism design, the planner faces

incentive compatibility of sellers, participation constraints of sellers and buyers and his own

budget-balance condition. That is, the net amount of transfers that the planner makes to

agents must be non-positive.

To implement this mechanism, all the planner needs to do is to impose submarket-specific

sales taxes and subsidies on buyers in each submarket conditional on trade. The timing of

actions are otherwise the same: Having observed the schedule of sales tax, buyers first choose

a submarket and then sellers observe all open submarkets (the sumbarkets that some buyers

have selected) and choose where to go. Then buyers and sellers trade if they find a match3.

Note that the set of open submarkets in the planner’s implementation may be different than

that in equilibrium. Also, the equilibrium allocation is a feasible allocation for the planner,

because the revenue that the planner makes over each submarket is zero in the equilibrium

allocation.

To understand how the planner can achieve strictly higher welfare than the market econ-

omy, I study some examples. In the first one in Section 4, I study an asset market with

lemons. Sellers have one indivisible asset which is of two types: high and low. The high-type

asset is more valuable to both buyers and sellers. GSW show that there exists a unique sep-

arating equilibrium in which different types trade in different submarkets. High-type sellers

prefer the higher price submarket with lower probability of matching (submarket two), while

low-type sellers are just indifferent between the two submarkets. Low-type sellers are willing

to sacrifice price for probability of trade, because they do not want to get stuck with their

“lemons”. On the other hand, high-type sellers do not want to sacrifice price, because their

assets are more valuable to them in case of being unmatched. Probability of matching in

this example, in fact, is used as a screening device.

3It is discussed in the paper that if there are not positive gains from trade for some types, lump sum

transfers to sellers may be also needed to implement the direct mechanism.
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The planner can do better than equilibrium in the following way. Beginning from the

equilibrium allocation which is feasible for the planner, the planner subsidizes sellers in

submarket one (low-type sellers) by a small amount so that their incentive compatibility

constraint for choosing submarket two becomes slack. Now more buyers enter submarket

two to get matched with previously unmatched high-type sellers. Therefore, welfare increases

due to the formation of new matches. To finance subsidies to the sellers in submarket one

(low-type sellers), the planner taxes sellers in submarket two (high-type sellers). The planner

keeps subsidizing low-type and taxing high-type sellers until he achieves the first best, in

which high-type sellers also get matched with probability one, or participation constraint of

high-type sellers binds. The same idea goes through even if there are more than two types.

To understand the nature of inefficiency in the market economy, consider the externalities

implied by having one more buyer in a submarket. First, it decreases the probability that

other buyers in that submarket are matched. Second, it increases the probability that other

sellers are matched in that submarket. In the presence of complete information, it is well

established in the literature that buyers entering the market in the directed search setting

can internalize these externalities by choosing the “right” price (contract), if sellers’ types

are observable and contractible and if buyers can commit to their postings4. However, the

change in the payoff of sellers following the entry of one more buyer in a submarket has

another effect in this environment which is absent in the complete information case. This

change will affect the incentive compatibility constraints that buyers who want to attract

other types of sellers face, thus affecting the set of feasible submarkets that other buyers can

enter to attract those sellers.

Buyers in the market economy do not take into account the effect of their entry on the

contracts posted on other submarkets and consequently on the payoff of sellers in other

submarkets. The planner internalizes these externalities by imposing appropriate taxes on

agents and therefore can do better than the market economy. The extent to which the planner

can improve efficiency depends on the details of the environment. In my second result, I

derive sufficient conditions under which the planner can eliminate distortions completely to

achieve the first best.

In the second example in Section 5, I characterize the constrained efficient allocation

4 The efficiency of competitive search equilibrium in the presence of complete information is probably

the most important result in this literature. In the random search setting, in contrast, the equilibrium is

generally inefficient because the entrants generally fail to internalize the aforementioned externalities. See

the following papers for directed search models and their efficiency properties: Acemoglu and Shimer (1999);

Eeckhout and Kircher (2010); Moen (1997); Mortensen and Wright (2002); Peters (1991); Shi (2001, 2002);

Shimer (2005). See Mortensen and Pissarides (1994) for a random search model.
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in a version of the rat race (originally studied by Akerlof (1976)) and compare my results

with GSW who solve for the equilibrium allocation in this environment5. There are two

types of workers. High-type workers incur less cost for working longer hours and generate

higher output compared to low-type workers. Also the marginal output with respect to

hours of work that high-type workers generate is higher. In equilibrium, high-type workers

works inefficiently for longer hours than they would work under complete information and

get matched with inefficiently higher probability. The planner, in contrast to the market

economy, achieves the first best. He pays low-type workers higher wages and high-type

workers lower wages than what they would get under complete information. These subsidies

(to low-type workers) and taxes (on high-type workers) are needed to ensure that low-type

workers do not have any incentive to apply to the submarket that high-type workers apply

to. Moreover, if the share of high-type workers in the population is sufficiently high, the

planner’s allocation even Pareto dominates the equilibrium allocation.

In the asset market example explained above, the trades which involve high-type (or

equivalently high price) assets are taxed and other trades are subsidized. An interesting

question is whether this observation can be generalized to more realistic environments or

not. To answer this question, I extend the two-type asset market to a continuous type one,

which is a static version of Chang (2012), and derive sufficient conditions under which the

planner can achieve the first best. The optimal submarket-specific sales tax that implements

the optimal mechanism is not generally monotone in the price of assets. This feature makes

it hard for the planner to implement this mechanism in the real world, partly because

implementing a non-monotone tax schedule requires the planner to have precise information

about the details of the the economy, but this requirement is unlikely to be met in the real

world applications. For example, with a non-monotone tax schedule little mis-specification of

the model by the planner can lead to significant losses in efficiency. Ideally, the tax schedule

should be independent of the details of the economy.

In the next step, I show that imposing two types of taxes, not only sales tax but also

submarket-specific entry tax, which is imposed on buyers conditional on entry to each sub-

market regardless of whether they find a match or not, solves the non-monotonicity problem.

That is, the planner can always design monotone tax schedules, decreasing entry tax and

increasing sales tax, to implement the direct mechanism.

Related Literature. Guerrieri (2008) and Moen and Rosén (2011) study constrained

efficient allocation in environments with directed search and private information. Guerrieri

(2008) shows that the competitive search equilibrium is constrained inefficient in a dynamic

5My paper is also related to the classic adverse selection models like Akerlof (1970) and

Rothschild and Stiglitz (1976).
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setting, if the economy is not on the steady state path. However in both papers, the agents

who search (workers) do not have ex-ante private information. After they get matched with

firms, they learn their types which become their private information.

Golosov et al. (2013) studies a model with directed search and private information and

show that the equilibrium is constrained inefficient. There are two important differences

between their paper and mine. First, the information friction in their paper is moral hazard,

because the public cannot observe whether the workers have searched or not and if so, toward

which type of firms. In contrast, the information friction in my paper is adverse selection.

Second, workers are risk averse in their paper, in contrast to sellers in my paper who are

risk neutral. The inefficiency result in their paper relies on the risk aversion assumption.

Therefore, the channels through which inefficiency arises in the two papers are different.

Delacroix and Shi (2013) study a model in which sellers with private information post

contracts, in contrast to GSW in which the uninformed side of the market posts contracts.

They investigate the potentially conflicting roles of prices: the signaling role and the search

directing role. Aside from some details6, the notion of constrained efficiency defined in

this paper and the ideas behind that (that the planner can make transfers across agents or

equivalently across submarkets) apply to their model as well, because the environments are

similar, although they have a different trading mechanism.

The paper is organized as follows. In Section 2, I develop the environment of the model

and define the planner’s problem. In Section 3, I characterize the planner’s allocation and

state my main results. In Section 4, I study a two-type asset market example, characterize

the planner’s allocation and compare it with the equilibrium allocation. I also explain

the nature of inefficiency in the market economy and discuss why and how the planner

can allocate resources more efficiently than the market economy. In Section 5, I study a

version of the rat race. In Section 6, I study an asset market with a continuous type space

to characterize the efficient tax schedule. Section 7 concludes. All proofs appear in the

appendix.

2 The Model

2.1 Environment

Consider an economy with two types of agents, buyers and sellers and n + 1 goods where

n ∈ N. Goods 1, 2, ..., n are produced by sellers and consumed by buyers, while good n+1 is a

6For example in their model, sellers choose the quality of their products. The quality, then, becomes their

private information.
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numeraire good and is produced and consumed by everyone. Let a ≡ (a1, a2, ..., an) ∈ A ⊂ R
n

be a vector where A is compact, convex and non-empty. Component k of this vector, ak,

denotes the quantity of good k. For example in a labor market, a can be a positive real

number denoting the hours of work. When I say an agent produces (or consumes) a, I mean

that the agent produces (or consumes) a1 units of good 1, a2 units of good 2 and so on.

There is a measure 1 of sellers. A fraction πi > 0 of sellers are of type i ∈ {1, 2, ..., I}.

Type is seller’s private information. On the other side of the market, there is a large contin-

uum of homogenous buyers who can enter the market by incurring cost k > 0. After buyers

enter the market, buyers and sellers are allocated to different submarkets (described below).

Matching is bilateral. After they match, they trade.

There are search frictions in this environment. By search frictions I mean that sellers

generally get to match with the buyers they have chosen with probability less than one.

Matching occurs in submarkets which are simply some locations for trades. Matching tech-

nology determines the probability that sellers and buyers in each submarket get matched.

If the ratio of buyers to sellers in one submarket is θ ∈ [0,∞], then the buyers are matched

with probability q(θ). Symmetrically, matching probability for sellers is m(θ) ≡ θq(θ). As is

standard in the literature, I assume that m is non-decreasing and q is non-increasing. Both

m(.) and q(.) are continuous.

Sellers’ and buyers’ payoff functions are quasi-linear in the numeraire good7. The payoff

of a buyer who enters the market from consuming a and producing t ∈ R units of the

numeraire good is vi(a)− t− k if matched with a type i seller and is −k if unmatched. The

payoff of a type i seller from producing a and consuming t ∈ R units of the numeraire good

is ui(a) + t if matched with a buyer and is 0 otherwise.

2.2 Equilibrium Definition

First, let me briefly describe how the market economy works, the especial case in which the

planner does nothing. Then I describe the planner’s problem. The definition of equilibrium

is taken completely from GSW.

Submarkets in the market economy are characterized by y ≡ (a, p) where a ∈ A denotes

the vector of goods 1 to n to be produced by sellers in this submarket and p ∈ R is the

amount of the numeraire good to be transferred from buyers to sellers. No submarket which

7The difference between payoff functions in this paper and in GSW is that I assume quasi-linear prefer-

ences, while they do not make this assumption. The reason that I impose quasi-linearity assumption is that

I want to do welfare analysis and I want to use taxes and subsidies. If the preferences are not quasi-linear,

the weight that the planner assigns to buyers and sellers might become important.
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would deliver buyers a strictly positive payoff is inactive in the equilibrium. If there was

such a submarket, some buyers would have already entered that submarket to exploit that

opportunity. On the other side of the market, sellers observe all (a, p) pairs posted in the

market, anticipate the market tightness at each submarket and then direct their search

toward one which delivers them the highest expected payoff.

Let γi(y) denote the share of sellers that are type i in the submarket denoted by y,

with Γ(y) ≡ {γ1(y), ..., γi(y), ..., γI(y)} ∈ ∆I where ∆I is an I−dimensional simplex, that is,

0 ≤ γi(y) ≤ 1 for all y and
∑I

i=1 γi(y) = 1. To make the notation clear for the rest of the

paper, the first component of y is denoted by a, rather than y1 and the second component

is denoted by p rather than y2. Similarly if the submarket is denoted by y′, the first and

second components of y′ are denoted by a′ and p′.

Definition 1. An equilibrium, {Y, λ, θ,Γ}, is a measure λ on Y ≡ A×R with support Y P , a

function θ : Y → [0,∞], and a function Γ : Y → ∆I which satisfies the following conditions:

(i) Buyers’ profit maximization and free entry

For any y ∈ Y ,

q(θ(y))
∑

i

γi(y)(vi(a)− p) ≤ k,

with equality if y ∈ Y P .

(ii) Sellers’ optimal search

Let Ui = max

{

0,maxy′∈Y P

{
m(θ(y′))(ui(a

′) + p′)
}
}

and Ui = 0 if Y P = ∅. Then for any

y ∈ Y and i, Ui ≥ m(θ(y))(ui(a) + p) with equality if θ(y) <∞ and γi(y) > 0. Moreover, if

ui(a) + p < 0, either θ(y) = ∞ or γi(y) > 0.

(iii) Market clearing

For all i,
∫

Y
γi(y)
θ(y)

dλ({y}) ≤ πi, with equality if Ui > 0.

Let me make a couple of brief comments about the equilibrium definition. For further

details, see GSW. Equilibrium condition (i) states that buyers should not earn a strictly

positive profit from entering any submarket (on- or off-the-equilibrium-path). That is, there

are no opportunities for trade unexploited in the equilibrium. If buyers’ expected payoff

in one submarket is strictly negative, no buyer enters that submarket. If that is strictly

positive, more buyers will enter that submarket and the market tightness will be changed.

Therefore, for all markets that the planner wants to be open, buyers must get exactly 0

expected payoff. A buyer has to incur entry cost k if he wants to enter submarket y. Then,

he gets matched with a type i seller with probability γi(y) from which he gets a payoff of

vi(a) in terms of the numeraire good, and pays p units of the numeraire good to the seller.
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Equilibrium condition (ii) is composed of two parts. The first part states that among all

submarkets in the equilibrium, y ∈ Y P , sellers choose to go to a submarket which maximizes

their payoff. The second part imposes some restrictions on beliefs regarding the market

tightness and composition of types for off-the-equilibrium-path, y /∈ Y P . The market tight-

ness for off-the-equilibrium-path is set such that sellers who choose to go to those posts do

not gain by doing so relative to their equilibrium payoff. Also, this restriction with respect

to the composition of types states that if buyers believe that some types would apply to

an off-the-equilibrium-path post, then those types should be exactly indifferent between the

payoff they get from that post relative to their equilibrium payoff. Equilibrium condition

(iii) is straight forward.

2.3 The Planner’s Problem

I define a planner whose objective is to maximize the weighted average of the payoff to

sellers8. The planner faces the same information and search frictions present in the market

economy. The planner uses a direct mechanism to allocate resources. In the direct mechanism

and thanks to the revelation principle, sellers report their types to the planner and then the

planner allocates them to a 4-touple (ãi, p̃i, s̃i, θ̃i). Here, ãi is the vector of production of

goods 1 to n to be produced by sellers who report type i, p̃i is the amount of the numeraire

good transferred to them conditional on finding a match, s̃i is the amount of the numeraire

good transferred to them unconditionally and θ̃i is the average number of buyers assigned

to them. The planner maximizes his objective function subject to incentive compatibility of

sellers, participation constraint of sellers and his budget-balance condition.

Definition 2. A feasible mechanism is a set {(ãi, p̃i, s̃i, θ̃i)}i∈{1,2,...,I} such that the following

conditions hold:

(1) Incentive Compatibility of Sellers

For all i and j,

Ui ≡ m(θ̃i)(ui(ãi) + p̃i) + s̃i ≥ m(θ̃j)(ui(ãj) + p̃j) + s̃j.

(2) Participation Constraint of Sellers

For all i,

Ui ≥ 0.

(3) Planner’s Budget-Balance

I∑

i=1

πi[m(θ̃i)(vi(ãi)− p̃i)− kθ̃i − s̃i] ≥ 0.

8Note that buyers get payoff 0 either in the market economy or under the planner’s allocation.
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Two points are worth mentioning about this definition. The first one is that the partici-

pation constraint or individual rationality of buyers here is taken implicitly into account by

condition (3). Consider the following scenario. The planner charges buyers some participa-

tion fee. Once a buyer agrees to participate, the planner assigns the buyer to get matched

with one type of sellers according to a uniform distribution. There are πiθ̃i number of buy-

ers who are assigned to type i sellers and overall there are
∑
πj θ̃j buyers who participate.

Therefore, the probability that a buyer is assigned to type i sellers is πiθ̃i∑
πj θ̃j

. Therefore, the

expected benefit of the buyer from entering the market and getting matched with type i is
πiθ̃i∑
πj θ̃j

(q(θ̃i)vi(ãi) − k). On the other hand, each type j seller needs to get paid p̃j units of

the numeraire good conditional on matching and s̃j units unconditionally. Therefore, overall
∑
πj(m(θ̃j)p̃j+ s̃j) amount of the numeraire good is needed to compensate sellers. Since the

planner does not spend any resources from his own pocket, each participating buyer should

pay
∑

πj(m(θ̃j)p̃j+s̃j)
∑

πj θ̃j
. In order for buyers to participate in the direct mechanism, the benefit

that each buyer gets ex-ante, πiθ̃i∑
πj θ̃j

(q(θ̃i)vi(ãi)−k), should weakly exceed the amount of the

numeraire good that the buyer should pay,
∑

πj(m(θ̃j)p̃j+s̃j)
∑

πj θ̃j
. Condition (3) in the definition

summarizes this requirement.

The second point is that in this definition, I did not allow the planner to use lotteries.

By lotteries I mean that after agents report their types, the planner allocates, say, type i

sellers to different 4-tuples, (ã, p̃, s̃, θ̃) and (ã′, p̃′, s̃′, θ̃′), with positive probability where these

4-tuples may deliver type i sellers different payoffs. If the planner can use lotteries, then the

planner may be able to achieve even higher welfare than what he achieves in the constrained

efficient allocation here9, because he would have one more tool10.

Definition 3. A constraint efficient mechanism is a feasible mechanism which maximizes

the planner’s objective function. That is, the planner solves the following problem:

max
{(ãi,p̃i,s̃i,θ̃i)}i∈{1,2,...,I}

∑

i

πiUi

s. t. {(ãi, p̃i, s̃i, θ̃i)}i∈{1,2,...,I} is a feasible mechanism.

9 The lotteries may help the planner to achieve higher welfare if the objective function of the planner is

not concave or if the constraint set is not convex.
10To elaborate, in my first result, I show that if the equilibrium does not achieve the first best, then the

planner achieves strictly higher welfare than the equilibrium without using any lotteries. Adding another

tool can only make this result stronger. In my second result, I derive conditions under which the planner

achieves the first best without using any lotteries. Since the planner achieves the first best, adding another

tool does not change this result.
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As far as the notation is concerned, whenever a variable has ˜ in the paper, it shows

that the variable is an element of a direct mechanism. CE represents the constrained effi-

cient allocation, FB represents the first best allocation and EQ represents the equilibrium

allocation.

2.4 Implementation

To implement the direct mechanism, the planner is assumed to have the power to impose

taxes and subsidies on agents. It turns out that imposing two types of taxes are sufficient for

the planner to implement the direct mechanism discussed above. First, the planner chooses

a tax amount for each submarket. This tax will be imposed on buyers conditional on trade,

t(a, p) : A × R → R. The results will not change if, instead, taxes are imposed on sellers.

Second, the planner can make lump sum transfers, T ∈ R+ units of the numeraire good11,

to sellers12. Note that any post in the market economy is a special case of this description

with t(y) = 0 for all submarkets and T = 0.

The planner may want agents not to trade in some submarkets, despite the fact that

agents in the market economy want to trade in those submarkets. In such a case, the

planner can impose sufficiently high amount of tax on trade in those submarkets. Aside

from the ability to make these transfers, the market economy and the planner face the

same restrictions: Amount of goods to be produced by sellers or payments to be made by

buyers cannot be conditioned on the type of sellers. The ex-ante payoff of buyers in both

cases should be 0 to ensure that buyers want to participate and also to ensure that there

is no excess entry into any submarket. Also in both cases sellers choose submarkets which

maximize their expected payoff or stay out. Some sellers’ payoffs from entering any open

submarket, the submarkets that some buyers choose to go, is non-positive, so they will not

apply to any submarket. I call these sellers non-participants. They just receive T .

The planner faces a budget constraint (or a budget-balance condition as called in the

mechanism design literature) similar to that in the direct mechanism. This condition states

that the net amount of transfers that the planner makes to agents should not exceed 0.

Notice that in the market economy, it is not possible to transfer funds (the numeraire good)

11 Without loss of generality, I assume that T must be positive. If T is negative and some types do not

participate, i.e. do not apply to any submarket, then sellers’ participation constraint is violated. If all types

participate, then one can easily incorporate T into prices, that is, one can change pi to pi +
T

m(θi)
, to replace

negative T by 0. Therefore, it is without loss of generality to assume that T is positive.
12It is possible that some types get a negative payoff from active sub-markets, so they prefer not to apply to

any submarket. However they distort the allocation for other types via the incentive compatibility constraint.

The planner is allowed to pay them T to reduce this distortion.
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from one submarket to another. That is, all the surplus generated in any submarket belongs

to sellers in that submarket. Under the planner’s allocation, on the other hand, sellers might

get a higher or lower payoff than the surplus they generate. In short, cross-subsidization

across submarkets is possible.

As defined earlier, let y ≡ (a, p) denote a submarket. An allocation {λ, Y P , θ,Γ, t, T} is

a distribution λ over Y with support Y P (so Y P is the set of open submarkets), the ratio

of buyers to sellers for each submarket θ : Y → [0,∞], the distribution of types in each

submarket Γ : Y → ∆I , the amount of tax (in terms of the numeraire good) to be imposed

on buyers at each submarket conditional on trade, t : Y → R, and finally the amount of

the numeraire good to be transferred to sellers in a lump sum way, T ∈ R+. Because the

planner faces some constraints, only some allocations are implementable for the planner.

The definition of an implementable allocation is given below.

Definition 4. A planner’s allocation {λ, Y P , θ,Γ, t, T} is implementable if it satisfies the

following conditions:

(i) Buyers’ maximization and free entry

For any y ∈ Y ,

q(θ(y))
∑

i

γi(y)(vi(a)− p− t(y)) ≤ k,

with equality if y ∈ Y P .

(ii) Sellers’ maximization

Let Ui ≡ max{0,maxy′∈Y P {m(θ(y′))(ui(a
′)+p′)}}+T and Ui = T if Y P = ∅. For any y ∈ Y

and i,

m(θ(y))(ui(a) + p) + T ≤ Ui,

with equality if γi(y) > 0 and θ(y) <∞. If ui(a) + p < 0, then θ(y) = ∞ or γi(y) = 0.

(iii) Feasibility or market clearing

For all i,
∫

Y P

γi(y)
θ(y)

dλ({y}) ≤ πi, with equality if Ui > T .

(iv) Planner’s budget constraint

∫

Y P

q(θ(y))t(y)dλ({y}) ≥ T.

The definition of implementable allocation is similar to the definition of equilibrium.

Regarding condition (i), when buyers want to choose a submarket, they form beliefs regarding

market tightness and composition of types at each submarket. The restriction on these beliefs

are also exactly the same as those in the definition of equilibrium. Note that here buyers

not only need to make payment to sellers but also to the planner. Conditions (ii) and (iii)
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are exactly the same as their counterparts in the equilibrium definition. Condition (iv), the

budget-balance condition, is self-explanatory.

Condition (ii) summarizes two constraints, sellers’ participation constraint and sellers’

incentive compatibility constraint. To make the exposition easier, for any given allocation,

define Xi as follows: Xi ≡ {(θ(y), a)
∣
∣y ≡ (a, p) ∈ Y P , γi(y) > 0}. Denote elements of Xi

by (θi, ai). In words, θi is the market tightness of a submarket to which type i applies

with strictly positive probability and ai is the production level of that submarket. Sellers’

maximization constraint implies that for any i, j, (θi, ai) ∈ Xi and (θj, aj) ∈ Xj:

m(θi)(ui(ai) + pi) ≥ m(θj)(ui(aj) + pj) (IC).

