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Abstract

We propose a new search-based model of monetary exchange with indi-
visible assets, based on price posting by sellers, rather than bargaining.
The approach generates price dispersion, is consistent with sticky nominal
prices, and is well-suited for the study of nonstationary monetary equilib-
ria. The paper also contributes to the literature on general price dispersion,
by having buyers constrained by their asset positions, which matters for
the number and nature of equilibria. Once some technical results are es-
tablished, the framework is tractable, and parametric cases can be solved
explicitly. In general, we characterize stationary and dynamic equilibria,
including sunspot equilibria.
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1 Introduction

This paper proposes a new candidate for a benchmark search-based model of
monetary exchange. To be clear, we mean the benchmark second-generation
model. First-generation models like Kiyotaki and Wright (1989,1993) or Aiya-
gari and Wallace (1992,1992) have indivisible assets and goods, and every trade
is a one-for-one swap, so prices are not endogenous. Second-generation papers
by Shi (1995) and Trejos and Wright (1995) introduce divisible goods and deter-
mine prices (how much one gets for one’s money) using bargaining theory.! This
second-generation approach is quite tractable — e.g., it can easily be taught to un-
dergraduates — but there several issues that we feel are better addressed with our
new version, based on price posting, rather than bargaining. Specifically, follow-
ing Burdett and Judd (1982), our buyers sometimes see one price, and sometimes
see more than one price, which leads to competition among sellers that captures
as special cases monopoly and competitive pricing, plus much more.

One issue is realism, which is not necessarily a decisive factor, but ought
not be dismissed as irrelevant. In actuality, much monetary exchange, including
most retail trade, has far more price posting than bargaining. For this rea-
son some commentators are unsympathetic to search-and-bargaining theories of
money (e.g., Prescott 2005). We hope they find this version more palatable.
Another issue is the following: One of the main applications of the theory is to
illustrate rigorously and easily an inherent instability in economies where liquid-

ity considerations play a role by generating equilibria where asset values change

! Third-generation models have divisible assets as well as divisible goods, which has some ob-
vious advantages, but is also much more complicated. Hence, they either rely on computational
methods, as in Molico (2006), or on tricks like the large-family specification in Shi (1997) or the
alternating-market structure with quasi-linear utility in Lagos and Wright (2005). While those
approachs are useful, indivisible-asset models still provide a simple and natural way to illustrate
how fiat currency can be valued, how nominal prices are determined, how efficiency is enhanced
by money exchange, etc. As argued by Wallace in Altig and Nosal (2013), there are costs and
benefits to using second- as opposed to third-generation models, and neither dominates on all
dimensions. See Lagos et al. (2015) for a survey of all of these models.



over time purely as self-fulfilling prophecies. However, as explained below, pre-
sentations using axiomatic solution concepts have weak strategic foundations in
nonstationary situations, and can even be described as tantamount to assuming
myopic agents. A few papers use strategic bargaining to avoid that problem, but
they are more complicated (Coles and Wright 1998; Ennis 2001). Our approach
has fully-rational, strategic, dynamic price setting, yet is not complicated.

A third advantage of the new framework is that, as in other applications of
Burdett-Judd, it generates price dispersion. This is consistent with the notion
that the law of one price is evidently false in many markets: different sellers often
charge different prices for what appears to be the same good. A fourth advantage
is that along with price dispersion the model can generate price stickiness, defined
for our purposes as some nominal prices failing to respond to changes in the
aggregate price level or real economic conditions. Intuitively, some sellers can
keep their nominal prices fixed when the average price increases because even
though their surplus from a sale falls the probability of a sale increases. While
this type of stickiness was previously discussed in third-generation models, those
papers rely on technical devices that are not needed here.co Hence, an important
point about nominal rigidities can be made here in a relatively clean way.

The paper also contributes to the literature on general price or wage dis-
persion, including the many labor-market applications following Burdett and
Mortensen (1998). Those papers assume buyers or employers have arbitrarily
deep pockets — i.e., there is perfectly-transferable utility — while our agents are
constrained by their asset positions. This makes a difference. While comparable
nonmonetary versions of Burdett-Judd typically have a unique equilibrium, we
can have multiple stationary equilibria as well as interesting dynamics. This may
have been anticipated by monetary economists, but it is nevertheless useful to

verify that some standard results in nonmonetary environments with price dis-



persion, like uniqueness, do not survive when we introduce payment constraints.
Moreover, compared to those models, there are some nontrivial technical details
to be worked out here — e.g., Lemma 4, which is not surprising, but surprising
difficult to prove. Having said that, once the technical results are established,
the framework is very tractable. In particular, it is tractable enough that we can
generate sunspot equilibria where the price distribution (not just the price level)
fluctuates randomly over time, something we have not seen before.
Indivisible-asset models succinctly illustrate several salient points in mone-
tary economics, and have also been used to good effect in intermediation theory
(Rubinstein and Wolinsky 1987), banking (Cavalcanti and Wallace 1999), finance
(Duffie et al. 2005) and other fields. Hence it seems worth further exploring these
environments, even if there are alternatives available with divisible assets. The
early second-generation models use symmetric Nash bargaining, while later pa-
pers consider generalized Nash, Kalai and strategic bargaining (Coles and Wright
1998; Rupert et al. 2001; Trejos and Wright 2014; Zhu 2014). Others use auctions,
abstract mechanism design, and price posting with random or directed search but
not Burdett-Judd search (Curtis and Wright 2004; Wallace and Zhu 2007; Zhu
and Wallace 2007; Julien et al.2008). Still others explore different matching
processes but not the one we use (Coles 1999; Corbae et al.2003; Matsui and
Shimizu 2005; Julien et al. 2008). Introducing Burdett-Judd pricing and match-
ing is part of an ongoing effort to understand this workhorse model in monetary

economics, and search theory, more generally.?

2To further differentiate our product, consider the previous sticky price papers mentioned
above. There money is neutral by design (related to Caplin and Spulber 1987, Eden 1994
and Golosov and Lucas 2003). By contrast, in second-generation models money is not neutral,
clearly, because changes in the supply alter the distribution of liquidity across agents. This
captures the venerable idea that the real real effects of money hinge on distributional consider-
ations, not revisions in units. Thus, we show how stickiness can also arise without neutrality,
but stickiness is not the cause of nonneutrality. Although this may be a minor point, more
importantly we also go beyond those analyses by analyzing multiplicity and dynamics. Finally,
those papers have a special case of Burdett-Judd, where buyers see either 1 or 2 prices, and we
consider the general case where they see any number n with probability m,.

