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Abstract

This paper compares the role of stochastic volatility versus changes in mon-

etary policy rules in accounting for the time-varying volatility of U.S. aggregate

data. Of special interest to us is understanding the sources of the great moder-

ation of business cycle �uctuations that the U.S. economy experienced between

1984 and 2008. We build a medium-scale dynamic stochastic general equilibrium

(DSGE) model with both stochastic volatility and parameter drifting in the Taylor

rule. We estimate the model using U.S. data and Bayesian methods. Methodolog-

ically, we show how to confront such a rich model with the data by exploiting the

structure of the high-order approximation to the decision rules that characterize

the equilibrium of the economy. Our main substantive �nding is that, even af-

ter controlling for stochastic volatility, there is evidence of a change in monetary

policy rules during Volcker�s tenure as Chairman of the Fed. At the same time,

we document how good volatility shocks played an important role in the great

performance of the economy during the 1990s.

Keywords: DSGE Models, Stochastic Volatility, Parameter drifting, Bayesian

methods.

JEL classi�cation numbers: E10, E30, C11.

2



1. Introduction

This paper addresses one of the main open questions in empirical macroeconomics: what

is the role of time-varying disturbance variances versus changes in monetary policy rules in

accounting for the evolving volatility of U.S. aggregate data? This discussion is particularly

relevant to understand the sources of the Great Moderation of business cycle �uctuations that

the U.S. economy experienced between 1984 and 2007 and to forecast whether low volatility

will return after the turbulences of 2008-2009.1 To answer this question, we build a medium-

scale dynamic stochastic general equilibrium (DSGE) model with both stochastic volatility

in the disturbances that drive the dynamics of the economy and parameter drifting in the

Taylor rule followed by the monetary authority. Then, we estimate the model using U.S.

data and Bayesian methods. We use our results to run a battery of counterfactual exercises

in which we build arti�cial histories of economies where some source of variation has been

eliminated or modi�ed in an illustrative manner.

The motivation for this investigation is transparent. Time-varying volatility tells a history

built around the changing size of the variance of shocks that hit the economy. The Great

Moderation is, then, a tale of fortune: for two decades and a half we were favored by fate in

the form of small shocks. It is also a pessimistic perspective: we dwell in joy during periods

of low volatility and we struggle through times of high volatility, but there is disappointingly

little scope for the policy maker to battle the elements. Therefore, our current turbulences

may be the opening stages of a era of large business cycle swings.

Parameter drifting constructs a radically divergent account: it believes that fundamental

changes in the economy were the cause of higher stability. Some versions of the parameter

drifting narrative emphasize technological change. Two commonly cited factors are better

inventory control (McConnell and Pérez-Quirós, 2000, Ramey and Vine, 2006) or �nancial

innovation (Dynan, Elmendorf, and Sichel, 2006 or Guerrón-Quintana, 2009a). Other versions

of the parameter drift history, the most prominent of which is Clarida, Galí, and Gertler

(2000), single out better monetary policy as the key for the reduce size of business cycle

�uctuations. Thus, parameter drifting is a tale of virtue: thanks to either better technologies

(inventory control, the move to services) or better policies, the economy is more stable than

before. It is also an optimistic view. As long as we do not abandon new technologies or unlearn

1Kim and Nelson (1999), McConell and Pérez-Quirós (2000), and Blanchard and Simon (2001) were
the �rst papers to point out that time-varying volatility was an important component of U.S. aggregate
�uctuations. While Kim and Nelson and McConell and Pérez-Quirós emphasized a big change in volatility
around 1984, Blanchard and Simon saw the Great Moderation as part of long-run trend towards lower
volatility only momentarily interrupted during the 1970s. Stock and Watson (2002) undertake a thorough
review of the evidence.
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the lessons of monetary economics, we should expect the great moderation to continue, present

current maladies notwithstanding.

There is evidence in favor of di¤erent forms of parameter drifting. Besides the classic

work by Clarida, Galí, and Gertler (2000), basic references in this line of research include

Cogley and Sargent (2002), Lubick and Shorfheide (2004), Boivin and Giannoni (2006), or

Canova (2009). More recently and most directly related with out investigation, Fernández-

Villaverde and Rubio-Ramírez (2008) report compelling evidence of parameter drifting in the

parameters that control the monetary policy rule and in the degree of nominal rigidities in a

standard DSGE model.

But there has been another branch of the literature, which appeared largely as a response

to Clarida, Galí, and Gertler (2000) and the other follow-up papers, that has presented a

strong case in favor of time-varying volatility of disturbances. Perhaps the most in�uential

paper in this tradition is Sims and Zha (2006). Relying on a Structural Vector Autorregresion

(SVAR) with regime switching, Sims and Zha �nd that the model that best �ts the data only

has changes over time in the variances of structural disturbances and no variation in the

monetary rule or in the private sector of the model. Even when they allow for policy regime

changes, Sims and Zha do not �nd that the estimated changes are large enough to account

for the evolution of observed volatility.2

Using similar approaches, other papers also �nd support for this view. Among others,

we can cite Cogley and Sargent (2005), Primiceri (2005), and Canova and Gambetti (2009).

In general, once time-varying volatility is allowed, SVARs �nd little support for the tale of

virtue; fortune seems to be the preferred option.

But SVARs approaches face challenges of their own. Benati and Surico (2009) use data

generated from a simple New Keynesian DSGE model to show how SVARs may misinterpret

changes in policy by changes in variances because changes in policy also have implications

for the volatility of endogenous variables (we can think about this argument as one instance

of the Lucas�critique). They read their results as suggesting that existing SVAR evidence

may be uninformative to the question at hand.

To avoid these problems we can follow a perspective more �rmly grounded on explicit

equilibrium models. First attempts in that line of work are Justiniano and Primiceri (2007)

and Fernández-Villaverde and Rubio-Ramírez (2007) who estimate DSGE economies that

incorporate the stochastic volatility of the shocks. Both papers show that such models �t

the data much better than traditional economies with constant variance. However, neither

of these two papers compares the stochastic volatility speci�cation with one with changes in

2Furthermore, Sims and Zha (2006) reject single-equation approaches because they require the use of
instruments, which the authors argue rely on implausible restriction assumptions and fragile identi�cation.
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policy rules.

The natural next step is, thus, to estimate a DSGE that can measure how much of the

volatility change observed in the U.S. aggregate data can be attributed to either fortune or

virtue. The project is challenging because, to get an econometrically satisfactory answer, we

need to simultaneously allow for both stochastic volatility and parameter drifting. A �one-

at-a-time� approach is fraught with peril. If we only allow one source of variation in the

model, the likelihood may want to take advantage of this extra degree of �exibility to �t the

data better. For example, if we have parameter drifting in nominal rigidities, a DSGE model

with stochastic volatility may interpret this drift as time-varying volatility in mark-up shocks.

Analogously, if we have time-varying volatility in technological shocks, a DSGE model with

only parameter drifting may conclude, erroneously, that the parameters of the Taylor rule

are changing.

Our contributions are both methodological and substantive. Methodologically, we show

how to confront a rich DSGE model with the data by exploiting the structure of the high-

order approximation to the decision rules that characterize the equilibrium of the economy.

We prove a theorem, for a general class of DSGE models, that characterizes the structure

of these decision rules. This theorem allows us to handily evaluate the likelihood function

of the model. As an added bonus, this approach allows us to estimate the model without

measurement errors in observables. One of the advantages of having stochastic volatility is

that we multiply the number of random shocks to the model by two: for each exogenous

stochastic process, we have a shock to level and a shock to volatility. We take advantage of

this profusion of shocks to dispense from measurement errors.

Our main substantive �nding is that, even after controlling for stochastic volatility (and

there is a fair amount of it), there is evidence of change in monetary policy during the analyzed

period. We establish this fact with two exercises. First, we obtain the smoothed series of

the estimated response of the policy rule to in�ation. These series shows a steep increase at

the arrival of Volcker and a fast drop after the arrival of Greenspan. In fact, the response of

monetary policy to in�ation is back to the levels of Burns-Miller times by the early 1990s.

Interestingly, the strong change in monetary policy during Volcker�s tenure is consistent with

one of the policy regimes identi�ed in Sims and Zha (2006).

Second, we construct counterfactual histories feeding alternative policy rules to di¤erent

periods of time. Our main �nding is that had Volcker been the Chairman during Burns-

Miller or Greenspan times, the Fed would have responded more aggressively to in�ation at a

low output cost. The intuition is that, the tougher stand of monetary policy (which is fully

observed by the agents in our model) would have been enough to lower in�ation and generate

low interest rates. At the same time, we also document how good volatility shocks played an
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important role in the good performance of the economy during the 1990s. Greenspan was,

indeed, a lucky Chairman.

Besides the papers cited before, there is a large literature on this topic and we cannot do

justice here to it.3 Instead, we selectively review some of them that we found particularly

compelling. Galí and Gambetti (2009) present evidence that the Great Moderation in the

U.S. was associated with large changes in comovements among variables, both conditional

and unconditionally, and in impulse response functions (IRFs). The authors interpret this

evidence as di¢ cult to reconcile with a pure �good luck�history of the Great Moderation.

Also, regime-switching models in policy rules such as those of Farmer, Waggoner, and Zha

(2006a and b) or Bianchi (2009) provide with an extra degree of �exibility in modelling

aggregate dynamics that is highly promising. More recently, Liu, Waggoner, and Zha (2009)

show with a Markov-regime switching model that allows for changes in the policy rules that

the switch from the dovish regime to the hawkish regime may not be the main source of

substantial reductions in the volatilities of in�ation and output. The reason is because, even

if in the dovish regime is very di¤erent from the hawkish one, the expectation that we may

switch from one regime to another dampens the e¤ects on aggregate dynamics. However, this

paper is not estimated and, therefore, it is more an intriguing hypothesis than an empirical

investigation.

The rest of the paper is organized as follows. Section 2 describes the benchmark model

that we will use for our exercise and section 3 de�nes the equilibrium in our economy and

our approximated solution method. Section 4, the core of the methodological contribution,

presents the description of how we evaluate the likelihood and our estimation method, includ-

ing the theorem that characterizes the structure of the solution of high-order approximations

to DSGE models with stochastic volatility. After describing the data and the estimation

approach in section 5, the substantive results appear section 6, which reports our parameter

estimates, section 7, with a discussion of the impulse-response functions of the model, section

8, which talks about model �t and smoothed estimates of shocks, volatilities, and policy

parameters, and section 9, which constructs counterfactuals histories. Section 10 concludes

and an appendix provides further details on some technical aspects of the paper (proof of the

main theorem, computation, and construction of the data).

3Also, from the time-series perspective, other papers that estimate SVARs with time-varying parameters
or stochastic volatility include Uhlig (1997), Bernanke and Mihov (1988), Cogley and Sargent (2005), and
Primiceri (2005).
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2. A Benchmark Model

We adopt as the benchmark economy for our empirical investigation what has become the

standard New Keynesian DSGE model in the literature (see Woodford, 2003). The model

is based on the work of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters

(2007) and we have used it, without stochastic volatility, in Fernández-Villaverde and Rubio-

Ramírez (2008) and in Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2009).

The model has many strengths but also important weaknesses that fully acknowledge. Su¢ ce

it to say here that, since this model has been the base of much policy applied policy analysis

by central banks,4 it seems the natural laboratory for this paper.

Since the model is well know, our presentation will be brief.5 In the model, a continuum

of households consume, save, hold real money balances, supply labor, and determine their

own wages subject to a demand curve and nominal rigidities in the form of Calvo�s pricing

with partial indexation. The �nal good is produced by a representative �rm that aggregates

a continuum of intermediate goods produced by monopolistic competitive �rms. These �rms

manufacture the intermediate good by renting the labor supplied and the capital accumulated

by the households. Intermediate good producers also face nominal rigidities in the form of

Calvo�s pricing with partial indexation. The model is closed by the presence of a monetary

authority that �xes the one-period nominal interest rate according to a Taylor policy rule

through open market operations. In our speci�cation of the model, we introduce long-run

growth through the presence of two unit roots, one in the level of neutral technology and one

in the investment-speci�c technology. Stochastic volatility appears as changing the standard

deviation of the �ve shocks to the model (two shocks to preferences, two shocks to technology,

and one shock to monetary policy). Parameter drifting appears as changing values of the

parameters in the Taylor rule of the monetary authority.