I call this constraint IC or incentive compatibility constraint. This constraint is equivalent

to condition (1) in the definition of feasible mechanism.

Definition 5. A constrained efficient allocation is an implementable allocation which maxi-

mizes welfare among all implementable allocations. That is, a constrained efficient allocation

solves the following problem:

max
{λ,Y P ,θ,Γ,t,T}

∑

i

πiUi

s. t. {λ, Y P , θ,Γ, t, T} is implementable.

I show in Lemma 1 that the way I define the constrained efficient allocation here is

without loss of generality. That is, a planner who uses a direct mechanism as defined earlier

achieves the same welfare level as the planner in Definition 5.

Lemma 1. Given any feasible mechanism, there is an associated implementable allocation

under which all types get exactly the same payoff as in the direct mechanism.

Since implementation of a direct mechanism requires a large amount of communication,

which is unrealistic in many economic applications, a proper implementation should be close

to the real world applications as much as possible. The way that I have formulated the

implementation of the direct mechanism here has this feature, because the elements of the

implementable allocation have natural interpretations. For example, t can be interpreted

as submarket-specific sales tax. Lemma 1 guarantees that all technical results derived by

utilizing the direct mechanisms can be naturally implemented in the real world applications.

Given any equilibrium {λ, Y, θ,Γ}, I construct an allocation called equilibrium al-

location {λEQ, Y EQ, θEQ,ΓEQ, tEQ, TEQ} where λEQ = λ, Y EQ = Y , θEQ(y) = θ(y),

ΓEQ(y) = Γ(y), tEQ(y) = 0 for all y and TEQ = 0. The only difference is that I added

zero taxes to the definition of equilibrium. The equilibrium allocation is implementable,
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because sellers’ maximization condition and buyers’ profit maximization and zero profit con-

dition are satisfied following their counterparts in the definition of equilibrium. The planner’s

budget constraint is also trivially satisfied, because tEQ = 0 for all y ∈ Y EQ and TEQ = 0.

When I say equilibrium allocation, I mean the implementable allocation which is constructed

from equilibrium objects as above.

Finally, when I refer to equilibrium in the paper, I mean the notion of equilibrium which

was discussed above where the uninformed side of the market posts contracts. I do not

mean a notion of equilibrium with signaling in which the informed side of the market posts

contracts, unless otherwise noted13.

3 Characterization

I first study the complete information case as a benchmark and then present my main results.

3.1 Complete Information Allocation or First Best

As a benchmark, consider an otherwise the same environment as introduced above except

that the type of sellers is common knowledge. Since buyers have complete information about

the type of sellers, the submarkets in the market economy are not only indexed by the level

of production and price but also by the type of sellers that the buyers want to meet. The

buyers, who contemplate what submarket to enter to attract type i sellers, enter a submarket

which maximizes the payoff of type i subject to the free entry condition. (See Moen (1997)

for further explanation.) If there is any submarket that would deliver type i sellers a higher

payoff, some buyers would enter that submarket and then, sellers would strictly prefer that

submarket. Therefore, buyers who attract type i solve the following problem in the market

economy with complete information:

max
θ,a,p

{m(θ)(p+ ui(a))}

s.t. q(θ)(vi(a)− p) ≥ k.

Denote the solution to this problem by (θFB
i , aFB

i , pFB
i )14. It is easy to see that the con-

straint of the problem must hold with equality, so after eliminating p from the maximization

13 I conjecture that my first result regarding the inefficiency of equilibrium will hold even if another notion

of equilibrium is considered in which the informed side of the market posts. Of course, one needs to impose

some reasonable restrictions on off-the-equilibrium-path beliefs similar to those proposed by Cho and Kreps

(1987).
14All that matters for the first best allocation is the level of production and probability of matching. Since

transfers is not part of the first best allocation, having superscript of FB for price in pFB
i is somewhat
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problem, one can write the payoff of type i sellers from participating in the market in the

complete information case as maxθ,a{m(θ)(vi(a) + ui(a)) − kθ}. Let UFB
i be the payoff of

type i in the complete information case. Then UFB
i is calculated as follows:

UFB
i = max

θ,a
{m(θ)(vi(a) + ui(a))− kθ}.

Notice that the objective function, m(θ)(vi(a)+ui(a))−kθ, is exactly equal to the surplus

created by a type i seller. Thus, the planner who observes types of sellers solves exactly the

same problem as buyers in the market economy with complete information15. If UFB
i ≥ 0,

the planner wants type i to get matched with probability m(θFB
i ) and to produce aFB

i . (If

UFB
i < 0, then type i sellers do not participate in the market. The planner does not want

them to participate, either.) In this paper, when I say that the planner achieves the complete

information allocation or achieves the first best, I mean that there exists an implementable

allocation in which type i sellers get matched with probability m(θFB
i ) and produce aFB

i for

all i.

3.2 Results

As already seen, the equilibrium allocation is feasible for the planner. It is immediately

followed that the planner can achieve the level of welfare which is at least as much as that in

the market economy. Theorem 1 states that the planner can achieve strictly higher welfare.

Let Ȳ ≡ ∪iȲi where

Ȳi ≡
{
(a, p)

∣
∣(a, p) ∈ A×R, q(0)(vi(a)− p) ≥ k, and ui(a) + p ≥ 0

}
.

If (a, p) /∈ Ȳ , then no type will be attracted to this submarket in the market economy. Also

for the future reference, let Ā be defined as follows:

Ā ≡
{
a
∣
∣(a, p) ∈ Ȳ for some p ∈ R

}
.

misleading. More precisely, pFB
i is the payment that buyers make to sellers in the market with complete

information. I do not want to introduce a new notation for the market with complete information, so I keep

pi with superscript of FB throughout the paper to refer to the payment that buyers make to type i sellers

in the market with complete information.
15This is the core of the argument in the literature which states that the market economy decentralizes

the planner’s allocation under complete information. As already stated, there are many papers in the

literature with different environments but with this common theme that when agents on one side of the

market compete with each other in posting contracts and commit to them, then the market decentralizes the

planner’s allocation, if the contract space is rich enough. See Moen (1997), Acemoglu and Shimer (1999), Shi

(2001), Shi (2002), Shimer (2005), Kircher (2009) and Eeckhout and Kircher (2010). If the contract space

is not rich enough, the equilibrium might be constrained inefficient, like Galenianos and Kircher (2009)
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Assumption 1.

1. Strict Monotonicity: For all a ∈ Ā, v1(a) < v2(a) < ... < vI(a).

2. Sorting: For all i, a ∈ Ā and ǫ > 0, there exists a′ ∈ Bǫ(a) ≡
{
a′ ∈ A

∣
∣ ||a− a′||2 < ǫ

}
such

that

uj(a
′)− uj(a) < uh(a

′)− uh(a) for all j and h with j < i ≤ h.

3. Technical assumption: Function m(θ)(ui(a)+ vi(a))− kθ has only one local maximum on its

domain, (θ, a) ∈ R+ × A.

Theorem 1 (Result 1). Suppose Assumption 1 holds. Also assume that all types with positive

gains from trade (all i with UFB
i > 0) get a strictly positive payoff in the equilibrium. If the

equilibrium fails to achieve the first best, then the planner achieves strictly higher welfare

than the equilibrium.

Some remarks about the assumptions are in order. A standard single crossing condition

states that the indifference curves of different types must cross only once. The sorting

assumption here (which is the same as in GSW) is in a sense a local crossing condition,

because it allows a′ to be greater than a for some a and less than a for other a. Moreover, it

is in a sense stronger than single crossing condition, because it states that given any a, there

exists an a′ with such a property. The requirement that all types with positive gains from

trade must be active in the equilibrium is satisfied if there are positive gains from trade for

all types. In an example in Section 4, I will make it clear why this assumption is necessary

for this result.

The idea of the proof is as follows. I begin from the equilibrium allocation, propose

a direct mechanism which is basically a perturbation of the equilibrium allocation in a

particular way and then show that the proposed allocation is feasible and achieves strictly

higher welfare than the equilibrium allocation.

We need first to understand how the equilibrium is constructed. Under similar conditions

(weak monotonicity and sorting), GSW prove that the equilibrium for type i is characterized

by maximizing the payoff of type i, subject to the free entry condition and the incentive

compatibility constraint of all lower types. That is, type j < i should not get a higher payoff

if he chooses the submarket that type i chooses. They prove that this equilibrium is unique

in terms of payoffs.

Let {λEQ, Y EQ, θEQ,ΓEQ, tEQ, TEQ} denote the equilibrium allocation where Y EQ ≡

{yEQ
1 , yEQ

2 , ..., yEQ
I }. Also let UEQ

i denote the utility that type i gets in the equilibrium.

In this explanation, assume that all types are active in the equilibrium, UEQ
i > 0 (which is

the case if there are positive gains from trade for all types). Since the equilibrium does not
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achieve the first best, there exists a type, say type i, which creates the surplus that is less

than the first best level. It implies that at least one IC constraint in the problem for type

i is binding in the equilibrium. For example, suppose type j is indifferent between yEQ
j and

yEQ
i with j < i.

The planner begins from a direct mechanism in which each type is allocated the same

(a, p, θ) as in the equilibrium. Since all types are active in the equilibrium, I assume without

loss of generality that the unconditional transfer, s, for all types is initially set equal to 0,

that is, s̃l = 0 for all l. In order to improve welfare, the planner subsidizes all types lower

than i identically by a small amount, ǫ > 0. That is, s̃h = ǫ for all h < i. Now constraints

of the maximization problem for type i become slack, so the planner can find another triple

(a′, p′, θ′) such that the surplus generated by type i increases. Therefore, the payoff of type

i strictly increases.

Now consider type i + 1. The planner solves the maximization problem for type i + 1

again. That is, he maximizes the payoff of type i+1 subject to the free entry condition and

the incentive compatibility constraint of all lower types. Since all lower types including type

i get a strictly higher payoff than the equilibrium allocation now, the maximization problem

for type i+1 is now less constrained, so the planner can achieve weakly higher welfare from

type i+ 1 as well. The planner keeps doing the same thing for all types above i and assigns

them new (a, p, θ) triples. The welfare of the population has increased so far, because type

i has generated strictly higher surplus and all types i+ 1 to I have generated weakly higher

surplus. To satisfy the budget-balance condition, the planner imposes an identical tax on

all types so that IC constraints are not affected. Making transfers across agents does not

change the welfare of the population, therefore, the welfare level now is strictly higher than

that in the equilibrium.

In the next proposition, I provide sufficient conditions for the planner to achieve the

first best. Before that, let me introduce some definitions. We say that a′ ≥ a if a′k ≥ ak

for all k ∈ {1, 2, ..., n}, that is, if a′ is greater than a component by component. Function

g : A × {1, 2, .., I} → R has increasing differences in (a, i) if for a′ ≥ a, g(a′, i) − g(a, i)

is weakly increasing in i. Function g : A × {1, 2, .., I} → R is supermodular in a if for all

a, b ∈ A, g(a, i) + g(b, i) ≤ g(a ∨ b, i) + g(a ∧ b, i).

Assumption 2. The following conditions hold:

1. Monotonicity of u in i: u1(a) ≤ u2(a) ≤ ... ≤ uI(a) for all a ∈ Ā.

2. u has increasing differences in (a, i).

3. u+ v has increasing differences in (a, i).
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4. Supermodularity of f in a where fi(a) ≡ ui(a) + vi(a) for all a ∈ A and i.

5. Either (a) holds or (b) and (c) hold:

(a) Monotonicity of v in i: v1(a) ≤ v2(a) ≤ ... ≤ vI(a) for all a ∈ Ā.

(b) Monotonicity of f in i: f1(a) ≤ f2(a) ≤ ... ≤ fI(a) for all a ∈ Ā.

(c) Sufficient gains from trade for all types:

UFB
i ≥ m(θFB

i−1)(ui(a
FB
i−1)− ui−1(a

FB
i−1))

∑I
j=i πj

πi
, for i > 1 and UFB

1 ≥ 0.

Theorem 2 (Result 2). Under Assumption 2, the planner achieves the first best.

Part 1 of Assumption 2 simply states that the payoff of higher types is higher than lower

types for any given level of production. Part 2 is a standard increasing differences property16.

If u is differentiable, this assumption implies that given a level of production, the marginal

payoff of higher types with respect to the level of production of good k ∈ {1, 2, ..., n} is

higher than that of lower types17. Similarly, part 3 states that the marginal surplus with

respect to the level of production of good k that higher types create is higher than the

associated marginal surplus that lower types create. Part 4 is a standard supermodularity

condition which states that the marginal surplus created by type i with respect to the level

of production of good k is increasing in the level of production of good l (k 6= l). In part

5, I require either of the two following conditions. For any given level of production, buyers

weakly prefer higher types of sellers. If this assumption is not satisfied, I require that ui+ vi

is increasing in i for any production level (in part 5(b)) and also
∑I

j=i πj

πi
is less than some

threshold for every i > 1.

The proof follows a guess-and-verify approach. I first guess that the planner can achieve

the first best under the conditions in Assumption 2. Then I ensure that all conditions for

feasibility are satisfied. See Figure 1 for the illustration of the proof.

The planner achieves the first best iff there exists a feasible mechanism in which type i

sellers get matched with probabilitym(θFB
i ) and produce aFB

i . I need to find a set of transfers

which together with (θFB
i , aFB

i ) satisfy IC constraints. To find such a set, I show that if

part 1 of Assumption 2 holds and if transfers are such that local downward IC constraints

are satisfied and are binding, then all IC constraints are satisfied. By local downward IC

16This property is equivalent to the single crossing condition (which is also called Spence-Mirrlees con-

dition) for a broad class of functions. See Milgrom and Shannon (1994) for a full discussion about these

properties and the relationship between them.
17I do not impose differentiability assumption, though.
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SM and

IDP of

u+ v

M+S

L+M

aFB
i is

↑ in i

ui + vi is

↑ in i

θFB
i is

↑ in i

IDP of u

Local IC

Global

IC

Figure 1: Schematic diagram indicating the proof steps of Theorem 2. SM and IDP re-

fer to supermodularity and increasing differences property respectively. M+S refers to

Milgrom and Shannon (1994), L+M refers to Laffont and Martimort (2009)

. .

constraint I mean that type i should not gain by reporting type i − 1. Moreover, I show

that by this construction method, the amount of transfers to the lowest type (p1) determines

the amount of transfers for all other types. A set of transfers that satisfies local downward

IC constraints exists if (θFB
i , aFB

i ) is increasing in i and also if u has increasing differences

property in (a, i) (part 2 of Assumption 2). See Theorem 7.1 and 7.3 in Fudenberg and Tirole

(1991) or Section 3.1 in Laffont and Martimort (2009) for reference.

According to Theorem 5 in Milgrom and Shannon (1994), if ui+vi satisfies parts 3 and 4

of Assumption 2, then aFB
i ≡ argmaxa∈A{ui(a)+vi(a)} is increasing in i, that is, a

FB
i ≥ aFB

i−1.

If ui + vi is increasing in i (part 1 and 5(a) or 5(b) of Assumption 2), then m(θ)(ui(a
FB
i ) +

vi(a
FB
i ))−kθ satisfies increasing differences property in (θ, i). Also,m(θ)(ui(a

FB
i )+vi(a

FB
i ))−

kθ is trivially supermodular in θ because θ is one-dimensional. Therefore, again according

to Theorem 5 in Milgrom and Shannon (1994), argmaxθ{m(θ)(ui(a
FB
i )+vi(a

FB
i ))−kθ} will

be also increasing in i. Hence, (θFB
i , aFB

i ) is increasing in i. Then the planner adjusts p̃1

such that all types get a positive payoff. This implies that we can set s̃i = 0 for all i. Given

the transfer scheme (the prices to be paid to sellers), the planner ensures that the budget

constraint holds with equality by making identical transfers to all types. In future sections,

I will make it clear by a couple of examples the mechanism through which the planner can

improve welfare relative to the market economy and how he might achieve the first best.

19



4 Example 1: Asset Market with Lemons

So far I have considered a general framework. In the following two sections, I study two

examples from Guerrieri et al. (2010) and characterize the constrained efficient allocation

for them and compare them with the associated equilibrium allocations. At the end of this

section, I provide some intuition on how and why the planner can increase welfare by using

appropriate transfers. Also, I explain the nature of inefficiency in the models of directed

search with adverse selection.

The first example is an asset market with lemons (in the spirit of Akerlof (1970)). There

are two types of assets, with value ci to the seller and hi to the buyer. Both ci and hi

are in terms of a numeraire good. The payoff of a buyer matched with a type i seller is

αhi − t − k where α is the probability that the buyer gets the asset from the seller and t

is the amount of the numeraire good that he pays (either to the planner or to sellers) in

terms of the numeraire good. The payoff of a type i seller matched with a buyer is −αci + t

where α is the probability that the seller gives the asset to the buyer and t is the amount

of the numeraire good he consumes. The buyer’s payoff is −k if unmatched. As a special

case of the original setting, here: I = 2, n = 1, a ≡ α, ui(α) = −αci and vi(α) = αhi. The

matching function is m(θ) = min{1, θ}, that is, the short side of the market gets matched

for sure. Following GSW, I also make the following assumptions:

Assumption 3. In the asset market with lemons,

1. 0 < h1 < h2 and 0 < c1 < c2.

2. For i = 1, 2, ci < bi ≡ hi − k.

Proposition 1. In the asset market with lemons, the planner achieves strictly higher welfare

than the equilibrium. If π1b1 + π2b2 ≥ c2, then the planner achieves the first best. See full

characterization of the constraint efficient allocation in Table 1.

The first part of this proposition is a special case of Theorem 1 and states that the

planner achieves strictly higher welfare than the market economy. Then, in order to fully

characterize the constraint efficient allcoation, I separate two cases: π1b1 + π2b2 ≥ c2 and

π1b1 + π2b2 < c2. Specially in the first case, I show that the planner achieves the first

best. This claim is stronger than Theorem 2, because the requirements are weaker. It is

easy to check that in order for Assumption 2 to be satisfied18, we need b2 − c2 < b1 − c1

18In order to apply Theorem 2 to this setting, first switch the label of type one and type two. Now see

that parts 1 to 4 of Assumption 2 are easily satisfied. It is just left to check Assumption 2 parts 5(b) and

5(c). Part 5(b) is satisfied if h2 − c2 < h1 − c1. Part 5(c) is satisfied if UFB
2 ≥ 0 and UFB

1 ≥ m(1)(−c1+c2)
π1

.
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and c2−c1
π1

≤ b1 − c1, which are stronger requirements than the requirement in Proposition 1

(π1b1 + π2b2 ≥ c2).

In the second and third columns of Table 1 the equilibrium outcomes under complete

information and under private information are described respectively. In the fourth and fifth

columns, I describe the planner’s allocation under different conditions.

Since there are positive gains from trade for both types according to part 2 of Assumption

3, under complete information the planner wants both types to get matched with probability

1 (θFB
1 = θFB

2 = 1) and also trade with probability 1 (αFB
1 = αFB

2 = 1). As already discussed

under complete information, the market decentralizes the first best allocation.

In the equilibrium with private information, different types trade in different submarkets.

In submarket one, price is lower, but probability of matching is higher compared to submarket

two (pEQ
1 < pEQ

2 ). The market tightness is used as a screening device here. The probability

of matching for type two is distorted so that type one would not want to apply to submarket

two, although the price is higher there. The equilibrium allocation is independent of the

distribution of types.

If π1b1 + π2b2 ≥ c2, then the planner achieves the first best through a pooling allocation.

See the fourth column of Table 1. In this allocation, the planner does not need to use

any transfers. All he needs to do is to restrict the entry of buyers to other submarkets by

imposing large taxes on those submarkets and have all sellers trade in a pooling submarket

with p = π1b1+π2b2 and t = 0. This allocation cannot be sustained as an equilibrium, because

buyers would have incentives to open a new submarket with a higher price to attract only

high type sellers from the pool, i.e. cream skimming. But then the probability that high

quality sellers get matched will be reduced compared to the first best and the planner does

not want that. This is why the planner imposes large taxes on other submarkets.

Now assume that π1b1 + π2b2 < c2. The planner’s allocation in this case is reported in

the fifth column of Table 1. Type two would get less than 0 under the pooling allocation, so

pooling both types is not feasible. Therefore, the first best is not achievable via a pooling

allocation. The first best is not achievable through any separating allocation either, because

if α1 = α2 = θ1 = θ2 = 1, then the payment to sellers in both submarkets should be the same

to satisfy IC condition. If the payments in both submarkets are equal, then this allocation

is pooling, but it is already shown that the pooling allocation is not feasible. The same

explanation is illustrated via indifference curves in Figure 3.
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Complete Equilibrium Constrained Constrained

information efficient efficient

(FB) if π1b1 + π2b2 ≥ c2 if π1b1 + π2b2 < c2

α1, α2 1 1 1 1

θ1 1 1 1 1

θ2 1 b1−c1
b2−c1

− π1(b1−c1)
c2−π1c1−π2b2

p1 b1 b1 π1b1 + π2b2
π1b1(c2−c1)+π2c1(c2−b2)

c2−π1c1−π2b2

p2 b2 b2 − c2

t1 − − 0 −π2(b2−c2)(b1−c1)
c2−π1c1−π2b2

t2 − − − b2 − c2

U1 b1 − c1 b1 − c1 π1b1 + π2b2 − c1
π1(b1−c1)(c2−c1)
c2−π1c1−π2b2

U2 b2 − c2
b1−c1
b2−c1

(b2 − c2) π1b1 + π2b2 − c2 0

Table 1: Comparison between different allocations in the asset market with lemons. t1 and t2 denote the

tax amount levied on buyers in submarket one and two in the implementation of the constrained efficient

allocation. U1 and U2 denote the payoff of type one and two in different allocations. If π1b1 + π2b2 ≥ c2,

the planner can achieve the first best through a pooling allocation where both types trade in one submarket

with price equal to π1b1+π2b2. If π1b1+π2b2 < c2, the first best is not achievable. The constrained efficient

allocation is implemented in the market through a separating allocation.

Buyers

Type 1 Type 2

Submarket 1 Submarket 2

b1 b2

p1 p2

Planner
−t1 t2

Figure 2: This schematic diagram illustrates how the planner allocates resources. Dashed lines show the

flow of funds. In equilibrium, type one is indifferent between two submarkets, while type two strictly prefers

submarket two. To improve welfare, the planner taxes sellers in submarket two and subsidizes sellers in

submarket one so that type one sellers are discouraged from applying to submarket two (the higher price

submarket). Now, more buyers enter submarket two and the outcome approaches the first best.
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θθEQ
1 = θCE

1 =
θFB
1 = θFB

2 = 1
θCE
2θEQ

2

p

iso utility of
buyers in SM1

pEQ
1 = h1 − k

pCE
1 = h1 − k − t1

iso utility of
buyers in SM2

pEQ
2 = h2 − k

pCE
2 = h2 − k − t2

iso utility of type 1
in equilibrium

iso utility of type 1 and 2, planner’s allocation

iso utility of type 2
in equilibrium

Figure 3: The indifference curves of buyers and sellers are illustrated here when π1b1+π2b2 < c2. CE, FB,

EQ represent constrained efficient, first best and equilibrium allocations. In the equilibrium allocation, the

market tightness for type two is less than 1. Intersection of indifference curve of type one and indifference

curve of buyers in submarket two determines θ
EQ
2 . At this point, type one is indifferent between both

submarkets. The planner makes subsidies to buyers at submarket one (t1 < 0), thus pushing buyers’

indifference curves in that submarket upward. Because of zero profit condition for buyers, eventually type

one sellers get a higher payoff than equilibrium. The planner taxes buyers in submarket two (t2 > 0) to

raise funds for subsidies made to type one. Now, the market tightness that the planner assigns to type two

is increased compared to that in equilibrium.
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4.1 Explanation of the Results

To understand how the planner can achieve strictly higher welfare than the equilibrium in

the asset market with lemons, assume as a thought experiment that the planner begins from

the equilibrium allocation and wants to increase welfare. We have already seen that the

equilibrium allocation is feasible for the planner. In the equilibrium type one is indifferent

between choosing submarket one and submarket two. Although some type two sellers are

unmatched in submarket two, buyers do not enter submarket two any more, because more

entry will make submarket two strictly preferable for type one, thus leading to entry of type

one to submarket two. Nevertheless, matching with type one sellers in submarket two with

positive probability is not worthwhile for buyers given the high price that buyers need to pay

in submarket two. In short, the IC constraints that buyers face do not allow more buyers to

enter submarket two.