3



2 The Model

We begin with a brief review of the standard model, with bargaining, because it
shares many features with the new model, and it is easier to say how we deviate
from it after describing the original benchmark. A [0,1] set of infinitely-lived
agents meet and trade in continuous time. For now, they meet bilaterally. There
is a set of goods G, where each agent i consumes a subset G* and produces ¢ ¢ G°.
Any g € G gives i the same utility u (¢) from ¢ units, and has production cost
¢(q). Assume u (0) = c¢(0) =0, and Vg > 0, v/ (¢) > 0, ¢ (¢) > 0, u" (¢) < 0 and
" (q) > 0. Also, there is a ¢ > 0 such that u () = ¢ (), and define ¢* € (0, )
by v’ (¢*) = ¢ (¢*). If i and j meet, § is the probability i produces ¢* € G/ and j
produces ¢ € G' — a double coincidence — while o is the probability 7 produces
g' € G/ and j produces ¢’ ¢ G' — a single coincidence.> Without affecting the
main results, we set § = 0 to preclude barter. Still, for a medium of exchange to
be essential we must rule out credit by assuming agents lack commitment and
trading histories are private information (Kochelakota 1998).

This implies exchange must be quid pro quo and thus assets have a role as
media of exchange. This economy has one asset with flow return p measured in
utility. If p > 0 it can be interpreted as a dividend, or fruit from a tree, as in
standard asset-pricing theory; if p < 0 it can it be a cost of holding the asset; if
p = 0 the asset can be called fiat money according to standard usage (Wallace
1980). In this class of models, assets are indivisible and can be stored 1 unit at
a time, so an individual’s state is his asset position m € {0,1}. Given a fixed
supply M € (0, 1), M agents called buyers have m = 1, while 1 — M agents called
sellers have m = 0. After trade a buyer becomes a seller and vice versa. In the

standard model, with pure random matching at Poisson rate «, the probability

3A common example has K goods and K types of agents, with type k consuming good k
and producing good k + 1 mod K. If K > 2 then § =0 and 0 = 1/K.



per unit time that a buyer ¢ meets an appropriate counterparty — i.e., a seller
producing g € G* —is a; = a (1 — M)o. Similarly, the rate at which a seller
meets an appropriate counterparty is ag = aMo.

Let V,,, be the payoff or value function for agents with m € {0,1}. Then

Vi = aBlu(g)+Vo—-WVi]+p+ W (1)

Vo = aB[Vi—Vo—c(q)]+ Vo, (2)

where r is the discount rate and ¢ is produced in exchange for assets.* In (1),
e.g., the flow value rV) is the expected surplus from trading away the asset,
oy [u(q) + Vo — V4], plus the yield p and a pure capital gain V. Let A = V; — 14,
so the buyer’s and seller’s surpluses from trade are u (¢) — A and A — ¢ (q). The
model can be closed by determining ¢ according to some bargaining solution.
Consider Kalai’s proportional solution, which gives buyers and sellers shares 6,
and 0y = 1 —0; of the total surplus u (¢) —c (¢), and implies A = Gyu (¢) +01¢(q).
Using this and its time derivative, A = [fou/ (q) + 61¢ (q)] ¢, after subtracting

(1)-(2) we get a differential equation in g,

[Oov (q) + 61¢ (q)] ¢ =T (q) — p, (3)

where T (q) = r (apfp — a161) [u(q) — ¢ (q)]. Paths solving (3) are equilibria as
long as ¢ stays in [0, ], since u (¢) > ¢(q) iff ¢ < §. This is the baseline model of

money, or more generally, any asset, circulating as a medium of exchange.’

4The expectation E appears because in principle ¢ be random, although with bargaining it
is not. We write it this way to facilitate comparison with the model below, where ¢ is random.

Here are some results for comparison to the formulation presented below (see Trejos and
Wright 2014 for proofs). For p = 0 there is nonmonetary steady state ¢ = 0, and a unique
monetary steady state ¢ > 0iff 6; > (r + aMo) / (r + ao), in which case there are also dynamic
equilibria where lim; ., ¢ = 0. For p # 0 there can be multiple monetary steady states, plus
dynamics where lim;_,o, ¢ = 0 or lim;_ ., ¢ > 0, and there can be sunspot equilibria where ¢
fluctuates stochastically. In any case, at any point in time there is a single price. This is given
by p = 1/q, in nominal terms, when M is fiat currency, and it is easy to check dq/OM < 0
and Op/OM > 0. Hence the model displays neither price dispersion nor rigidity. One can
prove similar results with generalized Nash bargaining, although the arguments are sometimes
more complicated. The survey by Lagos et al. (2015) discusses more results, extensions and
applications of this benchmark model.



As mentioned, some people seem antagonistic to bargaining, but at least be-
grudgingly willing to entertain posting.® We are agnostic but sympathetic to the
idea that it is interesting to consider alternative mechanisms. However, it not
straightforward to embed posting in the above model. Suppose sellers post ¢, or
equivalently p = 1/q. In the baseline specification, that is the same as bargaining
with 6y = 1, and can be regarded as a monetary version of Diamond (1971). In
this case, with p = 0 the only equilibrium is ¢ = 0, since no one would produce
at cost ¢(q) > 0 to get fiat currency if it yields no surplus when retraded. This
can be overturned by having heterogeneity or directed search, as in Curtis and
Wright (2004) or Julien et al. (2008), but those papers imply at most 2 prices
in equilibrium, and neither can generate stickiness. Hence, we use Burdett and
Judd (1983), which is attractive because it captures other approaches as special
cases, has been successfully deployed in other applications, and delivers interest-
ing results.

The key deviation from a more pedestrian usual search process is that a buyer
now has some probability of sampling more than one seller at a time. Let a,, be
the rate at which buyers simultaneously sample n € {1,2,...} sellers — e.g., «
can be a Poison arrival rate of ‘catalogues’ containing independent quotes of ¢
on offer by n relevant sellers, with Pr(n) = m,. We allow 7y > 0, as a ‘catalogue’
might contain nothing a buyer likes, but of course we assume that 7o < 1, and
that n has finite mean and variance. Consistency requires connecting buyer and
seller arrival rates. Let 3, be the rate at which a seller gets a customer with n
quotes, his own plus n — 1 others. The measure of buyers with n quotes is Mam,,

and the measure of sellers getting customers with n quotes is (1 — M) 3,,. The

6 As Prescott (2005) puts it, “I think the bilateral monopoly problem has been solved. There
are stores that compete. I know where the drug store and the supermarket are, and I take their
posted prices as given. If some supermarket offers the same quality of services and charges
lower prices, I shop at that lower price supermarket.” While this may suggest he would prefer
posting with pure directed search, Bethune et al. (2015) argue that is going too far.



identity (1 — M) f3,, = Mam,n implies 3, = bam,n, where b = M/ (1 — M) is
the buyer/seller ratio, or market tightness.