2.1. Households

The economy is populated by a continuum of households indexed by j. The households�

preferences are representable by the lifetime utility function:

E0
1X
t=0

�tdt

(
log (cjt � hcjt�1) + � log

�
mjt

pt

�
� 't 

l1+#jt

1 + #

)

4Closely related models are used by the Federal Reserve Board (Edge, Killey, and Laforte, 2006), the
European Central Bank (Christo¤el, Coenen, and Warne, 2008) or the Bank of Sweden (Adolfson et al.,
2005).

5The interested reader can �nd the web document, www.econ.upenn.edu/~jesusfv/benchmark_DSGE.pdf.,
where we present the model without stochastic volatility or parameter drifting in careful detail.
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that is separable in consumption, cjt, real money balances, mjt=pt; and hours worked, ljt.

In our notation, E0 is the conditional expectation operator, � is the discount factor, h con-
trols habit persistence, # is the inverse of Frisch labor supply elasticity, dt is a shifter to

intertemporal preference that follows:

log dt = �d log dt�1 + �d;t"d;t where "d;t � N (0; 1)

and 't is a labor supply shifter that evolves as:

log't = �' log't�1 + �';t"';t where "';t � N (0; 1):

These shifters are common to all household and provide �exibility to the model to capture

�uctuations in interest rates and changes in hours worked not accounted by variations in

consumption levels.

The principal novelty of these preferences is that, for both shifters dt and 't, the standard

deviation, �d;t and �';t, of their innovations, "d;t and "';t, are indexed by time, that is, they

stochastically move period by period according to the autoregressive processes:

log �d;t =
�
1� ��d

�
log �d + ��d log �d;t�1 + �dud;t where ud;t � N (0; 1)

and

log �';t =
�
1� ��'

�
log �' + ��' log �';t�1 + �'u';t where u';t � N (0; 1):

Our speci�cation for the volatility of the shocks is parsimonious and it only introduces

four new parameters, ��d , ��', �d, and �'. At the same time, it is surprisingly �exible and it

can capture some of the most important peculiarities of the data (Shepard, 2005). Moreover,

it has the advantage over existing alternatives, like Markov-switching regime models, that we

will still have a unique balanced growth path around which we can easily �nd an accurate

solution.

We can think about the shocks to preferences and their stochastic volatility as re�ecting

the random evolution of more complicated phenomena. For example, stochastic volatility may

appear as the consequence of changing demographic structures. An economy with older agents

may be both less patient, or in our notation, a lower dt, because of higher mortality risk. It

may also be less prone to reallocations in the labor force because of longer attachments to

particular jobs that translate in lower volatility of labor supply shocks �';t.

We assume complete markets in �nancial assets. Therefore, households can trade Arrow-

Debreu securities contingent on idiosyncratic and aggregate events. An amount of those

securities, ajt+1; which pay one unit of consumption in event !j;t+1;t, is traded at time t
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at (real) unitary price qjt+1;t. We drop the dependence on the event to ease the notational

burden. In addition to Arrow-Debreu securities, households also hold bjt government bonds

that pay a nominal gross interest rate of Rt. Therefore, the j � th household�s budget

constraint is given by:

cjt + xjt +
mjt

pt
+
bjt+1
pt

+

Z
qjt+1;tajt+1d!j;t+1;t

= wjtljt +
�
rtujt � ��1t � [ujt]

�
kjt�1 +

mjt�1

pt
+Rt�1

bjt
pt
+ ajt + Tt +zt

where xt is investment, wjt is the real wage, rt the real rental price of capital, ujt > 0 the rate

of use of capital, ��1t � [ujt] is the depreciation cost of utilizing capital at rate ujt in terms of

the �nal good, �t is an investment-speci�c technological level, Tt is a lump-sum transfer, and

zt is the pro�ts of the �rms in the economy. We specify that

� [u] = �1 (u� 1) +
�2
2
(u� 1)2

a form that satis�es the standard conditions that � [1] = 0, �0 [�] = 0, and �00 [�] > 0. This

function carries the normalization that u = 1 in the balanced growth path of the economy.

Using the relevant �rst-order conditions, we can �nd

�1 = �
0 [1] = er

where er is the (rescaled) balanced growth path rental price of capital (determined by all the
other parameters in the model). This will leave us with only one parameter, �2, to estimate.

The capital accumulated by household j at the end of period t evolves over time according

to:

kjt = (1� �) kjt�1 + �t

�
1� V

�
xjt
xjt�1

��
xjt

where � is the depreciation rate and V [�] is a quadratic adjustment cost function:

V

�
xt
xt�1

�
=
�

2

�
xt
xt�1

� �x
�2

with adjustment parameter �. Note that we write this function in deviations with respect

to the balanced growth rate of investment, �x. Therefore, along the balanced growth path,

V [�x] = V 0 [�x] = 0.
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Investment-speci�c technology level �t follows a random walk in logs:

log �t = �� + log �t�1 + ��;t"�;t where "�;t � N (0; 1)

where �� is the drift of the investment-speci�c technological level and "�;t is the investment-

speci�c technological shock (see Greenwood, Herkowitz, Krusell, 1997, for the classic expo-

sition of this shock). In a similar way to the standard deviation of preference shocks, the

standard deviation ��;t evolves as an autoregressive process:

log ��;t =
�
1� ���

�
log �� + ��� log ��;t�1 + ��u�;t where u�;t � N (0; 1):

Again, we can think about stochastic volatility as a stand-in for a more detailed explanation

of technological progress in capital production that we do not model explicitly.

We can de�ne two Lagrangian multipliers, �jt, the multiplier associated with the budget

constraint, and qjt is the marginal Tobin�s Q, the multiplier associated with the investment

adjustment constraint normalized by �jt. Thus, the �rst order conditions of the household

problem with respect to cjt, bjt, ujt, kjt, and xjt can be written as:

dt (cjt � hcjt�1)
�1 � b�Etdt+1 (cjt+1 � hcjt)

�1 = �jt;

�jt = �Etf�jt+1
Rt
�t+1

g;

rt = ��1t �
0 [ujt] ;

qjt = �Et
�
�jt+1
�jt

�
(1� �) qjt+1 + rt+1ujt+1 � ��1t+1� [ujt+1]

��
;

and

1 = qjt�t

�
1� V

�
xjt
xjt�1

�
� V 0

�
xjt
xjt�1

�
xjt
xjt�1

�
+ �Eqjt+1�t+1

�jt+1
�jt

V 0
�
xjt+1
xjt

��
xjt+1
xjt

�2
:

We need more work to �nd the optimality condition with respect to labor and wages

because of the presence of monopolistic competition and nominal rigidities. Each household

j supplies a slightly di¤erent type of labor services ljt that are aggregated by a �labor packer�

into homogenous labor ldt with the production function:

ldt =

�Z 1

0

l
��1
�

jt dj

� �
��1

(1)

that is rented to intermediate good producers at the wage wt. The �labor packer�is perfectly
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competitive and it takes all di¤erentiated labor wages wjt and the wage wt as given.

The �rst order conditions of the labor �packer�imply a demand function for labor:

ljt =

�
wjt
wt

���
ldt 8j (2)

and, together with a zero pro�t condition wtldt =
R 1
0
wjtljtdj, an expression for the wage:

wt =

�Z 1

0

w1��jt dj

� 1
1��

:

Households follow a Calvo pricing mechanism when they set their wages. At the start

of every period, a randomly selected fraction 1 � �w of households can reoptimize their

wages (where, by an appropriate law of large numbers, individual probabilities and aggregate

fractions are equal). All other households simply index their wages given past in�ation with

an indexation parameter �w 2 [0; 1]. Therefore, the real wage of a household j that has not
changed wages for � periods is:

�Y
s=1

�
�w
t+s�1
�t+s

wjt:

Note that, since we postulated above both complete �nancial markets for the households

and separable utility in consumption, the marginal utilities of consumption are the same for

all households. Therefore, the equilibrium implies that cjt = ct, ujt = ut, kjt�1 = kt, xjt = xt,

qjt = qt; �jt = �t, and w�jt = w�t .

The last two equalities are the most relevant to simplify our analysis: they tell us that the

shadow cost of consumption is equated across households and that all households that can

reset their wages optimally will do it at the same level w�t . With these two results, and after

several steps of algebra, we �nd that the evolution of wages is described by two recursive

equations:

ft =
� � 1
�

(w�t )
1�� �tw

�
t l
d
t + ��wEt

�
�
�w
t

�t+1

�1�� �
w�t+1
w�t

���1
ft+1

and

ft =  dt't

�
wt
w�t

��(1+#) �
ldt
�1+#

+ ��wEt
�
�
�w
t

�t+1

���(1+#)�
w�t+1
w�t

��(1+#)
ft+1

on the auxiliary variable ft.

Also, talking advantage of the observation that, in every period, a fraction 1 � �w of

households set w�t as their wage and the remaining fraction �w partially index their price by
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past in�ation, we can write the law of motion of real wage as:

w1��t = �w

�
�
�w
t�1
�t

�1��
w1��t�1 + (1� �w)w

�1��
t :

2.2. The Final Good Producer

There is one �nal good producer that aggregates a continuum of intermediate goods according

to the production function:

ydt =

�Z 1

0

y
"�1
"

it di

� "
"�1

(3)

where " determines the elasticity of substitution.

The �nal good producer is perfectly competitive and minimizes its costs subject to the

production function (3) and taking as given all intermediate goods prices pti and the �nal

good price pt. The optimality conditions of this problem result in a demand functions for

each intermediate good with the classic form:

yit =

�
pit
pt

��"
ydt 8i

where ydt is the aggregate demand and a price for the �nal good:

pt =

�Z 1

0

p1�"it di

� 1
1�"

:

2.3. Intermediate Good Producers

Each of the intermediate goods is produced by a monopolistic competitor whose technology

is given by a Cobb-Douglas production function with a �xed cost:

yit = Atk
�
it�1

�
ldit
�1�� � �zt

where kit�1 is the capital rented by the �rm, ldit is the amount of the �packed� labor input

rented by the �rm, the parameter � corresponds to the �xed cost of production, and At is

neutral productivity that follows:

logAt = �A + logAt�1 + �A;t"A;t where "A;t � N (0; 1):

In this speci�cation, �A is the drift of the neutral technological level and "A;t is the neutral

technology shock. The standard deviation of this shock evolves stochastically following by
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now already familiar speci�cation:

log �A;t =
�
1� ��A

�
log �A + ��A log �A;t�1 + �AuA;t where uA;t � N (0; 1):

The technology is translated by a �xed cost parameter � and a scale variable zt =

A
1

1��
t �

�
1��
t . Given our de�nitions of neutral productivity At and investment-speci�c pro-

ductivity �t; we can write:

log zt = �z + log zt�1 + zz;t

where �z =
�A+���
1�� , zz;t =

zA;t+�z�;t
1�� , zA;t = �A;t"A;t, and z�;t = ��;t"�;t. We can think about

zt as the weighted level of technology in this economy, where the weight is given by the

elasticity of output with respect to capital. It can be shown that the average growth rate of

the economy would be equal to �z. The role of � is to make economic pro�ts roughly equal to

zero and the reason we scale it by zt is to keep the �xed costs constant in relative terms to the

technological level of the economy. Finally, note that zz;t will also have a stochastic volatility

structure product of the mixture of two processes with stochastic volatility themselves.

Intermediate good producers produce the quantity demanded of the good by renting ldit
and kit�1 at prices wt and rt. Then, by minimization, we have a marginal cost of:

mct =

�
1

1� �

�1���
1

�

��
w1��t r�t
At

The marginal cost is constant for all �rms and all production levels given At, wt, and rt.

The quantity sold of the good is determined by the demand function derived above.

Given this demand function, the intermediate good producers set prices to maximize pro�ts.