To improve efficiency, the planner increases the net payment to type one19, p1, so that

IC constraint of type one for choosing submarket two becomes slack. That is, type one

strictly prefers submarket one over submarket two following this subsidy. Now more buyers

have incentives to enter submarket two to get matched with previously unmatched sellers of

type two . To finance subsidies to sellers in submarket one (type one sellers), the planner

must tax sellers in submarket two (type two sellers). The planner keeps increasing p1 and

decreasing p2 until one of the following happens. Either he achieves the first best, which is

the case in the pooling allocation where both types trade with probability 1, or participation

constraints of type two sellers bind, that is, type two sellers get exactly payoff 0. The former

happens if π1b1 + π2b2 ≥ c2 and the latter happens if π1b1 + π2b2 < c2. Figure 2 illustrates

this point. Although I explained the main idea through a two-type example, the intuition

is the same in the general n-type setting, or even in a continuous type setting which will be

discussed in Section 6.

The main difference between planer’s allocation and the equilibrium allocation is that in

the equilibrium, the payment to sellers is exactly equal to the payment that buyers make.

Also, because of the free entry condition, the buyers get 0, so the sellers get the whole surplus

in every submarket. However, it is feasible for the planner to give sellers in one submarket

more and sellers in other submarkets less than the surplus they generate. The only constraint

that the planner faces is the budget constraint over all submarkets. That is, the amount of

19The way that the planner implements the mechanism is to subsidize buyers in submarket one, that is,

t1 < 0. Since there is zero profit condition for buyers in each submarket, buyers in submarket one pays the

net amount of b1, anyway, which is equal to p1+t1. But t1 < 0, so p1 > b1. In other words, when the planner

imposes tax or subsidy on buyers in one submarket, it is as if the planner imposes that tax or subsidy on

sellers.
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transfers that buyers pay must be equal to amount of transfers that sellers receive over all

submarkets.

Entry of more buyers in a submarket creates two types of externalities on others. First, it

decreases the probability of matching of other buyers in that submarket. Second, it changes

the payoff of sellers in that submarket. In the complete information case, the change in the

payoff of sellers in one submarket does not affect the payoff of sellers in other submarkets.

In fact, under complete information, the negative externality that entrants impose on other

buyers is exactly offset by the amount of positive externalities that they impose on sellers

and therefore the equilibrium allocation is efficient. When there is private information, the

change in the payoff of one type of sellers alters the IC constraints that other buyers face

in other submarkets, thus affecting the set of feasible contracts that those buyers can offer

to attract other types of sellers. This, in turn, will affect the payoff of other sellers in other

submarkets. The buyers in the market economy does not take this effect into account. The

planner, in contrast, internalizes these externalities and therefore is able to increase welfare.

The inability of buyers to internalize the externalities they create on others in equi-

librium is similar to the situation in random search models with ex-post bargaining (like

Mortensen and Pissarides (1994)) in which the share of the surplus that buyers get is ex-

ogenously fixed, so the outcome is generally inefficient. Here, although the division of the

surplus to buyers and sellers is not exogenously fixed, it is endogenously pinned down by

two constraints that IC and free entry impose on the allocation, so it is generally unlikely

that the constrained efficiency is achieved by equilibrium. The planner can internalize these

externalities, because he is not constrained by the free entry condition at each submarket,

so he can make the buyers’ share of the surplus satisfy Hosios condition (See Hosios (1990)).

4.2 What If There Are No Gains from Trade for Some Types?

GSW show that in the asset market with lemons, if there are no gains from trade only for

type one, that is, b1 − c1 < 0 and b2 − c2 > 0, then the entire market will shut down. I show

that in this case the planner cannot help. See Appendix, Page 69, for the proof.

The intuition is as follows. Type two is not active in the equilibrium, so given IC of type

one, the highest payoff that type two can get in the market is negative, so type two chooses

not to participate in the market. Therefore, both IC are binding (both types get zero payoff

anyway.) The trick that worked in the proof of Theorem 1 is not effective here, because any

direct subsidies intended for type one equally attracts type two sellers, so type two would

also prefer to report to be type one. The takeaway message is that if the distortion is so

sever that inactivity of one type in equilibrium leads to inactivity of other types, then the
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Complete information Equilibrium allocation Planner’s allocation

θ1 θFB
1 θFB

1 θFB
1

θ2 θFB
2 θ

EQ
2 > θFB

2 θFB
2

a1 aFB
1 aFB

1 aFB
1

a2 aFB
2 a

EQ
2 > aFB

2 aFB
2

p1 pFB
1 ≡ v1(a

FB
1 )− k

q(θFB
1

)
v1(a

FB
1 )− k

q(θFB
1

)
pFB
1 − t1

p2 pFB
2 ≡ v2(a

FB
2 )− k

q(θFB
2

)
v2(a

EQ
2 )− k

q(θEQ
2

)
pFB
2 − t2

t1 0 0 − π2

m(θFB
1

)
(UFB

2 − UFB
1 ) + π2(τ − 1)φ2(a

FB
1 )

t2 0 0 π1

m(θFB
2

)
(UFB

2 − UFB
1 )− π1(τ − 1)

m(θFB
1

)

m(θFB
2

)
φ2(a

FB
1 )

Table 2: The rat race results. In equilibrium, the probability of finding a match and hours

of work of type two workers are distorted upward compared to the first best allocation. The

planner subsidizes type one (t1 < 0) and taxes type two (t2 < 0) to correct the distortions

and achieve the first best.

planner may not be able to help.

5 Example 2: The Rat Race

In this section I study another example from GSW, the rat race, which was originally dis-

cussed in Akerlof (1976). The main reason that I include this example is that the first best

here is achievable only through a separating allocation, in contrast to the previous example

(asset market with lemons) where the first best was achievable through a pooling allocation

(if π1b1 + π2b2 ≥ c2). The planner here achieves the first best by separating different types

and using appropriate transfers.

There are two types of workers (as sellers) on one side and firms (as buyers) on the other

side of the market. The payoff of a type i worker matched with a firm from a hours of

work and consuming t units of the numeraire good is t − φi(a). The worker’s payoff is 0

if unmatched. The payoff of a firm matched with a type i worker when the worker works

for a hours and the firm pays t units of the numeraire good (either to the worker or to the

planner) is vi(a) − t − k. The firm’s payoff is −k if unmatched. As a special case of the

original setting, here I = 2, n = 1 and ui(a) = −φi(a). Matching function m(θ) is strictly

concave and twice differentiable. I make the following assumptions:

Assumption 4. In the rat race example,

1. φi is differentiable, increasing, strictly convex and φi(0) = φ′
i(0) = 0.

2. For all a, φ1(a) = τφ2(a) where τ > 1.
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3. vi is differentiable, increasing and strictly concave.

4. For all a, v1(a) ≤ v2(a) and v
′
1(a) ≤ v′2(a).

Remember from Theorem 2 that Assumption 2 is sufficient for the planner to achieve

the first best. I argue here that if Assumption 4 holds, then Assumption 2 is automatically

satisfied and therefore I can use that result. Part 1 of Assumption 2 is satisfied because

−φ1(a) < −φ2(a) for all a. Part 2 of Assumption 2 (increasing differences property of u(.))

is satisfied because −φ2(a)− (−φ1(a)) is increasing in a due to the assumption that τ > 1.

Part 3 of Assumption 2 (increasing differences property of u(.) + v(.)) is satisfied because

v2(a)− φ2(a)− (v1(a)− φ1(a)) is increasing in a. Part 4 of Assumption 2 (supermodularity

of u(.) + v(.) in a) is trivially satisfied because a is just one-dimensional. Part 5(a) of

Assumption 2 (monotonicity of v(.)) is satisfied because v2(a) ≥ v1(a).

Proposition 2. If Assumption 4 holds and UFB
i > 0 for all i, then the planner achieves the

first best. See the fourth column of Table 2 for the full description of the constrained efficient

allocation.

This result is a special case of Theorem 2. The planner subsidizes type one (p̃CE
1 > pFB

1 )

and taxes type two (p̃CE
2 < pFB

2 ) to achieve efficiency. By offering this schedule of transfers,

allocating the low type workers higher wage and the high type workers lower wage than

their wages in the equilibrium with complete information, the planner discourages type one

workers from applying to submarket two, thus reducing the cost of private information.

An interesting point about this result is that the planner achieves the first best regardless

of the distribution of types. The intuition is that if the planner sets payments such that type

one gets at least payoff 0, then the planner can make positive amount of money over each

submarket.

GSW make the same assumptions except that they they do not impose v′1(a) ≤ v′2(a).

When UFB
2 −UFB

1 ≥ (τ − 1)m(θFB
2 )φ2(a

FB
2 ), then the equilibrium does not achieve the first

best. They propose a pooling allocation which Pareto dominates the equilibrium allocation

if π1 is sufficiently small, although the pooling allocation does not achieve the first best.

As stated earlier, the planner achieves the first best regardless of π1. Moreover, if π1 is

sufficiently small, then the planner’s allocation Pareto dominates the equilibrium allocation.
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6 Extension: Asset Market with a Continuous Type

Space

The model studied in this section is an extension of that in Section 4 to a continuous type

space. In Section 4, the efficient tax schedule requires high price assets to be taxed and

low price assets to be subsidized. An interesting question is whether the tax schedule which

implements the constraint efficient mechanism is generally monotone in the price of assets

or not.

This extension is interesting not only because it makes it possible to consider cases in

which the value of assets to sellers does not have the same order as the value of assets to

buyers, but also because I can answer some relevant policy questions about the optimal

taxation in the asset markets20. Also, studying this case makes it possible for us to compare

the planner’s allocation with the equilibrium allocation in Chang (2012). The setting in this

section is basically a static version of Chang’s environment, and fortunately the main ideas

regarding the equilibrium and the planner’s allocation are captured in this static case21.

Since this environment is not a special case of the original setting in Section 2, I need to

define the constrained efficient allocation again. The main ideas discussed so far will be used

similarly for this case as well, but the mathematical tools used to characterize the planner’s

allocation will be different.

6.1 Environment

There is a continuum of measure one of heterogeneous sellers indexed by z ∈ Z ≡ [zL, zH ] ⊂

R, with F (z) denoting the measure of sellers with types below z. F is continuously dif-

ferentiable and strictly increasing in z and F ′ is its derivative. Type z is seller’s private

information. Similar to the original setting, buyers’ and sellers’ payoffs are quasi-linear. A

buyer’s payoff who enters the market and gets matched with a type z is h(z)− t− k where

20I could do the same exercise with a discrete type space with more than two types, but the technical

analysis with a continuous type space is simpler.
21 In a dynamic setting, the planner has some intertemporal considerations, because the distribution of

types in the population does not necessarily remain the same over time, because some types get matched more

quickly than others and exit the market. This observation raises a new and interesting tradeoff, whether the

planner wants to have low types find a match early or he wants to have all types together all the way to the

end. The analysis of the dynamic setting is beyond the scope of this paper. Since the equilibrium allocation

is distribution free, the equilibrium analysis is much easier than the analysis of the planner’s problem in the

dynamic case. However, if one assumes in the dynamic setting that when sellers sell their assets, they are

endowed a new asset with the same quality, the same results can be obtained from the dynamic setting as

in the static setting, because the distribution of types does not change over time.
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t denotes the amount of a numeraire good that he produces and h(z) is the value of the

asset to the buyer in terms of the numeraire good. His payoff is −k if unmatched. The

payoff of a type z seller matched with a buyer is t− c(z) where t denotes the amount of the

numeraire good that he consumes and c(z) is the value of the asset to the seller in terms of

the muneraire good. His payoff is 0 if unmatched. Functions h : Z → R and c : Z → R are

twice continuously differentiable. Matching function m(.) is increasing, strictly concave and

twice differentiable with strictly decreasing elasticity. I also assume throughout this section

that there are positive gains from trade for all types. Similar to the discrete type space, it

turns out that all types will be active both in equilibrium and in the constrained efficient

allocation.

6.2 Complete Information Allocation or First Best

Here, I mostly follow the discussion of the complete information case for the discrete type

space in Section 3. Consider the market economy with the complete information. The buyers

who attempt to attract type z sellers solve the following problem:

UFB(z) = max
θ,p

{m(θ)(p− c(z))}

s.t. q(θ)(h(z)− p) ≥ k.

Let θFB(z) and pFB(z) denote the market tightness and the price that solve this problem.

I assume that UFB(z) > 0 for all z, that is, that there are positive gains from trade for all

types. Similar to the discrete type case, UFB(z) = maxθ{m(θ)(h(z) − c(z)) − kθ}. Also

θFB(z) solves

m′(θ)(h(z)− c(z)) = k, (1)

for both the planner and the market economy with complete information. The left hand side

of Equation 1 is the marginal benefit of adding one more buyer to the submarket composed

of z sellers. The right hand side is the marginal cost of doing that. The planner keeps adding

buyers to each submarket until the marginal cost and marginal benefit become equal22.

22To verify that the Hosios condition (Hosios (1990)) is satisfied in the market with complete information

with directed search, I calculate the share of the surplus that sellers get in equilibrium:

pFB(z)− c(z)

h(z)− c(z)
=

UFB(z)

m(θFB(z))(h(z)− c(z))
=

m(θFB(z))(h(z)− c(z))− kθFB(z)

m(θFB(z))(h(z)− c(z))

=
m(θFB(z))(h(z)− c(z))− θFB(z)m′(θFB(z))(h(z)− c(z))

m(θFB(z))(h(z)− c(z))
= −

θFB(z)q′(θFB(z))

q(θFB(z))
≡ η(θFB(z)),

where the third equality follows from Equation 1. Hosios condition states that a necessary condition for the

efficiency of any allocation is that the share of the surplus that type z sellers get from the match, p−c(z)
h(z)−c(z) ,
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6.3 Definition of the Planner’s Problem

Because our focus in this section is the shape of the optimal tax schedule, whether the optimal

tax schedule be monotone in the price of assets or not, the interesting concept to study is

the concept of implementable allocation and not direct mechanism. The main definition

of implementable allocation in this section is a straightforward modification of definition

in Section 2 to allow for a continuous type space. The definition of constrained efficient

mechanism and also Lemma 1 can be modified in a straightforward way too. However, I do

not repeat them here for the sake of brevity. (See Appendix, Section 8.6.) Specifically, it can

be proved in exactly the same fashion as in Lemma 1 that for any feasible direct mechanism,

there exists an associated implementable allocation under which all types get exactly the

same payoff as in the direct mechanism.

Definition 6. An implementable allocation, {P,G, θ, µ, t, T}, is a measure G on the set

of all possible prices, P ≡ R+, with support P , a tightness function, θ : P → [0,∞], a

conditional density function of buyers’ beliefs regarding the type of sellers who would apply

to p, µ : P× Z → [0, 1], a tax function denoting the amount of tax to be imposed on buyers

at each submarket conditional on trade, t : P → R, and finally the amount of the numeraire

good to be transferred to sellers in a lump sum way, T ∈ R+
23, which satisfies the following

conditions:

(i) Buyers’ profit maximization and free entry

For any p ∈ P,

q(θ(p))[

∫

h(z)µ(z|p)dz − p− t(p)] ≤ k,

with equality if p ∈ P .

(ii) Sellers’ optimal search

Let U(z) = max

{

0,maxp′∈P
{
m(θ(p′))(p′ − c(z))

}
}

+ T and U(z) = T if P = ∅. Then for

any p ∈ P and z, U(z) ≥ m(θ(p))(p − c(z)) + T with equality if θ(p) < ∞ and µ(z|p) > 0.

Moreover, if p− c(z) < 0, either θ(p) = ∞ or µ(z|p) > 0.

(iii) Feasibility or market clearing

For all z,
∫

P
µ(z|p)
θ(p)

dG(p) ≤ F ′(z), with equality if U(z) > T .

(iv) Planner’s budget constraint
∫

P

q(θ(p))t(p)dG(p) ≥ T.

for any z must be equal to the elasticity of matching function with respect to the number of sellers. As

shown above, the equilibrium allocation under complete information satisfies this property.
23In this section, since I have assumed that there are positive gains from trade for all types, it is easy to

check that T is redundant. That is, the welfare level will not be lower without T .
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Definition 7. A constrained efficient allocation is an implementable allocation which maxi-

mizes welfare among all implementable allocations. That is, a constrained efficient allocation

solves the following problem:

max
{P,G,θ,µ,t,T}

∫

U(z)dF (z)

s. t. {P,G, θ, µ, t, T} is implementable,

where U(z) is define in part (ii) of Definition 6.

6.4 Characterization

6.4.1 Characterization of the Constrained Efficient Allocation

To find a direct mechanism which solves the planner’s problem, I use somewhat a backward

approach. I first guess that the planner can achieve the first best. That is, the planner can

maximize his objective function for each type separately. Then I find a set of prices such

that sellers’ IC conditions are satisfied. Given this set of prices, I derive sufficient conditions

under which the planner’s budget constraint and participation constraint of all types hold

simultaneously. To find an implementable allocation which implements this direct mecha-

nism, I calculate taxes in such a way that buyers’ maximization and free entry (condition

(i) in Definition 6) for on-the-equilibrium-path prices are satisfied. Finally I construct taxes

and beliefs for off-the-equilibrium-path prices. Checking for other conditions in Definition

6, then, would be easy.

Assumption 5. For all z, c′(z) > 0 and either

1. h′(z) ≤ 0 for all z, or

2. h′(z) ≤ c′(z) and ψ( k
h(z)−c(z)

)
[
h(z)−c(z)

c′(z)

]
≥ F (z)

F ′(z)
for all z, where ψ(.) ≡ η(m′−1(.)) and η(θ) ≡

− θq′(θ)
q(θ)

.

Proposition 3. If Assumption 5 holds and UFB(z) > 0 for all z, then the planner achieves

the first best.

Given any implementable allocation, define correspondence Ω(z) as follows

Ω(z) ≡ {(p, θ(p), t(p)) such that µ(z|p) > 0}.

Denote the elements of Ω(z) by (p̃(z), θ̃(z), t̃(z)) showing the price, market tightness and the

tax amount (imposed on buyers) of the submarkets to which type z applies with a strictly

31



positive probability. Basically, p̃(z), θ̃(z) and t̃(z) are elements of a direct mechanism24.

Similar to the notation in previous sections, x̃(z) denotes the variable x allocated to type

z in a direct mechanism, whether the direct mechanism be used for a constraint efficient

allocation or an equilibrium allocation.

It is shown in the proof of Proposition 3 that all types trade in submarkets with different

market tightness, therefore the allocation is separating and p̃CE(z), θ̃CE(z) and t̃CE(z) are

just functions (as opposed to correspondences) of z. It is also shown in the proof that these

variables are given as follows:

θ̃CE(z) = θFB(z) for all z,

p̃CE(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃CE(z0))c
′(z0)dz0

m(θ̃CE(z))
for all z, (2)

where

U(zH) =

∫
[
m(θ̃CE(z))(h(z)− c(z))− kθ̃CE(z)−m(θ̃CE(z))c′(z)

F (z)

F ′(z)

]
dF (z),

and

t̃CE(z) = h(z)− p̃CE(z)−
k

q(θ̃CE(z))
for all z. (3)

To have a rough idea how the planner can undo the effects of private information and

achieves the first best, I proceed by analyzing the incentive compatibility problem that the

planner faces. I assume (without loss of generality) that sellers are allocated to different

submarkets through a direct mechanism. That is, if a type z agent reports ẑ, his payoff is

given by m(θ̃(ẑ))(p̃(ẑ) − c(z)). In a direct mechanism, agents of type z choose a ẑ which

maximizes their payoff:

max
ẑ

{m(θ̃(ẑ))(p̃(ẑ)− c(z))}. (4)

I keep the assumption that c′(z) > 0 throughout this section, so the seller’s payoff func-

tion,m(θ)(p(z)−c(z)), satisfies single crossing condition. (See Theorem 7.3 in Fudenberg and Tirole

(1991).) As already discussed in the sketch of the proof of Theorem 2, θ̃(z) being decreas-

ing in z implies that there exists a set of transfers to sellers that satisfies IC. Now assume

h′(z) ≤ 0 for all z or h′(z) ≤ c′(z) for all z. In either case, θFB(z) is decreasing in z according

to Equation 1. Therefore, if θ̃(z) is set to be equal to θFB(z) for all z, one can find such

24Here, having t̃(z) as a tax amount in the direct mechanism is an abuse of notation. This is because I

have defined the direct mechanism in such a way that transfers are made only to sellers and the planner just

ensures that buyers get an ex-ante payoff 0. Therefore, t̃(z) should be interpreted as the tax amount that

buyers should pay in the implementable allocation if they are matched with type z sellers. The reason that

I define it as a function of z is because it makes the analysis simpler and more intuitive.
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transfers. Then according to Envelop theorem, one can calculate these transfers as given in

Equation 2.

Since θ̃(z) is strictly decreasing here (because θFB(z) is strictly decreasing), then the

associated implementable allocation must be separating, so the amount of tax that should

be imposed on buyers in each submarket, t̃(z), will be a function (not a correspondence) of

z and can be easily calculated by buyers’ profit maximization and free entry condition. I

provide sufficient conditions in the proof such that the planner’s budget constraint also holds.

If h′(z) ≤ 0, then the planner has enough resources to distribute among agents regardless of

the distribution. If h′(z) ≤ 0 is not satisfied for some z but h′(z)− c′(z) ≤ 0 still holds for all

z, then I need another condition (in part 2 of Assumption 5) which relates the distribution

of types to the payoff and matching functions to ensure that the planner’s budget constraint

is satisfied.

Proposition 3 analyzes just one possible case for the planner’s problem where mono-

tonicity constraint (that θ̃(z) should be decreasing in z) and participation constraint for

almost all types are not binding. Analyzing other cases where monotonicity constraint or

participation constraint is binding does not add much insight to the analysis, so I skip it.

As an example, I solve the planner’s problem for the case where participation constraint is

binding in Appendix, Section 8.6.3. For the case where monotonicity constraint is binding,

one can use existing techniques from mechanism design literature to bunch multiple types.

The characterization in that case is available upon request.

6.4.2 Characterization of Equilibrium Allocation

I report the results of a static version of Chang (2012) here and compare the equilibrium

allocation with the planner’s one. Definition of equilibrium is similar to the definition of

implementable allocation here, but with the restriction that taxes and transfers must be all

equal to 0. I do not repeat the definition of equilibrium here to save space. See Chang (2012)

for more details on the equilibrium definition. I study a static model while she studies a

dynamic model. To see why I consider a static model, see Footnote 21. Chang assumes that

utility of holding the asset until finding a buyer is different across different types of assets.

Similarly, I assume sellers with high z values their assets more (c′ > 0).

Assumption 6. c′(z) > 0 and h′(z) ≥ 0 for all z.