The formulation is flexible. If 7, = 0 Vn > 1, e.g., it reduces to Diamond’s
monopoly model, and if m; = 0 it looks like Bertrand. Formally we have the

following (all proofs are in the Appendix):

Lemma 1 In the limit as my — 1, there is one price and it is the same as
bargaining with 6o = 1 and 6, = 0. In the limit as m1 — 0, there is one price and

it is the same as bargaining with 6y = 0 and 6, = 1.

Excepting m; = 1 or m; = 0, there is a distribution of ¢ with support given
by a nondegenerate interval Q = [q,q], or equivalently a distribution of prices
p = 1/q with support P = [p,p]. Intuitively, we cannot have a single price for
the following reason: Suppose all sellers post the same terms. Then a buyer

contacting more than one seller is indifferent between them, and this gives sellers

an incentive to shade ¢ up. Hence, a single price cannot be an equilibrium.

Lemma 2 If 7y > 0 and 7, > 1 for some n > 1, there are no gaps or mass

points in the support Q. Moreover, the lower bound q satisfies A = u(q).

A buyer with n > 0 quotes obviously picks the highest ¢ or lowest p = 1/q.
Let F(q) be the CDF of quantity and G(p) = 1 — F'(1/p) the CDF of price.
Given n independent draws from F (q), the CDF of the highest ¢ is F'(¢q)", and

similarly for the CDF of the lowest p. Then for a buyer, the analog of (1) is

W= 3T [ (o) - AlaF @ 4 i (@)

For a seller posting ¢, the analog of (2) is

Volg) =bad "~ mnF ()" [A—c(q)] + Vo (). (5)



since f3,, = bam,n is the rate at which he is in contact with a buyer having n
quotes, whence he gets the sale iff the other n — 1 sellers post less than his ¢,
which occurs with probability F (q)n_l. In particular, since the lowest quote ¢

never beats the competition, a seller posting g only sells when n = 1, and so
rVo(q) = bam [A — c(g)} + Vo(g). (6)

In equilibrium every posted ¢ entails the same payoff, which means we can
equate (5) and (6) to get
00 _ (Q) - C(Q)
TonF (q)" ! =1 ————= 7
2 P ) = M g
using A = u(g) by Lemma 2. Having I’ (¢) satisfy (7) is equivalent to V4 (¢) = Vo
Vg € Q. Moreover, since F'(7) = 1, (7) implies

| miel) + (Bn - m)ulg)
cla) = = . ®

This gives the upper bound as a function of the lower bound, say § = Q(q).
Notice @ (0) = 0, Q(¢) = ¢ and Q'(q) > 0, which is useful because it implies

Q C g, 4] as long as ¢ < . The next result says F'(q) is well defined.

Lemma 3 Vq € [q,q] (7) yields a unique F(q) € [0,1], and ¥q € (q,q) F (q) is
differentiable with

1 [ulg) - e(@)] <) |
[ule) = e(@)]” X0y mun(n — DF ()"

Conditions (7)-(8) describe F' (¢q) and g as functions ¢; it remains to determine
)

F'(q) =

(9)

q. To that end, subtract (4) and (6

to get

@=aY" / u(q)] dF (q)" — bamy [u(g) — c(q)] + o+ (g)d.

We can rewrite this as u/(q)¢ = T'(¢) — p, where

Q(9)
T(q) = Yu(g) — bamic(q) — azn . / q)dF(q

8



and 1 =1 + a (1 — mg) + bam;. This simplifies to”

Qa) 4, !
T(g) = Yulg) — bamc(g) — am [ulg) — c(q)] / %'

(10)

A perfect-foresight monetary equilibrium is a time path for <F (9).4q, cj> sat-
isfying the following conditions: ¢ solves u'(q)¢ = T'(q) — p; q solves (8); F'(q)
solves (7); and ¢ stays in (0, ¢, which ensures ¢ € (0,4] Vg € [g,q], at every
point in time. From this we also get G (p) with p = 1/¢q. A stationary monetary
equilibrium, or SME;, is one where ¢ = 0; a dynamic monetary equilibrium, or
DME; is one where this is not the case. There are other possibilities. When
p < 0 there always exists an equilibrium where sellers do not accept assets and
buyers dispose of them. This cannot happen if p > 0, but one can show there is
equilibrium where buyers hoard (rather than spend) the asset if p is too big. In
what follows we typically ignore these no-trade outcomes.®

Step 1: If there is no trade, then with p < 0 there is disposal and with p > 0
there is hoarding.

Step 2: Assume there is no trade. Then, a seller contemplating a one-shot
deviation will offer at least ¢° satisfying u(q®) = p/r, to guarantee the buyer is
going to take it. The payoff to the seller will be p/r — ¢°. So, for this one-shot
deviation to be profitable, we need the existence of a ¢° such that u(q®) > p/r >

q°. This will be the case if and only if p/r < 7. In other words, if p < rg < p

"To see this, first denote the sum in the previous equation by S (g), and interchange sum-
mation and integration to write

Q) - QD) 4, !
S(q) = / u(q) anl manF(q)" " F' (q) dg = m1 [u(g) — 4] / M’

after using (7). Inserting this back into T'(q) gives (10).

8Tt will be show that, as usual, for some p < 0 an equilibrium with trade coexists with one
where where sellers refuse to trade. Similalrly, for some p > 0 an equilibrium with trade coexists
with one where buyers refuse to trade and hoard assets — but this is due to asset indivisibility,
and the hoarding equilibrium can be eliminated if we allow agents to use lotteries whereby
buyers get ¢ > 0 in exchange for a probability of handing over the asset (Berentsen et al. 2002).
As long as p < rg, lotteries can be ignored.



there is no equilibrium with no trade; otherwise, there is.

Step 3: Assume there is trade. When would a one-shot deviation to hoard be
profitable? Whenever p/r (hoarding forever) exceeds the gain from continuing
to trade: u(q) — A, or ru(q) — rA < p. But this is exactly where the formula
for T'(q) = p comes from, so we are really saying that hoarding is an equilibrium
when p is to big for T'(¢) = p to have a root, which is another way of saying that
there is no equilibrium with trade when p > p.