However, when they do so, they follow the same Calvo pricing scheme as households. In each

period, a fraction 1 � �p of intermediate good producers reoptimize their prices. All other

�rms partially index their prices by past in�ation with an indexation parameter � 2 [0; 1].
Therefore, prices are set to solve the problem:

max
pit

Et
1X
�=0

(��p)
� �t+�
�t

( 
�Y
s=1

��t+s�1
pit
pt+�

�mct+�

!
yit+�

)

subject to

yit+� =

 
�Y
s=1

��t+s�1
pit
pt+�

!�"
ydt+� :

In this problem, future pro�ts are discounted using the pricing kernel of the economy,

���t+�=�t, (which is the right valuation criteria from the perspective of the households)

13



and the probability of the event �only indexation for � periods�, ��p:

The solution for the pricing problem of the �rm has a recursive structure in two new

auxiliary variables g1t and g
2
t that take the form:

g1t = �tmcty
d
t + ��pEt

�
��t
�t+1

��"
g1t+1

g2t = �t�
�
ty
d
t + ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

and

"g1t = ("� 1)g2t

where ��t = p�t=pt is the ratio between the optimal new price (common across all �rms that

can reset their prices) and the price of the �nal good.

With this structure, we can see that the price index follows:

p1�"t = �p
�
��t�1

�1�"
p1�"t�1 + (1� �p) p

�1�"
t

or, normalizing by p1�"t :

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)�

�1�"
t :

2.4. The Monetary Authority

The model is closed by the presence of a monetary authority that sets the nominal interest

rates through open market operations �nanced with lump-sum transfers Tt and a balanced

budget.

We assume that the monetary authority follows a modi�ed Taylor rule:

Rt
R
=

�
Rt�1
R

�
R0@��t
�

�
�;t0@ ydt
ydt�1

exp
�
�yd
�
1A
y;t1A1�
R

e�m;t"mt : (4)

The �rst term on the right hand side, Rt�1
R
, represents a desire for interest rate smoothing,

expressed in terms of R; the balanced growth path nominal return of capital. The second

term, �t
�
, a �in�ation gap,�responds to the deviation of in�ation to its target level � (thus,

� is also equal to in�ation in the balanced growth path). The third term,

ydt
ydt�1

exp
�
�yd
�

14



is a �growth gap:�the ratio between the growth rate of the economy and �yd , the balanced

path gross growth rate of ydt . The �nal term "mt is a N(0; 1) random shock to monetary

policy with a time-varying volatility �m;t that follows an autoregressive process:

log �m;t =
�
1� ��m

�
log �m + ��m log �m;t�1 + �mum;t:

Finally, we have that the parameters controlling the responses of the monetary authority,


�;t and 
y;t, to the in�ation and growth gap drift over time in an autoregressive fashion:

log 
�;t =
�
1� �
�

�
log 
� + �
� log 
�;t�1 + ��"�;t where "�;t � N (0; 1)

and

log 
y;t =
�
1� �
y

�
log 
y + �
y log 
y;t�1 + �y"y;t where "y;t � N(0; 1):

Note that we are assuming here that the agents perfectly observed the changes in monetary

policy parameters. A more plausible scenario would involved some �ltering in real-time by

the agents who need to learn the stand of the monetary authority from the actual decisions.

A similar argument can be made for the values of the standard deviations of all the other

shocks in the economy. But since this learning would further complicate what it is already a

large model, we leave this extension for the future.

2.5. Aggregation

Aggregate demand is given by:

ydt = ct + xt + ��1t � [ut] kt�1:

By relying on the observation that capital-labor ratio is constant across �rms, we can derive

that aggregate supply is:

yst =
At (utkt�1)

� �ldt �1�� � �zt

vpt

where:

vpt =

Z 1

0

�
pit
pt

��"
di

is the aggregate loss of e¢ ciency induced by price dispersion of the intermediate good pro-

ducers.

Market clearing requires that

yt = ydt = yst :
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Also, by the properties of Calvo�s pricing:

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t :

Finally, demanded labor is given by:

ldt =
1

vwt

Z 1

0

ljtdj

where:

vwt =

Z 1

0

�
wjt
wt

���
dj:

is the aggregate loss of labor input induced by wage dispersion among di¤erentiated types of

labor. Again, by Calvo�s pricing, this ine¢ ciency evolves as:

vwt = �w

�
wt�1
wt

�
�w
t�1
�t

���
vwt�1 + (1� �w) (�

w�
t )

�� :

3. Equilibrium

We can characterize an equilibrium in our economy by piling all the �rst order conditions of

the household and �rms, the Taylor rule of the monetary authority, and market clearing.

This equilibrium is not stationary because we have two unit roots in the processes for

technology. However, it is easy to circumvent this problem by rescaling the model ect = ct
zt
,e�t = �tzt, ert = rt�t, eqt = qt�t, ext = xt

zt
, ewt = wt

zt
, ew�t = w�t

zt
, ekt = kt

zt�t
, and eydt = ydt

zt
. The model

is stationary in these transformed variables and therefore, along the balanced growth path:

�c = �x = �w = �w� = �yd = �z:

Also, this model does not have a closed form solution and we need to resort to a numerical

approximation to compute it. There are three challenges in this computation. First, we have

a large state vector St with 19 components:

St =

 
�; bRt�1;bekt�1; b�pt�1; b�wt�1; bewt�1;bect�1; b�t�1; bext�1;beyt�1;bdt�1; b't�1; b
�;t�1; b
y;t�1; b�d;t�1; b�';t�1; b��;t�1; b�A;t�1; b�m;t�1

!0

where we have expressed each variable vart in terms of log deviation with respect to the

steady state, dvart = log vart � log var, and � is the perturbation parameter, a vector W1;t

of 7 innovations to exogenous shocks (two to preferences, two to technology, and three to
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monetary policy):

W1;t = ("d;t; "';t; "�;t; "A;t; "m;t; "�;t; "y;t)
0 ;

and a vector W2;t of 5 innovations to volatility shocks:

W2;t = (ud;t; u';t; u�;t; uA;t; um;t)
0 :

Second, since we have stochastic volatility, standard linearization techniques cannot be

applied because of the inherently non-linear structure of the time-varying standard deviations.

More pointedly, if we were going to linearize the model, stochastic volatility would disappears

from the scene because the solution of the model would be certainty equivalent. The third

challenge is that, since we will need to compute the model for a large number of di¤erent

parameter values in our estimation process, speed is of the outmost importance.

Fortunately, perturbation methods provide a nice solution to the computation of the

model. Beyond being extremely fast, perturbation o¤ers high levels of accuracy even relatively

far away from the perturbation point (Aruoba, Fernández-Villaverde, and Rubio-Ramírez,

2006). Therefore, we perform a second order perturbation around the deterministic steady-

state of the model. The quadratic terms of this approximation allows us to capture, to a

large extent, the e¤ects of time-varying volatility while keeping computational complexity at

a reasonable level.

De�ne St =
�
S 0t;W

0
1;t;W

0
2;t

�
, a vector that stacks states and shocks. The solution of the

model is then given by a transition equation for states:

St+1 =

0BB@
	1s1S0t
...

	1s19S0t

1CCA+ 12
0BB@
St	2s1S0t
...

St	2s19S0t

1CCA (5)

and an observable equation:

Yt =

0BB@
	1o1 (St;St�1)

0

...

	1o5 (St;St�1)
0

1CCA+ 12
0BB@
(St;St�1)	2o1 (St;St�1)

0

...

(St;St�1)	2o5 (St;St�1)
0

1CCA (6)

where Yt is a vector of observables for the econometrician (5 in our case). The lagged vector
St�1 appears because, as we will see momentarily, our observables has components in �rst
di¤erences.

In these equations, 	1si is a 1�31 vector and 	2si is a 31�31 matrix for i = 1; : : : ; 19. The
�rst term is the linear solution of the model while the second term is the quadratic component
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of the solution. Similarly, 	1oi is a 1�62 vector and 	2oi a 62�62 matrix for i = 1; : : : ; 5 and
the interpretation of each term is the same as before: the �rst term is the linear component

and the second one the quadratic component of the solution.

It is important to note that we are NOT assuming the presence of any measurement

error. Although we consider measurement errors both plausible and relevant, in our exercise

we want to evaluate how other sources of variation (time-varying volatility and parameter

drifting) help to account for the data. Consequently, we eliminate measurement errors to

sharpen our analysis and eliminate possible confounding e¤ects.6

The transition equation (5) is unique (up to an equivalence class of representations) but the

observable equation (6) is not because it depends on what we assume the econometrician can

observe. Boivin and Giannoni (2006) and Guerrón-Quintana (2009b) discuss the consequences

for inference of selecting di¤erent observables.

In our model, we pick as observables the �rst di¤erence of the log of the relative price of

investment, the log federal funds rate, log in�ation, the �rst di¤erence of log output, and the

�rst di¤erence of log real wages, or in our notation:

Yt =
�
�4 log �t + ��; logRt � logR; log �t � log �;4 log yt � �yd ;4 logwt � �w

�0
:

We write the variables as demeaned to save on notation. Later, when we take the model to the

data, we will let the likelihood pick those means. We select these variables because they bring

us information about aggregate behavior in general (output), the stand of monetary policy

(the interest rate and in�ation), and the di¤erent shocks (the relative price of investment

about investment-speci�c technological change, the other four variables about technology

and preference shocks) that we are concerned about.

The state space representation generated by the transition equation (5) and the measure-

ment equation (6) has an interesting structure that we exploit to evaluate the likelihood of

the model. In the next section, we present a general description of that structure and how it

applies to our particular problem.

6It also helps us to illustrate how DSGE models with stochastic volatility have a profussion of shocks that
we can exploit for estimation purposes. We will elaborate on this point below.
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4. Stochastic Volatility and Evaluation of the Likelihood

In this section we explain how to evaluate the likelihood function of our model. If we allow

Ydatat to be the data counterpart of our observables, Ydata;t =
�
Ydata1 ; : : : ;Ydatat

�
to be the

history up to time t of such counterpart, W t
1 = (W1;1; : : : ;W1;t) to be the history up to time t

of the level shocks, and W t
2 = (W2;1; : : : ;W2;t) to be the history up to time t of the volatility

shocks, we can write the likelihood as:

p
�
Ydata;T ; 


�
=

TY
t=1

p
�
Ydatat jYdata;t�1; 


�
; (7)

where

p
�
Ydatat jYdata;t�1; 


�
=

Z Z Z
p
�
Ydatat jW t

1;W
t�1
2 ; S0; 


�
p
�
W t
1;W

t�1
2 ; S0jYdata;t�1; 


�
dW t

1dW
t�1
2 dS0: (8)

Computing this likelihood is a di¢ cult problem. It cannot be evaluated exactly and deter-

ministic integration problems are too slow for practical use (we have three integrals period per

period over large dimensions). Instead, we use Sequential Monte Carlo method to obtain a nu-

merical estimate of (8).7 As shown in Fernández-Villaverde and Rubio-Ramírez (2007), condi-

tional on havingN draws of
�
wt;i1 ; w

t�1;i
2 ; si0

	N
i=1
from the densities p

�
W t
1;W

t�1
2 ; S0jYdata;t�1; 


�
(which we will explain later how we generate), a law of large numbers imply that the integral

(8) can be approximated by:

p
�
Ydatat jYdata;t�1; 


�
' 1

N

NX
i=1

p
�
Ydatat jwt;i1 ; w

t�1;i
2 ; si0; 


�
(9)

Hence, we need to evaluate:

p
�
Ydatat jwt;i1 ; w

t�1;i
2 ; si0; 


�
(10)

for each draw. This evaluation step is crucial not only because it is a term in (9), but also

because we need (10) to resample from the draws from p
�
W t
1;W

t�1
2 ; S0jYdata;t�1; 


�
and, in

that way, get draws from p
�
W t+1
1 ;W t

2; S0jYdata;t; 

�
.

