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Abstract

This paper examines how adverse selection affects asset market outcomes such as liquid-
ity, velocity and prices. To do so, a decentralised asset market with search and bargaining
is employed where assets have an essential role in exchange. Under the assumption of pri-
vate information about quality, the model provides two broad insights. First, information
frictions may lead to lower velocity, inefficient output levels and prices. Whether or not this
happens depends on the asset’s quality which determines whether it suffers from adverse
selection or not. Second, a high quality asset might end up with a lower output than the
low quality asset. The degree to which this happens depends on whether the high quality
asset holder decides to pool or not with her low counterpart. The model informs us that
markets transition from a pooling to separating outcome as the quality mix of assets wors-
ens. Besides this, the model also shows how asset prices can change abruptly depending
on the state of the economy. In particular, it shows how an inferior asset’s price can drop
suddenly.
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1 Introduction

The global financial crisis of 2007-08 manifested itself through liquidity dry-ups and market

declines as financial institutions held back their assets for several reasons, including inter alia,

price declines, liquidity spirals, and hoarding of funds (Brunnermeir, 2010). Furthermore,

Gorton (2007, 2008, 2009) in his analysis of the crisis, has highlighted the key role played by

informational frictions. Gorton (2009) describes how “informationally insensitive” debt can

become “informationally sensitive” due to a shock.1 This paper is an attempt to account for

such information asymmetries and its impact through a decentralized asset market where assets

have a liquidity role.

Analyzing markets where assets have a liquidity role through monetary models allows one to

generate outcomes on prices and velocities endogenously through trading frictions as has been

done in many papers including Kiyotaki and Moore (2005), Duffie et al. (2005, 2008), Lagos

(2010, 2011) and may others surveyed in Nosal and Rocheteau (2011) and Lagos, Rocheteau

and Wright (2015). Such monetary models are particularly useful as it values assets not only

for their rates of return but also for their liquidity services (Rocheteau and Wright, 2013).

By adding informational frictions to this class of asset market models, a real world problem

can be studied for its effects on asset prices through liquidity. Information frictions may affect

liquidity of assets and hence prices. For instance consider this, if the asset holder has private

information about quality, then in order to signal that she does not have a ‘lemon’ she might

be willing to accept a lower output and velocity in return for a better price. Or, she might in

fact choose to not signal her quality at all and get a high output and velocity in return for a

lower price. The choice between the two will depend on how many so called ‘lemons’ actually

exist in the market and how different her asset is from them. This decision also affects the

outcomes of the actual ‘lemons’. In particular when the good quality asset holder decides to

pool with them (or not signal) the value of the bad assets rises and falls abruptly when the

good decides to signal. Thus, information frictions may lead to lower velocity, inefficient output

levels and prices. Whether or not this happens depends on the quality of assets and whether

1Gorton’s usage of this phrase was in terms of information acquisition. I will however argue that this phrase
extends to information provision too, as asset holder’s decide whether or not to signal their quality.
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it suffers from adverse selection or not. If this is the case then not surprisingly, as agents are

better informed, market outcomes improve.

The basic framework is borrowed from Shi (1995) and Trejos and Wright (1995) which

features random pairwise meetings with a role for liquid assets that can serve as means of pay-

ment or collateral. Along with the aforementioned advantages of the class of such models, I

particularly like the fact that such an environment allows to have explicit game-theoretic foun-

dations for exchange and transmission of information. Fiat money is replaced with indivisible

and durable assets in fixed supply just like claims to Lucas (1978) trees that give off fruits as

dividends. In addition, agents have private information about quality of fruits (or dividend)

the tree (or asset) bears. Examples of such assets in the real world could be private equity, a

corporate bond or an asset-backed security.

Moreover, asset holdings are assumed to be binary as in the original model. This does make

the model tractable but for our purposes it also rules out portfolio diversification, something

which we want. The indivisible asset holding however can be restrictive as by itself if does

not allow two dimensions of trade and therefore could result in inefficient outcomes such as

no-trade or too-much-trade (Berentsen & Rocheteau, 2001). Therefore, as in Berentsen, Molico

& Wright, (2002), I allow agents to trade lotteries on their trees, where the valuable asset is

withdrawn from circulation in a probabilistic sense, without harming the efficiency of exchange.

We will thus be able to look at the model as a signaling game as in Nosal and Wallace (2007).

We will also see how an asset holder can signal the quality of her tree through ‘asset retention’

i.e. she might propose to hold on to her asset with a higher probability, something which a

bad asset holder does not do.2 Many results will thus emerge along the intensive margin of

trade. The general equilibrium determines the value of assets and shows how an asset can be

overvalued (in a sense to be made precise).

It is shown how the market outcome changes from being in a pooling equilibrium to a

separating equilibrium, as the proportion of bad assets in the market goes up or the difference

in quality between the high and low quality reduces.3 Whether or not one can interpret the

2This can be related to the Dodd-Frank Act’s 5 % risk retention requirement (Geithner, 2011).
3I use the concept of undefeated equilibrium from Mailath, Okuno-Fujiwara and Postlewaite (1993) to dis-

criminate between the two equilibria. See the text and Appendix B for details.
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crisis as a situation with a worsening of the quality mix of assets can be open for discussion, but

with a slight reinterpretation of Gorton’s (2009) phrase as discussed above we can see how a

market can go from being informationally insensitive (pooling) to sensitive (separating). When

this happens abrupt decline in prices of some assets (the inferior ones) can be also explained.

With regard to the literature, this paper is related to many other papers. A non-exhaustive

list is as follows. In random-search and private information, Williamson and Wright (1994) and

Berentsen and Rocheteau (2004) have a model with private information on the good but not

the asset used in exchange. Velde, Veber & Wright (1999) has a model on commodity money

with adverse selection but without lotteries. Nosal and Wallace (2007) and Li and Rocheteau

(2011) build a model of counterfeiting using lotteries, but equilibrium refinement used is the

Intuitive Criterion which rules out all pooling offers. Rocheteau (2011) has a model with two

assets and private information on future dividend flows of one of the assets in a Lagos and

Wright (2005) framework but again the equilibrium notion rules out pooling offers.

Papers using a competitive search environment include Guerrieri, Shimer and Wright (2010)

where non-asset holders (or goods producers) post contracts and then both types of asset

holders decide whether or not to enter the market. The entry decision affects market tightness.

However, assets play no role in facilitating exchange and since they look at the extensive margin

with price posting through screening the ‘asset retention’ story is missing. The results they

get are similar in terms of how asset’s terms of trade are affected as the buyers of assets can

successfully screen the two types. They also mention (without using any equilibrium refinement)

that pooling outcomes can Pareto dominate the separating in some cases. Chang (2012) uses a

similar framework but also includes private information about trading motives rather than just

on the quality of assets. Thus she can analyze semi-pooling equilibrium through the interplay

of multi-dimensional private information. The impact of such asymmetries is seen along two

dimensions: trading price and speed. Delacroix and Shi (2013) also work with competitive

search but allow asset holders to post contracts thereby signalling their types; they however

have agents that are ex-ante similar who decide whether to be high type or low type.

This paper is also related to the literature focusing on the effect of search frictions in asset

markets (Kiyotaki and Wright, 1993; Shi, 1995; Trejos and Wright, 1995), and also the over-
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the-counter literature (such as Duffie, Garleanu and Pedersen, 2005). Finally, this paper is

related to the long literature on lemons market, which builds on the seminal work of Akerlof

(1970). It also borrows from Cho and Kreps (1987); Mailath, Okuno-Fujiwara and Postlewaite

(1993) and Farhi and Tirole (2014) for the equilibrium concept in signaling games.

This paper should be seen as contributing to the literature on information and liquidity. The

key contribution is to show how asset market outcome transitions from pooling to separating

as the quality mix of assets declines. As this change takes place, strong predictions can be

made about prices and velocities. In particular, when the quality mix of assets falls below a

critical level, some assets experience a sharp fall in prices. Many random-search models with

private information by broadly restricting attention to the Cho-Kreps (1978) Intuitive Criterion

have ruled out pooling offers from being an equilibrium outcome. By using the undefeated

equilibrium concept, which does not rule out all pooling offers, the present model can generate

these different outcomes which lends useful insights into the functioning of financial markets.

Besides, the model can be extended or applied to other contexts which can be avenues for future

research as will be discussed briefly.

The rest of the paper is organized as follows: Section 2 presents the physical environment.

The bargaining game is studied in isolation in Section 3 and is embedded in the general equi-

librium structure in Section 4. Section 5 concludes. The proofs to all propositions and lemmas

are in the appendix.

2 Environment

The monetary search framework is based on Shi (1995) and Trejos and Wright (1995) with

divisible consumption goods and asset holdings in the set {0, 1}. The formulation of asymmetric

information follows Williamson and Wright (1994), with the difference that private information

is on the asset holding and not on goods. Finally, the lotteries framework is based on Berentsen,

Molico and Wright (2002) where agents are allowed to offer their asset probabilistically in

bilateral trades.4

4In search theoretic models with indivisible money and complete information, the use of lotteries acts as
an imperfect proxy for divisibility of money: it allows larger gains from trade and it eliminates some trade
inefficiencies arising from indivisibilities (Berentsen and Rocheteau, 2002).
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The time horizon is infinite and is indexed by t ≥ 0. There is a large number of perfectly

divisible and perishable goods and a unit measure of agents who specialize in the goods they

produce and consume. To generate trade possibilities, assume that agents do not consume their

own output. Agents trade in bilateral matches and specialization in production and consump-

tion rules out double-coincidence-of-wants. This specialization does allow single-coincidence

matches, however, where one agent wishes to consume the good produced by her partner, but

not vice versa. Agents also cannot commit to future actions; there is no enforcement or record-

keeping technology hence credit arrangements are infeasible and all trade arrangements must

be quid pro quo. Assets are introduced below to play the role of a medium of exchange.