To summarize:
when p < p the unique equilibrium is disposal of the asset
when p < p < 0 there are two equilibria with trade, and one with disposal
when 0 < p < rq there is only one equilibrium, with trade
when rq < p < p there are two equilibria, one with trade, and one with hoarding
of the asset
when p < p < p there are three equilibria, two with trade and one with hoarding
when p < p there is only one equilibrium, with hoarding

Lemmata 1-3 are extensions of known results for nonmonetary Burdett-Judd
models where buyers have deep pockets. The next result, which is a key to
characterizing ¢, is novel compared to those models, for the following reason:
while in general the highest price makes buyers just indifferent to trade, when
they have deep pockets this is pinned down by primitives, while here it depends
on the value of money and that is endogenous. Not merely a technical point, this

is what generates multiplicity and interesting dynamics.

Lemma 4 T : [0,4] — R satisfies T (0) =0 and T (§) = [r + a (1 —m)] ¢ > 0.
If u'(0) = oo then T'(0) = —o0.

Figure 77 illustrates T(¢) when there is exactly 1 inflection point where T
changes from convex to concave. While we cannot prove this in general, there

was never more than 1 in any example we tried. It is not hard to say what

10



happens if T" were to wiggle more than this — e.g., instead of saying there is one
solution ¢ > 0 to T'(¢) = 0 we would say there is generically an odd number of
solutions. As it is a routine extension to go from 1 inflection point to many, in
the Propositions below, it is a maintained assumption that there is at most 1.°
Figure 7?7 shows three important p values: p = minj g 7'(q); p = T (¢); and
p = max 4 T(q). Clearly, T7"(0) < 0 implies p < 0 < p, but it can be that p = p,
as in the left panel, or p > p, as in the right panel. If p < p or p > p there is no
equilibrium with trade. Hence, consider p € (p,p). At the values for p shown in
red, in (p,0) in the left panel and (p, p) in the right, there are multiple solutions
to T'(q) = p; for other values of p there is a unique solution. Based on this the

following is obvious:

Proposition 1 If p € [0,p) there is a unique SME ¢* > 0. If p € (p,p) U (p,0)
there are two SME, q; € (0,4) and q;; € (qr,q)-

To characterize DME, simply look at the arrows in Figure 7?7, pointing left
when T'(q) < p and right when T'(q) > p. It is just that easy because the path
for F'(q) is fully pinned down by the path for ¢. Formally we have the following:

Proposition 2 If p = 0 then, in addition to the SME at 0 and ¢* € (0,q),
Vg, € (0,¢") there is a DME staring at g, with ¢ — 0 ast — oo. If p € (0,p)
there is no DME. If p € (p,p) then, in addition to the SME q; € (0,q) and
q;, € (q;,4): Y, € (q;,4q) there is a DME staring at q, withq — ;.. If p € (p,0)
then, in addition to SME q; € (0,4) and q;; € (gz,(j), Vg, € (O,gj{) there is a

DME staring at q, with ¢ — qj,.

As mentioned, one can interpret p = 0 as a pure-currency economy, as in the

original search-based money models. Then the theory generates dispersion in the

90ne case with multiple inflections is shown in Figure ?? below. Also, except for special
cases of interest like p = 0, corresponding to fiat money, we typically ignore nongeneric values
like p = p, but describing these cases is a similarly routine exercise.

11



nominal price p = 1/q, as well as dynamics with inflation or deflation (falling g or
p) as a self-fulfilling prophecy. One can interpret p > 0 as a model of an ‘over-the-
counter’ financial market, as in Duffie et al. (2005). Then the theory generates
asset price dispersion, where prices are generally above their ‘fundamental value’
p/r, and can vary over time as a self-fulfilling prophecy, which might be called a
‘bubble’ in standard usage (e.g., Stiglitz 1990). It is all the more obvious prices
are above their ‘fundamental value’ when p < 0, but in either case this is due to
asstes having a liquidity premium.

While the baseline bargaining version does not generate dispersion, it also has
belief-based dynamics. However, our results may be more solidly grounded. To
make this point, first note that one can always impose as equilibrium conditions
coperative solution concepts like Kalai, Nash, or anything else, but one might
worry about the strategic foundations. Consider the standard extensive-form
game, where a buyer and seller in a stationary environment make counteroffers
of ¢ until one is accepted, with the time between offers given by 6 > 0. As shown
in Binmore et al. (1986), in the unique subgame-perfect equilibrium the first offer
— denoted ¢° to indicate dependence on the timing — is accepted, and ¢° — ¢ as
§ — 0 where ¢" is the generalized Nash bargaining outcome. This is commonly
understood to be an attractive feature of the bargaining approach.'’

Coles and Wright (1998) and Coles and Muthoo (2003) show that the argu-
ment in Binmore et al. applies to environments like the one here if we restrict
attention to steady state but not more generally. Using the same construction as

Binmore et al., they show that as § — 0 we get a path for ¢ in subgame-perfect

0Similarly, e.g., Dutta (2012) provides strategic foundations for Kalai bargaining. In gen-
eral, the quest for strategic foundations for axiomatic solutions, goin back to Nash (1953), was
dubbed the Nash program by Binmore (1987). As Serrano (2005) puts it in his survey, “Similar
to the microfoundations of macroeconomics, which aim to bring closer the two branches of
economic theory, the Nash program is an attempt to bridge the gap between the two counter-
parts of game theory (cooperative and non-cooperative). This is accomplished by investigating
non-cooperative procedures that yield cooperative solutions as their equilibrium outcomes.”

12



equilibrium that satisfies a differential equation having ¢" as a steady state, but
q # ¢~ out of steady state except for special cases, like v and c linear, which
is not admissible in this model, or ; = 1, which is admissible but too special.
They also argue that using Nash bargaining out of steady state is equivalent to
using the extensive-form game with myopic agents, who negotiate as if economic
conditions were constant, even as they change over time. And it matters: one
can show that with forward-looking strategic bargaining the equilibrium set can
contain limit cycles that do not arise with Nash bargaining.

Again, one can always do dynamics with axiomatic bargaining, but the above
discussion should give one pause. Alternatively, one can analyze dynamics with
strategic bargaining and rational expectations, but that is complicated (e.g., Coles
and Wright 1998; Ennis 2001). Here, with posting, agents are strategic and
expectations are rational, plus we get dynamics in terms of a distribution and
not just the price level, but the analysis is relatively simple. Section 4 presents
still more interesting dynamcis; first it is useful to show by way of example how

the model works with some parametric specifications.