Proposition 4 (Equivalent to Proposition 1 in Chang (2012)). If Assumption 6 holds and if

UFB(z) > 0 for all z, then there exists a unique equilibrium. The equilibrium is separating.

The market tightness solves the differential equation 6. The initial condition is given by

θ̃EQ(zL) = θFB(zL). Prices are given by p̃EQ(z) = h(z)− k
q(θ̃EQ(z))

.
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Condition Necessary condition for I.C Initial conditions

0 < c′(z) and 0 < h′(z) dθ̃
EQ

dz
< 0 θ̃EQ(zL) = θFB(zL)

0 < c′(z) and 0 > h′(z) dθ̃
EQ

dz
< 0 θ̃EQ(zH) = θFB(zH)

0 > c′(z) and 0 < h′(z) dθ̃
EQ

dz
> 0 θ̃EQ(zL) = θFB(zL)

0 > c′(z) and 0 > h′(z) dθ̃
EQ

dz
> 0 θ̃EQ(zH) = θFB(zH)

Table 3: Equilibrium allocation in different cases in the asset market with continuous type

space

I explain the logic behind her result. See her paper for the formal proof. First note that

the IC constraints that agents face in the market economy are the same as those the planner

faces, therefore I can use Equation 4 to describe IC constraints for analyzing equilibrium

too. The only difference is that the prices are different in the market economy, because

they are pinned down by the free entry condition. Chang shows that any equilibrium under

Assumption 6 is separating, so free entry implies that p̃EQ(z) = h(z) − k
q(θ̃EQ(z))

for all z.

Therefore, the payoff of type z in the market economy, denoted by UEQ(z), is calculated as

follows:

UEQ(z) = max
ẑ

{m(θ̃EQ(ẑ))(h(ẑ)− c(z))− kθ̃EQ(ẑ)}, (5)

where the objective function is the payoff of type z if he reports type ẑ. FOC with respect

to ẑ (together with the assumption of differentiability of θ̃(z)) yields

[

m′(θ̃EQ(z))(h(z)− c(z))− k
] dθ̃EQ(z)

dz
+m(θ̃EQ(z))h′(z) = 0, (6)

where I used the fact that at the solution, ẑ = z due to IC.

With respect to the initial condition, roughly speaking, the market delivers the complete

information payoff to the type which has the most incentive to deviate. For example, when

h′ ≥ 0, the lowest type has the most incentive to deviate, so his allocation is set to the

complete information level, i.e., θ̃EQ(zL) = θFB(zL). The necessary condition for IC and the

initial condition for the differential equation are depicted in Table 3 for different assumptions,

where c′ and h′ are both positive or both negative, or only one of them is positive.

6.4.3 Disagreement in the Ranking of Assets between Buyers and Sellers or

Two-dimensional Private Information

Chang (2012) assumes in another part of her paper that sellers have another dimension

of private information. Some sellers get liquidity shocks so they need to sell their assets

quickly. What is relevant to our discussion is that following this extension, it is possible
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that function h has a strict local maximum, keeping the assumption c′(z) > 0 fixed. If h

has a strict local maximum, she proves that full separation in the market is not possible.

Also, she derives some conditions under which an equilibrium with fire sales exists, where

many low type sellers and some high type sellers who need liquidity sell their assets with

a lower price but very quickly. My characterization, in contrast, shows if h′(z) ≤ c′(z) and

if part 2 of Assumption 5 or Assumption 6 holds, even if h has a local maximum, then the

constrained efficient allocation is separating, that is, the planner wants different types to

trade in different submarkets. This case is depicted in Figure 4 where h′(z) is drawn in

terms of c′(z) for all z.

Now suppose h′(z) − c′(z) ≤ 0 is violated for some z. For example, h − c has one local

minimum, but h′(z) ≥ 0 and c′(z) > 0 both hold, as depicted in Figure 5. The equilibrium in

this case is separating. The planner’s allocation, in contrast, involves some pooling, because

monotonicity constraint (that θ̃CE(z) should be decreasing in z) cannot be satisfied through

any separating allocation25. The bottom line is that pooling of types occurs under different

conditions in the planner’s allocation and the equilibrium allocation.26 The welfare level in

the planner’s problem is strictly higher than that in the equilibrium by the same argument

made in the proof of Theorem 1 even if the planner does not achieve the first best.

6.5 Examples of the Optimal Taxation

In this section, I present two examples in order to compare the first best (FB), equilibrium

(EQ) and constrained efficient (CE) allocations and to figure out what types should be taxed

and what types should be subsidized.

Example 1. Model parameters: m(θ) = 1 − e−θ, Z = [9, 10.5] ⊂ R, c(z) = z, h(z) =

0.04(z − 6.5)(z − 7)(z − 10) + 17, k = 1, and F (.) is uniform.

Here, c′ > 0, h′ > 0 and h′ − c′ < 0. It is easy to check that part 2 of Assumption 5

is satisfied, therefore Proposition 3 holds. Hence, the market tightness at the constrained

efficient allocation is given by θ̃CE(z) = θFB(z) = m′−1(h(z)−c(z)
k

) = ln(h(z)−c(z)
k

). Then,

p̃CE(z) and t̃CE(z) are derived from Equation 2 and Equation 3. The net payment that

buyers make in the constrained efficient allocation, p̃CE(z) + t̃CE(z), is equal to pFB(z) ≡

h(z)− k
q(θFB(z))

. Regarding equilibrium allocation, θ̃EQ(z) is derived from differential equation

25Solving explicitly for the planner’s allocation in this case does not give us new insights, so I skip its

analysis. For example, see the appendix of chapter 7 in Fudenberg and Tirole (1991).
26Roughly speaking, the planner is concerned with the surplus from the match not the value of the match

to buyers only, so in the conditions regarding the planner’s allocation, usually h − c shows up. The buyers

in the equilibrium are concerned with the value of the assets to themselves, so in the conditions regarding

the allocation, usually h shows up, not h separately.
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6 with the initial condition θ̃EQ(9) = θFB(9). The price that buyers pay in equilibrium is

p̃EQ(z) = h(z)− k
q(θ̃EQ(z))

.

In Figure 6, h(z) and c(z) in the left graph and h(z)−c(z) in the right graph are depicted.

In the upper part of Figure 7, p(z) and θ(z) for all three cases (FB, EQ and CE) are depicted.

In this example, since Assumption 5 holds, θ̃CE is equal to θFB. On ther other hand, θ̃EQ

is less than θFB, because market tightness is basically the tool that buyers in the market

economy use to screen high type sellers. Low type sellers prefer to sell their assets more

quickly, because they do not want to get stuck with their “lemons.” Consequently, p̃EQ is

greater than pFB. Also, p̃CE is higher for lower types and lower for higher types compared to

pFB. Since the market tightness is the same in FB and CE, the price that buyers should pay

in CE should be the same as that in FB in order for buyers’ profit maximization and free

entry condition to be satisfied. On the other hand, p̃CE is the payment that sellers should

receive in CE. Therefore, the amount of tax that buyers should pay, t̃CE, is just equal to the

difference, pFB − p̃CE. In the lower left part of Figure 7, t̃CE(z) is drawn in terms of z. Also,

t̃CE(z) is drawn in terms of p̃CE(z) in the lower right part of the figure. In Figure 8, the

payoff to sellers of different assets in EQ, FB and CE is depicted. As seen from the figure,

the constrained efficient allocation Pareto dominates the equilibrium allocation.

The predictions of this model regarding monotonicity of t̃CE(z) in terms of z is the same

as predictions of the simple two-type example studied in Section 4. As a result, one might

think that if buyers and sellers agree on the ranking of assets, the monotonicity of the optimal

tax schedule must be a general result. However, this is not true. Specifically, I show in an

example that if h′(z) ≥ 0 for all z and h′(zL) = 0, then the optimal tax schedule is not

monotone in the price of assets. Specifically, dtCE(p)
dp

|p=pL < 0 and dtCE(p)
dp

|p=p0 > 0 for some

other p0. The proof is in Appendix (Section 8.6.2).

Next, I study another example where h has a local maximum and therefore separation

of types in equilibrium is not possible, as explained in the last subsection. Also, the tax

schedule will be non-monotone in the price of assets.

Example 2. Model parameters: m(θ) = 1 − e−θ, Z = [6, 10.5] ⊂ R, c(z) = z, h(z) =

0.04(z − 6.5)(z − 7)(z − 10) + 17, k = 1, and F (.) is uniform.

Note that functions c and h are both the same as in Example 1. Only the domain (Z)

is different. Now, h has a strict local maximum, so the equilibrium will not be separat-

ing. Similar to the previous example, Assumption 5 is satisfied, therefore Proposition 3

holds. Hence, the market tightness at the constrained efficient allocation is similarly given

by θ̃CE(z) = θFB(z) = m′−1(h(z)−c(z)
k

) = ln(h(z)−c(z)
k

).

According to the algorithm proposed by Chang (2012), I calculate one semi-pooling equi-
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librium where types z ∈ [6, 9) trade in a pool with a low price but with high probability. Types

z ∈ (9, 10.5] trade in separating submarkets. Type z = 9 is indifferent between the pool and

one of the separating submarkets. Prices are calculated similarly as explained in Example 1.

In Figure 9, the value of assets to buyers (left), the value of assets to sellers (middle)

and the surplus generated by each type (right) are depicted. In the upper part of Figure

10, price and market tightness for EQ, FB and CE are depicted. Similar to the previous

example, market tightness in CE is the same as that in FB. Market tightness in EQ for

types z ∈ [6, 9) is higher than that in FB and is less for other types. Taxes are calculated in

the same way as in Example 1. An interesting fact here is that the amount of tax imposed

on buyers is neither monotone in the type of sellers that buyers meet (the lower left graph

in Figure 10), nor in the price paid to sellers (the lower right graph in the same figure) or

buyers (not shown in this figure). Finally in Figure 11, the payoff to sellers of different assets

in EQ, FB and CE is depicted similarly to Figure 8.

6.6 Sales Tax and Entry Tax

As shown in the previous subsection, even if buyers and sellers agree on the ranking of

assets, it is still possible that the tax schedule imposed on buyers conditional on trade is not

monotone in the price of assets. One disadvantage of a non-monotone tax schedule is that

it is extremely hard to implement it in the real world. Although it is usually assumed in

the literature (including in this paper) that the planner has precise information about the

distribution of types and the payoff structure of assets in our models, but ideally one wants

to reduce the dependence of what the planner should do on the details of the economy. If the

tax schedule is non-monotone in the price of assets, this dependence is crucial. In contrast, if

the tax schedule is monotone, possible errors in implementation may cause less inefficiencies.

This is because there exists exactly one price with the property that trades with prices above

that should be taxed and other trades should be subsidized27.

Given that a monotone tax schedule is desirable, in this subsection I suggest another tax

schedule in addition to the tax schedule discussed so far. Therefore, buyers will be subject

to two types of taxes, one is conditional on entry to each submarket (entry tax) and the

other one conditional on trade (sales tax). The definition of implementable tax schedule

should be slightly modified to include both types of taxes. See Appendix, Section 8.7 for

27Of course, that would be more desirable if the optimal tax schedules are linear, because then all the

planner needs to determine is just the slope of the tax schedules. Since the payoff structure in our problem

is general, one of the two tax schedules suggested in this section to implement the direct mechanism is not

linear in general.
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the details. I show in the following proposition that in general any feasible mechanism can

be implemented by a decreasing entry tax and an increasing sales tax both in the price of

assets.

Proposition 5 (Implementation of the direct mechanism with monotone entry and sales

tax). Assume c′(z) > 0 for all z. Take any feasible mechanism. Assume that all types get

a strictly positive payoff and also that the market tightness allocated to different types is

all different. Then there exists an associated implementable allocation with monotone tax

schedules in the price of assets, decreasing entry tax and increasing sales tax, such that

all types get the same payoff as what they get in the feasible mechanism.

To understand why t̃(z) may not be monotone in z in absence of entry tax and how entry

tax may solve this problem, I write the free entry condition as follows, given the fact that

the allocation is separating: q(θ̃CE(z))(h(z)− p̃CE(z)− t̃CE(z)) = k. Therefore,

t̃CE(z) = h(z)−
k

q(θ̃CE(z))
︸ ︷︷ ︸

decreasing

− p̃CE(z)
︸ ︷︷ ︸

increasing

.

The term k
q(θ̃CE(z))

is decreasing in z because θ̃CE(z) is decreasing in z. I show now that

p̃CE(z) is strictly increasing28 in z. According to Equation 2, one can write:

d[m(θ̃CE(z))p̃CE(z)]

dz
= m′(θ̃CE(z))

dθ̃CE(z)

dz
c(z).

Hence
dp̃CE(z)

dz
= −

m′(θ̃CE(z))

m(θ̃CE(z))

dθ̃CE(z)

dz
(p̃CE(z)− c(z)). (7)

But p̃CE(z)−c(z) is strictly positive, for otherwise, type z will be inactive, thus contradicting

the assumption that all types are active. Since θ̃CE(z) is strictly decreasing, the right hand

side of the above equation is strictly positive, that is, p̃(z) is strictly increasing.

Hence, in general it is not guaranteed that t̃CE(z) is monotone in z. The idea to make

t̃CE(z) monotone is to add an entry tax for each submarket, t̃e(z), so the free entry condition

can be written as follows:

t̃(z) = h(z)−
k + t̃e(z)

q(θ̃(z))
− p̃(z).

If t̃e(z) is constructed to be decreasing sufficiently fast in z, then the effect of k+t̃e(z)

q(θ̃(z))
dominates

the effect of p̃(z) and so t̃(z) becomes increasing in z.

28The derivation below holds not only for the constrained efficient allocation but also for any allocation

that satisfies IC and sellers’ participation constraint.
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One important point here is that since entry tax will be collected even before buyers get

to find a match, it cannot be less than −k, for otherwise, buyers would not have incentive

to participate in the allocation. In other words, if the entry tax for a submarket is less than

−k, then buyers pay the tax (basically get this subsidy) and make a positive profit net of

the entry cost, t̃e + k, and then do not participate in the matching stage which gives them a

strictly negative payoff. Therefore, k + t̃e(z) ≥ 0 is another constraint for the construction

of the optimal tax schedule that I take into account in the proof.

Corollary 1. Take any constrained efficient mechanism (which is a direct mechanism).

Then there exists an associated constrained efficient allocation (which is an implementable

allocation) such that all types get exactly the same payoff as in the direct mechanism and the

entry tax is decreasing and the sales tax is increasing in the price of assets.

7 Conclusion

I have characterized the constrained efficient allocation in an environment with directed

search and adverse selection. Under similar assumptions that GSW make to characterize

the unique equilibrium, the planner can achieve strictly higher welfare than the equilibrium

if the equilibrium fails to achieve the first best. Under a different assumption (Assumption

2), the planner can even achieve the first best. The main idea is that the planner tries to

use transfers rather than market tightness or production level to have incentive constraints

satisfied.

In the market economy, the buyers do not take into account the effect of their entry on

the set of feasible submarkets available to buyers who want to attract other types of sellers.

Entry of a buyer to a submarket changes the payoff of sellers in that submarket and this in

turn, through incentive compatibility constraints, changes the set of feasible contracts that

buyers can post in other submarkets and eventually changes the payoff of sellers in other

submarkets. The planner takes this externality into account and therefore, he is able to

increase welfare by imposing appropriate taxes and subsidies.

I illustrated my results in different examples. In an asset market example in Section 6,

I showed that if the value of assets to sellers is increasing and the surplus created by assets

is decreasing in the type of assets (c′ > 0 and h′ − c′ ≤ 0), then the planner can achieve

the first best by subsidizing low price assets and taxing high prices ones in a large class of

environments. The optimal tax schedule, however, is not generally monotone in the price of

assets, e.g., when buyers and sellers do not agree on the ranking of assets (which happens if

some sellers of high quality assets are financially distressed so they are in an urgent need to
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sell their assets).

If directed search with adverse selection is a good framework to capture what happened

in OTC markets during the recent financial crisis, as Chang (2012) and Guerrieri and Shimer

(2014) use the same framework to analyze these markets, then my results imply that it is not

an optimal policy to subsidize the purchase of all low price assets when there are fire sales

in asset markets. That is, asset subsidy programs may have not been the best policy from

a social point of view (although it may have increased liquidity of assets). Then I showed

that if buyers are subject to two types of taxes, not only sales tax but also entry tax, then

there exist monotone tax schedules, increasing sales tax and decreasing entry tax, which

implement the constrained efficient mechanism.

I have assumed in this paper that agents match bilaterally. An important question is

that if one considers a more general framework and allows several sellers to meet with a

buyer so that sellers face some competition after meeting a buyer, whether it induces sellers

to reveal their types less costly? And importantly, does the equilibrium remain constrained

inefficient? In a work in progress, I study a similar environment but with many-on-one

meetings. Buyers post mechanisms (which possibly depend on the number of sellers who

will show up and on their reports) and commit to them. For example buyers might post

second price auctions with reserved prices. I want to characterize both equilibrium and the

constrained efficient allocation in such an environment. My conjecture is that the equilibrium

will remain constrained inefficient. This is yet to be verified.
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h′(z)− c′(z) = 0

c′(z)

h′(z)

Planner’s allocation is
separating if (c′(z), h′(z))

lies here for all z

(c′(zL), h
′(zL))

(c′(zH), h
′(zH))

Figure 4: Assume that h(z) has a strict local maximum but h′(z) − c′(z) ≤ 0 for all z. Also assume

that the distribution is such that part 2 of Assumption 5 (or Assumption 7 in Appendix) holds. Because

the value of assets to sellers with higher z is not monotone in z, the equilibrium will involve some pooling.

Chang (2012) shows this point formally in her Proposition 5. However, the planner’s allocation is separating.

The planner can actually achieve the first best according to Proposition 3. Symmetrically, if c′(z) < 0 and

h′(z) − c′(z) ≥ 0, and if a similar condition to part 2 of Assumption 5 or Assumption 7 holds, then the

planner will get a separating allocation.
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h′(z)− c′(z) = 0

c′(z)

h′(z)

Equilibrium allocation is
separating if (c′(z), h′(z))

lies in one quadrant for all z

(c′(zL), h
′(zL))

(c′(zH), h
′(zH))

Figure 5: Here, h− c has an interior local minimum and h′(z) ≥ 0 for all z. Since h′(z) ≥ 0 for all z, then

the equilibrium allocation is separating. However, the planner’s allocation is pooling, because monotonicity

constraint is not satisfied. Indeed, the planner wants to pool all types higher than a threshold in one

submarket.
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Figure 6: The payoff structure of different assets for the model parameters in Example 1

is depicted here. In the left graph, the value of type z asset to buyers, h(z), (in blue) and

the value of type z to sellers, c(z), (in red) are depicted. Gains from trade, h(z) − c(z), is

depicted in the right graph.
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Price

Type of Sellers (z)
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Market Tightness

Type of Sellers (z)

9 9.5 10 10.5
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−0.5

0

0.5

1
Optimal tax

Type of Sellers (z)
14.65 14.7 14.75

−1
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0.5

1
Optimal tax−Price

Price

Figure 7: Model parameters are defined in Example 1. In the upper left graph, the price

that sellers get in FB (in green), in CE (in red) and in EQ (in dashed blue) are depicted. In

the upper right graph, market tightness for each type in FB and CE (in green) and in EQ

(in blue) are depicted. In the lower left graph, the optimal level of submarket-specific taxes

that buyers should pay, t̃CE(z), is depicted in terms of z. In the lower right graph t(z) is

depicted in terms of the price that sellers get, p̃CE(z). It is observed here that the efficient

tax schedule is monotone in the type or price of assets.
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Equilibrium
Constrained Efficient
First Best

Figure 8: Model parameters are defined in Example 1. The expected payoff to sellers in

FB (in green), in CE (in dotted red) and in EQ (in dashed blue) are depicted. CE Pareto

dominates EQ in this example.
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Figure 9: The payoff structure of different assets for the model parameters in Example 2

is depicted here. In the left graph, the value of type z asset to buyers, h(z), in the middle

graph the value of type z asset to sellers, c(z), and in the right graph the gains from trade,

h(z)− c(z), are depicted.
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Figure 10: This figure is similar to Figure 7 but with model parameters defined in Example

2. In the upper left graph, the price that sellers get in FB (in green), in CE (in dashed red)

and in EQ (in blue) are depicted. In the upper right graph, market tightness for each type

in FB and CE (in green) and in EQ (in blue) are depicted. In the lower left graph t(z) is

depicted in terms of z and in the lower right graph t̃CE(z) is depicted in terms of p̃CE(z).

The efficient tax schedule is non-monotone in the type or price of assets.
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Figure 11: This figure is similar to one in Figure 8 but with model parameters defined in

Example 2. The expected payoff to sellers in FB (in green), in CE (in dashed red) and in

EQ (in blue) are depicted. CE Pareto dominates EQ in this example, too.
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8 Appendix

8.1 Direct Mechanism: Definitions and Proofs

I take a constrained efficient mechanism. I show by construction that there exists a con-

strained efficient allocation associated with the direct mechanism which delivers the same

welfare. Before I get to the results, note that the budget constraint in the constrained effi-

cient mechanism is always binding. Otherwise, one can increase all s̃i by an identical small

amount. Then all other conditions continue to be met, but welfare strictly increases.

Proof. Proof of Lemma 1

Given a constrained efficient mechanism {(ãi, p̃i, s̃i, θ̃i)}i∈{1,2,...,I}, I construct an imple-

mentable allocation which delivers the same welfare. First, define N to be the set of all

types who get matched with strictly positive probability in the direct mechanism, that is,

N ≡ {i|θ̃i > 0}. Second, set

T =







s̃i if ∃i such that θ̃i = 0

0 otherwise
.

Third, for all i ∈ N construct yki as follows:

yki = (ãi, p̃i +
s̃i − T

m(θ̃i)
).

and also set t(yki) = vi(ãi)− p̃i −
s̃i−T

m(θ̃i)
− k

q(θ̃i)
and

Y P =
{
yki |i ∈ N}, θ(yki) = θ̃i, γi(yki) = 1, λ({yki}) = πiθ̃i, (8)

For any other submarket y /∈ Y P , define K(y) = {j|uj(a) + p > 0} to denote the types

which get a strictly positive payoff by applying to to y. If K(y) 6= ∅ and minj∈K(y){
Uj

uj(a)+p
} <

m̄ ≡ limθ→∞m(θ), then set θ(y) such that

m(θ(y)) = min
j∈K(y)

{
Uj

uj(a) + p
}.

If the latter equation holds for several θ(y), then pick the greatest one. If K(y) = ∅, or

minj∈K(y){
Uj

uj(a)+p
} ≥ m̄, then set θ(y) = ∞. To define the composition function for y /∈ Y P ,

define n = min{argminj∈K(y){
Uj

uj(a)+p
}} and set γn(y) = 1. If K(y) = ∅, then Γ(y) can be

chosen arbitrarily, so for example set γ1(y) = 1. Also for y /∈ Y P , set t(y) = maxi,a vi(a)− p.

T is well-defined, because if there are more than one i with θ̃i = 0, then s̃i must be the

same for all of them, for otherwise, sellers’ incentive compatibility constraint in the definition
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of feasible mechanism is violated. All yki are also well-defined, because θ̃i cannot be equal

to 0. Moreover, t(y) is well-defined too, since no θ̃i can be equal to ∞. If θ̃i goes to ∞ for

some i, then the planner’s budget-balance condition will be violated, because the planner

needs to spend infinite amount of resources to finance entry of buyers (the left hand side of

the planner’s budget constraint goes to −∞).