Agents get utility u(q) from consumption (and dis-utility c(q) from production) of q ∈

R+ units of the good. Assume that u(q) and c(q) are continuously differentiable and strictly

increasing. Furthermore, u(q)− c(q) is strictly concave, u(0) = c(0) = 0, u′(0) = ∞ and there

exists q∗ > 0 such that u′(q∗) = c′(q∗). Agents discount the future at rate r > 0.

In addition to these consumption goods, there are indivisible, durable and storable Lucas

(1978) trees in the economy that can be interpreted as private equity, corporate bonds or asset-

backed securities. These assets can potentially serve as media of exchange or as collateral.5

Initially, M < 1 agents are endowed with one unit each of these trees. Trees come in two

varieties: l-type which yields low fruit (or dividend) offering utility flow equal to γl > 0 to

the owner every period and h-type which yields a higher fruit (or dividend) offering utility

flow γh > γl ≥ 0. Let Mi be the measure of agents endowed each with i-type tree, so that

Mh + Ml = M . Agents with trees are called buyers and those without trees sellers. Let

πi = Mi/M be the fraction of i ∈ (h, l) type buyers.

Only buyers and sellers meet each period. In particular, two tree holders or two sellers never

meet. This means that in every period, there are Mi buyers each with a singe tree of type i and

N = 1−M sellers with no trees. The probability of single-coincidence match for a tree holder is

α(N/M) i.e. a match where the buyer wants the good that the seller produces. We assume that

α(N/M) is continuously differentiable, strictly increasing and concave. Furthermore, α(0) =

0, α(∞) = 1, α′(0) ≤ 1. The probability of a single coincidence match for an agent without

5Equivalence of the use of assets as a means of payment or collateral has been described in Lagos (2010)
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tree (i.e. a match where the seller wants the good produced by the buyer which is actually

unfruitful because even though the seller wants the buyer’s good, she cannot buy it as she has

nothing to offer in return) is α(N/M)M/N .6 Conditional on being matched the seller meets a

type-h buyer with probability πh = Mh/M and a type-l buyer with complementary probability

πl = Ml/M = 1− πh. In any such meeting, trade may or may not take place.

Terms of trade in bilateral matches are determined by a simple take-it-or-leave-it offer by

the buyer to the seller. If the seller accepts the offer, the trade is executed, otherwise the buyer

and seller split apart and trade is not executed. The take-it-or-leave-it offer is a simplifying

assumption as the model would be quantitatively similar if some other proportional bargaining

solution were to be adopted. Moreover, to overcome the indivisibility of assets, this paper

borrows from Berentsen, Molico and Wright (2002) and allows buyers to offer lotteries. The

offer made specifies a pair (q, p) where q is the quantity of the good to be traded and p is the

probability of trading the tree. In other words, the buyer asks the seller to produce q units of

the good in exchange for the tree which the seller would receive with probability p. Introduction

of lotteries creates a notion of prices in an otherwise indivisible asset world and thus allows a

deeper analysis of the bargaining game.

Furthermore, it is not easy for sellers to detect the difference between trees of type h and l.

Following Williamson and Wright (1994), this difficulty is modelled by assuming that, at each

meeting, the seller is informed about the type of her partner’s tree with probability θ ∈ [0, 1]

in which case there is complete information. With the complementary probability (1 − θ) the

seller is uninformed and there is incomplete information. Thus, θ is the degree of completeness

of information; it is high if sellers likely know the tree type during the match and vice versa.

After matches are terminated, the seller can determine the quality of her tree holdings if trade

was executed. A buyer always knows whether a seller can recognize the type of her tree.

6Consider a constant returns to scale matching functionM(M,N). The matching probability of a tree holder
is then α =M(1, N/M) and for an agent without tree it is α =M(M/N, 1). Functional forms that satisfy the
assumptions above are α(τ) = 1− exp(−xτ) where x ∈ (0, 1] or α(τ) = τ

1+τ
, τ = N/M .
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3 The Bargaining game

In this section the bargaining game between a buyer and a seller is described. The equilibrium

of the bargaining game will then be embedded in the general equilibrium model. A buyer is one

of two possible types: holding the h-type tree which occurs with probability πh, or holding the

l-type tree which occurs with probability πl = 1− πh. The buyer makes an offer that the seller

can accept or reject. For robustness, this game is analyzed under two alternative equilibrium

concepts so the plausible equilibria can be uncovered.

A strategy for the buyer specifies an offer (q, p) ∈ R+ × [0, 1] as a function of the buyer’s

type, where q is the output that the seller would produce and p is the transfer of the tree from

the buyer to the seller. For now one could interpret the tree as being perfectly divisible and the

tree holdings as being normalized to 1. Thus, p gives a notion of asset liquidity. Later in the

general equilibrium model, p will correspond to the probability of transferring an indivisible

unit of the tree. Seller’s strategy is an acceptance rule that specifies the set of acceptable offers

A ⊆ R+ × [0, 1].

Let ωi represent the value of high or low type tree to the holder i ∈ {h, l} in a period.

Here assume that ωh > ωl. The precise definition of ωi and this condition will be discussed and

verified later in the general equilibrium model where ωh and ωl will be determined endogenously.

Payoff to i-type buyer in a period is: [u(q) − pωi] IA(q,p) where IA(q,p) is an indicator function

equal to 1 if (q, p) ∈ A. If an offer is accepted then the buyer realises her utility of consumption,

u(q), net of the utility she forgoes by transferring p units of the tree to the seller, −pωi. The

seller’s payoff is: [−c(q) + pωi] IA(q,p) and it depends on the buyer’s type.

The bargaining game is analyzed under two cases to capture the notion of private information

in the model. In the general equilibrium model, for any given match (independent of the type

of buyer) the seller is informed about the type of tree with probability θ and is uninformed with

probability (1− θ). The former is the full information case and the latter is private information

where the bargaining game has the structure of a signalling game described below.
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3.1 Full Information

Consider first, a full or complete information game, where the seller observes the type of tree held

by the buyer. The optimal offer (qci , p
c
i ), where c stands for complete information, maximizes

the surplus of the buyer given her type i ∈ {h, l} subject to the participation constraint of the

seller, i.e.,

(qci , p
c
i ) = arg max

q,p∈[0,1]
[u(q)− pωi] s.t.− c(q) + pωi ≥ 0 (1)

The solution to (1) is:

qci = min[q∗, c−1(ωi)] (2)

pci = c(qci )/ωi (3)

where q∗ solves: u′(q∗) = c′(q∗).

In the full information case, the output produced is efficient (q∗). However, there is a

possibility of low trade (qci = c−1(ωi) < q∗ ) when agent’s tree holdings falls short (to achieve

q∗ the buyer would need p > 1 trees). In any case, this is the first-best outcome that can be

achieved setting itself as the benchmark case.

3.2 Private Information

Next consider the case when information about the quality of tree is private to its holder. Let

λ(q, p) = Pr[i = h|(q, p)] represent the posterior belief of a seller that the buyer holds a unit

of h-type tree conditional on the offer (q, p) made. For now consider only pure strategies in a

sequential equilibrium - the buyer chooses an offer that maximises her surplus taking as given

the acceptance rule of the seller. The seller optimally chooses to reject or accept offers given

her posterior belief λ. If (q, p) corresponds to an equilibrium offer then λ(q, p) is derived from

the seller’s prior belief according to Bayes’ rule. If (q, p) is an out-of-equilibrium offer then the

seller’s belief is arbitrary.

For a given belief system λ, seller’s acceptance rule is defined as: A(λ) = {(q, p) : −c(q) +

p{λ(q, p)ωh+[1−λ(q, p)]ωl} ≥ 0}. In words, for an offer to be acceptable, the seller’s dis-utility of
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production must be compensated by the expected value of the tree transfer she receives. Assume

that a seller accepts any offer that makes her indifferent between accepting and rejecting a trade.

The problem of a buyer holding a unit of tree of type i ∈ {h, l} in an uninformed meeting is:

max
q,p∈[0,1]

[u(q)− pωi]IA(q, p) (4)

There could possibly be more than one equilibrium offer that solves the buyer’s problem

under private information given by (4) i.e. when information about the quality of the tree

is private to its holder. Our candidate equilibrium belongs to the class of Perfect Bayesian

Equilibrium. The first, is the least-cost separating equilibrium selected by the Intuitive Criterion

from Cho and Kreps (1987) and the second is the efficient pooling offer i.e. the one that is

preferred by the high type buyers (as it maximizes welfare of high type) among all pooling

offers. To discriminate between the two, the one that gives a higher payoff to the high type

asset holder is chosen following the concept of undefeated equilibria from Mailath et al. (1993).7

3.2.1 Least-cost Separating equilibrium

Start by considering a least-cost separating equilibrium offer, where the buyer’s offer depends

on her type i ∈ {h, l} thereby signalling her type to the seller. The offer made is the least-cost

separating as it maximizes the payoff of the h-type tree buyer. Such an offer satisfies standard

equilibrium refinement concepts such as the Intuitive Criterion by Cho and Kreps (1987).