The measurement equation (6) implies that evaluating (10) involves solving the following

7This is not the only possible algorithm to do so, although it is a procedure that we have found useful
in previous work. Alternives include DeJong et al. (2007), Kim, Shephard, and Chib (1998), Fiorentini,
Sentana, and Shepard (2004), and Fermanian and Salanié (2004).
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equation:

Ydatat = C+

0BB@
	1o1 (St;St�1)

0

...

	1o5 (St;St�1)
0

1CCA+ 12
0BB@
(St;St�1)	2o1 (St;St�1)

0

...

(St;St�1)	2o5 (St;St�1)
0

1CCA (11)

for W2;t given Y data
t ; wt;i1 ; w

t�1;i
2 ; si0 and where C is a vector of means of the observables. Since

(11) is quadratic, we will have 25 di¤erent solutions to this equation. We are not aware of

any accurate and e¢ cient way to �nd these 25 di¤erent solutions. This problem would seem

to prevent us from achieving our goal of evaluating the likelihood function of this model.

Fortunately, in this section, we show how considering stochastic volatility allows us to

convert the above described quadratic problem into a linear and simpler one. In particular,

we illustrate how, when stochastic volatility is present in the problem, equation (11) has only

one solution that can be found by simply inverting a matrix. Thanks to this insight, the

evaluation of the likelihood function becomes possible.8

The key of our approach is to note that, when stochastic volatility is considered, the

optimal policies functions of many dynamic general equilibrium models share a particular

pattern that we can exploit. To make this point more generally, we switch in the next few

paragraphs to a somehow more abstract notation.

The set of equilibrium conditions of a wide variety of dynamic general equilibrium model

(included the one described in the paper) can be written as:

Etf (Yt+1;Yt;St+1;St;Zt+1;Zt) = 0 (12)

where Et is the expectation operator conditional on information available at time t, Yt =
(Y1;t;Y2;t; : : : ;Yk;t) is the vector of non-predetermined variables of size k, St = (S1;t;S2;t; : : : ;Sn;t)
is the vector of endogenous predetermined variables of size n, Zt = (Z1;t;Z2;t; : : : ;Zm;t) is
the vector of exogenous predetermined variables of size m (which, for simplicity, we often call

exogenous shocks), and f maps R2�k+2�n+2�m into Rk+n+m.
We want to consider the case where the exogenous shocks have stochastic volatility process

8Stochastic volatility may also help to circumvent a problem of some DSGE models: stochastic singularity.
In general, we need at least as many shocks as observables for the likelihood function to be well de�ned. This
requirement forces researchers to add extra shocks or measurement errors in situations where they might have
not desired to do so. Stochastic volatility, by introducing a volatility shock for each level shock, doubles the
number of stochastic shocks in the model. Even if in our model, this is not necessary (we have �ve observables
and �ve exogenous shocks), it is important to remember that the researcher may want to take advantage of
this extra �exibility and either augment the number of observables or reduce the number of shocks in the
model.
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of the form:

Zi;t+1 = �iZi;t + ��i;t+1"i;t+1

where

log �i;t+1 = #i log �i;t + ��iui;t+1

for all i = f1; : : : ;mg. Note that, to ease notation, we are assuming that all exogenous shocks
have stochastic volatility. It is straightforward yet cumbersome to generalize the notation to

other cases.

The solution to the model given in equation (12) can be summarized by the following two

equations, one describing the evolution of predetermined variables:

St+1 = h (St;Zt�1;�t�1; Et;Ut;�) (13)

and one describing the evolution of non-predetermined ones:

Yt = g (St;Zt�1;�t�1; Et;Ut;�) ; (14)

where�t = (log �1;t; log �2;t; : : : ; log �m;t), Et = ("1;t; "2;t; : : : ; "m;t); and Ut = (u1;t; u2;t; : : : ; um;t)
(this assumes that the volatility shocks are uncorrelated, a restriction that could be relaxed

by the appropriate extension of the state space). To clarify notation, we can think of �t as

the volatility shocks, Et are the innovations to the exogenous shocks, and Ut innovations to
volatility shocks.

We wish to �nd a second-order approximation of the functions h (�) : Rn+(4�m)+1 ! Rn

and g (�) : Rn+(4�m)+1 ! Rk around the non-stochastic steady state, St = S and � = 0.

Therefore, we need to characterize the �rst and second order derivatives of the functions

h (�) and g (�) evaluated at the non-stochastic steady state. The following theorem shows

that the �rst partial derivatives of h (�) and g (�) with respect to any component of Ut and
�t�1 evaluated at the non-stochastic steady is zero, that is, the levels and innovations of

log �i;t do not a¤ect the linear component of the optimal decision rule of the agents for any

i = f1; : : : ;mg (the same occurs with the perturbation parameter �). A similar result has
been already established by Schmitt-Grohé and Uribe (2004) for the homoskedastic shocks

case. More importantly, the theorem shows (among other results) that the second partial

derivative of h (�) and g (�) with respect to ui;t and any other variable but "i;t is also zero for
any i = f1; : : : ;mg.
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Theorem 1. Let us denote [�!]
i
j as the derivative of the i� th element of generic function �

with respect to the j � th element generic variable ! evaluated at the non-stochastic steady

state (where we drop this index if ! is uni-dimensional). Then, for the dynamic equilibrium

model speci�ed in equation (12), we have that:

�
h�t�1

�i1
j
=
�
g�t�1

�i2
j
= [hUt ]

i1
j = [gUt ]

i2
j = [h�]

i1 = [g�]
i2 = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.
Furthermore, if we denote [�!�]

i
j1;j2

as the derivative of the i � th element of generic

function � with respect to the j1 � th element generic variable ! and the j2 � th element

generic variable � evaluated at the non-stochastic steady state (where again we drop the index

for uni-dimensional variables), we have that:

[h�;St ]
i1
j = [g�;St ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ; ng ;�
h�;Zt�1

�i1
j
=
�
g�;Zt�1

�i2
j
=
�
h�;�t�1

�i1
j
=
�
g�;�t�1

�i2
j
= [h�;Et ]

i1
j = [g�;Et ]

i2
j = [h�;Ut ]

i1
j = [g�;Ut ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg,�
hSt;�t�1

�i1
j1;j2

=
�
gSt;�t�1

�i2
j1;j2

= [hSt;Ut ]
i1
j1;j2

= [gSt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg ;�
hZt�1;�t�1

�i1
j1;j2

=
�
gZt�1;�t�1

�i2
j1;j2

=
�
h�t�1;�t�1

�i1
j1;j2

=
�
g�t�1;�t�1

�i2
j1;j2

= 0

and

�
hZt�1;Ut

�i1
j1;j2

=
�
gZt�1;Ut

�i2
j1;j2

=
�
h�t�1;Ut

�i1
j1;j2

=
�
g�t�1;Ut

�i2
j1;j2

= [hUt;Ut ]
i1
j1;j2

= [gUt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg, and�
hEt;�t�1

�i1
j1;j2

=
�
gEt;�t�1

�i2
j1;j2

= [hEt;Ut ]
i1
j1;j2

= [gEt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg if j1 6= j2.

Proof. See Appendix.
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Since the statement of the theorem is long and cumbersome, it is useful to clarify it with

a table where we put the second derivatives of h (�) and g (�) with respect to the di¤erent
variables (St;Zt�1;�t�1; Et;Ut;�). The way to read the table is as follows. Take an arbitrary
entry, for instance entry (1,2), StZt�1 6= 0. In this entry, we state that the cross-derivatives
of h (�) and g (�) with respect to St and Zt�1 are di¤erent from zero. Similarly, entry (3,3),

�t�1Ut = 0, tells us that the cross-derivatives of h (�) and g (�) with respect to �t�1 and Ut are
all zero. Entries (3,2) and (4,2) have a �*�to denote that the only cross-derivatives of those

entries that are di¤erent from zero are those that correspond to the same index j (that is, the

cross derivatives of each innovation to the exogenous shocks with respect to its own volatility

shock and the cross derivatives of the innovation to the exogenous shocks to the innovation

to its own volatility shock). Finally, the lower triangular part of the table is empty because

of the symmetry of second derivatives.

Table 4.1: Second Derivatives

StSt 6= 0 StZt�1 6= 0 St�t�1 = 0 StEt 6= 0 StUt = 0 St� = 0
Zt�1Zt�1 6= 0 Zt�1�t�1 = 0 Zt�1Et 6= 0 Zt�1Ut = 0 Zt�1� = 0
�t�1�t�1 = 0 �t�1Et 6= 0� �t�1Ut = 0 �t�1� = 0

EtEt 6= 0 EtUt 6= 0� Et� = 0
UtUt = 0 Ut� = 0
�� 6= 0

Table 4.1 tells us that, of the 21 possible sets of second derivatives, 12 are zero and 9 are

not. The implications for the decision rules of agents and for the equilibrium function are

striking. In particular, the perturbation parameter, �, will only have a coe¢ cient di¤erent

from zero in the term where it appears in a square of itself. This term is a constant that

corrects for precautionary behavior induced by risk. Volatility shocks, �t�1 , appear with

coe¢ cients di¤erent from zero only in the term where they are multiplied by the exogenous

shocks or the innovation to its own exogenous shock. Finally, innovations to the volatility

shocks, Ut, also appear with coe¢ cients di¤erent from zero when they show up with the

innovation to their own exogenous shock Et.
The main implication of Theorem 1 for our goal of evaluating the likelihood function is

that, of the terms that complicate our work, only the ones associated with [hEt;Ut ]
i2
j1;j1

and

[gEt;Ut ]
i1
j1;j1

are di¤erent from zero. As we will see in the next corollary, this result has an

important yet rather direct implication for the structure of observable equation.
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Corollary 2. Given that The second order approximation to the measurement equation (6)
can be written in the following way:

Yt = C+

0BB@
	1o1 (St;St�1)

0

...

	1o5 (St;St�1)
0

1CCA+ 12
0BB@
�
S 0t;W

0
1;t;St�1

�
	2;1o1

�
S 0t;W

0
1;t;St�1

�0
...�

S 0t;W
0
1;t;St�1

�
	2;1o5

�
S 0t;W

0
1;t;St�1

�0
1CCA

+

0BB@
W 0
1;t	

2;2
o1

...

W 0
1;t	

2;2
o5

1CCAW2;t

where 	2;1oi denotes the cross derivative between elements of
�
S 0t;W

0
1;t;St�1

�
and 	2;2oi denotes

the cross derivative between elements of W1;t and elements of W2;t for i 2 f1; : : : ; 5g.

We are now ready to evaluate the likelihood function. Using corollary 2 Therefore, if we

let:

At
�
S 0t;W

0
1;t;St�1

�
� Ydatat � C�

0BB@
	1o1
...

	1o5

1CCA (St;St�1)0�
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Also, we can �nd the importance weights for each draw:
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that we will use momentarily to update our swarm of particles.

To generate the N draws of
�
wt;i1 ; w

t�1;i
2 ; si0

	N
i=1

; we rely on a Sequential Monte Carlo that

proceeds as follows (see Fernández-Villaverde and Rubio-Ramírez, 2007, for details):

Step 0, Initialization: Set t 1. Sample N values
n
si0j0

oN
i=1

from p (S0; 
).

Step 1, Prediction: Sample N values
n
sitjt�1

oN
i=1

using
n
sit�1jt�1

oN
i=1
, the law of

motion for states and the distribution of shocks
�
wt1; w

t�1
2

	
.

Step 2, Filtering: Assign to each draw
�
sitjt�1

�
the weight qit 16.

Step 3, Sampling: Sample N times with replacement from
n
sitjt�1

oN
i=1

using the

probabilities fqitg
N
i=1. Call each draw

�
sitjt

�
. If t < T set t  t + 1 and go to

step 1. Otherwise stop.

Del Moral and Jacod (2002) and Künsch (2005) prove, under weak conditions, that this

Sequential Monte Carlo delivers a consistent estimator of the likelihood function and that a

central limit theorem applies.

5. Data and Estimation

As discussed above, we estimate our model using �ve time series for the U.S. economy: 1)

the relative price of investment with respect to the price of consumption, 2) the federal funds

rate, 3) real output per capita growth, 4) the consumer price index, and 5) real wages per

capita. Our sample covers from 1959.Q1 to 2007.Q1 (192 observations since we need to take

a �rst di¤erence). Appendix B explains how we construct these series.