If there exist i and j (i 6= j) such that yki = ykj , I show below thatm(θ̃i) = m(θ̃j). Assume

without loss of generality that θ̃i ≤ θ̃j. Then I keep yki and remove ykj and let γi(yki) =
πi

πi+πj
,

γj(yki) =
πj

πi+πj
, λ({yki}) = (πi + πj)θ̃i and t(yki) =

πivi(ãi)+πjvj(ãi)

πi+πj
− p̃i −

s̃i−T

m(θ̃i)
− k

q(θ̃i)
. Now I

show that m(θ̃i) = m(θ̃j).

According to sellers’ incentive compatibility constraint29 (for type i to report j), one can

write: m(θ̃i)(ui(ãi) + p̃i) + s̃i ≥ m(θ̃j)(ui(ãj) + p̃j) + s̃j = m(θ̃j)(ui(ãj) + p̃j +
s̃j−T

m(θ̃j)
) + T

= m(θ̃j)(ui(ãi) + p̃i +
s̃i−T

m(θ̃i)
) + T where the second equality follows from the assumption that

yki = ykj . This implies that (m(θ̃i)−m(θ̃j))(ui(ãi)+p̃i+
s̃i−T

m(θ̃i)
) ≥ 0. If θ̃k = 0 for all k, so T = 0

by construction, and due to the participation constraint for type i, m(θ̃i)(ui(ãi)+ p̃i)+ s̃i ≥ 0.

Therefore, m(θ̃i) ≥ m(θ̃j). Now assume that there exists k such that θ̃k = 0. IC constraint

for type i to report k implies that m(θ̃i)(ui(ãi) + p̃i) + s̃i ≥ s̃k = T for all i. Therefore,

whether there exists k with θ̃k = 0 or not, ui(ãi) + p̃i +
s̃i−T

m(θ̃i)
≥ 0. Thus, m(θ̃i) ≥ m(θ̃j).

Similarly by considering the sellers’ incentive compatibility constraint for j to report i, we

can get m(θ̃j) ≥ m(θ̃i). Therefore, m(θ̃j) = m(θ̃i).

The proposed allocation is implementable because of the following reasons. Regarding

sellers’ maximization condition, I first show that Ui ≥ m(θ(y))(ui(a) + p) + T for all

y ∈ Y P and i ∈ N . We know that if y ∈ Y P , then there exists i ∈ N such that y = yki .

Therefore I need to show that

m(θki)(ui(aki) + pki) ≥ m(θkj)(ui(akj) + pkj) for j ∈ N, (9)

and

m(θki)(ui(aki) + pki) ≥ T. (10)

29I stated in the main body of the paper that if one allows the planner to use direct mechanism with

lotteries and randomization, then there might be some loss of generality in formulating the problem as

formulated in the definition of constrained efficient allocation. This is exactly where we can see why. If

the planner uses randomization, then incentive compatibility holds not necessarily for each (ãi, p̃i, s̃i, θ̃i),

but holds in expectation. Therefore, if there are two yki
and ykj

which are equal and types i and j are

allocated to them with positive probability, it might be the case that θki
and θkj

are not equal, thus we

cannot construct an implementable allocation from that direct mechanism. As stated earlier, the planner

might want to use lotteries if his objective function is not concave or his constraint set is not convex.
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To show the above inequalities, note that

m(θki)(ui(aki) + pki) = m(θ̃i)(ui(ãi) + p̃i) + s̃i − T ≥ m(θ̃i)(ui(ãj) + p̃j) + s̃j − T

for all j. The equality follows from the construction of yki . The inequality follows from

the incentive compatibility condition in the direct mechanism. The right hand side equals

to 0 if j /∈ N and equals to m(θkj)(ui(akj) + pkj) if j ∈ N due to the construction of ykj .

Thus, Equation 9 is established. For Equation 10, if there exists j such that j /∈ N , then

θ̃j = 0, s̃j = T and the equation is established. If N = {1, 2, ..., I}, then T = 0 and

m(θki)(ui(aki) + pki) ≥ 0 due to the participation constraint in the direct mechanism.

Now I show that Ui ≥ m(θ(y))(ui(a) + p) + T for all y ∈ Y P and i /∈ N , so I need to

show that

m(θkj)(ui(akj) + pkj) + T ≤ T for all j ∈ N.

But

m(θkj)(ui(akj) + pkj) + T = m(θ̃j)(ui(ãj) + p̃j) + s̃j ≤ m(θ̃i)(ui(ãi) + p̃i) + s̃i = s̃i = T

for all j ∈ N . The first equality follows from the construction of ykj and j ∈ N . The in-

equality follows from the incentive compatibility condition in the direct mechanism. The next

equality holds because θ̃i = 0 since i /∈ N . The last equality holds due to the construction

of T and i /∈ N .

Now I show that condition (ii) is satisfied. By construction of θ(.) and Γ(.) and as shown

above, Ui ≥ m(θ(y))(ui(a) + p) + T for all y ∈ Y P with equality if θ(y) <∞ and γi(y) > 0.

The inequality also holds for y /∈ Y P due to the construcion of θ(.) and Γ(.). Also by

construction of N , for any i ∈ N , m(θ(y))(ui(a) + p) > 0. Given y, if ui(a) + p < 0 for some

i, then i /∈ K(y). Thus, if K(y) = ∅, then θ(y) = ∞. If K(y) 6= ∅, then γn(y) = 1 for some

n ∈ K(y), therefore γi(y) = 1.

Buyers’ profit maximization and free entry condition holds due to the following

reasons. Consider first y ∈ Y P . Remember that for y ∈ Y P , there exists i ∈ N such that

y = yki . But for all i ∈ N , q(θki)(vi(aki) − pki − tki) − T = k Therefore, the buyers’ profit

maximization and free entry condition holds with equality for y ∈ Y P . Now consider y /∈ Y P .

Then q(θ(y))Σγi(y)(vi(a) − p) − t(y) < k due to the choice of t(y). Therefore condition (i)

is satisfied30.

Feasibility condition is obviously satisfied following the construction of λ.

30It is immediately clear from this step of the proof that the restrictions on off-the-equilibrium-path beliefs

do not play any role in our analysis. That is, any other off-the-equilibrium-path beliefs would work with the

taxes that we chose. This is because the planner does not face any restriction on the tax amount that he

can impose.
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Planner’s budget constraint is satisfied because:

∫

q(θ)tdλ(y)− T ≥
∑

i∈N

q(θ̃i)(vi(ãi)− pi −
s̃i − T

m(θ̃i)
−

k

q(θ̃i)
)πiθ̃i − T

=
∑

i∈N

q(θ̃i)(vi(ãi)− pi −
s̃i

m(θ̃i)
−

k

q(θ̃i)
)πiθ̃i −

∑

i/∈N

T

=
∑

i∈N

[m(θ̃i)(vi(ãi)− pi)− s̃i − kθ̃i]πi +
∑

i/∈N

[m(θ̃i)(vi(ãi)− pi)− s̃i − kθ̃i]πi ≥ 0.

The first inequality holds due to the construction of implementable allocation and due to

the following reason. As mentioned earlier, it might be the case that several types have the

same yki . I showed that m(θki) = m(θkj) and if θki 6= θkj , then I chose the lowest one. The

first inequality follows. The second equality holds due to the fact that for i /∈ N , θ̃i = 0 and

s̃i = T . The last inequality holds due to the budget-balance condition in the definition of

feasible mechanism.

8.2 Proof of Theorem 1

Proof of Theorem 1. I begin from equilibrium allocation and modify it to improve welfare.

Consider a type i seller who gets a strictly positive payoff in the equilibrium and does not

produce aFB
i or does not get matched with probability m(θFB

i ). Such a type exists because

the equilibrium fails to achieve the first best. Let i denote this type. I define a set of

problems, similar but not the same as one in GSW, and characterize its solution. From that

solution, I construct a feasible mechanism and show that it yields higher welfare for the

planner than the equilibrium allocation.

According to Proposition 3 in their paper, GSW show that the following set of problems

characterizes the equilibrium.

Problem 1 (Pi(0)).

max
θ∈[0,∞],(a,p)∈Ȳ

{m(θ)(ui(a) + p)}

subject to

q(θ)(vi(a)− p) ≥ k,

m(θ)(uj(a) + p) ≤ Ūj(0) for all j < i.

More precisely, define problem P (0) to be the set of problems Pi(0) for all i. Let Ūi(0) be

the value of the objective function in problem Pi(0) given (Ū1(0),Ū2(0),...,Ūi−1(0)) if Ūi(0)

is strictly greater than 0 and Ūi(0) = 0 otherwise. Denote by I∗(0) ⊆ {1, 2, ..., I} the set

of types such that the constraint set in Pi(0) is non-empty and Ūi(0) is strictly greater
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than 0. For any i ∈ I∗(0), let (θ̄i(0), āi(0), p̄i(0)) denote the solution to problem Pi(0)

given (Ū1(0),Ū2(0),..,Ūi−1(0)). Now, consider another set of problems which is basically a

perturbation of the above problem in a specific way. We will see why all variables in the

above and below problems are written as functions of 0 and ǫ, respectively.

Problem 2 (Pi(ǫ), ǫ > 0).

max
θ∈[0,∞],(p,a)∈Ȳ

{m(θ)(ui(a) + p) + δi}

subject to

q(θ)(vi(a)− p) ≥ k,

and

m(θ)(uj(a) + p) + δi ≤ Ūj(ǫ) for all j < i,

where δi =







ǫ if i < i or i /∈ I∗(0)

0 otherwise
.

Similarly as above, define problem P (ǫ) to be the set of problems Pi(ǫ) for all i. Let

Ūi(ǫ) be the value of the objective function in problem Pi(ǫ) given (Ū1(ǫ),Ū2(ǫ),...,Ūi−1(ǫ))

if Ūi(ǫ) is strictly greater than ǫ and Ūi(ǫ) = ǫ otherwise. Denote by I∗(ǫ) ⊆ {1, 2, ..., I}

the set of types such that the constraint in Pi(ǫ) is non-empty and Ūi(ǫ) is strictly greater

than ǫ. For any i ∈ I∗(ǫ), let (θ̄i(ǫ), āi(ǫ), p̄i(ǫ)) denote the solution to problem Pi(ǫ) given

(Ū1(ǫ),Ū2(ǫ),...,Ūi−1(ǫ)).

Since the constraint of Pi(ǫ) is exactly the same as Pi(0) for types below i, they get

exactly Ūi(ǫ) = Ūi(0) + ǫ. (It is easy to see it by induction.) Also for types above i who are

non-participant, that is, i > i and i /∈ I∗(0), then Ūi(ǫ) = Ūi(0) + ǫ = ǫ.

For type i, problem Pi(ǫ) maximizes the objective function given (Ū1(ǫ),Ū2(ǫ),...,Ūi−1(ǫ)).

Since type i does not achieve the first best in equilibrium, some constraints must be binding at

Pi(0), thus Problem Pi(ǫ) yields strictly higher value of the objective function than problem

Pi(0), because those constraints are now relaxed. To elaborate, according to Lemma 2, the

first constraint is always binding so we can eliminate p from the problem and rewrite the

problem as follows:

max
θ∈[0,∞],(.,a)∈Ȳ

{m(θ)(ui(a) + vi(a))− kθ}

subject to m(θ)(uj(a) + vi(a))− kθ ≤ Ūj(0) for all j < i.

Due to the assumption that m(θ)(ui(a) + vi(a))− kθ has a single peak, locally relaxing the

constraint improves welfare if the solution is not at the peak.
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For types above i who are active in the equilibrium, the objective function is weakly

higher than the equilibrium allocation. I show the latter claim by induction. Fix j > i and

assume that for all k such that i ≤ k < j, then Ūk(ǫ) ≥ Ūk(0), that is, the value of the

objective functions is higher than that in the equilibrium. This implies that the constraint

set in problem Pj(ǫ) is bigger for all k with i ≤ k < j. On the other hand for k < i, we

already know that the constraint set is bigger by definition of Pk(ǫ). Hence, the value of the

objective function in Pj(ǫ) should be weakly higher than that in equilibrium.

To summarize, so far I have proved the following:

Ūi(ǫ) = Ūi(0) + ǫ for all i < i or i /∈ I∗(0),

Ūi(ǫ) > Ūi(0),

and Ūi(ǫ) ≥ Ūi(0) for all i > i and i ∈ I∗(0). (11)

Set ǫ1 = min{Ui(0)|i ≥ i, i ∈ I∗(0)}. In Lemma 2, I will derive another upper bound for

ǫ called ǫ2. Let ǫ be in (0,min(ǫ1, ǫ2)). For example fix

ǫ =
1

2
min(ǫ1, ǫ2). (12)

For this ǫ, all types who participate in the allocation (i ∈ I∗(0)) get a strictly positive

payoff in the solution to Problem Pi(ǫ).

Now I propose the following direct mechanism.

(ãi, p̃i, s̃i, θi) =







(āi(0), p̄i(0), ǫ− ǫ̃, θi(0)) if 1 ≤ i < i and i ∈ I∗(0)

(āi(ǫ), p̄i(ǫ)−
ǫ

m(θi(ǫ)
, ǫ− ǫ̃, θi(ǫ)) if i ≤ i ≤ I and i ∈ I∗(0)

(ā1(0), p̄1(0), ǫ− ǫ̃, 0) if i /∈ I∗(0),

(13)

where ǫ̃ ≡ ǫ(
∑i−1

i=1 πi +
∑I

i=i+1,i/∈I∗(0) πi). Note that for i /∈ I∗(0), ãi and p̃i are arbitrary,

because θi is set to be 0.

It is important to note that I∗(0) = I∗(ǫ) due to the following reasons. Regarding types

below i, since they just get lump sum transfers which is common across all types, their

incentives to participate or not does not change. Therefore, if their payoff in the equilibrium

is less than 0 so they do not apply to any submarket, they remain inactive also under the

proposed allocation.

For types i and above, if they participate in equilibrium, they want also to participate in

the new allocation due to the choice of ǫ. Now, suppose they do not participate in equilibrium.

According to the assumption that we made that all types with positive gains from trade will
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be active in equilibrium, their non-participation in the equilibrium means that they could

not generate a strictly positive payoff. Therefore, relaxing constraints do not help them to

generate a strictly positive payoff.

I have made this assumption that all types who get a strictly positive payoff in the

complete information case will get a strictly positive payoff in the equilibrium. If there are

positive gains from trade for all types, then all types will get a strictly positive payoff in the

equilibrium (according to Proposition 4 in GSW). Therefore, the above assumption will be

automatically satisfied.

I show below that allocation {(ãi, p̃i, s̃i, θi)}i∈{1,2,...,I} is feasible and yields strictly higher

welfare than the equilibrium allocation.

Incentive Compatibility of Sellers

m(θi)(ui(ãi) + p̃i) + s̃i =







m(θ̄i(0))(ui(āi(0)) + p̄i(0)) + ǫ− ǫ̃ if 1 ≤ i < i and i ∈ I∗(0)

m(θ̄i(ǫ))(ui(āi(ǫ)) + p̄i(ǫ))− ǫ̃ if i ≤ i ≤ I and i ∈ I∗(0)

ǫ− ǫ̃ if i /∈ I∗(0),

Note that the market tightness and production level that are allocated to agents are the

same as those in Problem Pi(ǫ). The only difference is that all types now get ǫ̃ less compared

to their payoff in Problem Pi(ǫ). Since all types are taxed by the identical amount of ǫ̃,

incentives are not affected, therefore, in order to check for incentive compatibility in the

proposed allocation, we can check whether incentive compatibility holds in Problem Pi(ǫ) or

not.

By construction, all upward IC hold, because they are explicitly taken into account as

constraints of Problem Pi(ǫ). Moreover, in Lemma 2 below, I show that if ǫ < ǭ2, then all

downward IC are also satisfied. Therefore, incentive compatibility of sellers is satisfied.

Participation Constraint of Sellers

The payoff to sellers is summarized as follows:






Ui(0) + ǫ− ǫ̃ if 1 ≤ i < i and i ∈ I∗(0)

Ui(ǫ)− ǫ̃ if i ≤ i ≤ I and i ∈ I∗(0)

ǫ− ǫ̃ if i /∈ I∗(0)

.

For 1 ≤ i < i or i ∈ I∗(0), their payoff will be weakly higher than ǫ− ǫ̃ which is obviously

positive. For i ≤ i ≤ I and i ∈ I∗(0), Ui(ǫ) ≥ ǫ by the choice of ǫ in Equation 12, and

because ǫ > ǫ̃, therefore, Ui(ǫ) ≥ ǫ̃.
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Planner’s Budget Constraint

∑

πi[m(θ̃i)(vi(ãi)− p̃i)− kθ̃i − s̃i]
∑

πi[m(θ̃i)(vi(ãi)− p̃i)− kθ̃i − s̃i]

=
∑

i∈{1,2,..,i−1}∩I∗(0)

πiθ̄i(0) [q(θ̄i(0))(vi(āi(0))− p̄i(0))]
︸ ︷︷ ︸

=0

+
∑

i∈{i,i+1,..,I}∩I∗(0)

πi

[

θ̄i(ǫ) [q(θ̄i(ǫ))(vi(āi(ǫ))− p̄i(ǫ))]
︸ ︷︷ ︸

=0

+ǫ

]

− (ǫ− ǫ̃) = 0

The two terms with accolades under them are equal to 0 due to Lemma 2. The whole

expression equals 0 due to the definition of ǫ̃.

Last Step: Calculating Welfare

I Calculate welfare from the direct mechanism:

∑

πiUi =
∑

i∈{1,2,..,i−1}∩I∗(0)

πi(Ui(0) + ǫ− ǫ̃) +
∑

i∈{i,i+1,..,I}∩I∗(0)

πi(Ui(ǫ)− ǫ̃) +
∑

i/∈I∗(0)

πi(ǫ− ǫ̃)

>
∑

i∈{1,2,..,i−1}∩I∗(0)

πi(Ui(0)+ǫ− ǫ̃)+
∑

i∈{i,i+1,..,I}∩I∗(0)

πi(Ui(0)− ǫ̃)+
∑

i/∈I∗(0)

πi(ǫ− ǫ̃) =
∑

πiU
EQ
i .

The inequality follows from Equation 13. The proof is now complete, because we have found

a feasible direct mechanism that yields higher welfare than the equilibrium. Of course, this

allocation is implementable due to Lemma 1.

I prove in the following lemma that at the solution to Problem P (ǫ), the first constraint

in Pi(ǫ) should be binding. Also, I show that sellers are not attracted to submarkets designed

for higher types, if ǫ is chosen sufficiently small. This lemma is similar to Lemma 1 in GSW,

but I prove a stronger claim. I prove that higher types are strictly worse off if they apply to

submarkets designed for lower types. That is, downward IC cannot be binding. The reason

that I get a stronger result is that I assume strict monotonicity for vi(a) in i for every a with

a ∈ Ā, while they just assume weak monotonicity.

Lemma 2. There exist I∗(ǫ) ⊆ {1, 2, .., I}, {Ūi(ǫ)}i∈{1,2,..,I} and {(θ̄i(ǫ), āi(ǫ), p̄i(ǫ))}i∈I∗(ǫ)

that solve problem P (ǫ). Also, there exists ǭ2 > 0 such that for every ǫ ∈ [0, ǭ2), the following

holds at any solution for Problem Pi(ǫ) for i ∈ I∗(ǫ):

q(θ̄i(ǫ))(vi(āi(ǫ))− p̄i(ǫ)) = k,

m(θ̄i(ǫ))(uj(āi(ǫ)) + p̄i(ǫ)) + δi < Ūj(ǫ) for all j > i,
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where δi =







ǫ if i < i or i /∈ I∗(0)

0 otherwise
.

Proof.

Part 1: Existence of a solution to Problem P (ǫ)

First fix ǫ and set I∗(ǫ) = ∅. For i = 1, the objective function is continuous and the

constraint set is compact. If the constraint is empty, set Ū1(ǫ) = ǫ. Otherwise, since the

objective function is continuous and the constraint set is compact, P1(ǫ) has a solution and a

unique maximum. If the value of the maximum is less than ǫ, again set Ū1(ǫ) = ǫ. Otherwise,

denote by (θ̄1(ǫ), ā1(ǫ), p̄1(ǫ)) one of the maximizers and add 1 to the set I∗(ǫ).

I proceed by induction. By induction hypothesis, I have found (Ū1(ǫ), Ū2(ǫ), ..., Ūi−1(ǫ))

and also (θ̄i(ǫ), āi(ǫ), p̄i(ǫ)) for all i ∈ I∗(ǫ). Again, if the constraint is empty, set Ūi(ǫ) = ǫ.

Otherwise, Ūi(ǫ) is well-defined and unique. If the value of the maximum is less than ǫ, again

set Ū1(ǫ) = ǫ. Otherwise, denote by (θ̄i(ǫ), āi(ǫ), p̄i(ǫ)) one of the maximizers and add i to

the set I∗(ǫ).

Part 2: The first constraint in Pi(ǫ) (the free entry condition) is binding

Assume by way of contradiction that the constraint is not binding for some i ∈ I∗(ǫ).

First note that θ̄i(ǫ) > 0 because Ūj(ǫ) > δj for all j ∈ I∗(ǫ). According to part 2 of

Assumption 1 (sorting), for every τ > 0, there exists an a′ ∈ Bτ (āi(ǫ)) such that

ui(a
′) > ui(āi(ǫ)) (14)

and uj(a
′) < uj(āi(ǫ)) for all j < i. (15)

Set τ > 0 sufficiently small such that q(θ̄i(ǫ))(vi(a
′)− p̄i(ǫ)) ≥ k for all Bτ (āi(ǫ)). Now con-

sider (θ̄i(ǫ), a
′, p̄i(ǫ)). The first constraint in Problem Pi(ǫ) is satisfied following the choice of τ

and other constraints are satisfied because m(θ̄i(ǫ))(uj(a
′)+ p̄i(ǫ))+δi < m(θ̄i(ǫ))(uj(āi(ǫ))+

p̄i(ǫ)) + δi ≤ Ūj(ǫ) for all j < i. But the value of the objective function is now higher:

m(θ̄i(ǫ))(ui(a
′) + p̄i(ǫ)) + δi > m(θ̄i(ǫ))(ui(āi(ǫ)) + p̄i(ǫ)) + δi, which is a contradiction with

(θ̄i(ǫ), āi(ǫ), p̄i(ǫ)) being a solution to problem Pi(ǫ).

Part 3: Incentive compatibility for all types when ǫ = 0

Fix i such that i ∈ I∗(ǫ). In this part, I show that incentive compatibility holds at ǫ = 0,

that is,

m(θ̄i(0))(uj(āi(0)) + p̄i(0)) < Ūj(0) for all i ∈ I∗(0), j > i.
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Assume by way of contradiction that there exists n such that n > i andm(θ̄i(0))(un(āi(0))+

p̄i(0)) ≥ Ūn(0). Denote the smallest such n by h. That is,

m(θ̄i(0))(uj(āi(0)) + p̄i(0)) < Ūj(0) for all i ≤ j < h, (16)

m(θ̄i(0))(uh(āi(0)) + p̄i(0)) ≥ Ūh(0). (17)

Now I show that (θ̄i(0), āi(0), p̄i(0)) is feasible for problem Ph(0). The first constraint in

problem Ph(0) is satisfied because q(θ̄i(0))(vh(āi(0))− p̄i(0)) > q(θ̄i(0))(vi(āi(0))− p̄i(0)) ≥ k,

where the first inequality follows from part 1 of Assumption 1 (strict monotonicity)31. Also,

m(θ̄i(0))(uj(āi(0))+ p̄i(0)) ≤ Ūj(0) holds true for any j with i < j < h according to Equation

16, and holds true for any j with j ≤ i, because (θ̄i(0), āi(0), p̄i(0)) is feasible for problem

Pi(0).