The least-cost separating equilibrium offer made by an l-type buyer in an uninformed match

solves:

(qsl , p
s
l ) = arg max

q,p∈[0,1]
[u(q)− pωl] s.t. − c(q) + pωl ≥ 0 (5)

The offer made by an h-type buyer solves:

(qsh, p
s
h) = arg max

q,p∈[0,1]
[u(q)− pωh] s.t. − c(q) + pωh ≥ 0, (6)

u(q)− pωl ≤ u(qsl )− pslωl (7)

The offer made by the l-type buyer is her complete information offer, as she cannot do

better than that. However, the h-type buyer faces an additional constraint (7) as she has to

7See Appendix B for details on equilibrium selection
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ensure that the l-type buyer has no incentive to imitate the h-type buyer’s offer. In words,

given ωl < ωh, the surplus obtained by the l-type buyer under her separating offer (which is

her full information offer) is at least as great as the surplus she gets under the h-type buyer’s

separating offer. The h-type buyer makes the separating offer that maximizes her payoff as

that is the least costly. Finally, a belief system consistent with the offers (5)-(7) is such that

the seller attributes all offers that violate (7) to l-type buyers, and all other offers to h-type

buyers. The solution to the h-type buyer’s offer is characterized in the following lemma.

Lemma 1. (i) If ωl > 0, then there is a unique solution to(6) - (7) and it is such that

psh =
c(qsh)

ωh
(8)

u(qsh)− ωl
ωh
c(qsh) = u(qsl )− c(qsl ) (9)

Moreover, qsh < qsl and psh < psl

(ii) If ωl = 0, then qsh = qsl = psh = psl = 0

Proof is in the Appendix.

If ωl > 0 then the offer is separating and the h-type buyer obtains less output than the

l-type buyer (qsh < qsl ), but spends her tree with a lower probability (psh < psl ). If ωl = 0 then

no output is produced or consumed. This case i.e. where no output is produced or consumed

corresponds to the one studied in Nosal & Wallace (2007).

Under the separating equilibrium, the h-type buyer gets a better price at the cost of illiq-

uidity. To see this, note that price of an asset can be expressed as
qsh
psh

= ωh > ωl =
qsl
psl

(for

c(q) = q). In particular, the h-type asset circulates with a lower probability than her complete

information offer and that of the l-type (psh < pch ≤ psl ); thus the h-type buyer signals her

quality through asset retention. Finally, a version of Gresham’s Law holds since the presence

of bad trees drives the good out of the market (or at least relatively so).
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3.2.2 Efficient Pooling equilibrium

Next consider pooling equilibria, where the offer made by the buyer in an uninformed trade

doesn’t depend on her type. There can be many pooling equilibria, but let us restrict attention

to the efficient or preferred pooling offer by the h-type buyer i.e. the one that maximizes

the payoff for the h-type buyer among the class of all pooling equilibria. The reason for this

restriction will be discussed later when the equilibrium of the bargaining game is defined.

In an uninformed match, the efficient pooling equilibrium offer solves:

(qp, pp) = arg max
q,p∈[0,1]

[u(q)− pωh] s.t.− c(q) + p(πhωh + πlωl) ≥ 0 (10)

(qp, pp) is such that the surplus of the h-type buyer is maximized given that the seller’s surplus

is non-negative. To determine the seller’s surplus, expected value of the tree is used as the

pooling offer doesn’t reveal the type of the tree.

The offer (qp, pp) is part of a pooling equilibrium if the l-type buyer gets a payoff at least

equal to her complete information payoff, i.e. u(qp) − ppωl ≥ u(qcl ) − pclωl. Finally, the belief

system that sustains this equilibrium is such that λ = 0 for all offers that are strictly preferred

to (qp, pp) by l-type buyers but that would make h-type buyers worse-off. For all other offers,

λ = πh.

From (10) the terms of trade under the pooling equilibrium offer (qp, pp) satisfies:

u′(qp) =
c′(qp)ωh

πhωh + πlωl
(11)

pp =
c(qp)

πhωh + πlωl
(12)

if pp ≤ 1, otherwise pp = 1 and,

qp = c−1(πhωh + πlωl) (13)

From (11) and (13), qp < q∗ for all possible values of ωh and ωl(< ωh) whenever πl > 0. In

contrast with the separating equilibrium, the terms of trade in the pooling equilibrium are

continuous in πl, and they approach the complete information outcome as πl tends to 0.

Under the pooling equilibrium, the h-type buyer might choose to get a high liquidity in

return for a lower price. To see this note that, qph = qpl = qp and pph = ppl = pp, so liquidity is high,
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but the price for the seller ( q
p

pp ) = E(ω) reflects the product mix (for c(q) = q). Moreover, output

is still below the efficient level as qp < q∗ ∀ωl < ωh, given πl > 0. Finally, the l-type buyer gets

a weakly higher surplus than under her complete information offer (u(qp)−ppωl ≥ u(qcl )−pclωl).

3.2.3 Equilibrium of the Bargaining Game with Private Information

Let Ssh = u(qsh)− pshωh and Sph = u(qph)− pphωh be the bargaining surplus of h-type buyer under

separating equilibrium and pooling equilibrium respectively.

Definition 1. The equilibrium of the bargaining game under private information specifies buyer

i’s strategy (qi, pi) which is (qsi , p
s
i ) in (5)-(7) if Ssh > Sph, and (qp, pp) in (10) if Ssh ≤ S

p
h.

The seller’s belief that sustains this equilibrium is such that λ = 0 for all offers that are strictly

preferred to (qp, pp) by l-type and make h-type worse-off; λ = 1 for all offers make l-type strictly

worse-off than (qsl , p
s
l ); and λ = πl for all other offers.8.

The reason to consider the efficient pooling equilibrium offer from the h-type buyer’s perspective

is because the equilibrium compares the surplus of the h-type buyer, and thus she would chose

her preferred offer (which is called the efficient pooling offer) given that the l-type buyer’s and

the seller’s incentives are aligned.

Proposition 1. For given values of ωl and ωh, if ωl > 0 then there exists a threshold value

of πl ∈ (0, 1) denoted by π̂l such that the equilibrium of the bargaining game is separating iff

πl > π̂l and pooling if πl ≤ π̂l. If ωl = 0 then the equilibrium is pooling for all πl < 1.

Proof is in the Appendix.

On the one hand, if the probability of being an l-type buyer is high then the equilibrium

of the bargaining game is the separating equilibrium. On the other hand, if it is sufficiently

infrequent for a buyer to hold l-type trees then the equilibrium of the bargaining game is

pooling. If the l-type tree has no value then the equilibrium offer is always pooling. Thus, we

get the distortion along the intensive margin of trade because, under separating equilibrium

8This is based on the idea of undefeated equilibria by Mailath, Okuno-Fujiwara and Postlewaite (1993). See
Appendix B for details
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the h-type trees are less liquid and trade for less than the first-best quantity. Under pooling

equilibrium, both types of trees trade for less than the efficient quantity. Thus, the outcome

of the one-period bargaining game transitions from pooling to separating as the proportion of

low-type trees increases.

4 Equilibrium

The bargaining game described above is now embedded in the general equilibrium structure. Let

Vi and Vs denote the lifetime expected discounted utility of an agent who enters the matching

process as a buyer with one unit of Lucas tree of type-i ∈ {h, l} and as a seller respectively.

After the match terminates if the seller (buyer) receives (gives up) the asset i.e. if the match

was successful and she actually won (lost) the lottery she becomes a buyer (seller) in next period

when entering the matching process.

Define β ≡ (1 + r)−1 as the agent’s discount factor. Denote by ωi ≡ β(Vi − Vs), i ∈ {h, l}

the present value of the “capital gain” enjoyed by the seller if she receives one unit of type-i

tree, or the “capital loss” to the buyer of type-i if she gives up her unit of tree.

Let (qui , p
u
i ) denote the offer of buyer type-i ∈ {h, l} in uniformed matches. The offer is

(qsi , p
s
i ) given by Lemma 1 (or by (5) for l-type buyers) if the equilibrium of the bargaining

game is separating, or (qpi , p
p
i ) given by (11)-(13) if the equilibrium is pooling. The Bellman

equation for the value of being a seller satisfies:

Vs = αθπh

[
− c(qch) + pchβVh + (1− pch)βVs

]
+ αθπl

[
− c(qcl ) + pclβVl + (1− pcl )βVs

]
+ α(1− θ)πh

[
− c(quh) + puhβVh + (1− puh)βVs

]
(14)

+ α(1− θ)πl
[
− c(qul ) + pul βVl + (1− pul )βVs

]
+ (1− α)βVs

In words, with probability αθ a seller is in an informed match where she may meet an h or l-type
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buyer. As per the type she meets, she produces qci to receive a unit of tree with probability pci

where i ∈ {h, l}. With probability α(1 − θ) a seller is in an uninformed match in which she

produces qui and receives a unit of tree with probability pui . If the seller receives an i-type tree

she becomes an i-type buyer from the next period else, she continues as a seller. Finally, with

probability (1 − α) the match is unfruitful (i.e. the seller does not produce the good that the

buyer she met consumes) and she continues as a seller.