Once we have the likelihood as found in section 4, we can either maximize it or combine

it with a prior and use a Markov chain Monte Carlo algorithm to simulate the posterior (see

An and Schorfheide, 2006, for a standard reference). We follow the second route. However,

we impose �at priors in all the parameters with the only bounds of feasibility (for instance,

the Calvo and indexation parameters need to be between 0 and 1). We do this for two

reasons. First, to minimize the impact of presample information on the estimates. We want

to show that our results come mainly from the shape of the likelihood and not from the
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prior (note, nevertheless, that we are not claiming uninformativiness of the prior as �at

priors are not invariant to reparametrizations of the model). In that sense, the reader who

wants to interpret our posterior modes as maximum likelihood point estimates can do so

without further problem. The second reason is that, as we learned in some of our previous

work (Guerrón-Quintna, Fernández-Villaverde, and Rubio-Ramírez, 2009) eliciting priors for

stochastic volatility can be di¢ cult because we deal with units (such as the variance of the

volatility shocks) that are not extremely familiar to macroeconomists and about which we do

not have very clear beliefs.

Using �at priors has, though, a cost: before proceeding to the estimation, we have to

�x a number of parameters. This is because we are dealing with a large model that su¤ers

from weak identi�cation and hence, the likelihood estimates improve if we do not search over

certain dimensions.

Table 5.1: Fixed Parameters

� h  # � � "

0:99 0:9 8 1:17 0:025 0:21 10

� � � �2 �
� �
y �y

10 9:5 0 0:001 0:95 0 0

Table 5.1 summarizes those �xed parameter. Our guiding principle in selecting values

has to set them up to numbers that are uncontroversial. For instance, the discount factor,

� = 0:99, is nearly the default value in the literature, the parameter controlling average

labor supply, the value for habit persistence, h = 0:9; arises because we want to match

the sluggish adjustment of consumption decisions to shocks observed in the data,  = 8

allows us to calibrate the amount of hours in the data, and the depreciation rate, � = 025,

sets up the capital-output ratio. For the inverse of the labor Frisch elasticity, we choose

# = 1:17, a number that is well within the values from the micro literature when we allow

for intensive and extensive margins (see the review in Browning, Hansen, and Heckman,

1999). The elasticity of the production function of intermediate goods to capital, � = 0:21,

is lower than the case for an aggregate production function and perfect competition, but it

can be rationalized once we remember that we have non-zero pro�ts in the economy that also

count in the capital-income share of the National Income and Product Accounts (NIPA). The

parameters controlling the elasticities of substitution, " and �, are equal to ten to get average

mark-up around 10 percent, and the adjustment cost � is equal to 9:5, all these values in

line with the microeconomic evidence and previous estimations of DSGE models. We set the

�xed cost of production, �, to zero, since it is nearly irrelevant for the dynamics of the model

and the cost of capital utilization, �2, to a small number to introduce some curvature in this
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decision. The autoregressive parameter of the evolution of the response to in�ation, �
� , is

set up to 0.95. In preliminary estimations we learned that the likelihood wanted to push

this parameter all the way to 1. However, when this happened, the model would enter into

the regions of indeterminacy since, after some shocks, the response of the interest rates to

in�ation could be too weak for too long. The last two parameters, �
y and �y are set equal

to zero because, in preliminary estimations, we soon discovered that the likelihood tended to

favor values of �y � 0: Thus, we decided to forget about them and set 
y;t = 
y:

To �nd the posterior we proceed as follows. First, we de�ne a grid of parameter values

and check for the regions of high likelihood in each point of the grid. This is a time-intensive

procedure, but it ensure us that we are searching in the right part of the parameter space.

Once we have identi�ed the global maximum in the grid, we use this point to initialize the

a Random-Walk Metropolis-Hastings algorithm and draw 5,000 times from the chain. These

5,000 draws came, however, after an extensive �ne-tuning of the algorithm.

6. Parameter Estimates

We examine now our estimates for the parameters. To ease the discussion of the estimated

parameters, we report them grouped in di¤erent tables, one for each set of parameters dealing

with similar aspects of the model. In all cases we report the mode of the posterior and the

standard deviation in parenthesis below (in the interest of space, we do not include the whole

histograms of the posterior).

Table 6.1: Posterior, Parameters of Nominal Rigidities

�p � �w �w

0:8139
(0:0143)

0:6186
(0:024)

0:6869
(0:0432)

0:634
(0:0074)

Table 6.1 presents the results for the nominal rigidities parameters. Our estimates indicate

an economy with substantial rigidities in prices, which are reoptimized once roughly every �ve

quarters and wages, which are reoptimized approximately every three quarters. Moreover,

the standard deviations are small, suggesting that there is enough information on the data to

get that result. Nevertheless, note that, at the same time, there is a fair amount of indexation

(between 0.62-0.63) that brings a strong in�ation persistence. Therefore, while it is tempting

to compare our estimates with the microeconomic evidence on the average duration of prices

(see the thorough review article of Klenow and Malin, 2009), in our economy all prices and

wages change every quarter. In that sense, to a naive observer, our economy will look as one

displaying a large amount of price �exibility.
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Table 6.2: Posterior, Parameters of the Level of Stochastic Processes

�d �' �� �A

0:1182
(0:0049)

0:9331
(0:0425)

0:0034
(6:6e�5)

0:0028
(4:1e�5)

Table 6.2 reports the estimates for the parameters of the level of the stochastic processes.

We estimate a very low persistence of the intertemporal preference shock but a high per-

sistence of the intratemporal one. The low estimate of �d is needed to get the right quick

variations in marginal utilities of consumption that match output and in�ation �uctuations.

The intratemporal shock is persistent because it needs to account for long-lived movements

in hours worked. As it was the case before, these estimates are also tight.

We estimate mean growth rates of technology of 0.0034 (neutral) and 0.0028 (investment-

speci�c). Those numbers give us an average growth of the economy of 0.44 percent per

quarter, or around 1.77 percent on an annual basis (being 0.46 percent on a quarter basis and

1.86 percent on the data). Given our low �, we measure that investment-speci�c technological

growth only accounts for 16 percent of the long run growth, a number somewhat lower than in

Greenwood, Herkowitz, Krusell (1997). It is important to remember that technology shocks

need to be understood as deviations with respect to our estimated drifts. In that way, out

of the 192 quarters in our sample, we calculate that only in 8 of them At dropped even if we

had negative technological shocks in 103 quarters.

Table 6.3: Posterior, Parameters of the Stochastic Volatility Processes

log �d log �' log �� log �A log �m

�1:9834
(0:0726)

�2:4983
(0:0917)

�6:0283
(0:1278)

�3:9013
(0:0745)

�6:0004
(0:1471)

��d ��' ��� ��a ��m
0:9506
(0:0298)

0:1275
(0:0032)

0:7508
(0:035)

0:2411
(0:005)

0:855
(0:0231)

�d �' �� �a �m

0:3246
(0:0083)

2:8549
(0:0669)

0:4716
(0:006)

0:7955
(0:013)

1:1034
(0:0185)

Table 6.3 reports the estimates for the parameters of the volatility of the stochastic

processes. In all �ve cases the ��s and the ��s are far away from zero, showing the strong

push of the likelihood for parameter values where stochastic volatility plays an important

role. The volatility of the intertemporal preference shock and of monetary shocks are the

most persistent, while the volatility of the intratemporal preference shock and of the neutral

technological shock are the smallest. At the same time, the size of the volatility shocks for

the intratemporal preference shock, �' = 2:8549, is large, suggesting again that we need fast

changes in marginal utilities of leisure to account for the data on hours.
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Table 6.4: Posterior, Policy Parameters


R log 
y � log 
� ��

0:7855
(0:0162)

�1:4034
(0:0498)

1:0005
(0:0043)

0:0441
(0:0005)

0:1479
(0:002)

Finally, in table 6.4., we have the estimates of the policy parameters. The autoregressive

component of the federal funds rate is high, 0:7855, although somewhat smaller than in

estimations without parameter drift. This is likely due to the fact that changes in 
� may

substitute for 
R at generating higher levels of persistence of policy. The value of 
y (0.24

in levels) and of the in�ation target (0.005 per quarter) are similar to other results in the

literature. The estimated value of 
� (1.045 in levels) is only slightly the value that ensures

determinacy in a world with �xed policy.

This last observation raises an important point. Because of parameter drift and stochastic

volatility, the economy will travel through zones where the classic Taylor principle is not

satis�ed. Davig and Leeper (2006) have presented a generalized Taylor principle that extends

the basic principle to a model with Markov changes between an active and an passive regimes.

The intuition of this class of results is that a unique equilibrium survives if the Taylor rule is

su¢ ciently active when the economy is in the active policy regime or if the expected length

of time the economy will be in the nonactive policy regime is su¢ ciently small. Because

of obvious space constraints, we cannot prove a result in the spirit of Davig and Leeper in

this paper.9 However, the fact we estimate 
� as being bigger than one suggests to us that

indeterminacy issues are unlikely to be too serious in our empirical analysis.

7. Impulse Response Functions

Before continuing the exploration of the model, it is informative to plot the Impulse Response

functions (IRFs) generated by the model to a shock to monetary policy. This exercise is a

powerful reality-check for our enterprise. If the IRFs seem to match the shapes and sizes of

those gathered by time series methods such as SVARs, it will strengthen our belief in all the

rest of results. Otherwise, we should at least try to understand where the di¤erences come

from.

Fortunately, the answer is positive: our model generates dynamic responses that are close

to the ones from SVARs (see, for instance, Sims and Zha, 2006). We plot these IRFs in �gure

7.1. After a one standard-deviation shock to the federal funds rate, output goes down in a

9Moreover, we have a second-order approximation, not a linear one, which complicates the analysis al-
though probably helps avoiding multiplicity issues.
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hump-shaped pattern for a long number of quarters (after 20 quarters still has not return to

its original level) and in�ation drops.

In �gure 7.2, we plot the IRFs computed conditional on �xing 
�;t to the estimated mean

of each Chairman. The most interesting di¤erence is that the response of output under

Volcker was the mildest: the energetic stand of monetary regime under his tenure largely

contributes to stabilizing the economy.
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8. Model Fit and Smoothed Shocks

After the point estimates and the IRFs, a �rst result to examine is the �t of the model.

We can perform such comparison using the Bayesian Information Criterion (BIC) (Schwarz,

1978), a method that penalizes for unneeded free parameters.10 The BIC of model i is de�ned:

BICi = �2 ln pi
�
Ydata;T ; b
�+ ki lnn

where ki is the number of parameters and n is the number of observations. Then, the BIC of

the full model with stochastic volatility and parameter drifting is:

BICfull = �2 � 3885 + 28 � ln 192 = �7; 622:8

10A more satisfactory answer would come from the computation of the marginal data densities and the
posterior odds ratio built with them. However, for a model of this size, such computation would be extra-
ordinarily time-intensive before �nding any estimate of the marginal data density with reasonable accuracy.
Moreover, the in�uence of the priors on the odds ratio is di¢ cult to control when we deal with large models
(see Del Negro and Schorfheide, 2008).
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If we eliminate parameter drifting and the parameters �
� , log 
�, and �� associated with it:

BICno drift = �2 � 3810:7 + 25 � ln 192 = �7; 490:0

The di¤erence is, therefore, of over 132 log points, which is usually considered overwhelming

evidence in favor of the model with parameter drifting than the model without.

The comparison of the full model with the model without stochastic volatility is trickier

because we are taking advantage of the structure of the decision rules of the agents induced by

stochastic volatility to evaluate the likelihood. If we eliminate stochastic volatility, we would

need, for instance, to incorporate additive measurement errors or resort to other similar trick.