According to part 2 of Assumption 1 (sorting), there exists b ∈ Āi(0) sufficiently close to

ai, such that q(θ̄i(0))(vh(b)− p̄i(0)) ≥ k, and

uh(b) > uh(āi(0)), (18)

and uj(b) < uj(āi(0)) for all j < h. (19)

Now, the claim is that (θ̄i(0), b, p̄i(0)) is feasible for problem Ph(0) but delivers strictly

higher utility for type h. First, the first constraint is satisfied by choice of b. Second, all incen-

tive compatibility constraints are satisfied becausem(θ̄i(0))(uj(b)+p̄i(0)) < m(θ̄i(0))(uj(āi(0))+

p̄i(0)) ≤ Ūj(0) for all j < i, where the weak inequality follows from the fact that (θ̄i(0), āi(0), p̄i(0))

is feasible for problem Pi(0). The value of the objective function is greater than Ūh(0) be-

cause m(θ̄i(0))(uh(b) + p̄i(0)) > m(θ̄i(0))(uh(āi(0)) + p̄i(0)) ≥ Ūh(0), which contradicts with

Ūh(0) being a maximizer of Ph(0).

Part 4: Existence of a neighborhood [0, ǫ2] such that incentive compatibility for

all types is satisfied

First of all, it is easy to see that similar to the argument in previous part, the first

constraint in Problem Pi(ǫ) must be binding. Therefore, we can eliminate p̄i(ǫ) to write the

problem in the following form:

max
θ∈[0,∞),(.,a)∈Ȳ

{m(θ)(ui(a) + vi(a))− kθ + δi}

31I show here that ai(0) ∈ Ā so we can use strict monotonicity of vi. Since (θ̄i(0), āi(0), p̄i(0)) is feasible

for Problem Pi(0), so q(θ̄i(0))(vi(āi(0)) − p̄i(0)) ≥ k. But θ̄i(0) ≥ 0 so q(0)(vi(āi(0)) − p̄i(0)) ≥ k. Also

m(θ̄i(0))(ui(āi(0))+p̄i(0))+δi = Ūi(0), but Ūi(0) > δi by construction of I∗(0), therefore ui(āi(0))+p̄i(0) ≥ 0.

Hence āi(0) ∈ Ā.
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s. t. m(θ)(uj(a) + vi(a))− kθ + δi ≤ Ūj(ǫ) for all j < i.

Our goal here is to apply theorem of the maximum to this problem and show that Ūh(ǫ)

is continuous in ǫ and āh(ǫ), θ̄h(ǫ) and p̄h(ǫ) are all upper hemi-continuous in ǫ. I proceed

by induction on h.

For h = 1, it is trivial because the constraint set is independent of ǫ. Also the constraint

set is compact, due to the following reasons. With respect to a, note that a ∈ Ā and Ā is

compact. Regarding θ, I show that we can assume without loss of generality that θ lies in a

closed interval which is a subset of R+. Suppose by way of contradiction that θ is unbounded.

Because m(θ) ≤ 1 and ui(a) + vi(a) is bounded and k > 0, the objective function goes to

−∞. Therefore, we can restrict our attention to an interval [0,M ] for some M ∈ R+. As a

result, we can assume without loss of generality that (θ, a) ∈ [0,M ]× Ā.

The objective function is continuous in (θ, a) and ǫ. Therefore, Ū1(ǫ) is continuous in ǫ.

and ā1(ǫ), θ̄1(ǫ) and p̄1(ǫ) are all upper hemi-continuous in ǫ.

Now consider h > 1. By induction hypothesis, Ūj(ǫ) are continuous in ǫ for all j < h,

therefore, the constraint set is continuous in ǫ too. With a similar argument as above, we

can conclude that the constraint set is a compact valued and continuous correspondence in ǫ.

Therefore, Ūh(ǫ) is continuous in ǫ and āh(ǫ), θ̄h(ǫ) and p̄h(ǫ) are all upper hemi-continuous

in ǫ for all h. Both θ̄h(ǫ) and āh(ǫ) are UHC in ǫ, and m(.) and ui(.) are continuous functions,

therefore m(θ̄h(ǫ)) and ui(āh(ǫ)) are UHC in ǫ. (See Aliprantis and Border (1986), Theorem

17.23.)

Define eki(ǫ) as follows: ek,i(ǫ) = Ūk(ǫ)−m(θ̄i(ǫ))(uk(āi(ǫ)) + pi(ǫ))− δi. Since ek,i(ǫ) is

just sum of some UHC corresponces, ek,i(ǫ) itself is also UHC. But ek,i(ǫ)
∣
∣
ǫ=0

> 0 according

to part 3. I show below that because ek,i(ǫ) is UHC in an interval close to 0 and its value

at 0 is strictly positive, there must exist a neighborhood [0, ǫk,i] for some ǫk,i > 0 such that

ek,i(ǫ) is strictly positive, too. Now, set

ǭ2 = min
i,k>i

ǫk,i.

That is, there exists a neighborhood [0, ǭ2] around 0 such that higher types are strictly worse

off, if they report a lower type.

To show that for any i and k > i there must exist a neighborhood [0, ǫk,i] for some ǫk,i > 0

such that ek,i(ǫ) is strictly positive, suppose by way of contradiction that there does not exist

such a neighborhood. That is, there exists i and k > i such that for any ǫ > 0, there exists

function ẽ(ǫ) ∈ ek,i(ǫ) with ẽ(ǫ) ≤ 0. Consider {ǫn}n∈N where ǫn = 1
n
. Since ek,i(.) is UHC

and because ǫn → 0, there exists a convergent sub-sequence {ẽn}n∈N of {ẽ(ǫn)}n∈N such that

its limit point is in ek,i(0). This is a contradiction, because ek,i(0) > 0 but ẽn ≤ 0 for all n,

so its limit point cannot be a strictly positive number.
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The proof is complete because I have shown that there exists a ǭ2 such that e(ǫ) > 0 for

any ǫ ∈ [0, ǭ2]. Therefore, all incentive compatibility constraints are satisfied.

8.3 Proof of Theorem 2

Proof. I will construct a feasible direct mechanism in which type i sellers get matched with

probability m(θFB
i ) and produce aFB

i . Under part 5 (a) or 5 (b) of Assumption 2, it can be

easily shown that UFB
i is increasing in i. Let î denote the highest type of sellers without

gains from trade. Then all types 1, 2, ..., î are inactive, that is, they are matched with

probability 0. Given this observation, I assume that there are positive gains from trade for

all types and then I construct a feasible direct mechanism that achieves the first best for all

these types. If there are not positive gains from trade for some types, the same construction

method with little adjustments can be used to establish the proof.

Consider the following direct mechanism:

{(aFB
i , p̃i, s̃i, θ

FB
i )}i∈{1,2,...,I},

where p̃1 = −u1(a
FB
1 ) and p̃i is defined for i ≥ 2 recursively as follows:

m(θFB
i )(p̃i + ui(a

FB
i )) = m(θFB

i−1)(p̃i−1 + ui(a
FB
i−1)). (20)

Also, s̃i = s̃ ≡
∑I

j=1 πj
[
m(θFB

j )(vj(a
FB
j )− p̃j)− kθFB

j

]
for all i. I just need to show that

conditions for feasibility are satisfied.

Incentive Compatibility of Sellers

I prove that this condition is satisfied in four steps:

Step 1: (θFB
i , aFB

i ) is increasing in i.

I use Assumption 2. First, aFB
i is increasing in i because ui(a)+ vi(a) satisfies increasing

differences property in (a, i) and also because ui(a) + vi(a) is supermodular in a. (See

Theorem 5 in Milgrom and Shannon (1994)). Furthermore, m(θ)(ui(a
FB
i ) + vi(a

FB
i )) − kθ

satisfies increasing differences property in (θ, i), becausem is increasing, because ui(a)+vi(a)

is increasing in i and because aFB
i is increasing in i. Hence, θFB

i is increasing in i.

Step 2: Local IC constraints are satisfied.

In equation 20, p̃i is set such that all local downward incentive compatibility constraints

are satisfied and binding. That is, for all i ≥ 2 type i is indifferent between reporting i and

i− 1. Now, I show that sellers’ maximization constraint is satisfied.
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First, I show that type i− 1 weakly prefers to report i− 1 over i (local upward incentive

compatibility). That is,

m(θFB
i )(p̃i + ui−1(a

FB
i )) ≤ m(θFB

i−1)(p̃i−1 + ui−1(a
FB
i−1)). (21)

I begin from the left hand side:

m(θFB
i )(p̃i + ui−1(a

FB
i )) = m(θFB

i )(p̃i + ui(a
FB
i ))−m(θFB

i )(ui(a
FB
i )− ui−1(a

FB
i ))

= m(θFB
i−1)(p̃i−1+ui−1(a

FB
i−1))+m(θFB

i−1)(ui(a
FB
i−1)−ui−1(a

FB
i−1))−m(θFB

i )(ui(a
FB
i )−ui−1(a

FB
i ))

≤ m(θFB
i−1)(p̃i−1 + ui−1(a

FB
i−1)) +m(θFB

i )(ui(a
FB
i−1)− ui−1(a

FB
i−1)− ui(a

FB
i ) + ui−1(a

FB
i ))

≤ m(θFB
i−1)(p̃i−1 + ui−1(a

FB
i−1))

The first equality follows from the construction of p̃i (Equation 20). The first inequality

follows from the fact that θi and ui(.) are both increasing in i. The second inequality follows

from increasing differences property of u in (a, i) and also from the fact that aFB
i−1 ≤ aFB

i

(component by component).

Second, I calculate p̃i in terms of p̃1:

m(θFB
i )(p̃i + ui(a

FB
i )) = m(θFB

i−1)(p̃i−1 + ui(a
FB
i−1))

= m(θFB
i−1)(p̃i−1 + ui−1(a

FB
i−1)) +m(θFB

i−1)(ui(a
FB
i−1))− ui−1(a

FB
i−1))

= m(θFB
i−1)(p̃i−1 + ui−1(a

FB
i−1)) +Ki(θ

FB
i−1, a

FB
i−1)−Ki−1(θ

FB
i−1, a

FB
i−1), (22)

where Ki(θ, a) is defined as follows:

Ki(θ, a) ≡ m(θ)ui(a).

Using telescoping technique yields the following equation for all i ≥ 2:

m(θFB
i )(p̃i+ui(a

FB
i )) = m(θFB

1 )(p̃1+u1(a
FB
1 ))+

i∑

j=2

[Kj(θ
FB
j−1, a

FB
j−1)−Kj−1(θ

FB
j−1, a

FB
j−1)]. (23)

Step 3: Other upward IC constraints are satisfied.

Now, I show that for all i and k with k ≤ i− 1, type k does not gain by reporting i, that

is,

m(θFB
k )(p̃k + uk(a

FB
k )) ≥ m(θFB

i )(p̃i + uk(a
FB
i )).

Note that

m(θFB
k )(p̃k + uk(a

FB
k ))−m(θFB

i )(p̃i + uk(a
FB
i ))
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=
i−1∑

j=k

[

m(θFB
j )(p̃j + uj(a

FB
j ))−m(θFB

j+1)(p̃j+1 + uj(a
FB
j+1))

+m(θFB
j+1)uj(a

FB
j+1)−m(θFB

j )uj(a
FB
j )

−m(θFB
j+1)uk(a

FB
j+1) +m(θFB

j )uk(a
FB
j )

]

≥
i−1∑

j=k

[

m(θFB
j+1)uj(a

FB
j+1)−m(θFB

j )uj(a
FB
j )

−m(θFB
j+1)uk(a

FB
j+1) +m(θFB

j )uk(a
FB
j )

]

≥
i−1∑

j=k

[

m(θFB
j )(uj(a

FB
j+1)− uk(a

FB
j+1)− uj(a

FB
j ) + uk(a

FB
j ))

]

≥ 0.

The first equality is derived by doing some algebra and using telescoping technique. The first

inequality uses the fact that type i − 1 weakly prefers to report i− 1 over i (See equation

21). The second inequality uses θFB
j+1 ≥ θFB

j and also the fact that ui is increasing in i for

a ∈ Ā. The last inequality is the implication of the increasing differences property of u (part

1 of Assumption 1) and the fact that aFB
j+1 ≥ aFB

j .

Step 4: Other downward IC constraints are satisfied.

Again, I show that type k does not gain by reporting i. If i + 1 ≤ k, I use the same

technique as above:

m(θFB
k )(p̃k + uk(a

FB
k ))−m(θFB

i )(p̃i + uk(a
FB
i ))

=
k∑

j=i+1

[

m(θFB
j )(p̃j + uj(a

FB
j ))−m(θFB

j−1)(p̃j−1 + uj(a
FB
j−1))

+m(θFB
j−1)uj(a

FB
j−1)−m(θFB

j )uj(a
FB
j )

−m(θFB
j−1)uk(a

FB
j−1) +m(θFB

j )uk(a
FB
j )

]

≥
k∑

j=i+1

[

m(θFB
j−1)uj(a

FB
j−1)−m(θFB

j )uj(a
FB
j )

−m(θFB
j−1)uk(a

FB
j−1) +m(θFB

j )uk(a
FB
j )

]

≥
k∑

j=i+1

[

m(θFB
j−1)(uj(a

FB
j−1)− uk(a

FB
j−1)− uj(a

FB
j ) + uk(a

FB
j ))

]

≥ 0.
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The first equality is again derived by using telescoping technique. The first inequality

follows from construction of p̃i. The second inequality uses θFB
j+1 ≥ θFB

j and also the fact

that ui is increasing in i for every a. The last inequality is the implication of increasing

differences property of u in (a, i) and the fact that aFB
j+1 ≥ aFB

j .

Participation constraint

To show Ui ≡ m(θFB
i )(p̃i+ui(a

FB
i ))+s̃i ≥ 0 for all i, consider Equation 23. The first term

in the right hand side is zero following the construction of p̃1. The summation is positive

following the assumption that ui is increasing in i for every a. Also, I show below that s̃ is

always positive.

s̃ =
∑

πi

[

m(θFB
i )(vi(a

FB
i )− p̃i)− kθFB

i

]

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i ) + ui(a

FB
i ))− kθFB

i

]

−
I∑

i=1

πi

[

m(θFB
i )(p̃i + ui(a

FB
i ))

]

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i

]

−
I∑

i=1

πi

[ i∑

j=2

[
Kj(θ

FB
j−1, aj−1)−Kj−1(θ

FB
j−1, aj−1)

]
]

−m(θ1)(p̃1 + u1(a1)). (24)

For the fourth equality, I used the definition of p̃i from Equation 23.

First, suppose part 5(a) of Assumption 2 holds.

To prove that the participation constraint is satisfied, it is sufficient to show that the

right hand side of Equation 24 is positive for all i. I proceed with induction on i. If i = 1,

the right hand side of the equation is equal to 0 by the choice of p̃1. For i = 232:

m(θ2)(v2(a2) + u2(a2))− kθ2 ≥ m(θ1)(v2(a1) + u2(a1))− kθ1

≥ m(θ1)(u2(a1)− u1(a1)) +m(θ1)(v2(a1) + u1(a1))− kθ1

≥ m(θ1)(u2(a1)− u1(a1)) +m(θ1)(v1(a1) + u1(a1))− kθ1+

≥ m(θ1)(u2(a1)− u1(a1)) +m(θ1)(u2(a1) + p̃1)

The first inequality holds true due to the fact that θ1 and a1 are feasible for the second type

maximization problem (maxθ,a{m(θ)(v2(a) + u2(a)) − kθ}). The second inequality holds

because vi(.) is increasing in i. The last inequality holds due to the construction of p̃1.

32Establishing the claim for i = 2 is redundant, but I just do it here to make clear the main idea used in

the general case (for i > 1).
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Now assume that the induction hypothesis for type i−1 is correct. Then, I show that the

hypothesis will be correct for type i as well. Let me remind you that the induction hypothesis

states that m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i ≥ m(θ1)(p̃1+u1(a1))+
∑i

j=2

[
Kj(θ

FB
j−1, aj−1)−

Kj−1(θ
FB
j−1, aj−1)

]
.

m(θFB
i )(vi(a

FB
i ) + ui(a

FB
i ))− kθFB

i ≥ m(θFB
i−1)(vi(a

FB
i−1) + ui(a

FB
i−1))− kθFB

i−1

= m(θFB
i−1)(vi(a

FB
i−1) + ui−1(a

FB
i−1))− kθFB

i−1 +m(θFB
i−1)(ui(a

FB
i−1)− ui−1(a

FB
i−1))

≥ m(θFB
i−1)(vi−1(a

FB
i−1) + ui−1(a

FB
i−1))− kθFB

i−1 +m(θFB
i−1)(ui(a

FB
i−1)− ui−1(a

FB
i−1))

≥ m(θ1)(p̃1+u1(a1))+
i−1∑

j=2

[
Kj(θ

FB
j−1, aj−1)−Kj−1(θ

FB
j−1, aj−1)

]
+Ki(θ

FB
i−1, a

FB
i−1)−Ki−1(θ

FB
i−1, a

FB
i−1)

= m(θ1)(p̃1 + u1(a1)) +
i∑

j=2

[
Kj(θ

FB
j−1, aj−1)−Kj−1(θ

FB
j−1, aj−1)

]

Similar to the case for i = 2, the first inequality holds because θFB
i−1 and aFB

i−1 are feasible

for type i maximization problem (maxθ,a{m(θ)(vi(a) + ui(a))− kθ}). The second inequality

holds because vi is increasing in i. The last inequality holds due to the induction hypothesis.

Second, suppose parts 5(b) and 5(c) of Assumption 2 hold, instead.

Here, I cannot show that the terms inside the sigma in Equation 24 are positive for each

i. Rather, I need to algebraically simplify the right hand side of Equation 24 as follows. To

simplify the notation, I use ∆i ≡
∑I

k=i πk.

s̃ =
∑

πi

[

m(θFB
i )(vi(a

FB
i )− p̃i)− kθFB

i

]

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i ) + ui(a

FB
i ))− kθFB

i

]

−
I∑

i=1

πi

[

m(θFB
i )(p̃i + ui(a

FB
i ))

]

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i

]

−
I∑

i=1

πi

[ i∑

j=2

[
Kj(θ

FB
j−1, aj−1)−Kj−1(θ

FB
j−1, aj−1)

]
]

−m(θ1)(p̃1 + u1(a1))

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i

]

−
I∑

j=2

[

πj
[
Kj(θj−1, aj−1)−Kj−1(θj−1, aj−1)

]∆j

πj

]

−m(θ1)(p̃1 + u1(a1))

=
I∑

i=2

πi

[

m(θFB
i )(vi(a

FB
i ) + ui(a

FB
i ))− kθFB

i −
[
Kj(θj−1, aj−1)−Kj−1(θj−1, aj−1)

]∆i

πi

]
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+π1U
FB
1 −m(θ1)(p̃1 + u1(a1)) ≥ 0.

For the second equality, I changed the order of summations for the double sigma term and

then used the definition of ∆i. I used Assumption 2 part 3 and choice of p̃1 to establish the

last inequality.

Budget constraint

This condition is trivially satisfied due to the construction of s̃.

The proposed allocation achieves the maximum among all feasible allocations, because

the level of θ and a assigned to every type is exactly equal to that under the first best, so it

is not possible to increase the value of the objective function any more. This concludes the

proof.

8.4 Proofs of Asset Market with Lemons

Proof of Asset market with lemons if π1b1 + π2b2 ≥ c2.

Consider the following direct mechanism: {(αi, pi, si, θi)}i∈{1,2} with αi = 1, pi = π1b1+π2b2,

s̃i = 0, θi = 1 for all i. I suppress˜for the proofs in the asset market with lemons to make

the notation simpler.

Incentive compatibility of sellers is clearly satisfied, because both types get the same

(αi, pi, si, θi). Also, both types get a positive payoff, so participation constraint of sellers is

also obviously satisfied. Planner’s budget-balance is also trivially satisfied. The objective

function is maximized because the θ and α allocated to both types is the same as what they

get under complete information. The proof is complete.

Proof of Asset market with lemons when π1b1 + π2b2 < c2.

Here the first best is not achievable through a pooling allocation, because type two gets a

strictly negative payoff in the pooling allocation, therefore, pooling allocation is not feasible.

If b2 − c2 is greater than b1 − c1, part 5(b) of Assumption 2 is violated. If b2 − c2 is less than

or equal to b1 − c1, then it is easy to check that although part 5(b) is satisfied, part 5(c) is

violated. Therefore, it is not possible to use Theorem 2. Hence, I need to solve the planner’s

problem completely by taking all constraints into account. I proceed in 6 steps. In the first

step, I use a direct mechanism to write down the planner’s problem. In the second step, I

show that the market tightness for both types must be strictly positive. In the third step, I

show that the market tightness for both types must be less than or equal to 1. In the fourth

step, I show that α (probability that the seller gives the asset to the buyer) for both types

must be equal to 1. In the fifth step, I show that market tightness for type one must be
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equal to 1. In the last step, I calculate the market tightness for type two. This will conclude

the characterization of the constrained efficient mechanism.

Step 1: Formulating the problem and simplifying it

Let {(αi, pi, si, θi)}i∈{1,2} denote the allocation with the direct mechanism. For now, I

assume si = 0 for all i. In the proof, since there are positive gains from trade for both types,

I can show that both types must be active. Therefore, the assumption that si = 0 is without

loss of generality. That is, if si 6= 0 for some i, we can change pi to pi +
si

m(θi)
and set si = 0.

Therefore, the planner’s problem can be written as follows:

Problem 3 (Asset market with lemons, 1).

max
{(αi,pi,θi)}i∈{1,2}

2∑

i=1

πi min{θi, 1}(pi − αici),

subject to

min{θ1, 1}(p1 − α1c1) ≥ min{θ2, 1}(p2 − α2c1) (IC-12) ,

min{θ2, 1}(p2 − α2c2) ≥ min{θ1, 1}(p1 − α1c2) (IC-21) ,

min{θ1, 1}(p1 − α1c1) ≥ 0 (IR-1),

min{θ2, 1}(p2 − α2c2) ≥ 0 (IR-2),
2∑

i=1

πi[min{θi, 1}(αihi − pi)− kθi] ≥ 0 (BB).

In the first (second) line, I ensure that type one (two) does not want to report type two

(one). I call this constraint IC-12 (IC-21). In the third (fourth) line, I ensure that type

one (two) gets a strictly positive payoff. I call this constraint IR-1 (IR-2). The last line is

planner’s budget constraint.

Notice that the planner’s budget constraint must be binding. If not binding, we can

distribute the extra resources in a lump sum way and identically among both types to

increase the value of the objective function, while keeping all other constraints satisfied.

Therefore, we can write from BB that
∑2

i=1 πi min{θi, 1}pi =
∑2

i=1 πi[min{θi, 1}αihi − kθi].

Hence we can write the objective function as
∑2

i=1 πi min{θi, 1}αi(hi − ci)− kθi.

Step 2: θ1 > 0 and θ2 > 0

If both θ1 and θ2 are 0 then the welfare level equals 0. But this is not possible because

we know at least that equilibrium allocation is feasible and delivers strictly positive utility.

To rule out the case that one of them is 0, note that IC-12 and IC-21 together imply that:

(m(θ1)α1 −m(θ2)α2)c1 ≤ m(θ1)p1 −m(θ2)p2 ≤ (m(θ1)α1 −m(θ2)α2)c2. (25)
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But c1 < c2, therefore,

m(θ1)α1 ≥ m(θ2)α2. (26)

If θ1 = 0, then θ2 must be 0 as well, and this leads to 0 level of welfare. Nevertheless,

this cannot be part of a planner’s allocation, given the fact that the equilibrium allocation

is feasible and delivers strictly positive welfare. Thus θ1 > 0. If θ2 = 0, then it is easy to

check that the maximum possible welfare in this case (even if θ1 = 1) is less than the level

of welfare under the proposed solution. Therefore, θ2 > 0.