The Bellman equation for the value of being a buyer of type i ∈ {h, l}:

Vi = αθ

[
u(qci ) + (1− pci )βVi + pciβVs

]
+ α(1− θ)

[
u(qui ) + (1− pui )βVi + pui βVs

]
(15)

+ (1− α)βVi

+ γi

In words, with probability αθ a buyer type-i is in an informed match with a seller whose good

she wants. She consumes qci and delivers her unit of tree with probability pci where i ∈ {h, l}.

With probability α(1 − θ) a buyer is in an uninformed match in which she consumes qui and

delivers her unit of tree with probability pui . If the buyer delivers the tree she becomes a seller

from the next period else, she continues as a buyer. With probability (1 − α) the match is

unfruitful (i.e. she does not want to consume the good that the seller she met produces) and

she continues as a buyer. Finally, the buyer of type i also gets utility flow in the form of the

tree’s fruits (or dividend flow) γi depending on the type of tree she holds.

Throughout the analysis, stationary equilibria are considered where the quantities traded

and values of the trees are constant over time.

Definition 2. A symmetric steady-state equilibrium is a list {Vs, Vh, Vl, (qch, pch), (qcl , p
c
l ), (q

u
h , p

u
h), (qul , p

u
l )}

that satisfies:

(i) the solution to (2)-(3) in informed matches and to (8)-(9) or (11)-(13) in uniformed matches

depending on the equilibrium of the bargaining game given by Definition 1;

(ii) the Bellman equations (14)-(15);

14



The definition is restricted to symmetric equilibria where buyers of the same type make the

same offer. Moreover, whether the equilibrium of the bargaining game is separating or pooling

is given under Definition 1.

Lemma 2. In all equilibria, Vs = 0.

Proof is in the Appendix.

From Lemma 2, ωi = βVi.

4.1 Separating equilibrium

Consider first the separating equilibrium offer (5) - (7) of the bargaining game and conditions

under which it prevails as the final equilibrium given Definition 1. Subtract βVi from both sides

of (15) and use ωi = β(Vi − Vs). The Bellman equations for each buyer type, i ∈ {h, l} under

the separating equilibrium offer becomes:

For an l-type buyer,

ωl =
α

r
[u(qcl )− c(qcl )] +

γl
r

(16)

The separating equilibrium offer in the bargaining game under private information for the l-type

buyer is her complete information offer (qcl , p
c
l ), so it does not matter if she meets an informed or

uninformed seller. Thus, the value of l-type tree is the discounted sum of its value in exchange

(which is independent of whether the buyer meets an informed or uninformed seller) and the

utility that the tree’s fruit yields. The value of the l-type tree therefore is the same as in the

case with no private information.

For an h-type buyer,

ωh =
α

r

{
θ

[
u(qch)− c(qch)

]
+ (1− θ)

[
u(qsh)− c(qsh)

]}
+
γh
r

(17)

The h-type buyer’s offer in any meeting with an uninformed seller is the separating equilibrium

offer in the bargaining game under private information, (qsh, p
s
h). Thus, the value of h-type tree
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is the sum of its discounted liquidity value (value in exchange depending on whether the buyer

meets an informed or uninformed seller) and discounted dividend return.

Note that the value of the h-type tree is lower in the separating equilibrium than it would

be in the case with no private information. To see this, let θ = 1 in (17) to get ωch and compare

that with ωsh when θ = 0. Since [u(qsh) − c(qsh)] < [u(qch) − c(qch)], the latter (ωsh) is lower than

the former (ωch).

A separating equilibrium can then be defined as a 6-tuple (qci , p
c
i , q

s
h, p

s
h, ωl, ωh) that satisfies

(2), (3), (8), (9), (16) and (17).

Proposition 2. There exists a unique ωh > ωl that solves (16) - (17).

Proof is in the Appendix.

Proposition 2 establishes the existence and uniqueness of ωh and ωl when separating offers

are made in matches with uniformed sellers in equilibrium. It also shows that ωh is indeed

greater than ωl, as was assumed in the bargaining game. The value of trees (inclusive of the

utility from the bargaining surplus and it’s fruits) is higher for h-type trees than l-type.

Next, consider some comparative statics under the separating equilibrium. Let ωi(πl, θ)

denote the equilibrium value of tree of type i ∈ {h, l} as a function of exogenous parameters.

Proposition 3. Suppose ωh > ωl is true from Proposition 2, then (i) ∂ωl
∂πl

= 0 and ∂ωh
∂πl

= 0;

(ii) ∂ωl
∂θ = 0 and ∂ωh

∂θ > 0.

Proof is in the Appendix.

The fraction of l-type buyers, πl does not affect the separating equilibrium terms of trade

and hence the equilibrium value of the trees. Information frictions, θ do not affect the value of

low type trees as l-type tree holders make their complete information offer anyway. However,

h-type trees obtain less output with sellers who can’t recognize the type hence their value

increases as information frictions get less severe.

To examine how recognizability of trees affects its turnover define the velocity of tree i ∈

{h, l}, vi as the average probability that the tree changes hands in a bilateral match, i.e.,
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vi = α(θpci + (1− θ)psi ) (18)

Velocity of the l-type tree is unaffected by recognizability as pcl = psl . However, since pch > psh

velocity of the h-type tree increases with θ. If sellers can recognize the tree type the h-type

buyers can get better terms of trade through their complete information offers. Also note that in

general, l-type trees have a weakly higher turnover than h-type trees. This is again intuitive as

l-type trees would be used in exchange more frequently, as they don’t face the costs associated

with informational frictions unlike the h-type trees just by their virtue (or vice) of offering low

fruit to the holder.

Now turn to normative considerations and define society’s welfare as the sum of utilities of

all agents in the economy, W = NVs +MlVl +MhVh. Note that Vs = 0 thus,

W = (1 + r)[Mhωh +Mlωl] (19)

The society’s welfare is equal to the aggregate real asset holdings (in the form of the Lucas

trees).

Proposition 4. Suppose ωh > ωl is true from Proposition 2, then ∂W
∂πl

< 0 and ∂W
∂θ > 0.

Proof is in the Appendix.

As the fraction of l-type trees increases, society’s welfare in a separating equilibrium falls.

This is because when fraction of l-type increases, the proportion of h-type buyers falls and since

the latter type got a higher utility than the former from Lemma 2 society’s welfare falls. Note,

in this case, the positive effect of higher trading volumes that comes with being an l-type buyer

is outweighed by the positive effect of holding the tree which offers better fruits. Moreover,

an increase in recognizability (or an increase in the fraction of informed matches) increases

society’s welfare by making h-type trees more valuable.

The separating equilibrium just characterized might not meet the consistency requirement

imposed under Definition 1. The surplus enjoyed by the h-type buyer in an uniformed match

under the least-cost separating offer should be greater than what she would obtain at her
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preferred or ‘best’ pooling equilibrium offer. Taking as given (ωl, ωh) just derived from (16) -

(17), the following condition must hold:

Ssh = u(qsh)− c(qsh) > Sph = u(qp)− ωhc(q
p)

πhωh + πlωl
(20)

where (qp, pp) is the pooling equilibrium offer and solves (11) - (13).

Proposition 5. Given ωl and ωh from (16) and (17), there exists π̂sl such that for all πl > π̂sl

(20) holds.

Proof is in the Appendix.

Given the value of trees l and h determined by (16) - (17), Proposition 5 states that, if the

supply of l-type trees is sufficiently high, then the separating equilibrium characterised above

prevails as the equilibrium given by Definition 1. Intuitively, h-type buyers optimally separate

from the l-type buyers only when the market has many trees of the latter type. This makes it

worthwhile for them to separate as seller’s expected value of the tree under pooling equilibrium

diminishes with many l-types in the market, as a result better terms of trade have to be offered

to the buyer.

Under the separating equilibrium, as shown in Lemma 1, the h-type tree obtains less output

than l-type and has a lower liquidity in uninformed matches. The h-type tree thus signals her

quality by accepting a lower liquidity and velocity. This in fact is reminiscent of Gresham’s

Law: ‘bad’ trees have driven out the ‘good’ ones (or, at least some of them).

4.2 Pooling equilibrium

Now the pooling (and semi-pooling or partial pooling) equilibria are considered, where the offer

made by the h-type buyer is imitated by all l-type buyers (or, some of them in case of semi-

pooling) in uninformed matches. Focus on the pooling equilibrium preferred by h-type buyers

(i.e. the efficient pooling equilibrium) for reasons discussed earlier.

So far, attention was restricted to symmetric equilibria where all buyers of the same type

made the same offer. This restriction was with no loss in generality under separating equilibria.
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However, in the context of pooling equilibria, considering asymmetric equilibria is important

if u(qp) − ppωl ≥ u(qcl ) − pclωl is not satisfied; i.e. it is not incentive compatible for all l-type

buyers to pool. In this case, a fraction of l-type buyers make their complete information offers,

(qcl , p
c
l ) while the rest offer (qp, pp) that solves:

(qp, pp) = arg max
q,p∈[0,1]

[u(q)− pωh] s.t. − c(q) + pE(ωi) ≥ 0 (21)

where the expectation is with respect to the buyer’s type i ∈ {h, l} conditional on the offer

made and is derived shortly.9

From (21) the terms of trade (qp, pp) satisfies:

u′(qp) =
c′(qp)ωh
E(ωi)

(22)

pp =
c(qp)

E(ωi)
(23)

if pp ≤ 1, otherwise pp = 1 and,

qp = c−1(E(ωi)) (24)

Let φ ∈ [0, 1] denote the fraction of l-type buyers offering (qp, pp) in equilibrium. The remaining

(1− φ) fraction make their separating offer which is the complete information offer (qcl , p
c
l ). φ

solves:

φ

{
= 1 if u(qp)− ppωl > u(qcl )− c(qcl )
∈ [0, 1] if u(qp)− ppωl = u(qcl )− c(qcl )

(25)

From Bayes’ rule,

E(ωi) =
πhωh + φπlωl
πh + φπl

(26)

φ = 1 corresponds to the case where all l-type buyers make the pooling offers.