3 Examples

To economize on notation, set ¢(¢) = ¢ and o = 1.1 Now consider first the
minimal specification satisfying the conditions in Lemma 2, 7y > 0, 73 > 0
and m, = 0 Vn > 2, as in some other applications of Burdett-Judd (e.g., Head et
al. 2012). In this case (7), which is generally an infinite-dimensisonal polynominal,

solves easily for
_ M 974
2mau(q) — q’

F(q)

HSetting c(q) = ¢ is wlog since we can measure ¢ in terms of producer disutility as long as
we adjust u(q), and setting o = 1 is wlog because we can scale time as long as we adjust r and
p. These normalizations do not appear sooner because it facilitates interpretation to have ¢(q)
and « in the results. We also mention that the hard part of Lemma 4 is much easier in the
parametric cases presented below.

13



where ¢ = [m1q + 2mau(q)]/ (71 + 27m2). Also, (10) reduces to

u(g)dg
u(g) — ]

Figure 1 illustrates this with u (q) = ¢%, with a = 0.2, 71 = 0.48, 73 = 0.36,

7o) = vutg) g - L [

M = 0.3 and r = 0.04. In the left panel, with p = 0.067, q; = 0.37 and
q;; = 0.66 both solve T'((q) = p. The middle panel shows the density f(g) for
the two equilibria, while the right panel shows g(p). Notice the two equilibrium

densities do not overlap, but they will if we raise p so that ¢; and ¢}, get closer.

Figure 1: Mutiple SME with different densities

For the next example, consider a Poisson distribution, 7, = e *\"/n! ¥n > 0.

Then (7) becomes
u(g) —q 8 A (!

ulg) —q  “n=t o (n— 1)

From a well-known formula, the RHS is e*"@. Hence, we again get a simple

closed-form solution for

where ¢ = e_AQ + (1 - €_>‘) u(q). Now (10) reduces to
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with ¢ = r +1 — ¢™* + bmr;. Mortensen (2005) uses a Poisson distribution in a
version of Head and Kumar (2005), using tools developed in Mortensen (2003),
where he shows how to endogenize search effort. That can be done here, too.

Finally, consider a logarithmic distribution, 79 = 0 and 7,, = —w"/nlog(1—w)
Vn > 0. It is easy to solve for

P9 = T -4

7(g) = vulg) ~bog — | %

where ¢ = wu(q) + (1 —w)qg and ¢ = —log(1 — w) (14 7r) + bw. Since F(q) is
linear, ¢ and p are uniformly distributed. In Caplin and Spulber (1987), which
is closely related to the discussion in Section 5, p is assumed to be uniform,
with no claim that this is an equilibrium outcome. Our result rationalizes their
assumption. More generally, we emphasize that all of these examples are relevant

and tractable in applications.

4 Extensions

In addition to perfect-foresight equilibria, one can consider sunspot equilibria.
Consider in particular a stationary sunspot equilibrium where, even though fun-
damental are constant, g fluctuates stochastically between two values, ¢ " and ¢ B
where wlog we take qp > 4, and eg is the Poisson arrival rate of a change to
S" # S in state S € {A, B}. Given ¢, at any point in time, other equilibrium
objects are determined as in perfect-foresight equilibrium, although we now write
F(qlq S) to indicate explicitly that the distribution depends on g..
In state S € {A, B}, for a buyer

o Qlag) ,
T‘/lS =« Zn:l 7Tn/ [U ((]) - AS] dF<Q|gs)n +p+ 65(‘/15 - ‘/ls)a (11)
q

S
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which compared to (4) does not have V; because of stationarity, but does have

es(V;%" — V;%) because of sunspot switching. Similarly, for a seller posting any ¢
Vi (q) = baz mank(qlgy)"” LAg — ()] + es(VE = Vo), (12)

and, in particular, for a seller posting the lowest ¢ s
PV (gg) = bam[As — c(gg)] + es(VE — V). (13)

The procedure used above now yields T'(¢.) — p = eslu(g,,) — u(gg)], where
T is the same as (10) above except F'(g|q,) replaces F'(¢). This reduces to the
condition for perfect-foresight SME when €5 = 0, of course. For a proper sunspot

equilibrium, or PSE, it must hold in both states, with eg > 0 and ¢ 5> Ay

T(q,) = p = ealulgy) —ulg,)] and T(q,) — p = eplulq,) —ulgy)].  (14)

There are different approaches for establishing the existence of PSE. Follow-
ing Azariadis (1981), we begin by noting that while it might seem natural to
take (€4, ep) exogenously and solve for (¢4, ¢p) endogenously, doing the opposite
serves our purposes equally well because any (g g EaE p) solving (14) with
es > 0 and g, > g, is a PSE. Since (14) is linear in (g4,p), it is easy to solve

for
_ Ta)=r g P Ty
u(g,) —ulg,)  © ulg,) —ulg,)

Of course we have to check €4, > 0. Since the denominator in both is posi-

€A (15)

tive, this is equivalent to T'(q,) > p > T'(¢q,). We now show when this can be
guaranteed.

Suppose there are multiple SME without sunspots, q; and ¢}, > ¢;. From
Proposition 1, this can happen when p < 0 or p > 0. Consider first p < 0,
as shown in the left panel of Figure ??. There are multiple SME Vp € (p,0),
and for any ¢, € (0,¢7) and g, € (¢},q;,) it is clear that T(q,) > p > T(q,),
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which implies 4,65 > 0. Thus we have a sunspot equilibrium for any such
(¢,,9,)- Similarly consider p > 0, which is not shown in Figure ?? but can be
understood from Figure ??. Now there are multiple SME Vp € (p,p), and for any
q, €(q;,q;,) and g, € (q},,q) it is clear that T(q,) > p > T'(g,), which implies
ga,ep > 0. Thus we again have a sunspot equilibrium for any such (g Y B).

As usual we formalize this below when 7'(¢) has a single inflection point,
but here we also indicate what happens with multiple inflection points, which
is somewhat interesting. In the right panel of Figure 7?7, with p < 0 as drawn
there are four SME, g}f for j = 1,2,3,4. Now for any ¢, € (0,¢]) and ¢, €
(¢, 4;) U (g, q;) we have g, > ¢, and T(q,) > p > T'(q,,). This is also true for
any ¢, € (g;,g;) and ¢, € (q3 _4) Hence in both cases we have PSE. Something
similar can be done for p > 0. Given this, we leave the results for any number of
inflection points as an exercise, and summarize the above discussion when there

is at most one as follows:

Proposition 3 If p € (p,0), in addition to the SME ¢, and g}, for any q, €
(O,Q*L) and g, € (QZ,Q*H) there is a PSE where q fluctuates between q , and g,
with Poisson parameters e4,eg > 0 given by (15). If p € (p,p), in addition to
the SME q; and q;,, for any q, € (¢;.4;,) and any q,, € (q5,q) there is a PSE

where q fluctuates between q, and q, with es,ep > 0 given by (15).