Let ri ≡ min{θi, 1}pi for all i. For any θi and ri ∈ R, we can find a unique pi ∈ R which

solves the maximization problem. From now on, we work with ri instead of pi because it

simplifies the analysis. Therefore, we can rewrite the problem as follows:

Problem 4 (Asset market with lemons, 2).

max
{(θi,αi,ri)}i=1,2

2∑

i=1

πi(min{θi, 1}αi(hi − ci)− kθi),

subject to

r1 −min{θ1, 1}α1c1 ≥ r2 −min{θ2, 1}α2c1 (IC-12) ,

r2 −min{θ2, 1}α2c2 ≥ r1 −min{θ1, 1}α1c2 (IC-21) ,

r1 −min{θ1, 1}α1c1 ≥ 0 (IR-1)

r2 −min{θ2, 1}α2c2 ≥ 0 (IR-2) and

2∑

i=1

πi(min{θi, 1}αihi − kθi − ri) = 0 (BB).

Step 3: θ1 ≤ 1 and θ2 ≤ 1

Suppose θi > 1 for some i. Then consider the following: θ′i = 1, r′i = ri + k(θi − 1)πi

and r′j = rj + k(θi − 1)πi where j 6= i. Therefore, if I replace θi, r1 and r2 by θ′i = 1, r′1

and r′2 respectively, I can increase the value of the objective function by k(θi − 1). Also,

the new solution satisfies all the constraints because of the following: Obviously, IC-12 and

IC-21 are still satisfied, because the change in r1 is the same as the change in r2 and also

min{θ1, 1} and min{θ2, 1} have not changed. IR-1 and IR-2 are satisfied because r′1 > r1

and r′2 > r2. BB is also satisfied by construction of r′1 and r′2. A contradiction. Therefore,

for all i ∈ {1, 2}, θi ≤ 1.

Step 4: α1 = α2 = 1
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Suppose αi < 1 for some i. Let α′
i be defined such that α′

i(θi − ǫ) equals αiθi, where

0 < ǫ < θi(1 − αi). Fix ǫ and consider the following: θ′i = θi − ǫ, r′i = ri + kǫπi and

r′j = rj + kǫπi where j 6= i.

Now, if I replace αi, θi, r1 and r2 by α
′
i, θ

′
i, r

′
1 and r

′
2 respectively, I can increase the value of

the objective function by kǫ. I show that the new solution satisfies all the constraints because

of the following: Obviously, IC-12 and IC-21 are still satisfied, because min{θi, 1}αi =

min{θ′i, 1}α
′
i. IR-1 and IR-2 are satisfied because r′1 > r1 and r′2 > r2. BB is also satisfied

by construction of r′1 and r′2. A contradiction. Therefore, for all i ∈ {1, 2}, αi = 1.

For simplicity, I write the planner’s problem again incorporating the results so far:

Problem 5 (Asset market with lemons, 3).

max
{(θi,ri)}i=1,2

2∑

1

πi(θi(hi − ci)− kθi),

subject to

r1 − θ1c1 ≥ r2 − θ2c1 (IC-12) ,

r2 − θ2c2 ≥ r1 − θ1c2 (IC-21) ,

r1 − θ1c1 ≥ 0 (IR-1),

r2 − θ2c2 ≥ 0 (IR-2),

2∑

1

πi(θihi − kθi − ri) = 0 (BB).

Step 5: θ1 = 1

First note that θ1 ≥ θ2 following Equation 26 and because α1 = α2 = 1 according to

step 4. By way of contradiction, assume that θ1 < 1 at a solution. I consider two cases.

First, assume that IR-2 is not binding. I propose the following: θ′i = θi + ǫ for all i where

ǫ ∈ (0,min{1 − θ1,
r2−θ2c2

c2−π1b1−π2b2
}). Fix ǫ and let r′i = ri + (π1b1 + π2b2)ǫ for all i. It is easy

to check that all constraints are satisfied, but the value of the objective function now has

increased by (π1(b1 − c1) + π2(b2 − c2))ǫ, a contradiction. Note that I used Equation 26 to

ensure that θ2 + ǫ < 1.

Second, assume that IR-2 is binding. I propose the following: θ′1 = θ1+ǫ where ǫ < 1−θ1,

r′1 = r1 + b1ǫ. It is again easy to check that all constraints are satisfied. The only tricky

thing here is to check that IC-21 is satisfied. But the LHS in IC-21 is fixed. The RHS

increases by ǫ(b1 − c2) which is a negative number, so IC-21 is not violated. (Note that

b1−c2 < 0, otherwise π1b1+π2b2 > π1c2+π2c2 = c2 which contradicts the initial assumption
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that π1b1 + π2b2 < c2). But the value of the objective function now has increased by π1b1ǫ,

a contradiction.

Step 6: Calculating θ2 and the rest of unknowns

I write r1 from the budget constraint in terms of other variables, specially r2:

r1 = b1 +
π2
π1
θ2b2 −

π2
π1
r2 (27)

Now, one can write Equation 25 as follows after replacing r1 from the above equation:

(1− θ2)c1 ≤ b1 +
π2
π1
θ2b2 −

r2
π1

≤ (1− θ2)c2. (28)

First, note that IR-1 is implied by IC-12 and IR-2.

Second, I argue that IR-2 must be binding at the solution. By way of contradiction, suppose

not. Then only Equation 28 is sufficient to determine θ2. But in order to maximize the

objective function, I need to choose the highest possible θ2 consistent with Equation 28,

which is θ2 = 1. But according to equation 28, r2 = π1b1+π2b2 and r2 > c2 from IR-2, which

is a contradiction with π1b1 + π2b2 < c2. Therefore, IR-2 is binding.

Third, since IR-2 is binding, I replace r2 by θ2c2 and rewrite equation 28 again:

(1− θ2)c1 ≤ b1 +
θ2
π1

(π2b2 − c2) ≤ (1− θ2)c2. (29)

Now, it is easy to see that the right inequality in 29 is satisfied for any θ2 ∈ [0, 1], because

b1 < c2. In order to maximize the objective function, I need to find the maximum value for

θ2 under which the left inequality in Equation 29 is satisfied ((1−θ2)c1 ≤ b1+
θ2
π1

(π2b2− c2)).

This implies that

θ2 =
π1(b1 − c1)

c2 − π2b2 − π1c1
.

The proof is complete, because I have found the values for αi, θi and ri. I can calculate

values of pi from θi and ri and check that they are the same as them in Table 1. Note that

ti in Table 1 is calculated such that buyers’ free entry and zero profit condition is satisfied

for each submarket in the decentralized economy.

What if there are no gains from trade for some types?

Because the proof is similar to the the previous proof up to step 5, I do not repeat those

steps here, so I begin from Problem 5. I want to show that θ1 = θ2 = 0 at the solution.

First note that Equation 26, implies that θ1 ≥ θ2. Also note that IR-1 is implied by IC-12
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and IR-2, so we ignore IR-1. If θ1 = 0, then 0 ≤ θ2 ≤ θ1 = 0 and the proof is complete.

Therefore, by way of contradiction assume that θ1 > 0. In the first step below, I show that

θ2 < θ1 (with strict inequality). In the second step, I show that IC-12 is not binding. Then

I propose a new set of {(θ1, r1), (θ2, r2)} such that all constraints are satisfied, but the value

of the objective function is increased.

Step 1: θ2 < θ1

Suppose to the contrary that θ2 ≥ θ1, but θ2 cannot exceed θ1 as mentioned above,

so θ2 = θ1. IC-12 and IC-21 together imply that r1 = r2. Then, BB implies that r2 =

(π1b1 + π2b2)θ2. The latter together with IR-2 implies that (π1b1 + π2b2 − c2)θ2 ≥ 0. But

π1b1 + π2b2 − c2 < 0, therefore θ2 = 0 and so θ1 = 0. This is a contradiction with θ1 > 0.

Step 2: IC-21 is binding

By way of contradiction, suppose IC-21 is not binding. Consider θ′1 = θ1−ǫ and r
′
1 = r1−

b1ǫ with ǫ > 0. Since θ1 > 0 and IC-21 is not binding, we can find a sufficiently small ǫ such

that θ′1 > 0 and IC-21 still holds. Now, it is easy to check that {(θ′1, r
′
1), (θ2, r2)} is feasible

for Problem 5, but it leads to higher value for the objective function than {(θ1, r1), (θ2, r2)}.

Notice that we used b1 − c1 < 0 to check that IC-12 is satisfied.

Step 3: IC-12 is not binding

Suppose by way of contradiction that IC-12 is binding, then following step 2 (stating

that IC-21 is binding), it is easy to check that r1 = r2 and θ1 = θ2. Then BB implies that

r2 = (π1b1 + π2b2)θ2. According to IR-2, (π1b1 + π2b2 − c2)θ2 ≥ 0. But π1b1 + π2b2 − c2 < 0,

so θ1 = θ2 = 0. This is a contradiction, so IC-12 is not binding.

Step 4: θ1 = 0

We have assumed θ1 > 0. Now, we want to get a contradiction. Now, consider {(θ′1, r
′
1), (θ2, r

′
2)}

where θ′1 = θ1− ǫ with ǫ > 0, r′1 = r1− (π1b1+π2b2)ǫ and r
′
2 = r2+π1(c2− b1)ǫ. Since θ1 > 0

and IC-12 is not binding, we can find a sufficiently small ǫ such that θ′1 > 0 and IC-12 still

holds. Now it is easy to check that {(θ′1, r
′
1), (θ2, r

′
2)} is feasible for Problem 5, but it leads to

higher value for the objective function than {(θ1, r1), (θ2, r2)}. A contradiction, so the proof

is complete.
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8.5 Proof of the Rat Race

Proof. This proposition is basically a special case of Theorem 2. It is straight forward to

check that all conditions are satisfied. Specially note that, part 5(a) of Assumption 2 is

satisfied, therefore, we do not need any assumption on the distribution of types.

8.6 Asset Market with Continuous Type Space

Here I define feasible mechanism which is exactly similar to its counterpart with discrete

type space (Definition 2). The planner allocates each (reported) type a market tightness,

θ̃ : Z → R+, a transfer conditional on finding a match, p̃ : Z → R, and an unconditional

transfer, s̃ : Z → R.

Definition 8. A feasible mechanism is a set {(p̃(.), s̃(.), θ̃(.))} such that the following con-

ditions hold:

1. (Incentive Compatibility of Sellers) For all z and ẑ,

U(z) ≡ m(θ̃(z))(p̃(z)− c(z)) + s̃(z) ≥ U(z, ẑ) ≡ m(θ̃(ẑ))(p̃(ẑ)− c(z)) + s̃(ẑ).

2. (Participation Constraint of Sellers) For all i,

U(z) ≥ 0.

3. (Planner’s Budget-Balance)

∫

[m(θ̃(z))(h(z)− p̃(z))− kθ̃(z)− s̃(z)]dF (z) ≥ 0.

Definition 9. A constraint efficient mechanism is a feasible direct mechanism which maxi-

mizes the planner’s objective function.

The ideas used here are the same as those used in the discrete type space and specially

similar to the asset market with lemons. However, mathematical tools that I use here are

different, because the state space is continuous.

One way of proving Proposition 3 is to take a Guess-And-Verify approach. I guess that

the first best is achievable. Then I check whether conditions for feasibility are satisfied.

One problem is that if the first best is not achievable (like conditions in Proposition 6), this

approach does not work, because checking for feasibility is not sufficient, since there might be

other implementable allocations which deliver a higher value of the objective function for the

planner. Therefore, in order to be able to use a general solution method, I first characterize

the incentive compatible schemes, as is common in the mechanism design literature. Then,
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I work with a modified problem in which sellers’ maximization condition has been replaced

by some other constraints (monotonicity and Envelope condition).

In the first step, note that similar to the discrete type space, the budget-balance con-

straint must be satisfied with equality at the constrained efficient mechanism. Otherwise,

the planner can distribute extra resources identically among all types. No constraint will

be changed, but all types get a strictly higher payoff and therefore the planner can improve

welfare. Now I write the planner’s problem into the following form.

Problem 6.

max
θ(z),p(z)

∫ [

m(θ(z))(h(z)− c(z))− kθ(z)

]

dF

s.t. z ∈ argmax
ẑ
U(z, ẑ), (IC)

U(z, z) ≥ 0 (IR),

and

∫ [

m(θ(z))(h(z)− p(z))− kθ(z)− ss(ẑ)

]

dF = 0 (BB),

in which U(z, ẑ) ≡ m(θ(ẑ))(p(ẑ)− c(z)) + ss(ẑ).

Note that no transfer appears in the objective function, because we have assumed that

all types participate in the mechanism and also we have replaced
∫
[m(θ(z))p(z)]dF by

∫
[m(θ(z))h(z)− kθ(z)]dF from the budget-balance condition.

Characterizing the Incentive Compatible Schemes

By assumption c(z) is strictly monotone in z. The first two parts of the following lemma

state that c′(z)dθ̃(z)
dz

≤ 0 is necessary and sufficient for any allocation which satisfies IC.

Necessity is clear. Sufficiency means that there exists transfer schedules p̃(.) and s̃(.) such

that the direct mechanism, {(p̃(.), s̃(.), θ̃(.))}, satisfies IC. The third part characterizes U(z)

for any allocation which satisfies IC.

Lemma 3 (Necessary and sufficient condition for θ̃(z) to be implementable). Assume that

c(z) is strictly monotone in z.

1. Take any mechanism {(p̃(.), s̃(.), θ̃(.))} that satisfies IC. If θ̃(z) is a piecewise C1 function,

then c′(z)dθ̃(z)
dz

≤ 0 wherever θ̃(z) is differentiable at z.

2. Consider any piecewise C1 function θ̃(z) satisfying c′(z)dθ̃(z)
dz

≤ 0. Then there exists transfer

schedules p̃(.) and s̃(.) such that the mechanism {(p̃(.), s̃(.), θ̃(.))} satisfies IC.

3. If mechanism {(p̃(.), s̃(.), θ̃(.))} satisfies IC, then U(z) must satisfy

U(z) = U(zH) +

∫ zH

z

m(θ̃(z0))c
′(z0)dz0.
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Proof. Define V (X,R, z) ≡ Xc(z) + R, x(z) ≡ −m(θ(z)) and r(z) ≡ m(θ̃(z))p̃(z) + s̃(z).

Obviously, U(z, ẑ) = V (x(ẑ), r(ẑ), z).

Following Fudenberg and Tirole (1991), theorem 7.1, a necessary condition for x(.) to

satisfy IC is
∂

∂z

[ ∂V
∂X
∂V
∂R

]
dx

dz
≥ 0,

whenever x(.) is differentiable at z. But ∂
∂z

[
∂V
∂X
∂V
∂R

]

dx
dz

= ∂
∂z
( c(z)

1
)(−m′(θ̃(z)))dθ̃(z)

dz
. Also c′(.) > 0

and m′(.) ≥ 0 ,therefore, the necessary condition is equivalent to

c′(z)
dθ̃(z)

dz
≤ 0. (30)

According to Fudenberg and Tirole (1991) theorem 7.3, a sufficient condition for x(.)

to satisfy IC is that dx(z)
dz

≥ 0, or equivalently, c′(z)dθ̃(z)
dz

≤ 033.

For the third part of the lemma, I use corollary 1 from Milgrom and Segal (2002). This

result states that if θ̃(z) satisfies IC, then U(.) can be written as follows:

U(z) = U(zH)−

∫ zH

z

∂U(z0, z0)

∂z
dz0 = U(zH) +

∫ zH

z

m(θ̃(z0))c
′(z0)dz0. (31)

This equation is derived from the envelope theorem and is standard in mechanism design

literature. The requirements of the result of Milgrom and Segal (2002) that we need to check

are as follows:

1. U(z, ẑ) is differentiable and absolutely continuous in z.

This is satisfied because c is assumed to be twice differentiable.

2. supẑ

∣
∣∂U(z,ẑ)

∂z

∣
∣ is integrable.

This is satisfied because supẑ

∣
∣∂U(z,ẑ)

∂z

∣
∣ ≤

∣
∣c′(z)

∣
∣ < M for some M ∈ R, because c′(.) is

continuous and is defined over a compact set [zL, zH ].

3. θ̃(z) is obviously non-empty.

We know from IC that U(z) = m(θ̃(z))(p̃(z)− c(z)) + s̃(z) for all z. All types are active,

because as we will verify it later, the first best is achievable and there are positive gains from

trade for all types. Therefore, from now on we can assume without loss of generality that

s̃(z) = 0 for all types. (Otherwise, we can change p̃(z) to p̃(z) + s̃(z)

m(θ̃(z))
.) I substitute U(.)

from Equation 31 into U(z) = m(θ̃(z))(p̃(z)− c(z)) to derive transfers:

p̃(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃(z0))c
′(z0)dz0

m(θ̃(z))
. (32)

33Briefly, the idea of the proof for necessity is that the second order condition for IC maximization problem

(maxẑ U(z, ẑ)) should hold. For sufficiency, the proof goes by contradiction. The proof of this lemma is

standard in mechanism design literature thus omitted from here.
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Now, I use budget-balance condition to derive U(zH):

0 =

∫ [

m(θ̃(z))[h(z)− p(z)]− kθ̃(z)
]

F ′(z)dz

=

∫ [

m(θ̃(z))[h(z)− c(z)]− kθ̃(z)−m(θ̃(z))(p̃(z)− c(z))
]

F ′(z)dz

=

∫ [

m(θ̃(z))(h(z)− c(z))− kθ̃(z)−

∫ zH

z

m(θ̃(z0))c
′(z0)dz0 − U(zH)

]

F ′(z)dz

=

∫ [

m(θ̃(z))(h(z)− c(z))− kθ̃(z)−m(θ̃(z))c′(z)
F (z)

F ′(z)

]

F ′(z)dz − U(zH)

The third equality follows from Equation 32. The fourth equality uses the relationship be-

tween U(z) and p̃(z) and also Equation 31. The fifth equality is established using integration

by parts34. Therefore,

U(zH) =

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz (33)

According to Equation 31 and because c′(.) > 0, if U(zH) ≥ 0, then U(z) ≥ 0 for all z.

Hence, the following inequality,

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz ≥ 0, (34)

implies that planner’s budget constraint and participation constraint of all types are satisfied.

So far I have reduced IC constraint in the planner’s problem to two conditions 30 and 32.

Planner’s budget constraint and participation constraint of all types are also summarized in

Equation 34. Therefore, thanks to Lemma 3, I can rewrite the planner’s problem as follows

to derive θ̃(z) and p̃(z).

Problem 7. Planner’s problem

max
θ(z),p(z)

∫ [

m(θ(z))[h(z)− c(z)]− kθ(z)

]

F ′(z)dz

s. t. c′(z)
dθ(z)

dz
≤ 0, U(zH) ≡

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz ≥ 0

From now one, I work with this problem and characterize the solution to this problem.

34For any differentiable functions F and G, if G(zH) = 0, and F (zL) = 0 we will have:
∫ zH

zL
F ′(z)G(z)dz =

−
∫ zH

z
F (z)G′(z)dz using integration by parts. In the above equality, set

∫ zH

z
m(θ̃(z0))c

′(z0)dz0.
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8.6.1 Proof of Proposition 3

I propose the following direct mechanism as a solution to this problem (for Proposition 3):

θ̃CE(z) = θFB(z), (35)

p̃CE(z) = c(z) +
U(zH) +

∫ zH
z

m(θFB(z0))c
′(z0)dz0

m(θFB(z))
, (36)

where U(zH) =
∫ [

m(θFB(z))(h(z)− c(z))−m(θFB(z))c′(z) F (z)
F ′(z)

]

F ′(z)dz and

s̃CE(z) = 0 for all z.

Later on, I construct an associated implementable allocation with the above market tightness

and transfers. Specifically, I construct off-the-equilibrium-path beliefs for that.

Proof of Proposition 3 under Part 1 of Assumption 5

Proof. I prove Proposition 3 under the first assumption, h′(.) ≤ 0, using somewhat a back-

ward approach. I first guess that the planner can achieve the first best. That is, the planner

can maximize his objective function point-wise (for each z, separately). What I need to

do then is to check that the two constraints of Problem 7, monotonicity constraint and

U(zH) ≥ 0, are satisfied.

The first best level of market tightness, θFB(z), is given by

m′(θFB(z))(h(z)− c(z))− k = 0. (37)

By differentiating it with respect to z, one yields

dθFB(z)

dz
= −

k(h′(z)− c′(z))

m′′(θFB(z))(h(z)− c(z))2
. (38)

By assumption, h′(.)−c′(.) ≤ 0 andm′′(.) ≤ 0, so dθFB(z)
dz

is negative. Hence, c′(z)dθ(z)
dz

≤ 0

constraint in problem 7 is satisfied. Now I calculate U(zH) and show that it is positive. From

equation 33, one can write

U(zH) =

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz

=

∫ [

[−

∫ zH

z

m(θFB(z))(h′(z)− c′(z))dz + UFB(zH)]−m(θFB(z))c′(z)
F (z)

F ′(z)

]

F ′(z)dz

= −

∫
[
m(θFB(z))(h′(z)− c′(z)) +m(θFB(z))c′(z)

]
F (z)dz + UFB(zH)
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= −

∫

m(θFB(z))h′(z)F (z)dz + UFB(zH) ≥ 0

The second equality uses the fact that θ̃(z) = θFB(z) and also the fact that

d[maxθ(m(θ)(h(z)− c(z))− kθ)]

dz
= m(θFB)(h′(z)− c′(z)).

The third equality is derived by using integration by parts. The inequality holds because

h′(z) < 0 by assumption and UFB(zH) ≥ 0 because there are positive gains from trade for

all types. Both constraints in Problem 7 are satisfied. Also, because the proposed allocation

for the solution is the first best allocation, we do not need to check that any other allocation

achieves higher welfare, because this is the highest possible welfare. This completes the proof

that the first best is achievable by a feasible mechanism35.

Note that in order to show that θFB(z) is decreasing, it was sufficient to have h′(.)−c′(.) ≤

0 (according to Equation 38). In the next part of the proposition, I replace the assumption

h′(.) ≤ 0 with a weaker assumption, h′(.)− c′(.) ≤ 0. To satisfy U(zH) ≥ 0, I need another

assumption summarized in part 2 of Assumption 5.

Proof of Proposition 3 under Part 2 of Assumption 5

Proof. Now Suppose part 2 of Assumption 5 holds. The proof is similar to the previous part.

Because h′(z)− c′(z) is negative, according to Equation 38, the first constraint in Problem 7

is satisfied. We just need to show that U(zH) is positive. Again from equation 33, one can

write

U(zH) =

∫ [

m(θFB(z))[h(z)− c(z)]− kθFB(z)−m(θFB(z))c′(z)
F (z)

F ′(z)

]

F ′(z)dz.

A sufficient condition for the integral to be positive is that the sum of the terms in the brackets

is always positive. That is, for all z: m(θFB(z))[h(z)−c(z)]−kθFB(z)−m(θFB(z))c′(z) F (z)
F ′(z)

≥

0. But at the solution m′(θFB(z))[h(z)− c(z)] = k, therefore

m(θFB(z))[h(z)− c(z)]− kθFB(z)

m(θFB(z))

=
m(θFB(z))[h(z)− c(z)]−m′(θFB(z))[h(z)− c(z)]θFB(z)

m(θFB(z))
= −

θFB(z)q′(θFB(z))

q(θFB(z))
(h(z)−c(z)).

Hence, for U(zH) to be positive, it is sufficient to have:

η(θFB(z))
h(z)− c(z)

c′(z)
≥

F (z)

F ′(z)
for all z.