9There are many semi-pooling equilibria just like there are many pooling equilibria. For instance, for some
parameter values, there is an equilibrium where all l-type buyers and some h-type make the same offer while the
remaining h-type make their optimal separating offer. It can be checked that such equilibria do not satisfy the
consistency requirements imposed by standard refinement concepts such as the Intuitive Criterion.
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In order to obtain the value of the two types of trees in equilibrium, subtract βVi from both

sides of (15) and use ωi = β(Vi − Vs). The Bellman equations for each buyer type, i ∈ {h, l}

under the pooling equilibrium offer becomes:

For an l- type buyer who pools with the h-type buyer,

ωl =
α

r

{
θ

[
u(qcl )− c(qcl )

]
+ (1− θ)

[
u(qp)− ωlc(q

p)

E(ω)

]}
+
γl
r

(27)

The l-type buyer’s offer in any meeting with an uninformed seller is the pooling equilibrium

offer in the bargaining game under private information, (qp, pp). Thus, the value of l-type tree

is the sum of its discounted liquidity value (value in exchange depending on whether the buyer

meets an informed or uninformed seller) and discounted dividend return.

The value of the l-type tree is higher in the pooling equilibrium than it would be in the case

with no private information. To see this, let θ = 1 in (27) which implies

ωcl =
α

r

[
u(qcl )− c(qcl )

]
+
γl
r

and for θ = 0,

ωpl =

[
u(qp)− ωlc(q

p)

E(ω)

]
+
γl
r

And, since

[
u(qp)− ωlc(q

p)

E(ω)

]
> [u(qcl )− c(qcl )] for the l-type buyers to be a part of the pooling

offer, the latter (ωpl ) is higher than the former (ωcl ).

For an h-type buyer,

ωh =
α

r

{
θ

[
u(qch)− c(qch)

]
+ (1− θ)

[
u(qp)− ωhc(q

p)

E(ω)

]}
+
γh
r

(28)

The h-type buyer’s offer in any meeting with an uninformed seller is the pooling equilibrium

offer in the bargaining game under private information, (qp, pp). Thus, the value of h-type tree

is the sum of its discounted liquidity value (value in exchange depending on whether the buyer

meets an informed or uninformed seller) and discounted dividend return.

By a similar analysis as under for the l-type tree, note that the value of the h-type tree is

lower in the pooling equilibrium than it would be in the case with no private information. To see

this, let θ = 1 in (28) to get ωch and compare that with ωph when θ = 0. Since

[
u(qp)−ωhc(q

p)

E(ω)

]
<

[u(qch)− c(qch)], the latter (ωph) is lower than the former (ωch).
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The pooling equilibrium offer (qp, pp) in the bargaining game under private information

given by (22) - (24) is the same by construction for both type buyers. A pooling equilibrium

can then be defined as a 7-tuple (qci , p
c
i , q

p, pp, φ, ωl, ωh) that satisfies (2), (3), (22) or (24), (23),

(25), (27) and (28).

Proposition 6. There exists a unique ωh > ωl that solves (27) - (28).

Proof is in the Appendix.

Proposition 6 establishes the existence and uniqueness of ωh and ωl when pooling offers are

made in matches with uninformed sellers. It also shows that ωh is indeed greater than ωl as was

assumed in the bargaining game. The value of trees (inclusive of the utility from the bargaining

surplus and it’s fruits) is higher for h-type trees than l-type.

Despite its simple structure, the pooling equilibrium is hard to study analytically. Compar-

ative statics are investigated through numerical examples in the next section, where a compre-

hensive analysis is done for the overall results.

Just as in the case of the least-cost separating equilibrium, the pooling equilibrium just

characterized might not meet the consistency requirement imposed under Definition 1. Numer-

ical examples show that whenever a semi-pooling equilibrium exists, the least-cost separating

equilibrium also exists and prevails as the equilibrium under Definition 1. Thus, only symmetric

equilibria are considered i.e. pooling or separating. The pooling equilibrium offer satisfies the

consistency requirement if the surplus enjoyed by the h-type buyer in an uniformed match with

the efficient pooling offer is greater than what she would obtain at her least-cost separating

equilibrium. Taking as given (ωl, ωh) just derived from (27)-(28), the following condition must

hold:

Ssh = u(qsh)− c(qsh) ≤ Sph = u(qp)− ωhc(q
p)

πhωh + πlωl
(29)

where (qsh, p
s
h) is the separating equilibrium offer for the h-type buyer and solves (8)-(9).

h-type buyers optimally pool with the l-type buyers only when the market has few trees of

the latter type. This makes it worthwhile for them to pool and get better velocity and output
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despite a low price. As discussed above, this leads to an over-valuation of l-type trees. Thus,

h-type trees trade at premium and l-type trees at discount with informed sellers.

4.3 Discussion and Applications

Equilibrium regions are represented using a numerical example10 and are presented in Figure 2.

There are three regions, one where separating offers are made, another where pooling offers are

made and a small intermediate region where both offers are made. Thus, equilibrium always

exists and it is unique for most parameter values; we however cannot rule out multiplicity

from the intermediate region where the proportion of l-type buyers is neither too low nor too

high. In all equilibria, trade of both assets always takes place with the terms of trade changing

depending on the parameters of the model. A more detailed discussion of the implications of

the two types of equilibria on output and liquidity of the asset and society’s welfare is done

below:

1. Both assets trade at different rates (Separating equilibrium): This equilibrium occurs

when there are sufficiently many l- type assets in the market and/or the discrepancy

between the two is sufficiently high (and/or search frictions are high). h-type buyers signal

their asset type to sellers by accepting a lower output and their assets end up circulating

less than their counterparts. The h-type assets get a lower surplus in exchange and l-type

assets get their first-best offer. As a result, the h-type asset is undervalued compared to

her first-best.

2. Both assets trade at the same rate (Pooling equilibrium): This equilibrium occurs when

there are sufficiently few l-type assets in the market and/or the discrepancy between the

two is sufficiently low (and/or search frictions are low). h-type buyers pool their offers

with the l-type assets and both assets end up circulating at the same rate. The h-type

assets get a lower surplus in exchange but the l-type assets gets higher than her first-best

surplus. As a result, the l-type assets are overvalued compared to their full information

value while the h-type assets are undervalued in exchange.

10Numerical examples are constructed using u(q) = 2
√
q, c(q) = q and α(τ) = τ

1+τ
, where τ = N/M , so

α = N . Benchmark parametrization is r = 0.1, α = 0.6, θ = 0.5, πl = 0.5, γl = 0.4, γh = 1
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These results are summarized in Table 1.

Thus, the market transitions from pooling to separating as the proportion of l- type assets in

the market and/or the discrepancy between the two is rises. Finally, by how much the outcome

deviates from the first-best is depends on the level of information frictions. Proposition 3 for

separating equilibrium and numerical examples for pooling equilibrium state that the effect is

less severe when information frictions reduce; this of course makes sense as the society is in fact

closer to the first-best.

Pooling Separating

Velocity? Equal for both Low for h-type

vh = vl = vp vsh < vch ≤ vsl = vcl

Output Equal for both Low for h-type

qh = ql = qp < q∗ qsh < qsl = qcl ≤ qch

Surplus High for l-type Low for h-type

Sp
h < Sc

h;Sp
l > Sc

l Ss
h < Sc

h;Ss
l = Sc

l

Price l-type overvalued h-type undervalued

ωp
h < ωc

h;ωp
l > ωc

l ωs
h < ωc

h;ωs
l = ωc

l

?Assume θ = 0, so velocity: vi = αpi

Table 1: Summary of results

Finally, to understand how the asset market outcomes vary with the parameters of the

model we should put together the above insights and consider some comparative statics for the

general case. From Figures 3 and 4 we see how the velocity, output and value of assets changes

as the discrepancy between low and high and the proportion of low type changes.11

Consider the first panel of Figure 3 which shows how velocity of the two assets changes.

The left figure shows that as the discrepancy increases (as we move from right to left along

the horizontal axis) the velocity of the h-type asset reduces while that of l-type rises, and both

diverge from each other. This is because as the bad asset’s quality worsens, the bad quality asset

holder does not want to hold on to her asset while the good quality asset becomes more valuable

11Numerical example is the same as used earlier, see footnote 10. Also, note that the discrepancy is decreasing
from left to right, i.e. as γl

γh
increases from 0 (high) to 1 (low)
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and is therefore hoarded. The right panel shows that as the proportion of l-type trees increases,

the velocity of h-type falls and l-type rises. The changes in both cases are discontinuous at the

point when the market transitions from pooling to separating (right to left in the left figure and

left to right in the right). Since the velocity is different and in particular lower for the h-type

tree in informed matches, the two are not exactly equal under pooled market outcomes. These

results indicate that as the market moves from pooling to separating, the velocities diverge and

the good asset is hoarded as the buyers signal their quality (a version of Gresham’s law).