Note that for p > 0 the PSE fluctuates around ¢}, while for p < 0 it fluctuates
around ¢; — ie., in both cases it fluctuates around the SME with T"(¢") <

0.2 Also note that in the case of fiat money, p = 0, the method (or the one

12This follows the proof strategy Trejos and Wright (2014) use in bargaining models. A
different strategy, closer to what Shi (1995) and Ennis (2001) use, is to consider PSE that
fluctuate across two points each in the neighborhood of a different SME. If ¢} and ¢}, > ¢}
exist they solve (14) with e4 = ep = 0. By continuity, for small € 4,e5 > 0, there exist qA and
g >4, close to qL and qH, resp., solving (14). One can check q, < q and qp < q when
p € (p,0), while g, > 4q; and g, > ¢}, when p € (p,p). Hence, these PSE look quahtatlvely
similar to those 1mphed by PrOpOblthH 3, even though, heuristcaly they fluctuate across across
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in fn.12) does not work because ¢ cannot fluctuate around 0. But there an

equilibrium where g4 = €4 = 0 and e = T(q,)/ulg,) > 0 Vg, € (0,¢") where
q* is the unique SME with p = 0. Hence the value of fiat money can crash to
0 probabilistically, but then cannot come back (similar to Kocherlakota 2011).

However, one can reinterpret p # 0,

they can work in a version that allows some barter by letting the double-
coincidence probability be § > 0 instead of 6 = 0, if we assume as in some other
models that agents with m = 1 cannot produce.!® In this case accepting money
has an opportunity cost — the agents loses the ability to barter — which works
very much like the storage cost represented by p < 0.

One can also consider shocks to fundamentals. Suppose p = pg is a function
of the state S € {A, B}, where again S switches according to Poisson parameters
e4 and ep. To simplify, suppose for each pg there is a unique SME ¢, which is

the case for pg € [0, p). For buyers

WE=aY " / ~ AgldFys (q)" + ps +es (Vi ~VE). (16)

S
For sellers the equations are still given by (12)-(13). Similar to the analysis of

sunspots, we get

T(q,) = pa = calulgy) —ulq,)] and T(q,) — pp = eplulg,) —ulg,)l,  (17)

the only difference being that now pg is state dependent. These conditions define

two curves depicted in (g Y B) space shown in Figure 77.

points near two SME rather than around one SME. However, the continuity argument only
guarantees existence for (¢ ,,q,) close to (¢} ,q;,) and (ca,ep) close to (0,0), while Proposition
3 can generate PSE for (¢ ,,q,) far from (¢}, q},) and (¢4,ep) far from (0,0). In particular, if
Ap—4q, s small (15) makes €4 and ep arbitrarily big, while naturally bigger fluctuations occur
with lower frequencies.

13This is motivated in Aiyagari and Wallace (1992), e.g., by saying that after producing an
agent must consume before producing again. See Rupert et al. (2001) for more discussion.
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To describe the equilibrium, start with the limiting case where p, = pz. Then
the two curves are symmetric and cross on the 45° line at Qix = QE' Now raise
p4- This shifts the blue solid curve to the blue dashed curve. The equilibrium is
now given by ¢% > ¢% > ¢',.

As €5 increase, there is an effect in ¢ = but it is not necessarily the case that
q, and ¢, move towards each other, since T is not monotonic. But for £ small

enough we do know that the equilibrium where the parameters cycle around does

exist.

Let I' = {p,r, M, o}, the parameters of the model. We will consider what
happens if there is a process, with arrival rates €4, ep, between values I'4 and
I'p. To simplify matters, pick I'4 and I'g so that under both there exist at least
one SME, call them ¢%, ¢5;. Wlog we label so ¢} < ¢5. We assume that if M is
the variable that changes, then the agents that would have to shift from sellers to
buyers (if M increases) would have the resulting surplus extracted, and viceversa.

The derivation is similar to the case with sunspots, except that the stochastic

term refers to the impact of a real shock on I', rather than a shock on expectations.

For S=A,Band S"# S,
s Q1) n s’ S
rsVy :Oésznﬂn/ [u(q) — As]dFs (q) +Ps+€s(v1 —V1>
s

For a seller posting ¢ € [Q ¢ q (g S)] , the Bellman equation is
rsVo (q) = bsas Zn manFs ()" [As — q] +es (VOS/ - Vos) :
and in particular, at the lowest bound ¢ &
TSVOS (gs> = bgagmy [AS — gs] + €5 (VOS’ B VOS> )
Through the same procedure as before, we arrive to

QU (o) F’ d
Ts(g) = tsu(g) = bsasmiclg) —asm [u(g) ~c(o)] [ (Ci)@) (_ql<gq)> q

. (18)
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An Cyclical Stationary Equilibrium (CSE) would correspond to two price
distributions, between which the economy oscillates as I' varies between I'4 and

I'p, and that can be characterized by a pair ¢ e that satisfies

oA [“ <QB> - <2A>] = Ta <2A> —Pa (19)
o 0,) ~u(a0)] = 75 (2s) ~ 0

The equations (19) are similar to the one for sunspots, except that now ¢ are not
endogenous variables, but parameters that enter into 7'.

Define the correspondences

UA(QB) = {q!TA(Q)+€AU(Q)—PA=8AU<QB)}

0B <QA> = {q | Ts (q) +epu(q) — pp = epu <QA>}

and the CSEs will be pairs 9,9, that satisfy 4, €04 (QB) 14, €0B (QA>'
Consider two parameter vectors I'4 # ['g that each allow for a unique SME.
The easiest (but certainly not the only) way to do this is to consider p 4, ps € [0, 9],
all other parameters given, in our baseline scenario, and that ¢4 = ep = &.1
Assuming wlog tht pp > p,, one can show that there is a unique pair ¢ e of
equilibrium, that < a4, <4y <y and that 4, —q, 7 0ase — oo To
prove this, verify that given uniqueness of SME (that is, there is a unique root
for p = T'(q), and at said root 7"(¢) > 0) then the g happen to be increasing
functions, that intersect at a point ¢ 1 < 4y At any intersection, o happens
to be steeper than o', which by differentiability means these functions intersect

only once. Also, one can show that dq ,/0s > 0 > Jq /0, and that in the limit

14The simplicity comes from the fact that if the parameter that changes is p, then the
functions T4 and Tg are the same (and equal to the function T in the stationary model). But
of course, we could do an analogous exercise with the other parameters. This includes M, that
should not be interpreted only as the money supply, because in this model it describes both the
amount of assets —a nominal value— and also the value of their aggregate output as well as their
distribution across agents —two real values. The model allows for neutrality (if we change the
units in which the asset is measured, prices change proportionately), but M is not the variable
to change to verify it.
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they converge to the same value. The following picture illustrates the previous
results: the dot corresponds to the two SMEs, and the intersection of the two
functions oy is the cyclical equilibrium.