Fortunately, Justiniano and Primiceri (2007) and Fernández-Villaverde and Rubio-Ramírez

(2007) estimate models similar to ours with and without stochastic volatility (in the �rst case,

using only a �rst-order approximation to the decision rules of the agents and in the second with

measurement errors). Both papers conclude that the �t of the model improves substantially

when we include stochastic volatility. Furthermore, Fernández-Villaverde and Rubio-Ramírez

(2008) compare a model with parameter drifting with a model without parameter drifting

and conclude that parameter drifting is also strongly preferred by the likelihood.

A second result to study is the smoothed estimates of the shocks, volatilities, and drifting

parameters. We start this exercise by reporting, in �gure 6.1, the level of the �ve shocks that

drive the economy. To ease reading of the results, we color di¤erent vertical bars to represent

each of the Chairman eras at the Fed: from 1959 to the appointment of Burns (white), the

Burns-Miller era (light blue), the Volcker years (grey), the Greenspan times (orange), and

Bernanke�s tenure (yellow).
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Figure 6.1: Smoothed Shocks

The intertemporal shock dt is particularly high in the 1970s. This increases the desire for

current consumption and helps the model to capture the high in�ation of those years and

to generate the challenges to monetary policy that we will discuss below. The shock has

a dramatic drop in the second quarter of 1980. This is precisely the quarter where, in its

increasingly desperate �ght against in�ation, the Carter administration invoked the Credit

Control Act (started on March 14, 1980), which caused a large turmoil in �nancial markets

and, most likely distorted intertemporal choices of households (see the historical description

in Shreft, 1990). The shock to leisure grows in the 1970s and falls in the 1980s to stabilize

in the 1990s to track the evolution of average hours worked (low in the 1970s, increasing in

the 1980s, and stabilizing in the 1990s). The evolution of the investment-speci�c technology

� shows a clear drop after 1973 (when it is likely that much energy-intensive capital goods

su¤ered the consequences of the oil shocks in the form of economic obsolescence) and very

positive realizations during the late 1990s. Our model interprets the big boom of those years

as the consequence of big improvements in investment technology. Later, we will come back to

this point. In comparison, the neutral-technology shocks are stable over the sample with only

a few big shocks at the end of the sample. Finally, the evolution of the monetary policy shock

(panel (3,1)) reveals big �uctuations during Volcker�s years (and again with large innovations
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in 1980). This is due both to the fast change in policy brought about by Volcker�s tenure

as by the fact that a Taylor rule might not fully capture the dynamics of monetary policy

during the a period where money growth targeting was attempted.

Figure 6.2: Smooth Shocks+2 Standard Deviations

As a way to gauge the level of uncertainty of our smoothed estimates, we plot in �gure

6.2 the shock plus/minus two standard deviations. The only lesson to get from this �gure is

that, in all the cases, the estimates are tight.

We move now, in �gure 6.3, to plot the evolution of the �ve standard deviation levels and

of the log of the response of monetary policy to in�ation, all of them in log-deviations with

respect to their estimated means to facilitate the interpretation of their movements. We see

in this �gure that the standard deviation of the intertemporal shock was particularly high in

the 1970s and only went down slowly during the 1980s and early 1990s. After a through in

the mid 1990s, the standard deviation recover somewhat to end up roughly at the level where

it started at the beginning of the sample. In comparison the standard deviation of all the

other shocks is relatively stable except, perhaps, for the big drop in the standard deviation

of the monetary policy shock in the early 1980s. We delay the discussion of the evidence in

panel (3,2) regarding monetary policy until a few paragraphs below.
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Figure 6.3: Standard Deviations of Shocks and Monetary Policy Response

to In�ation, log-deviations.

In �gure 6.4, we plot the same results except that now we add two standard deviations

to assess posterior uncertainty. The main lesson from this �gure is that the big movements

in the di¤erent series that we reported below can be ascertained with a reasonable degree of

con�dence.
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Figure 6.4: Series in �gure 6.3+2 Estimated Standard Deviations

Finally, in �gure 6.5, we plot the evolution of the response of monetary that we already

reported in panel (3,2) but in levels and with its mean, since these are more natural units for

economists, plus a two standard deviation interval. Figure 6.5 tells us an intriguing narrative.

The parameter 
�;t started the sample around its estimated mean, slightly over 1 and, then

it grew more or less steadily during the 1960s until reaching a peak in early 1968. After that

year, 
�;t su¤ered a fast collapse that took it below 1971. To put this evolution in perspective,

it is useful to remember that Burns was appointed Chairman at the Fed in February of 1970.

The parameter stayed below 1 for all the decade, showing either that the monetary policy

was not su¢ ciently active or that the Taylor rule is not a good description of the behavior

of the Fed at the time. The arrival of Volcker is quickly picked by our smoothed estimates:


�;t increases to over 2 in just a few months and stays high during all the years of Volcker�s

tenure.
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Figure 6.5: Taylor Rule Coe¢ cient on In�ation

But, as quickly 
�;t rose when Volcker arrived, it went down again when he departed.

Greenspan�s tenure at the Fed meant that, by 1990, the response of the monetary authority

to in�ation was again below 1. During all the following years of Greenspan mandate, 
�;t was

low and, probably, even below the values that it took during Burns-Miller times. Moreover,

our estimates of 
�;t are relatively tight, suggesting that posterior uncertainty may not be the

full explanation behind these movements. How can we account then for the good economic

performance of the economy under Greenspan? To answer this question, we move in the next

section to build counterfactual histories.

9. Historical Counterfactuals

As a way to quantify the extent to which observed changes in volatilities can be accounted

for by changes in standard deviations or changes in policy, we build a number of internally

coherent exercises where we removed one source of variation at a time. As long as our model is

structural in the sense of Hurwicz (1962) (its structure is invariant to interventions, including

shocks by nature such as the ones we are postulating), the model will provide an answer that

is robust to Lucas�critique.
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In this section, we will always plot the three basic variables of the model from a monetary

policy perspective, in�ation, output, and the federal funds rate. Also, we will have vertical

bars for the tenure of each Chairman of the fed, following the same coloring scheme as before.

In the �rst of our exercises, in �gure 9.1, the variables that we would have observed in

the absence of volatility shocks according to our model (line with triangle markers) and,

for comparison, the actually observed output (continuous line). To build the counterfactual

output, we set volatility levels at their mean values and we feed the model with the other �ve

smoothed shocks that we backed up from our estimation and that, since we considered them

exogenous, should be invariant to the presence or absence of volatility shocks.
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Figure 9.1 can be read as telling us that volatility shocks mattered in the 1990s. In their

absence, instead a decade of long and stable growth, the economy would have gone through

several years of recession. Figure 9.2 presents the same information except that now we are

building a counterfactual history with no changes in monetary policy [to be completed].
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Our next exercise is to plot , for a number of counterfactual histories in which we move

one Chairman from his mandate to an alternative time period. For example, in �gure 9.3, we

appoint Greenspan as Chairman during the Burns-Miller years. By that, we mean that the

monetary authority would have followed the policy rule dictated by the average 
�;t during

Greenspan�s times. We plot the whole history because changes in behavior of the economy

in one period will propagate over time and it is interesting to see how a Greenspan�s legacy

would have molded Volcker�s tenure. As we can see clearly, from �gure 9.3, Greenspan would

have not been much of a di¤erence in Burns-Miller times, somewhat lower in�ation and a bit

higher interest rates.
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Chairman Greenspan during Burns-Miller years

In �gure 9.4 we repeat the same exercise for Greenspan during Volcker�s times. The main

di¤erence is a slower disin�ation and lower interest rates with little impact on output.
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Chairman Greenspan during Volcker years

In �gure 9.5, we move to Burns-Miller being resurrected at Greenspan times
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Burns-Miller Chairmen during Greenspan years
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Burns-Miller Chairmen during Volcker years
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Chairman Volcker during Greenspan years

A particularly interesting exercise if to check what would have happened if Reagan had

decided to reappoint Volcker and not substitute him with Greenspan. The quick answer is

much lower in�ation and interest rates. This exercise has the problem that, during 2004-

2005, the Fed should have been forced to have a negative federal funds rate. Forgetting for

a moment about schemes to push the nominal interest rate below zero, this suggests that a

nice extension of the model should take the existence of a zero-lower bound on interest rates
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seriously. This, however, would preclude us from using a perturbation method, and given the

current computational frontier, make it impossible to estimate such model.

Chairman Volcker during Burns-Miller years

10. Conclusion

In this paper we have built and estimated a DSGE model with both stochastic volatility in

the shocks and parameter drifting in policy rules. We have shown how such a rich model
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can be taken successfully to the data and characterized the decision rules of a large class of

DSGE models. We can see many future applications for these tools. With respect to our main

empirical �ndings, a simple way to summarize them is to think about the recent monetary

history of the U.S. as characterized by three eras:

� Little Fortune and little Virtue: Burns and Miller era, 1970-1979.

� Virtue but little Fortune: Volcker era, 1979-1987.

� Fortune but little Virtue: Greenspan era, 1987-2006.

Like all empirical work, our approach su¤ers from several problems. The most important,

in our opinion, is the limitation of what we can learn from the data given our relatively

short sample (Ploberger and Phillips, 2003, for a discussion of the problem of empirical

limits for time series models in terms of information bounds). A source of information that

can complement our quantitative investigation is a historical narrative based on the Federal

Reserve statements and documents. We have in mind the type of work pioneered by Romer

and Romer (2004) or Hetzel (2008). If the changes in policy uncovered by our estimates did,

in fact, occurred, we should �nd telltale signs of them in all the record.
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11. Appendix A: Theorem 1

Let us now prove theorem 1. In this theorem, we characterize the �rst and second order

derivatives of the functions h (�) and g (�) evaluated at the non-stochastic steady state. We
�rst show that the �rst partial derivatives of h (�) and g (�) with respect to any component
of �t�1, Ut, or � evaluated at the non-stochastic steady is zero (or, in other words, that the
the �rst order of the solution does not depend neither on volatility levels or shocks nor on

the perturbation parameter. Second, it shows that. among many other results, the second

partial derivative of h (�) and g (�) with respect to uj;t and any other state variable but "j;t is
also zero for any j = f1; : : : ;mg.
Before proceeding, note that we can write Zt as a function of Zt�1;�t�1; Et; and Ut:

Zt = & (Zt�1;�t�1; Et;Ut)

and that �t can be expressed as:

�t = #�t�1 + �Ut

where # and � are both m�m diagonal matrices with diagonal elements equal to #i and �i
respectively. If we substitute the two functions (13) and (14) into (12) we get that:

F (St;Zt�1;�t�1; Et;Ut;�) �

Etf

0B@ g (h (St;Zt�1;�t�1; Et;Ut;�) ; & (Zt�1;�t�1; Et;Ut) ; #�t�1 + �Ut; Et+1;Ut+1;�) ;
g (St;Zt�1;�t�1; Et;Ut;�) ; h (St;Zt�1;�t�1; Et;Ut;�) ;St;

& (& (Zt�1;�t�1; Et;Ut) ; #�t�1 + �Ut; Et+1;Ut+1) ; & (Zt�1;�t�1; Et;Ut)

1CA = 0:

To ease reading, we divide the proof in four parts, the �rst dealing with the �rst derivatives

and the next three dealing with the second derivatives.

Proof, part 1. The �rst part of the proof deals with the �rst derivatives of (13) and

(14) that are equal to zero. In particular, we want to show that:

�
h�t�1

�i1
j
=
�
g�t�1

�i2
j
= [hUt ]

i1
j = [gUt ]

i2
j = [h�]

i1 = [g�]
i2 = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.
We show this result in three steps that basically repeat the same argument based on

homogeneity of a system of linear equations:

1. We can write the derivative of i � th element of F with respect to the j � th element
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of �t�1 as:�
F�t�1

�i
j
=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
h�t�1

�i1
j
+
�
g�t�1

�i2
j
#j

�
+[fYt ]

i
i2

�
g�t�1

�i2
j
+
�
fSt+1

�i
i1

�
h�t�1

�i1
j
= 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. This is an homogenous system on�
h�t�1

�i1
j
and

�
g�t�1

�i2
j
for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg. Thus:

�
h�t�1

�i1
j
=
�
g�t�1

�i2
j
= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.