Figure 4 shows how the average velocity changes as the two parameters of the model change.

The average velocity increases as the market moves from pooled to separated outcomes (dis-

crepancy increases and/or proportion of low types increase). This is because the low types get

a high velocity which shifts up the average velocity.

The second panel can be interpreted similar to the first panel of Figure 3. As the market

moves from pooling to separating, the output each asset obtains diverges as the good asset is

hoarded.

The third panel shows how the value of the two assets change. The first thing to note is

that the good asset is always valued higher than the bad except when γl/gammah = 1 i.e.

both assets are the same. The value of the good asset rises as the discrepancy between the two

assets falls and rises weakly as the proportion of low types fall (under separating equilibrium

the value of assets is independent of the composition of assets). The value of the low-type sees

a discontinuous fall as the market moves to separating outcomes, i.e. when the asset gets its

actual value (what it would get in informed matches) in trades. This happens as the proportion

of bad assets increases and as its quality diverges significantly from the good. Thus, in this

sense one can say that the bad assets are overvalued in pooling outcomes.

If one can interpret the decline in quality mix of assets as a situation of financial crisis, then

the abrupt decline in prices of some assets (the inferior ones) can be so explained.

This model can also be applied to a historical commodity world context where there are two

types of coins with a high and low intrinsic content but with a recognizability problem. This

interpretation closely follows Velde, Weber and Wright (1999) but allowing lotteries uncovers

new equilibria as discussed. A detailed discussion is beyond the scope of the present paper, but
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a brief mention is worth making. Whenever there are two types of coins with different metallic

contents in the market, a version of Gresham’s law will hold. When there are many light coins

(or the content of the two coins are very different or search frictions are high), the heavy coins

are in reduced circulation - this is the classic case of ‘bad’ money driving (some) ‘good’ money

out of circulation. When there are few light coins (or the content of the two coins is not very

different or search frictions are low), then heavy coins don’t necessarily circulate less but the

lighter coins fetch a higher surplus for their holders. This result is consistent with historical

experiences as discussed in DeRoover (1949). Thus, the excess light coins is driving out the

good coin. One can also extend these results in terms of counterfeiting by considering the case

where the intrinsic content of the light coin approaches zero and allowing the possibility of

printing/minting counterfeits instead of endowing some agents with such coins.

Other possible applications could go in the direction of understanding the mechanism

through which central bank’s large scale asset purchase programs can work as unconventional

Monetary Policy. In particular, if due to informational asymmetries, an asset which should

otherwise be highly valued becomes illiquid, then the central bank can buy back these assets

in return for risk-free liquid bonds to inject liquidity into the economy.

5 Conclusion

A random-matching or search-based model under private information has been used to study

liquidity of assets with different and unknown dividend flows. Adverse selection in asset markets

affects liquidity, velocity and prices. The model constructed builds on previous work in the

literature, but with some important differences which aided a deeper analysis of adverse selection

and liquidity in asset markets. The model featured trades with imperfectly recognizable and

indivisible assets in random pairwise meetings. The presence of adverse selection followed from

the imperfect information structure and the indivisibility of asset holding. However, lotteries

were allowed in exchange i.e. trades were allowed to be probabilistic which allowed an in-depth

analysis of bargaining as a signaling game. Finally, a broader equilibrium concept was used

which generated some novel results as summarised below.

It has been shown how an asset holder when faced with adverse selection in the market
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might either decide to sell her asset at the prevailing price (pool) or hold it back if the price

offered is too low (not pool). In particular, agents possessing assets with high future dividend

flow might find separating from their lower counterparts too costly and instead decide to pool

along with them. And, this decision which depends on the proportion of low type assets and

the divergence in dividend flows of the two assets, has economic implications. Output produced

in exchange of the high-type asset is below the efficient (or first-best) quantity in all trades as it

is illiquid and is undervalued. However, output produced for the low-type assets is efficient (or

first-best) when offers are separated. Finally, the society moves away from its first-best outcome

as information frictions increase because the value in exchange of the high-type asset falls. The

2007-08 financial crisis exposed the problems associated with liquidity in asset markets; this

paper made an attempt to understand how information frictions can help explain liquidity

dry-ups, hoarding and price drops in a tractable way.

The model constructed above can also be seen as a baseline model to understand adverse

selection and liquidity in different contexts such as commodity money and central bank’s large

scale asset purchase programs as briefly discussed above. These extensions require more work

and would be the subject matter of another paper.
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A Appendix

A.1. Proof of Lemma 1

The proof follows by showing that both constraints to the maximization problem (6)-(7)

bind. Suppose first that (7) is not binding. Then, (qsh, p
s
h) is just the complete information

offer, i.e., qsh = min[q∗, c−1(ωh)] ≥ qsl and psh = c(qsh)/ωh > 0. In this case, an l- type buyer who

offers (qsh, p
s
h) gets payoff,

u(qsh)− pshωl = u(qsh)− c(qsh) + psh(ωh − ωl) > u(qsl )− c(qsl )

since psh > 0 and ωh−ωl > 0. But then (7) is violated (as l-type buyer has an incentive to copy

the h-type). A contradiction.

Suppose next that the seller’s participation constraint in (6) is not binding. Substitute

u(q) = pωl + u(qsl )− pslωl at equality, into the buyer’s payoff to get

max
p∈[0,1]

[p(ωl − ωh) + u(qsl )− pslωl]

which gives psh = 0 and u(qsh) = u(qsl ) − pslωl > 0 (since ωl > 0). But then the seller’s

participation constraint −c(qsh) ≥ 0 is violated. A contradiction.

So, the constraint in (6) and (7) i.e. both constraints are binding. From the seller’s partici-

pation constraint we obtain (8). Substitute psh by its expression given by (8) into (7) at equality

to get (9).

In order to establish that there is a unique solution to (6) and (7), notice that the left-hand

side of (9) is first increasing and then decreasing in qsh, and it reaches a maximum greater than

u(q∗)− c(q∗) ≥ u(qsl )− c(qsl ) (RHS of (9)) for some qsh > q∗ solution to u′(qsh) = ωl
ωh
c′(qsh). The

equality in (9) might be satisfied with multiple (at most two) solutions. However, only the

lowest value for qsh maximizes the payoff of the h-type buyer. To see this, notice that

u(qsh)− c(qsh) = u(qsh)− ωl
ωh
c(qsh)−

(
1− ωl

ωh

)
c(qsh).

From (9),

u(qsh)− c(qsh) = u(qsl )− c(qsl )−
(

1− ωl
ωh

)
c(qsh).
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The right-hand side of the equation above is decreasing in qsh; hence, u(qsh)−c(qsh) is maximized

at the lowest value of qsh that solves (9).

Next, establish that qsh < qsl and psh < psl . The left-hand side of (9) is increasing in qsh over

[0, qsl ] from 0 < u(qsl )− c(qsl ) to u(qsl )−
ωl
ωh
c(qsl ) > u(qsl )− c(qsl ) as it reaches it is maximised for

some qsh > qsl . In other words, at qsl LHS of (9) ¿ RHS (9). So, there is a unique qsh ∈ (0, qsl )

that solves (9) at equality. Thus, qsh < qsl . Finally, from (7), (psl − psh)ωl = u(qsl ) − u(qsh) > 0,

hence psl > psh.�

A.2. Proof of Proposition 1

This proof proceeds by first establishing independence of Ssh ≡ u(qsh) − c(qsh), with respect

to πl and then monotonicity of Sph with respect to πl.

From (6) and (7), the payoff of the h-type buyer at the separating equilibrium, Ssh ≡

u(qsh) − c(qsh), is independent of πl. Whereas, from (10) the payoff of the h-type under the

pooling equilibrium,

Sph ≡ u(qph)−
ωhc(q

p
h)

(1− πl)ωh + πlωl

is continuous and strictly decreasing with πl. To see this, note that from (11) and (12) qph is

strictly decreasing in πl.

Consider first the case when πl = 0. The problem that determines (qsh, p
s
h), (6) - (7),

corresponds to (10) with an additional binding constraint (7). Now, since the solution of (6) -

(7) is such that (7) is binding (see Lemma 1), so Sph(0) > Ssh.

Next consider πl = 1 and assume ωl > 0. The seller’s participation constraint in (10) is

identical to the one in the problem of the l-type buyer, (5). Hence, qph ≤ q
s
l and

u(qp)− ppωl ≤ u(qsl )− pslωl.

Consequently, the incentive compatibility condition (7) holds at (qp, pp). Now look at the

seller’s participation constraint in (6). Since, −c(qp) + ppωl = 0 and pp > 0 (since ωl > 0) so

seller’s participation constraint in (6) is slack i.e. - c(qp) + ppωh > 0. But, from Lemma 1, the

solution to (6) and (7) is such that the constraints hold at equality. Consequently, Sph(1) < Ssh.

Thus, there is π̂l ∈ (0, 1) such that Sph(π̂l) = Ssh. For all πl > π̂l, S
p
h(πl) < Ssh and the

equilibrium is separating; while for all πl ≤ π̂l, Sph(πl) > Ssh and the equilibrium is pooling.�
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A.3. Proof of Lemma 2

The proof is intuitive as sellers get zero bargaining surplus.