A corollary of the results in the last paragraph is that for g large enough it
obtains ¢ 5 € [g " Q (g A)} so the two price distributions overlap, and the same
conclusions about sticky prices apply as before: as the model parameters change,
some sellers need to change their prices, but others can choose not to revise them.

A more complex scenario takes place, for instance, if we pick parameters
that allow for multiple SMEs; for instance, in a case where 7"(q) < 0, pick
pa,Pp € (0, ). Then, there are two SMEs for each set of parameters, g%, i = 1,2,
S = A,B. Then, og are true correspondences (for values of g4 in a certain
range, for instance, there are two values of qp that satisfy the second equation
in (19)). For very small values of £, we know that there would be four CSEs: in
each, as the parameters oscillate between I' 4 and I'g, the price distributions will
oscillate between one of the ¢%, and one of the ¢%; values. Notice that this implies,
interestingly, that even if the difference between I'y and I'g is very small (so the
oscillation between ¢ and ¢k, or between ¢4 and ¢%, could be very small), it
may be that the "expectations" component of the oscillation is very big (if, say,
the economy oscillates between ¢} and ¢%.

The following figure describes the analysis. Notice that in this case we chose
p4 and pp very close together, so that two of the dots indicating SMEs are very
close to the 45° line. Furthermore, the analysis of the SME involving the lower ¢z
for both states (that is, where both intersections happen in the increasing portion
of T') is exactly the same as before, so one predict that the intersection between
the two og near that SME is going to be "down and to the right", that is, towards
the 45° line. But around the other three SMEs things are more complicated: we

can only predict the direction in which the CSEs are relative to the SMEs for
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very low values of ¢ (SW from the NW SME, NW from the NE SME, NE from
the SE SME), and the number of CSEs may become larger or smaller. Notice for
instance that a small change in parameters moving the correspondence o 4 a little
bit up will increase the number of equilibria from four to five, and a bit further

up, from five to three.

5 Discussion

The effects of parameter changes on SME or DME are simple. An increase in 7,
e.g., rotates T" around the origin, so dg/Jdr < 0 when the SME is unique, or more
generally, at any ‘natural’ SME where T"(¢) > 0 (as usual, with multiple equilibria
the comparative statics are reversed at alternate solutions). As g = Q(q) also
falls, the entire distribution shifts left. Similarly, an increase in M raises b, which
shifts T'(¢) so that dg/OM < 0 in any ‘natural’ SME. Again the distribution
shifts to the left, and note that g falls by less than ¢, as it is easy to check
qQ'(q)/Q(q) < 1. Hence, higher M spreads the support and makes F"(q) lower
at the edges. With fiat money, p = 0, injecting M makes it harder to find sellers,
so agents produce less ¢ for cash. This nonneutrality has something to do with
the restriction m € {0, 1}, but that seems appropriate, corresponding to a long-
standing notion that the real effects of monetary injections depend on changing
the distribution of liquidity.'®

To discuss the implications for pricing behavior, consider Figure 2, where the
quantity and price densities are f(q, M) and g (p, M), before and after M rises to
M'. After M rises, all sellers that were formerly pricing between p and p’ must

adjust p because it is no longer in the equal-payoff support P. However, any seller

15 As Francis Bacon put it “Money is like muck, not good except it be spread.” Still, as usual,
changing the denomination on the asset for all agents holding it is irrelevant, even if changing
the measure of agents holding it (spreading the muck) is not.

22



f(q,M) E(p,M)

4F aF

f(q.M) 9(o.M)

08 g’ g 14 g g q IE_p' 08 p ! opop

Figure 2: Sticky prices after an increase in M

pricing between p’ and p has no incentive to change — his p can fall relative to the
aggregate Ep, and by construction the equilibrium probability of a sale increases
by exactly enough to compensate. So prices are sticky in the sense used in the
Introduction: some sellers do not reprice when Ep increases, although of course
others do, since how else would Ep change? Collectively, sellers respond so as to
achieve the new SME, but it is no puzzle if many individuals stick to their old
p when M changes. Obviously, nominal prices can be sticky in this sense after
changes in utility or technology, too.

Similar remarks apply to DME. With p = 0 there are inflationary equilibria
where ¢ — 0 and Ep — oo, but many sellers stick to posted prices for extended
periods, only changing when p falls out of the shrinking P. With p # 0 there are
deflationary equilibria where some sellers stick to their prices while Ep falls, thus
reducing the probability they make a sale, but getting a higher surplus when they
do. In the interest of space, we only sketch some additional dynamic implications.
First, as in Trejos and Wright (1993), assume M follows a stochastic process and
agents have rational expectations. Then Ep rises and falls when M realizations
are high or low, but many sellers can stick to the same p after shocks as long as
the supports overlap. Second, as in Shi (1995) or Ennis (2001), there are sunspot

equilibria where endogenous variables follow stochastic processes as self-fulfilling
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prophecies, and again many sellers can stick to the same p as Ep rises and falls.

In sum, there are various reasons for changes in price distributions, including
one-time unanticipated movements or different realizations of stochastic processes
for M as well as real factors, and including self-fulfilling prophecies that give
rise to deterministic or sunspot dynamics. Prices can be sticky in every case.
Once one understands how frictions lead to dispersion, it is immediate how to
generate stickiness, with no restrictions on timing or costs of adjustment.'® For
evidence that this is neither trivial nor generally understood, consider Golosov
and Lucas (2003): “Menu costs are really there: The fact that many individual
goods prices remain fixed for weeks or months in the face of continuously changing
demand and supply conditions testifies conclusively to the existence of a fixed
cost of repricing.” That is incorrect. We are not the first to mention this, and
give full credit to the papers mentioned in the Introduction, Caplin and Spulber
(1987), Eden (1994) and others. Yet our model is different, and has the virtue of
simplicity, as well as relatively solid microfoundations for money, dispersion and

rigidity.