2. We can write the derivative of i � th element of F with respect to the j � th element

of Ut as:

[FUt ]
i
j =

�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[hUt ]

i1
j +

�
g�t�1

�i2
j
�j

�
+ [fYt ]

i
i2
[gUt ]

i2
j +

�
fSt+1

�i
i1
[hUt ]

i1
j = 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. Since we have already shown that�
g�t�1

�i2
j
= 0 for i2 2 f1; : : : ; kg and j 2 f1; : : : ;mg, this is an homogenous system on

[hUt ]
i1
j and [gUt ]

i2
j for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg, Thus,:

[hUt ]
i1
j = [gUt ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.

3. Finally, we can write the derivative of i� th element of F with respect to � as:

[F�]
i =

�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[h�]

i1 + [g�]
i2
�
+ [fYt ]

i
i2
[g�]

i2 +
�
fSt+1

�i
i1
[h�]

i1 = 0

for i 2 f1; : : : ; k + n+mg. Since this is an homogenous system on [h�]
i1 and [g�]

i2 for

i1 2 f1; : : : ; ng and i2 2 f1; : : : ; kg, we have that:

[h�]
i1 = [g�]

i2 = 0

for i1 2 f1; : : : ; ng and i2 2 f1; : : : ; kg.

Proof, part 2. The second part of the proof deals with the cross derivatives of (13)

and (14) with respect to � and any of St, Zt�1, �t�1, Et, or Ut and it shows that all of them
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are equal to zero. In particular, we want to show that:

[h�;St ]
i1
j = [g�;St ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ; ng and:�
h�;Zt�1

�i1
j
=
�
g�;Zt�1

�i2
j
=
�
h�;�t�1

�i1
j
=
�
g�;�t�1

�i2
j
= [h�;Et ]

i1
j = [g�;Et ]

i2
j = [h�;Ut ]

i1
j = [g�;Ut ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.
We show this result in �ve steps that, as in part 1 of the proof, exploit the homogeneity of

a system of linear equations (and where we have already taken advantage of the terms that

we know from the part 1 of the proof that they are equal to zero and eliminate them from

our expressions):

1. We consider the cross derivative of i� th element of F with respect to � and the j� th
element of St :

[F�;St ]
i
j =

�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[h�;St ]

i1
j + [g�;St ]

i2
i1
[hSt ]

i1
j

�
+[fYt ]

i
i2
[g�;St ]

i2
j +
�
fSt+1

�i
i1
[h�;St ]

i1
j = 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ; ng. This is an homogenous system on

[h�;St ]
i1
j and [g�;St ]

i2
j for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ; ng. Thus:

[h�;St ]
i1
j = [g�;St ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ; ng.

2. We consider the cross derivative of i� th element of F with respect to � and the j� th
element of Zt�1:�

F�;Zt�1
�i
j
=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
h�;Zt�1

�i1
j
+ [g�;St ]

i2
i1

�
hZt�1

�i1
j
+ �j

�
g�;Zt�1

�i2
j

�
+ [fYt ]

i
i2

�
g�;Zt�1

�i2
j
+
�
fSt+1

�i
i1

�
h�;Zt�1

�i1
j
= 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. Since [g�;St ]
i2
j = 0 for i2 2 f1; : : : ; kg

and j 2 f1; : : : ; ng, this is an homogenous system on
�
h�;Zt�1

�i1
j
and

�
g�;Zt�1

�i2
j
for

i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg. Hence:�
h�;Zt�1

�i1
j
=
�
g�;Zt�1

�i2
j
= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.
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3. We consider the cross derivative of i� th element of F with respect to � and the j� th
element of �t�1:�

F�;�t�1
�i
j
=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
h�;�t�1

�i1
j
+
�
g�;�t�1

�i2
j
#j

�
+ [fYt ]

i
i2

�
g�;�t�1

�i2
j
+
�
fSt+1

�i
i1

�
h�;�t�1

�i1
j
= 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. This is an homogenous system on�
h�;�t�1

�i1
j
and

�
g�;�t�1

�i2
j
for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.

Hence: �
h�;�t�1

�i1
j
=
�
g�;�t�1

�i2
j
= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.

4. We consider the cross derivative of i� th element of F with respect to � and the j� th
element of Et:

[F�;Et ]
i
j =

�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[h�;Et ]

i1
j + [g�;St ]

i2
i1
[hEt ]

i1
j + exp

#j�j;t�1
�
g�;Zt�1

�i2
j

�
+ [fYt ]

i
i2
[g�;Et ]

i2
j +

�
fSt+1

�i
i1
[h�;Et ]

i1
j = 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. Since
�
g�;Zt�1

�i2
j
= 0 for i2 2 f1; : : : ; kg

and j 2 f1; : : : ;mg and [g�;St ]
i2
j = 0 for i2 2 f1; : : : ; kg and j 2 f1; : : : ; ng, this is an

homogenous system on [h�;Et ]
i1
j and [g�;Et ]

i2
j for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and

j 2 f1; : : : ;mg. Thus:
[h�;Et ]

i1
j = [g�;Et ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.

5. We consider the cross derivative of i� th element of F with respect to � and the j� th
element of Ut:

[F�;Ut ]
i
j =

�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[h�;Ut ]

i1
j + �j

�
g�;�t�1

�i2
j

�
+[fYt ]

i
i2
[g�;Ut ]

i2
j +
�
fSt+1

�i
i1
[h�;Ut ]

i1
j = 0

for i 2 f1; : : : ; k + n+mg and j 2 f1; : : : ;mg. Since we have shown that
�
g�;�t�1

�i2
j
= 0

for i2 2 f1; : : : ; kg and j 2 f1; : : : ;mg ; we have that the above system is an homogenous
on [h�;Ut ]

i1
j and [g�;Ut ]

i2
j for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg. Then:

[h�;Ut ]
i1
j = [g�;Ut ]

i2
j = 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j 2 f1; : : : ;mg.
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Proof, part 3. The third part of the proof deals with the cross derivatives of (13) and

(14) with respect to �t�1 and any of St, Zt�1, �t�1, or Et and it shows that all of them are

equal to zero with one exception. In particular, we want to show that:

�
hSt;�t�1

�i1
j1;j2

=
�
gSt;�t�1

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg,�
hZt�1;�t�1

�i1
j1;j2

=
�
gZt�1;�t�1

�i2
j1;j2

=
�
h�t�1;�t�1

�i1
j1;j2

=
�
g�t�1;�t�1

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg, and�
hEt;�t�1

�i1
j1;j2

=
�
gEt;�t�1

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg if j1 6= j2.

We show this result in four steps (and where we have already taken advantage of the

terms that we know from the part 1 of the proof that they are equal to zero and eliminate

them from our expressions):

1. We consider the cross derivative of i� th element of F with respect to j1 � th element

of St and the j2 � th element of �t�1:�
FSt;�t�1

�i
j1;j2

=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
hSt;�t�1

�i1
j1;j2

+
�
gSt;�t�1

�i2
i1;j2

[hSt ]
i1
j1
#j2

�
+ [fYt ]

i
i2

�
gSt;�t�1

�i2
j1;j2

+
�
fSt+1

�i
i1

�
hSt;�t�1

�i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg. This is an homogenous
system on

�
hSt;�t�1

�i1
j1;j2

and
�
gSt;�t�1

�i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2
f1; : : : ; ng, and j2 2 f1; : : : ;mg. Therefore:�

hSt;�t�1
�i1
j1;j2

=
�
gSt;�t�1

�i2
i2;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg.

2. We consider the cross derivative of i� th element of F with respect to j1 � th element
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of Zt�1 and the j2 � th element of �t�1:�
FZt�1;�t�1

�i
j1;j2

=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
hZt�1;�t�1

�i1
j1;j2

+
�
gSt;�t�1

�i2
i1;j2

�
hZt�1

�i1
j1
#j2 +

�
gZt�1;�t�1

�i2
j1;j2

#j2�j1

�
+ [fYt ]

i
i2

�
gZt�1;�t�1

�i2
j1;j2

+
�
fSt+1

�i
i1

�
hZt�1;�t�1

�i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg, and j1; j2 2 f1; : : : ;mg. Since we just found that
�
gSt;�t�1

�i2
j1;j2

=

0 for i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg, this is an homogenous sys-
tem on

�
hZt�1;�t�1

�i1
j1;j2

and
�
gZt�1;�t�1

�i2
i2;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and
j1; j2 2 f1; : : : ;mg. Therefore:�

hZt�1;�t�1
�i1
j1;j2

=
�
gZt�1;�t�1

�i2
i2;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg.

3. We consider the cross derivative of i� th element of F with respect to j1 � th element

of �t�1 and the j2 � th element of �t�1:�
F�t�1;�t�1

�i
j1;j2

=�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
h�t�1;�t�1

�i1
j1;j2

+
�
g�t�1;�t�1

�i2
j1;j2

#j1#j2

�
+ [fYt ]

i
i2

�
g�t�1;�t�1

�i2
j1;j2

+
�
fSt+1

�i
i1

�
h�t�1;�t�1

�i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg and j1; j2 2 f1; : : : ;mg. This is an homogenous system on�
h�t�1;�t�1

�i1
j1;j2

and
�
g�t�1;�t�1

�i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2
f1; : : : ;mg, therefore:

�
h�t�1;�t�1

�i1
j1;j2

=
�
g�t�1;�t�1

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg.

4. We consider the cross derivative of i� th element of F with respect to j1 � th element

of Et and the j2 � th element of �t�1 if j1 6= j2:�
FEt;�t�1

�i
j1;j2

=�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
hEt;�t�1

�i1
j1;j2

+
�
gSt;�t�1

�i2
i1;j2

[hEt ]
i1
j1
#j2 +

�
gZt�1;�t�1

�i2
j1;j2

exp#j1�j1;t�1 #j2

�
+ [fYt ]

i
i2

�
gEt;�t�1

�i2
j1;j2

+
�
fSt+1

�i
i1

�
hEt;�t�1

�i1
j1;j2

= 0
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for i 2 f1; : : : ; k + n+mg and j1; j2 2 f1; : : : ;mg. Since we know that
�
gZt�1;�t�1

�i2
j1;j2

=�
gSt;�t�1

�i2
j;j2

= 0 for i2 2 f1; : : : ; kg, j 2 f1; : : : ; ng, and j1; j2 2 f1; : : : ;mg, this
is an homogenous system on

�
hEt;�t�1

�i1
j1;j2

and
�
gEt;�t�1

�i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2
f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg if j1 6= j2. Therefore:�

hEt;�t�1
�i2
j1;j2

=
�
gEt;�t�1

�i1
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg if j1 6= j2.

Note that if j1 = j2, we have that:�
FEt;�t�1

�i
j1;j1

=
�
fYt+1

�i
i2
�

�
�
[gSt ]

i2
i1

�
hEt;�t�1

�i1
j1;j1

+ #j1
�
gSt;�t�1

�i2
i1;j1

[hEt ]
i1
j1
+
��
gZt�1;�t�1

�i2
j1;j1

+
�
gZt�1

�i2
j1

�
exp#j1�j1;t�1 #j1

�
+ [fYt ]

i
i2

�
gEt;�t�1

�i2
j1;j1

+
�
fSt+1

�i
i1

�
hEt;�t�1

�i1
j1;j1

+
�
[fZt ]

i
j1
+ �j1

�
fZt+1

�i
j1

�
exp#j1�j1;t�1 #j1 = 0

and since [fZt ]
i
j1
and

�
fZt+1

�i
j1
are di¤erent from zero in general for i 2 f1; : : : ; k + n+mg

and j1 2 f1; : : : ;mg ; we have that this system is not homogenous and

�
hEt;�t�1

�i2
j1;j1

=
�
gEt;�t�1

�i1
j1;j1

6= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1 2 f1; : : : ;mg.