35The proposition and its proof can be written in the exactly same fashion if instead c(.) is strictly

decreasing and h(.)− c(.) is increasing. The result are not reported to save space.
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From m′(θFB(z))[h(z)− c(z)] = k, I can write θFB(z) = m′−1( k
h(z)−c(z)

). Replacing θFB(.) in

the sufficient condition yields ψ( k
h(z)−c(z)

)h(z)−c(z)
c′(z)

≥ F (z)
F ′(z)

which is the same as the left hand

side of part 2 of Assumption 5. This concludes the proof36.

p̃(z) is increasing in z

I take a derivative of Equation 32 with respect to z to get the following:

dp̃(z)

dz
= −

m′(θ̃(z))

m(θ̃(z))

dθ̃(z)

dz
(p̃(z)− c(z)) ≥ 0 (39)

The inequality holds because θ̃(z) is decreasing in z following the fact that the allocation

satisfies IC. Moreover, p̃(z) − c(z) is positive following the fact that the allocation satisfies

the participation constraint.

Constructing an implementable allocation from the direct mechanism

So far, I have constructed the direct mechanism for Proposition 3. I construct the asso-

ciated implementable allocation {P,G, θ, µ, t, T} as follows.

P ≡ [pL, pH ] ⊆ P = R+ where pL ≡ p̃CE(zL) and pH ≡ p̃CE(zH)

and p̃CE is given by37 Equation 36. The market tightness for this allocation is given by






θ(p) = ∞ for p ≤ c(zL)

m(θ(p)) = min{1, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

θ(p) = θFB(p̃CE−1(p)) for p ∈ [pL, pH ]

m(θ(p)) = min{1, U(zH)
p−c(zH)

} for p ∈ (pH ,∞)

The rest of elements are given as follows:

G(p) =







0 for p < pL
∫ p

pL
θ(p)F ′(p̃CE−1(p))dp for p ∈ [pL, pH ]

1 for p > pH

t(p) =







h(zL)− p for all p < pL

h(p̃CE−1(p))− p− k
q(θ(p))

and p ∈ [pL, pH ]

h(zH)− p for p > pH

36Note that when c′(.) < 0 and h′(.)− c′(.) ≥ 0, a similar result can be obtained.
37I showed above that p̃(z) is strictly increasing in z. Also p̃(z) is continuous, therefore the set of prices

in the constructed implementable mechanism is P ≡ [pL, pH ].
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∫

µ(z|p)dz = 1 for all p and µ(z|p) =







0 for p < pL and z 6= zL

0 for p 6= p̃(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

T = 0

The construction is straightforward. We allocate all types the same market tightness

and transfer that they were given in the direct mechanism. For construction of off-the-

equilibrium-path beliefs, if p < pL, then the only type attracted to this post is zL. Therefore,

µ(z|p) = 0 for all z 6= zL, and µ(z|p) has a mass point at z = zL. Similarly if p > pH , then

the only type attracted to this post is zH . Therefore, µ(z|p) = 0 for all z 6= zH . Given

the above beliefs, we construct the tax amount for all p such that buyers get a net profit

of exactly 0 for p ∈ P and −k for p /∈ P . Note that choice of t is not unique for p /∈ P .

We could construct t differently such that buyers get any non-positive amount of profit for

p /∈ P . G(p) is easily constructed given the construction of θ(.).

Now I check the conditions of implementability. The buyers maximization and free entry

condition is satisfied due to the construction of t (easy to check). Feasibility or market

clearing is also trivially satisfied due to the construction of G. The budget-balance condition

is satisfied due to the choice of U(zH).

Regarding the sellers’ optimal search condition, first note that the restriction on off-the-

equilibrium-path beliefs is equivalent to38:

m(θ(p)) = min{1, inf z∈{z|c(z)<p}

U(z)

p− c(z)
},

if {z|c(z) < p} is non-empty. Otherwise, set θ(p) = ∞. Now it is easy to see that sellers’

optimal search is also satisfied due to the construction of θ(p). The only thing worth ex-

plaining here is why only zL is attracted to any price less than pL (and similarly why only

zH is attracted to any price greater than pH). To see why, I begin by writing the incentive

compatibility condition for any feasible mechanism:

m(θ̃(zL))(p̃(zL)− c(z)) ≤ U(z) for all z.

After using the fact that U(zL) = m(θ̃(zL))(p̃(zL)− c(zL)), we can write:

U(zL)− U(z) ≤ m(θ̃(zL))(c(z)− c(zL)) for all z.

38See Chang (2012) for a more detailed discussion.
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Therefore,

U(zL)− U(z) ≤ m(θ̃(zL))(c(z)− c(zL)) =
U(zL)

p̃(zL)− c(zL)
(c(z)− c(zL))

≤
U(zL)

p− c(zL)
(c(z)− c(zL)) for all z and for p ∈ (c(zL), p(zL)),

or equivalently,

U(zL)

p− c(zL)
≤

U(z)

p− c(z)
for all z and for p ∈ (c(zL), p(zL)).

Therefore by settingm(θ(p)) to be equal to U(zL)
p−c(zL)

, the restriction on off-the-equilibrium-path

beliefs is satisfied.

Understanding Part 2 of Assumption 5 better

It is easy to show that if 1/q(θ) is convex, η(θ) is increasing in θ. Also, m′ is decreasing

in θ by assumption. Hence, ψ(.) is a decreasing function. The second part of Assumption 5

states that for a given distribution, a given z and a given value for c′(z), h(z)−c(z) should be

sufficiently high or k should be sufficiently low. The intuition is that the surplus generated

by type z should be sufficiently high (or the entry cost sufficiently low) to provide enough

resources for the planner to implement the first best allocation. This assumption is exactly

the counterpart of part 3 of Assumption 2 in the discrete type case.

8.6.2 Even if c′(.) ≥ 0 and h′(.) ≥ 0, the optimal tax schedule may not be mono-

tone

Assume that part 2 of Assumption 5 holds, so FB is achievable and θ̃(z) = θFB(z). I suppress

the superscript CE in this section to reduce the notation. I calculate m(θ̃(z))t(z), take its

derivative with respect to z and then show that if c′(.) ≥ 0, h′(.) ≥ 0 with strict inequality

for a positive measure of z and h′(zL) = 0, then dt(p)
dp

|p=pL < 0.

m(θ̃(z))t̃(z) = m(θFB(z))(h(z)− c(z))− kθFB(z)− U(zH)−

∫ zH

z

m(θFB(z0))c
′(z0)dz0

= UFB(z)− U(zH)−

∫ zH

z

m(θFB(z0))c
′(z0)dz0

The derivative of m(θFB(z))t(z) with respect to z is given by:

∂

∂z
[m(θ̃(z))t(z)] =

∂

∂z
UFB(z) +m(θFB(z))c′(z)

= m(θFB(z))(h′(z)− c′(z)) +m(θ(z))c′(z) = m(θFB(z))h′(z) ≥ 0 (40)

79



The second equality is derived by applying Envelop theorem to the following maximization

problem: UFB(z) = maxθ{m(θ)(h(z)− c(z))− kθ}. The inequality holds by assumption.

Similar to the previous proof, it is easier to work with the direct mechanism. Because

θ̃(.) is strictly decreasing, then the associated implementable allocation must be separating.

I show below that t̃(z) is decreasing in z at z = zL. Then it is readily concluded that tax

function must be also decreasing in the price at p = pL, because the allocation is separating

and price in each submarket is strictly increasing in the type applying to that submarket.

According to Equation 40, d[m(θ̃(z))t̃(z)]
dz

= m(θ̃(z))h′(z), therefore

t̃′(z) = h′(z)−
m′(θ̃(z))

m(θ̃(z))

dθ̃(z)

d(z)
t̃(z)

Consider this equality for z = zL. Given the assumption that h′(zL) = 0 and given the fact

that θ̃′(z) < 0, it is sufficient to show that t̃(zL) < 0. Then it follows that t̃′(zL) < 0. To

calculate t̃(z), I use the planner’s budget-balance condition to write:

∫

m(θ̃(z))t̃(z)dF (z) = 0.

Let χ(.) ≡ m(θ̃(z))t̃(z). Then,

0 =

∫

χ(z)dF (z) = −χ(z)(1− F (z))

∣
∣
∣
∣

zH

zL

+

∫

χ′(z)(1− F (z))dz

by using integration by parts. Therefore

χ(zL) = −

∫

χ′(z)(1− F (z))dz < 0.

The inequality holds because χ′(z) = m(θ̃(z))h′(z) from Equation 40 and the fact that

h′(z) ≥ 0. Also, the inequality is strict because h′(z) > 0 for some z. But t̃(zL) =
χ(zL)

m(θ̃(zL))
< 0

by definition of χ(.). The proof is complete.

8.6.3 What if complete information allocation is not achievable

I keep the assumption that c′(z) > 0 and h′(z) − c′(z) ≤ 0, but now assume that the

distribution of types is such that the planner cannot achieve the first best. I show in the

next proposition that the probability of matching for almost all types must be distorted

(relative to the first best) so that IC and budget constraint are both satisfied.

Proposition 3 requires m(θFB(z))[h(z) − c(z) − c′(z) F (z)
F ′(z)

] − kθFB(z) to be positive (if

h′(z) ≤ 0 is not satisfied for some z). However, if this expression is negative for some types,

then the following result (Proposition 6) requires at least h(z)−c(z)−c′(z) F (z)
F ′(z)

to be positive
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for all z. Also this proposition requires h(z)−c(z)−c′(z) F (z)
F ′(z)

to be decreasing in z to ensure

that the monotonicity constraint is satisfied (dθ̃(z)
dz

≤ 0).

Note that generally t̃CE(z) 6= 0 for almost all types. This implies that although the first

best is not achievable under the premises of this proposition, the planner can use transfers

effectively to achieve higher welfare than the equilibrium. The intuition is the same as in

the simple two-type example.

Assumption 7. For all z, h(z)− c(z)− c′(z) F (z)
F ′(z)

> 0 and d
dz

[
h(z)− c(z)− c′(z) F (z)

F ′(z)

]
≤ 0.

Proposition 6. Assume c′(z) > 0, h′(z)−c′(z) ≤ 0 and UFB(z) > 0 for all z. Also, suppose

Assumption 7 holds. If the first best is not achievable, then there exists a ν > 0 such that

the market tightness θ̃CE(z) solves the following equations:

m′(θ(z))

[

h(z)− c(z)−
ν

1 + ν
c′(z)

F (z)

F ′(z)

]

= k, (41)

∫ [

m(θ(z))
[

h(z)− c(z)− c′(z)
F (z)

F ′(z)

]

− kθ(z)

]

F ′(z)dz = 0. (42)

Moreover, s̃CE(z) = 0 without loss of generality and p̃CE(z) is obtained similarly as before:

p̃CE(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃CE(z0))c
′(z0)dz0

m(θ̃CE(z))
,

where U(zH) = 0.

Proof. In this case by assumption, the complete information allocation is not achievable.

Therefore, the guess-and-verify approach does not work. To solve for planner’s problem,

consider Problem 7. I first ignore monotonicity constraint. I form the Lagrangian and derive

first order condition (FOC). Then I verify that the monotonicity constraint (and consequently

IC) is also satisfied. Denote the Lagrangian by L and the Lagrangian multiplier by ν:

L =

∫

[m(θ(z))(h(z)− c(z))− kθ(z)

+ ν[m(θ(z))(h(z)− c(z))− kθ(z)−m(θ(z))c′(z)
F (z)

F ′(z)
− U(zH)] ]F

′(z)dz. (43)

The FOC with respect to θ(z) for all z is given by:

m′(θ(z))(h(z)− c(z))− k + ν(m′(θ(z))(h(z)− c(z))− k)− νm′(θ(z))c′(z)
F (z)

F ′(z)
= 0. (44)

It can be simplified to conform to Equation 41 exactly.
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According to the assumptions of the proposition, h− c and h− c− c′ F (z)
F ′(z)

are decreasing

in z. Also, ν is non-negative, so 1
1+ν

(h(z) − c(z)) + ν
1+ν

(h(z) − c(z) − c′(z) F (z)
F ′(z)

) = h(z) −

c(z) − ν
1+ν

c′(z) F (z)
F ′(z)

is also decreasing in z. Therefore, FOC implies that θ(z) is decreasing

in z as well. As a result, the monotonicity constraint (c′(z)dθ̃(z)
dz

≤ 0) is satisfied. The

first best is not achievable, so if the planner allocates all types the market tightness θFB(z)

(and corresponding transfers from equation 32), then the derived value for U(zH) becomes

negative. (Otherwise first best would be achievable)39.

Assume there exists ν > 0 such that the FOC and BB both hold. Since the objective

function is strictly concave in θ(.), and the objective function is just the sum of concave

functions, the objective function is also concave in θ(.)40. Because of concavity of the ob-

jective function, the FOC is sufficient for the solution. Hence, it only remains to show that

such ν > 0 exists.

Note that θ(.) obtained from Equation 41 is continuous in ν. Accordingly, the LHS of

Equation 42 is continuous in ν as well. I need to show that the LHS of Equation 42 is

negative at ν = 0 and is positive when ν → ∞.

If ν = 0, then θ(z) = θFB(z) is the solution to Equation 41. The first best is not

39Among all allocations in which all types are active, the proposed allocation is globally optimum, because

the objective function is concave and the constraint set is convex. However, since FB is not achievable, we

need to compare the level of welfare from this case (where all types are active) with another case where some

types are inactive. Notice that since U(z) is decreasing in z, if some types are not active, then all types

above them will not be active either. Therefore, there is a threshold under which all types are active and

above which all types are not active. Then, we can apply the same method to the set of types below the

threshold in order to calculate welfare. To show that exclusion of some types does not increase welfare, note

that we can write the value of the planner’s objective function as

∫

[m(θ(z))(h(z)− c(z))− kθ(z)]F ′(z)dz =

∫

m(θ(z))c′(z)F (z)dz.

The equality follows from Equation 42 (which is implied by the fact that U(zH) = 0). Since c′(z) > 0 for all

z, if some types are excluded, then the value of the objective function will be strictly lower. Therefore, it is

never optimal to exclude some types.
40To show this point, consider a simpler version where the objective is a function of two variables, that is,

g(x1, x2) = f(x1) + h(x2). Also assume f(.) and h(.) are concave in x1 and x2 respectively. I want to show

that g is concave in (x1, x2). To show that, I form the Hessian as follows:

[

f ′′ 0

0 h′′

]

Since f ′′ and h′′ are both negative, the determinant of Hessian is negative. Therefore g is concave.
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achievable, so the other constraint in Problem 7 must be violated:

∫ [

m(θFB(z))
[

h(z)− c(z)− c′(z)
F (z)

F ′(z)

]

− kθ(z)

]

F ′(z)dz < 0.

If ν → ∞,

∫ [

m(θ(z))
[

h(z)− c(z)− c′(z)
F (z)

F ′(z)

]

− kθ(z)

]

F ′(z)dz

= lim
ν→∞

∫ [

m(θ(z))
[

h(z)− c(z)−
ν

1 + ν
c′(z)

F (z)

F ′(z)

]

− kθ(z)

]

F ′(z)dz

=

∫

[
km(θ(z))

m′(θ(z))
− kθ(z)]F ′(z)dz = k

∫
m(θ(z))− θ(z)m′(θ(z))

m′(θ(z))
F ′(z)dz

= −k

∫
θ(z)2q′(θ(z))

m′(θ(z))
F ′(z)dz > 0,

where the second equality is derived from the FOC for any ν, that is, m′(θ(z))[h(z)− c(z)−

c′(z) F (z)
F ′(z)

] = k, and the last inequality follows from q′ < 0 and m′ > 0. According to

intermediate value theorem, there exists a strictly positive ν which satisfies 42.

8.7 Proof of Proposition 5

First I define the implementable allocation with two types of taxes similar to the definition

of implementable allocation in Definition 6. One difference is that here there is also another

tax that buyers should pay when they want to enter each submarket, te(p). This tax is

collected before agents find a match. Due to this difference, we have to take into account

the fact that the amount of entry tax for the open submarkets, p ∈ P , cannot exceed −k,

otherwise buyers don’t have incentive to stay in the matching stage, i.e., they will leave after

the entry tax (subsidy, in fact) is paid. This is reflected in condition (i) of the following

definition.

Another difference is that here the set of admissible prices is assumed to be (c(zL),∞).

This is because for any p ≤ c(zL), no seller would have incentive to apply to that submarket,

because the seller would get a negative payoff. Therefore, we just assume that such a price

cannot be posted. This assumption is made to avoid some technical difficulties.

Definition 10. An implementable allocation, {P,G, θ, µ, t, te, T}, is a measure G on the

set of all possible prices, P ≡ (c(zL),∞), with support P , a function θ : P → [0,∞], a

conditional density function of buyers’ beliefs regarding sellers’ types who would apply to p,

µ : P×Z → [0, 1], a tax function denoting the amount of tax to be imposed on buyers at each

submarket conditional on trade, t : P → R, another tax function denoting the amount of tax

83



to be imposed on buyers at each submarket conditional on entry, te : P → R, and finally the

amount of the numeraire good to be transferred to sellers in a lump sum way, T ∈ R+, which

satisfies the following conditions:

(i) Buyers’ profit maximization, free entry and no commitment

For any p ∈ P,

q(θ(p))[

∫

h(z)µ(z|p)dz − t(p)] ≤ k + te(p),

with equality if p ∈ P . Also,

0 ≤ k + te(p)

for any p ∈ P .

(ii) Sellers’ optimal search

Let U(z) = max

{

0,maxp′∈P
{
m(θ(p′))(p′ − c(z))

}
}

+ T and U(z) = T if P = ∅. Then for

any p ∈ P and z, U(z) ≥ m(θ(p))(p − c(z)) + T with equality if θ(p) < ∞ and µ(z|p) > 0.

Moreover, if p− c(z) < 0, either θ(p) = ∞ or µ(z|p) > 0.

(iii) Feasibility or market clearing

For all z,
∫

P
µ(z|p)
θ(p)

dG(p) ≤ F ′(z), with equality if U(z) > T .

(iv) Planner’s budget constraint

∫

P

[q(θ(p))t(p) + te(p)]dG(p) ≥ T.

Let {(p̃(.), s̃(.), θ̃(.))} denote the direct mechanism with the properties given in Propo-

sition 5. Since all types get a strictly positive payoff and also that the market tightness

allocated to different types is all different, if s̃(z) 6= 0 for some z, we can substitute p̃(z)

by p̃(z) + s̃(z)

m(θ̃(z))
for almost all types (because θ̃(z) 6= 0 for almost all types). Therefore, we

can assume without loss of generality that s̃(z) = 0 for almost all z. Furthermore, to avoid

technical difficulties, assume that the p̃(z) and θ̃(z) are both differentiable in z.

As shown in part 1 of Lemma 3, c′(z)dθ̃(z)
dz

≤ 0 for all z is a necessary condition for any

mechanism which satisfies IC. Since θ̃(z) is different for different types by assumption, θ̃(z)

must be a strictly decreasing function in z. Also in the proof of Proposition 3, it was shown

that p̃(z) is given by the following equation in any mechanism that satisfies IC:

p̃(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃(z0))c
′(z0)dz0

m(θ̃(z))
, (45)

where U(zH) =
∫ [
m(θ̃(z))(h(z) − c(z)) − kθ̃(z) − m(θ̃(z))c′(z) F (z)

F ′(z)

]
dF (z). According to

Equation 39, we have p̃′(z) = m′(θ̃(z))

m(θ̃(z))

dθ̃(z)
dz

(p̃(z) − c(z)) which implies that p̃(z) is strictly

increasing in z with the assumption of differentiability of θ̃(.). This is because p̃(z) − c(z)
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is strictly positive, (otherwise that type will get a negative payoff which contradicts the

assumption that all types get a strictly positive payoff), and also because θ̃(z) is strictly

decreasing. Moreover, p̃(z) is continuous, therefore the set of prices in the constructed

implementable mechanism is P ≡ [pL, pH ] where pL ≡ p(zL) and pH ≡ p(zH).

I construct the allocation {P,G, θ, µ, t, te, T} as follows and show that if M and M ′ are

chosen sufficiently large, this allocation is implementable and te(p) is strictly decreasing and

t(p) is strictly increasing in p. The market tightness for this allocation is given by41:







m(θ(p)) = min{1, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

θ(p) = θ̃(p̃−1(p)) for p ∈ [pL, pH ]

m(θ(p)) = min{1, U(zH)
p−c(zH)

} for p ∈ (pH ,∞)

The rest of elements are given as follows:

G(p) =







0 for p ∈ (c(zL), pL)
∫ p

pL
θ(p)F ′(p̃−1(p))dp for p ∈ [pL, pH ]

1 for p > pH

te(p) =







−k +M(pH − p) for p ∈ (c(zL), pH ]

−k for p ∈ (pH ,∞)

t(p) =







h(zL)− p− k+te(p)
q(θ(p))

for all p ∈ (c(zL), pL)

h(p̃−1(p))− p− k+te(p)
q(θ(p))

and p ∈ [pL, pH ]

t(pH) +M ′(p− pH) for p > pH

∫

µ(z|p)dz = 1 for all p and µ(z|p) =







0 for p < pL and z 6= zL

0 for p 6= p̃(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

T = 0

Now I check the conditions of implementability. The buyers profit maximization and free

entry condition is satisfied due to the construction of t and te (easy to check). Feasibility (or

market clearing) is also trivially satisfied due to the construction of G. The budget-balance

41If there are more than one θ(p) consistent with the above equation, then choose the largest one. This

does not happen here though, because we have assumed in this section that m is strictly increasing.

85



is satisfied due to the choice of U(zH). Sellers’ optimal search condition is satisfied and the

argument is exactly similar to one in page 78, so I skip it.

Regarding monotonicity of taxes, it is obvious that te(p) is decreasing in p for any p ∈

[pL, pH ] for any M > 0. It is just left to show that t(p) is increasing in p. I take a derivative

of t(p) with respect to p:

t′(p) = h′(p̃−1(p))
d(p̃−1(p))

dp
− 1 +M

q(θ(p)) + q′(θ(p))θ′(p)(pH − p)

q(θ(p))2
.

Now, define

M1 ≡ min

{

4, sup
p∈[pL,pH ]

(1− h′(p̃−1(p))d(p̃
−1(p))
dp

)q(θ(p))2

q(θ(p)) + q′(θ(p))θ′(p)(pH − p)
, sup
p∈[0,pL]

q(θ(p))2

q(θ(p)) + q′(θ(p))θ′(p)(pH − p)

}

.

M1 is a lower bound for M . Note that 4 is just an arbitrary positive number. Also, the

third expression in the min has been derived similarly to the second expression but for the

case with p ∈ (cL, pL]. I want to show that M1 <∞, so I need to show that the second and

third expressions in the min are less than ∞. Note that if q(θ(p)) → 0, then the expression

goes to 0, therefore I just need to show that d(p̃−1(p))
dp

> −∞. I have already calculated dp̃
dz

in Equation 39 and have shown that dp̃
dz
> 0 for all z. Therefore, d(p̃−1(p))

dp
which is just the

inverse of dp̃
dz

is always positive too. Since z lies in a compact interval, 1 − h′(.)dp̃
dz

is not

greater than 1 and the proof in this part is complete.

For p ∈ (c(zL), pL), we can similarly find M2 > 0 such that if M > M2, then t(p) is

strictly increasing. For p > pH , again we can similarly find M3 > 0 such that if M ′ > M3,

then t(p) is strictly increasing. Since t(p) is continuous by construction, therefore the fact

that it is increasing in different intervals implies that it is increasing in the entire domain.
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