6 Conclusion

This paper presents a new second-generation search model of monetary exchange.
We think this is natural, especially since price posting seems more characteristic
of many markets than bargaining. It provides simple, intuitive, results for the
effects on steady states of changes in parameters. It also provides a rigorous

way to illustrate dynamic equilibria, without some of the technical problems

16The result is robust to various perturbations in the environment. If sellers have heteroge-
nous costs, e.g., dispersion still obtains, but a seller is only indifferent across p in a subset of
the support. Thus, low-cost sellers prefer low p and a high probability of a sale, but there is
an interval Py, in which they are indifferent, and similarly an interval Py for high-cost sellers.
Still, P = Pr, U Py looks like the baseline model, and p can still be sticky in the conditional
supports. Heterogeneity does not upset the general argument about stickiness.
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that plague bargaining approaches. It also generates price dispersiion, which is
a realistic feature of many markets. And it generates nominal rigidity, defined
as the observation that some sellers keep their prices the same after changes
in economics conditions, including changes in the aggregate price level due to
changes in M, or due simply to beleifs.

This is a different position than much of macroeconomics, where nominal
rigidity is a primitive, and price dispersion emerges as an outcome due to inflation
(e.g., Woodford 2003). We take real frictions as a primitive, and derive dispersion
and sticky prices as outcomes. Importantly, dispersion emerges even without
inflation, as seems true in the data (Campbell and Eden 2014). We deliver closed-
form solutions for special cases used in the literature. Money is nonneutral here,
although not because of stickiness. Putting this together with previous results,
it can be concluded that sticky prices are neither necessary not sufficient for
nonneutrality, and the fact that some sellers do not change p over extended
periods does not logically require menu costs or related restrictions on changing
prices. While many of the compenents of the analysis can be found elsewhere,
putting them together as we did delivers a tractable model of monetary exchange
that we think has potential to become the new benchmark in second generation

monetary models.
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Appendix: Proofs
In what follows we set ¢(¢) = ¢, « = 1 and 79 = 0 to reduce notation is wlog.
Lemma 1: With bargaining, based on (3), we have

0 = 1= ¢g=rq—ofu(qg)—q—p (20)
00 = 0= v (q)g=ru(q) —aolulq) —q —p (21)

where a; and ag are the effective arrival rates for buyers and sellers. With posting,
consider first 7; — 1. Then (8) implies § = Q(q) = ¢, so there is a single price.
Also, (10) reduces to

T(g) = (r+ ao) u(q) — g

where «y is the effective arrival rate for a seller. Consequently v’ (¢) ¢ = T'(q) — p,
which is identical to (21).
With posting and m; — 0, the seller with the lowest ¢ gets a payoff satisfying

m™Vol(q) = Vo, because there are no buyers with n = 1, so he never beats the
competition. Hence, (5) implies ¢(q) = ¢ = A Vq, and all sellers get 0 surplus.
Moreover, since the LHS of (7) must be strictly positive, ¢ — u(q) as 7 — 0, so

again there is a single price. Then (4) implies
rVi = ay [u(g) — cq] +p+ W,

where o, is the effective arrival rate for a buyer. This combined with rVy(q) =

po + Vo and ¢ = A leads to

G=rq— o [ulg) —q| —p,
which is identical to (20).

Lemma 2: If there were a mass point at ¢, a seller posting ¢; could profitably
deviate to ¢q; + ¢ for some € > 0, because he would increase the probability of
a sale discretely with a small increase in cost. If there were a gap between ¢;
and ¢ > q1, a seller posting ¢y could profitably deviate to g3 € (¢1, ¢2), since he
lowers cost while losing no sales. Finally, if the lowest ¢ does not take the entire

surplus from buyers, a seller posting ¢ can profitably deviate to ¢ —¢. B
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Lemma 3: Let L(y) = > 2, m,ny" . For a given ¢, (7) says that F(q) =y
where y is the solution to

u(g) — <(g)
L(y) = ™ alg) —ela) (22)
Notice L (0) = m; and L (1) = En, and that L(y) is differentiable with L' (y) =
S man(n—1)y"2 > 0. Setting y = 1, (22) reduces to ¢ = g. Setting y = 0,
(7) reduces to ¢ = ¢q. These results imply that Vg € [g,q] there is a unique
y € [0, 1] solving (22), and hence a unique number F (¢q) in [0, 1] solving (7). The
formula (9) comes from differentiating (7) and rearranging, where the sum in the

denominator is well defined because n has a finite mean and variance. H
Lemma 4: It is obvious that 7(0) = 0 and T'(¢) = [r+a(1 —m)]¢ > 0,
because the integral vanishes at ¢ = 0 or ¢ = ¢. For the limit, note from (10)
that

T'(q) = vu'(q) —bm —u[Q(9)] F' [Q(q)] [m1+ (Bn —m1) u/(q)] + amiu(q)F'(q)

Q(9) wla) = al u'(a) = [W'(q) = ula) —
+m/ u(q)[@ q] u'(q) — [w'(q) — 1] [u(q) q}F,(qu_

[u(g) — q]’

We know there are no mass points in the distribution and F'(g) is differentiable

with lim, o F”(g) = €2 for some 2 > 0. Hence

(1]2% T'(q) = ¢limu/(g) — bry — Qmlimu [Q(g)]

g—0 g—0

—Q(En — 1) limu [Q(g)} u' () + nggi% u(q)

q—0

(99D u(q) [ulg) — g] v'(g) — [w'(9) — 1] [u(g) — q] F"(q) dg
+m im 5
=0 Jg [u(q) — q]
The second and fourth limits on the RHS are trivially 0. The fifth limit on
the RHS is 0, because the integral vanishes when the measure of the range goes
to 0, even if the integrand goes to oo or is indeterminate, by Theorem 5.25 in

Zygmund and Wheeden (1977). Using 1 "Hopital’s rule on the third limit, we get

limu [Q(q)] v (x) = Jiny u' [Q(q)] Q'(@)u"(q)

q—0

— l / 1 "
@iy,
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Putting things together we have

+ (En — '
lim 7"(q) = lim4/(q) | + Q (En — 1) lim u"(q) m o+ (Bn —m) vig) —bmy.
g—0 - —0 = g—0 - En

This implies

limw _pa Q(En —m)m
70 u/(q)

i Q(En —m) (En —m) ..
1 " !/ "
En glfcl)u @)+ En éli%u @t

The last two terms are negative, and at least the last one is —oo. Therefore, it

must be the case that lim, .o 7"(¢) = —occ. W
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