Proof, part 4. The fourth, and �nal, part of the proof deals with the cross derivatives

of (13) and (14) with respect to Ut and any of St, Zt�1, �t�1, Et, or Ut and it shows that all
of them are equal to zero with one exception. In particular, we want to show that:

[hSt;Ut ]
i1
j1;j2

= [gSt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg,�
hZt�1;Ut

�i1
j1;j2

=
�
gZt�1;Ut

�i2
j1;j2

=
�
h�t�1;Ut

�i1
j1;j2

=
�
g�t�1;Ut

�i2
j1;j2

= [hUt;Ut ]
i1
j1;j2

= [gUt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg, and

[hEt;Ut ]
i1
j1;j2

= [gEt;Ut ]
i2
j1;j2

= 0
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for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1; j2 2 f1; : : : ;mg, and j1 6= j2.

Again, we follow the same steps for each part of the result than before and use our previous

�ndings regarding which terms are zero.

1. We consider the cross derivative of i� th element of F with respect to j1 � th element

of St and the j2 � th element of Ut:

[FSt;Ut ]
i
j1;j2

=
�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[hSt;Ut ]

i1
j1;j2

+
�
gSt;�t�1

�i2
i1;j2

[hSt ]
i1
j1
�j2

�
+ [fYt ]

i
i2
[gSt;Ut ]

i2
j1;j2

+
�
fSt+1

�i
i1
[hSt;Ut ]

i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg. Since
�
gSt;�t�1

�i2
j1;j2

= 0

for i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg, this is an homogenous system
on [hSt;Ut ]

i1
j1;j2

and [gSt;Ut ]
i2
j1;j2

.Therefore:

[hSt;Ut ]
i1
j1;j2

= [gSt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1 2 f1; : : : ; ng, and j2 2 f1; : : : ;mg.

2. We consider the cross derivative of i� th element of F with respect to j1 � th element

of Zt�1 and the j2 � th element of Ut:�
FZt�1;Ut

�i
j1;j2

=�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
hZt�1;Ut

�i1
j1;j2

+ �j2
�
gSt;�t�1

�i2
i1;j2

[hZt ]
i1
j1
+ �j1�j2

�
gZt�1;�t�1

�i2
j1;j2

�
+ [fYt ]

i
i1

�
gZt�1;Ut

�i1
j1;j2

+
�
fSt+1

�i
i1

�
hZt�1;Ut

�i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg, and j1; j2 2 f1; : : : ;mg. Since
�
gZt�1;�t�1

�i2
j1;j2

=
�
gSt;�t�1

�i2
j;j2
=

0 for i2 2 f1; : : : ; kg, j 2 f1; : : : ; ng, and j1; j2 2 f1; : : : ;mg, this is an homogenous
system on

�
hZt�1;Ut

�i1
j1;j2

and
�
gZt�1;Ut

�i1
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and
j1; j2 2 f1; : : : ;mg. Therefore:�

hZt�1;Ut
�i1
j1;j2

=
�
gZt�1;Ut

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg.

3. We consider the cross derivative of i� th element of F with respect to j1 � th element
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of �t�1 and the j2 � th element of Ut:�
F�t�1;Ut

�i
j1;j2

=�
fYt+1

�i
i2

�
[gSt ]

i2
i1

�
h�t�1;Ut

�i1
j1;j2

+
�
g�t�1;�t�1

�i2
j1;j2

#j1�j2

�
+ [fYt ]

i
i1

�
g�t�1;Ut

�i1
j1;j2

+
�
fSt+1

�i
i1

�
h�t�1;Ut

�i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg, and j1; j2 2 f1; : : : ;mg. Since
�
g�t�1;�t�1

�i2
j1;j2

= 0 for

i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg, this is an homogenous system on
�
h�t�1;Ut

�i1
j1;j2

and
�
g�t�1;Ut

�i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg. Therefore:

�
h�t�1;Ut

�i1
j1;j2

=
�
g�t�1;Ut

�i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, j1; j2 2 f1; : : : ;mg.

4. We consider the cross derivative of i� th element of F with respect to j1 � th element

of Ut and the j2 � th element of Ut:

[FUt;Ut ]
i
j1;j2

=�
fYt+1

�i
i2

�
�j1�j2

�
g�t�1;�t�1

�i2
j1;j2

+ [gSt ]
i2
i1
[hUt;Ut ]

i1
j1;j2

�
+ [fYt ]

i
i2
[gUt;Ut ]

i2
j1;j2

+
�
fSt+1

�i
i1
[hUt;Ut ]

i1
j1;j2

= 0

for i 2 f1; : : : ; k + n+mg and j1; j2 2 f1; : : : ;mg. Since
�
g�t�1;�t�1

�i2
j1;j2

= 0 for i1 2
f1; : : : ; kg and j1; j2 2 f1; : : : ;mg, this is an homogenous system on [hUt;Ut ]

i1
j1;j2

and

[gUt;Ut ]
i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg. Therefore:

[hUt;Ut ]
i1
j1;j2

= [gUt;Ut ]
i2
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg.

5. Finally, consider the cross derivative of i � th element of F with respect to j1 � th

element of Et and the j2 � th element of Ut if j1 6= j2:

[FEt;Ut ]
i
j1;j2

=�
fYt+1

�i
i2

�
[gSt ]

i2
i1
[hEt;Ut ]

i1
j1;j2

+ �j2
�
gSt;�t�1

�i2
i1;j2

[hEt ]
i1
j1
+
�
gZt�1;�t�1

�i2
j1;j2

exp#j1�j1;t�1 �j2

�
+ [fYt ]

i
i2
[gEt;Ut ]

i2
j1;j2

+
�
fSt+1

�i
i1
[hEt;Ut ]

i1
j1;j2

= 0
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for i 2 f1; : : : ; k + n+mg and j1; j2 2 f1; : : : ;mg. Since
�
gZt�1;�t�1

�i2
j1;j2

=
�
gSt;�t�1

�i2
j;j2
=

0 for i2 2 f1; : : : ; kg, j 2 f1; : : : ; ng, and j1; j2 2 f1; : : : ;mg, this is an homoge-
nous system on [hEt;Ut ]

i1
j1;j2

and [gEt;Ut ]
i2
j1;j2

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and
j1; j2 2 f1; : : : ;mg if j1 6= j2. Therefore:

[hEt;Ut ]
i2
j1;j2

= [gEt;Ut ]
i1
j1;j2

= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1; j2 2 f1; : : : ;mg if j1 6= j2.

Note that if j1 = j2, we have that:

[FEt;Ut ]
i
j1;j1

=�
fYt+1

�i
i2

�
exp#j1�j1;t�1 �j1

��
gZt�1;�t�1

�i2
j1;j1

+
�
gZt�1

�i2
j1

�
+ �j1

�
gSt;�t�1

�i2
i1;j1

[hEt ]
i1
j1
+ [gSt ]

i2
i1
[hEt;Ut ]

i1
j1;j1

�
+ [fYt ]

i
i2
[gEt;Ut ]

i2
j1;j1

+
�
fSt+1

�i
i1
[hEt;Ut ]

i1
j1;j1

+exp#j1�j1;t�1 �j1

�
[fZt ]

i
j1
+ �j1

�
fZt+1

�i
j1

�
= 0

and since [fZt ]
i
j1
and

�
fZt+1

�i
j1
are di¤erent from zero in general for i 2 f1; : : : ; k + n+mg

and j1 2 f1; : : : ;mg we have that this system is not homogenous and hence:

[hEt;Ut ]
i2
j1;j1

= [gEt;Ut ]
i1
j1;j1

6= 0

for i1 2 f1; : : : ; ng, i2 2 f1; : : : ; kg, and j1 2 f1; : : : ;mg.

12. Appendix B: Computation

In this appendix we provide some more details regarding the computation of the paper. We

generate all the derivatives required by our higher-order perturbation with Mathematica 6.0.

In that way, we do not need to recompute the derivatives, the most time-intensive step, for

each set of parameter values in our estimation. Once we have all the relevant derivatives, we

export them automatically into Fortran �les. This whole process takes about 3 hours.

Then, we compile the resulting �les with the Intel Fortran Compiler version 10:1:025

with IMSL. Previous versions failed to compile our project because of the length of some of

the expression. Compilation takes about 18 hours. The project has 1798 �les and occupies

2:33 Gbytes of memory.

The next step is, for given parameter values, to compute the �rst- and second-order

approximation to the decision rules around the deterministic steady-state using the analytic

derivatives we found before. For this task, Fortran takes around 5 seconds. Once we have the
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solution, we approximate the likelihood using the Particle Filter with 10; 000 particles. This

number delivered a good compromise between accuracy and time to compute the likelihood.

The evaluation of one likelihood requires 22 seconds in a Dell Server with 8 processors. Once

you have the likelihood evaluation, we guess new parameter values and we restart again. This

means that drawing 5,000 times from the posterior (even forgetting about the initial search

over a grid of parameter values), takes around 38 hours.

It is important to emphasize that the Mathematica and Fortran code were highly op-

timized in order to 1) keep the size of the project within reasonable dimensions (otherwise,

the compiler cannot sparse the �les and, even when it can, it delivers code that it is too

ine¢ cient) and 2) provide a fast computation of the likelihood.

Perhaps the most important task in that optimization was the parallelization of the

Fortran code using OPENMP as well as the compilation options: OG (global optimizations)

and Loop Unroll. In addition, we tailored specialized code to perform the matrix multipli-

cations required in the �rst- and second-order terms of our model solution.

Implementing corollary 1 requires the solution of a linear system of equations and the

computation of a Jacobian. For our particular application, we found that the following

sequence of LAPACK operations delivered the fastest solution:

1. DGESV (computes the solution to a real system of linear equations A � X = B).

2. DGETRI (computes the inverse of a matrix using the LU factorization from the previous

line).

3. DGETRF (helps to compute the determinant of the inverse from the previous line).

Without the parallelization and our optimized code, the solution of the model and evalu-

ation of its likelihood take about 70 seconds.

With respect to the Random-WalkMetropolis-Hastings, we performed an intensive process

of �ne-tuning of the chain, both in terms of initial conditions as in terms of getting the right

acceptance level. The only other important remark is to remember that as pointed out by

McFadden (1989) and Pakes and Pollard (1989), we must keep the random numbers used for

resampling in the Particle �lter constant across draws of the Markov Chain. This is required

to achieve stochastic equicontinuity, and even if this condition is not strictly necessary in a

Bayesian framework, it reduces the numerical variance of the procedure, which was a serious

concern for us given the complexity of our problem.
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13. Appendix C: Construction of Data

When we estimate the model, we need to make the series provided by the national and income

product accounts (NIPA) consistent with the de�nition of variables in the theory. The main

adjustment that we undertake is to express both real output and real gross investment in

consumption units. Our DSGE model implies that there is a numeraire in terms of which all

the other prices need to be quoted. We pick consumption as the numeraire. The NIPA, in

comparison, uses an index of all prices to transform nominal GDP and investment into real

values. In the presence of changing relative prices, such as the ones we have seen in the U.S.

over the last several decades with the fall in the relative price of capital, NIPA�s procedure

biases the valuation of di¤erent series in real terms.

We map theory into data by computing our own series of real output and real investment.

To do so, we use the relative price of investment, de�ned as the ratio of an investment

de�ator and a de�ator for consumption. The denominator is easily derived from the de�ators

of nondurable goods and services reported in the NIPA. It is more complicated to obtain the

numerator because, historically, NIPA investment de�ators were poorly constructed. Instead,

we rely on the investment de�ator computed by Fisher (2006), a series that unfortunately ends

early in 2000Q4. Following Fisher�s methodology, we have extended the series to 2007.Q1.

For the real output per capita series, we �rst de�ne nominal output as nominal consump-

tion plus nominal gross investment. We de�ne nominal consumption as the sum of personal

consumption expenditures on nondurable goods and services. We de�ne nominal gross invest-

ment as the sum of personal consumption expenditures on durable goods, private residential

investment, and nonresidential �xed investment. Per capita nominal output is equal to the

ratio between our nominal output series and the civilian noninstitutional population between

16 and 65. To obtain per capita values, we divide the previous series by the civilian noninsti-

tutional population between 16 and 65. Finally, real wages are de�ned as compensation per

hour in the nonfarm business sector divided by the CPI de�ator.
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