Subtract βVs from both sides of (14) to get:

(1− β)Vs = αθπh

[
− c(qch) + pchβVh − pchβVs

]
+ αθπl

[
− c(qcl ) + pclβVl − pclβVs

]
+ α(1− θ)πh

[
− c(quh) + puhβVh − puhβVs

]
+ α(1− θ)πl

[
− c(qul ) + pul βVl − pul βVs

]

Use ωi = β(Vi − Vs) to get:

(1− β)Vs = αθπh

[
− c(qh) + phωh

]
+ αθπl

[
− c(ql) + plωl

]
+ α(1− θ)πh

[
− c(quh) + puhωh

]
+ α(1− θ)πl

[
− c(qul ) + pul ωl

]

Under any take-it-or-leave-it offer by the buyer (complete, separating or pooling) the buyer

keeps the seller at zero surplus, which implies that all the terms on the right hand side is zero,

hence Vs = 0 for all equilibria.�

A.4. Proof of Proposition 2

(i) Start by establishing that a solution ωh > ωl to (16) - (17) exists.

At ωh = ωl, q
s
h = qsl = qcl from (9). Thus, given that γh > γl, the right-hand side of (17) is

greater than right-hand side of (16) i.e.

α[u(qcl )− c(qcl )] + γh > α[u(qcl )− c(qcl )] + γl
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Consider next, ωh = ωch > ωl, where ωch is the solution to rωch = α[u(qch)− c(qch)] + γh with

qch = min[q∗, c−1(ωch)]. Thus, from (16) ωch > ωl (since γh > γl and u(qsl )−c(qsl ) ≤ u(qch)−c(qch)).

From the comparison of (1) and (6)-(7),

u(qsh)− c(qsh) ≤ u(qch)− c(qch),

and with a strict inequality when ωh > ωl because the incentive compatibility constraint (7)

is binding. Then, the right-hand side of (17) is less than α[u(qch) − c(qch)] + γh = rωch. By the

Intermediate Value Theorem, there is an ωh ∈ (ωl, ω
c
h).

(ii) Now to establish uniqueness of ωh (uniqueness of ωl is immediate as u(ql) − c(ql) is

concave), rewrite (17) as

rωh − αθ[u(qch)− c(qch)] = α(1− θ)[u(qsh)− c(qsh)] + γh

and show that the left-hand side (LHS) is increasing in ωh (over some range) and right-hand

side (RHS) is decreasing.

First, consider LHS. It is convex in ωh as u(qch) − c(qch) is concave. It is equal to zero

when ωh = 0 and it reaches a negative minimum at ωh = c(q̄) i.e. when c−1(ωh) < q∗ and

qch = c−1(ωh) = q̄ where q̄ solves:
u′(q̄)

c′(q̄)
= 1 +

r

αθ

and when c−1(ωh) ≥ q∗ then LHS is equal to rωh−αθ[u(q∗)− c(q∗)]. Since it is convex, the

LHS is increasing for all ωh > c(q̄) and it becomes positive for sufficiently large ωh.

Second, consider RHS. Differentiate (9) to get:

∂qsh
∂ωh

= −
ωlc(q

s
h)

ω2
h[u′(qsh)− ωl

ωh
c′(qsh)]

< 0

for all ωh > ωl. Denominator is positive as qsh < q∗. Thus, the solution ωh ∈ (ωl, ω
c
h) is

unique. �

A.5. Proof of Proposition 3

(i) The right-hand side of (16) and (17) are independent of πl. Consequently, ∂ωi
∂πl

= 0 for

i ∈ h, l.
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(ii) The right-hand side of (16) is independent of θ. Consequently, ∂ωl
∂θ = 0.

Differentiate (17) with respect to θ:

r
∂ωh
∂θ

= α

{
[u(qch)−c(qch)]+θ

∂[u(qch)− c(qch)]

∂ωh

∂ωh
∂θ
−[u(qsh)−c(qsh)]+(1−θ)

∂[u(qsh)− c(qsh)]

∂ωh

∂ωh
∂θ

}

∂ωh
∂θ

=
α[u(qch)− c(qch)]− α[u(qsh)− c(qsh)]

r − ∂RHS
∂ωh

> 0

where RHS is the right-hand side of (17) and ∂RHS
∂ωh

is evaluated at the equilibrium. �

A.6. Proof of Proposition 4

(i) Re-write W from (19) in terms of πl:

W = M(1 + r)[(1− πl)ωh + πlωl]

∂W

∂πl
= M(1 + r)[−ωh + ωl] < 0

To see why, note that from Lemma 3, ∂ωi
∂πl

= 0 for i ∈ h, l and ωh > ωl.

(ii) From Lemma 3, ∂ωl
∂θ = 0 and ∂ωh

∂θ > 0 thus,

∂W

∂θ
= (1 + r)

[
Mh

∂ωl
∂θ

+Ml
∂ωh
∂θ

]
> 0

�

A.7. Proof of Proposition 5

The proof is similar to the proof of Proposition 1 with the difference that now ωl, ωh are

endogenously determined in the general equilibrium framework.

However, Ssh ≡ u(qsh) − c(qsh) is still independent of πl because (2), (3), (8),(9), (16) and

(17) can be solved simultaneously to get (qci , p
c
i , q

s
h, p

s
h, ωl, ωh) and they are all independent of

πl. Note that (ωl, ωh) are independent of πl.

As before, Sph(πl) is decreasing in πl. To see this note that the values of trees we use to

determine the pooling terms of trade are given by (16) and (17) which are independent of πl.
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Hence as in the proof for Proposition 1 it can be shown that Sph(πl) is decreasing in πl. Rest of

the proof directly follows from there. �

A.8. Proof of Proposition 6

(i) Following the same structure as in the proof for Proposition 2 start by establishing that

a solution ωh > ωl to (27) - (28) exists.

At ωh = ωl, q
p = qch from (21) and (26). Since γh > γl, the right-hand side of (28) is greater

than right-hand side of (27) i.e.

α[u(qch)− c(qch)] + γh > α[u(qch)− c(qch)] + γl

Consider next, ωh = ωch > ωl, where ωch is the solution to rωch = α[u(qch) − c(qch)] + γh

with qch = min[q∗, c−1(ωch)]. Now from (27), ωch > ωl (since γh > γl and θ[u(qcl )− c(qcl )] + (1−

θ)[u(qp)− ωl/(ωlπl + ωhπh)c(qp)] ≤ u(qch)− c(qch)).

From the comparison of (1) and (21),

u(qp)− ωh
E(ωi)

c(qp) ≤ u(qch)− c(qch),

and with a strict inequality when ωh > ωl. Then, the right-hand side of (28) is less than

α[u(qch)− c(qch)] + γh = rωch. By the Intermediate Value Theorem, there is an ωh ∈ (ωl, ω
c
h).

(ii) We use the same method as in the proof of Lemma 2 to show that ωh is unique (unique-

ness of ωl can be proved similarly). Re-write (28) as

rωh − αθ[u(qch)− c(qch)] = α(1− θ)[u(qph)−
ωhc(q

p
h)

E(ωi)
] + γh

and show that the left-hand side (LHS) is increasing in ωh (over some range) and right-hand

side (RHS) is decreasing.

First, consider LHS. It is convex in ωh as u(qch) − c(qch) is concave. It is equal to zero

when ωh = 0 and it reaches a negative minimum at ωh = c(q̄) i.e. when c−1(ωh) < q∗ and

qch = c−1(ωh) = q̄ where q̄ solves:
u′(q̄)

c′(q̄)
= 1 +

r

αθ

and when c−1(ωh) ≥ q∗ then LHS is equal to rωh−αθ[u(q∗)− c(q∗)]. Since it is convex, the

LHS is increasing for all ωh > c(q̄) and it becomes positive for sufficiently large ωh.
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Second, consider RHS. Differentiate RHS with respect to ωh to get:

−α(1− θ)c(qp)
[

φπlωl
(πh + φπl)(E(ωi))2

]
This is a negative expression and RHS is decreasing in ωl. Thus, the solution ωh ∈ (ωl, ω

c
h)

is unique. �.
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B Appendix: Equilibrium

A typical signalling game has the following structure (Fudenberg & Tirole, 19–). It has two

players: a sender (of the signal) and a receiver. In the above context the sender is the buyer

who makes the offer and the receiver is the seller who accepts or rejects the offer. The sender

has private information about her type i ∈ I which is drawn from some commonly known

probability distribution π. After observing her type the sender sends an offer (as her signal)

as ∈ As to the receiver. The receiver observes the offer and chooses ar ∈ Ar. Before the game

begins, the receiver has prior beliefs about the sender’s type. After observing sender’s offer,

the receiver should update her beliefs, λ(i|as) about sender’s type depending on the offer made.

How the posterior belief of the receiver is formed depends on the equilibrium concept.

In the context of the bargaining game above, sender is the buyer and her offer, as is a pair

(q, p) ∈ R2
+ where q is the output and p is the probability to hand over the unit of money to

the seller. Receiver is the seller and her set of actions, ar in our context is {Y,N}. If ar = Y

then the offer is accepted and if ar = N then the offer is rejected.

The payoff of the buyer (sender) given her type i is U b(i, as, ar) = [u(q)−pωi]IY . The payoff

of the seller (receiver) is U s(i, as, ar) = [−c(q) + pωi]IY . Based on the offer, the seller forms her

belief λ(i|as) about the type of buyer.

A Perfect Bayesian Equilibrium (PBE) of a signaling game is a strategy profile (a∗s, a
∗
r) and

posterior beliefs λ(i|as) such that:

1. ∀i ∈ I, a∗s ∈ arg maxas U
b(i, as, a

∗
r),

2. ∀a∗s, a∗r ∈ arg maxar
∑

i λ
∗(i|as)U s(i, as, ar),

3. λ∗ satisfies Bayes’ rule whenever possible and is unconstrained for out-of-equilibrium

offers.

In words, PBE is a set of strategies and beliefs such that, strategies are optimal given beliefs,

and the beliefs are obtained from equilibrium strategies and observed actions using Bayes’ rule.

Note that the concept of PBE defined above is equivalent to sequential equilibrium for the class

of signaling games.
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The above equilibrium notion can give rise to multiple equilibria, and thus there is a need

to refine further to give the model some predictive power. Two classes of equilibria that emerge

as candidate equilibria in the signaling game are considered. One is the least-cost separating

equilibrium selected by the Intuitive Criterion from Cho and Kreps (1987) and the other is

the efficient pooling offer i.e. the one that maximizes welfare of high type asset holders among

all pooling offers. To discriminate between the two, the one that gives a higher payoff to the

high type asset holder is chosen following the concept of undefeated equilibria from Mailath

et al. (1993). Such a refinement has the nice property of being Pareto efficient in the present

context. As has been argued by Guerrieri, Shimer and Wright, 2010 (without explicitly using

any equilibrium refinement) pooling outcomes can Pareto dominate the separating in some

cases.

First, let us establish why Intuitive Criterion from Cho and Kreps (1987) selects the least-

cost separating equilibrium among others. Later, we will see how this might be restrictive and

not Pareto optimal in some cases. This will lead us to adopt a broader equilibrium definition.

The Cho-Kreps (1987) refinement is based on the idea that out-of-equilibrium actions should

never be attributed to a type who would not benefit from it under any circumstances. First,

consider the seller’s equilibrium actions in our context given that the buyer can be of any type

i ∈ I where I = {h, l}:

a∗r(q, p) = {Y } if− c(q) + pωl > 0

= {N} if− c(q) + pωh < 0

= {Y,N} otherwise

Consider a proposed equilibrium where the payoff of a buyer type-i is denoted by U∗i .

According to Cho and Kreps (1987, p.202), this proposed equilibrium fails the Intuitive Criterion

if there exists an unsent offer a′s such that:

1. U∗l > maxar∈BR({h,l},a′s) U
b(l, a′s, ar)

2. U∗h < minar∈BR({h},a′s) U
b(h, a′s, ar)
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According to the first requirement, the unsent offer a′s would reduce the payoff of the l-type

buyer compared to her equilibrium payoff irrespective of the inference the seller draws from

a′s. Consequently, the seller should attribute the offer a′s to a h-type buyer. If she does so,

the second requirement specifies that the h−type buyer should obtain a higher utility with a′s

compared to her equilibrium payoff.

In the context of the bargaining game, the proposed equilibrium (with payoff of a buyer

type-i is denoted by U∗i ) fails the Intuitive Criterion if there exists an unsent offer a′s which is

(q′, p′) such that the following is true:

1. U∗l > u(q′)− p′ωl

2. U∗h < u(q′)− p′ωh

3. 0 ≤ −c(q′) + p′ωh

In words, the above says that the out-of-equilibrium offer would make the h-type buyer

strictly better off if accepted and it would make the l-type buyer strictly worse off. Finally, the

seller should accept the offer believing that it came from a high-type buyer.

It can be seen that only the least-cost separating offer will be made in equilibrium as

discussed below.

• Only least-cost separating among all separating equilibrium (i.e. the one that maximises

payoff of the high type), else a deviation will make the high-type buyer better while

hurting the low-type.

• No pooling equilibrium, the high-type buyer could make an out-of-equilibrium offer that

would make her better-off (ask for a smaller q in return for smaller transfer p) and that

would hurt the low-type. By making such an offer the h−type buyer hopes to convince

the seller that she is h−type.

However, Mailath, Okuno-Fujiwara and Postlewaite (1993) criticized the logical foundation

of the Intuitive Criterion which is based on forward induction by arguing that it lacks global

consistency. Consider a perfect Bayesian equilibrium of the bargaining game that is pooling.
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It has been shown that a high type buyer could make an out-of-equilibrium offer that would

make her better-off and that would hurt the low-type. By making such an offer the h−type

buyer hopes to convince the seller that she is h−type. But if the seller finds the Intuitive

Criterion appealing she knows that the h−type buyer will alter her offer, and hence she should

update her belief about the buyer’s type if she does receive the equilibrium message. “But

if the (seller) does this, in the determination of whether a particular type might benefit from

sending some disequilibrium message, the relevant comparison is not with the utility that he

would receive in the proposed equilibrium but rather the utility that he would receive given that

(the seller) is thinking in this way”. (Mailath, Okuno-Fujiwara and Postlewaite, 1993, p.250.)

To achieve global consistency, the out-of-equilibrium should itself correspond to an alternative

perfect Bayesian equilibrium.

They further argue that besides the question of logic, there is also some doubt about the

plausibility of the equilibrium selected by the Intuitive Criterion. In their words, “A crude

refinement would be to select the equilibrium that Pareto dominates the other equilibria, if such

an equilibrium exists, but this is clearly inconsistent with the intuitive criterion refinement” .

(Mailath, Okuno-Fujiwara and Postlewaite, 1993, p.252.) The equilibrium notion used in the

paper appeals to such an argument and hence selects equilibrium based on the surplus of the

high-type buyer.

An equilibrium is composed of a strategy for buyers, as, that specifies an offer for each type,

an acceptance rule for sellers, ar, and a belief system for sellers, λ. Let π(i) be the commonly

known prior probability of the buyer being type-i. According to Mailath, Okuno-Fujiwara and

Postlewaite (1993, p.254, Definition 2) an equilibrium (a′r, a
′
s, λ
′) defeats (ar, as, λ) if there exists

an offer a′′s such that:

1. ∀i ∈ I, as(i) 6= a′s and K ≡ {i ∈ I|a′s = a′′s} 6= ∅

2. ∀i ∈ K, U b[i, a′s, a
′
r(a
′
s)] ≥ U b[i, as(i), ar(as(i))] and, ∃i ∈ K, U b[i, a′s, a

′
r(a
′
s)] > U b[i, as(i), ar(as(i))].

3. ∃i ∈ K, λ(i|a′s) 6= ρ(i)π(i)/
∑
i′
ρ(i′)π(i′) for any ρ : I → [0, 1] satisfying:

i′ ∈ K and U b[i′, a′s, a
′
r] > U b[i′, as, ar] =⇒ ρ(i′) = 1 and

i /∈ K =⇒ ρ(i′) = 0
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So, for a sequential equilibrium to be defeated there must exist an out-of-equilibrium offer

that is used in an alternative sequential equilibrium by a subset K of buyers’ types (require-

ment 1). For all buyers with types in K, their payoff at the alternative equilibrium must be

greater than the one at the proposed equilibrium with a strict inequality for at least one type

(requirement 2). Finally, the belief system in the proposed equilibrium does not update sellers’

prior belief conditional on the buyer’s type being in K (requirement 3).

In our context, an equilibrium is a 4-tuple {(qh, ph), (ql, pl),A, λ} where A is the acceptance

rule of the seller and other variables are defined before. Consider equilibria where offers are ac-

cepted. A proposed equilibrium {(qh, ph), (ql, pl),A, λ} is defeated by an alternative equilibrium

{(q′h, p′h), (q′l, p
′
l),A′, λ′} if one of the following is true:

1. u(qh)− phωh < u(q′h)− p′hωh if (q′h, p
′
h) 6= (q′l, p

′
l).

2. u(qh)− phωh < u(q′)− p′ωh and u(ql)− plωl ≤ u(q′)− p′ωl if (q′h, p
′
h) = (q′l, p

′
l) = (q′, p′)

In words, thus if the alternative equilibrium is strictly preferred to the proposed one by the

high-type when offers of the two types in the alternative equilibrium differ then the proposed

equilibrium is defeated. And, in case both types make the same offer in the alternative equi-

librium then the high type should strictly prefer the alternative and the low type should be at

least as well off in the alternative equilibrium offer as in the proposed one.

Among the class of separating equilibria, the least-cost separating is the only undefeated

one. Among all pooling, the efficient pooling equilibrium (or the preferred pooling offer by the

high-type) is chosen. To distinguish between the two the one that gives a higher payoff (or

surplus) to high-type buyer is chosen.
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Figures

Figure 1: Types of pooling equilibria
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Figure 2: Equilibrium regions

Notes: Both equilibria exist in the intermediate region.
Note: The discrepancy is increasing from right to left, i.e. as γl

γh
decreases from 1 (low) to 0 (high)
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Figure 3: Comparative statics

Note: The discrepancy is increasing from right to left, i.e. as γl
γh

decreases from 1 (low) to 0 (high)
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Figure 4: Comparative statics

Note: The discrepancy is increasing from right to left, i.e. as γl
γh

decreases from 1 (low) to 0 (high)
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