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Abstract

We examine the relationship between monetary-policy-induced changes in short in-
terest rates and yields on long-maturity default-free bonds. The volatility of the long
end of the term structure and its relationship with monetary policy are puzzling from
the perspective of simple structural macroeconomic models. We explore whether richer
models of risk premiums, speci�cally stochastic volatility models combined with Epstein-
Zin recursive utility, can account for these patterns. We study the properties of the yield
curve when in�ation is an exogenous process and compare this to the yield curve when
in�ation is endogenous and determined through an interest-rate/Taylor rule. We �nd
that the Epstein-Zin model with moderate risk aversion, persistent volatility of real
endowment growth, and exogenous in�ation, does a good job of matching the shape
of the historical average yield curve. However, it exhibits less volatility in long rates
than found in the data. We add to this environment a Taylor rule that raises the short
interest rate aggressively in response to current in�ation, and re-solve for yields using
the endogenous equilibrium process for in�ation. We �nd that risk premiums increase
substantially as does the volatility of yields. When we lower the degree of risk aver-
sion in this endogenous-in�ation economy, however, we �nd that the model still �ts the
shape of the average yield curve and long rates are still substantially less volatile than
in the data.
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1 Introduction

The response of long-term interest rates to monetary-policy-induced changes in short term

interest rates is a feature of the economy that often puzzles policy makers. For example, in

remarks made on May 27, 1994, Alan Greenspan expresses concern that long rates moved

too much in response to an increase in short rates:

In early February, we thought long-term rates would move a little higher as we

tightened. The sharp jump in [long] rates that occurred appeared to re�ect the

dramatic rise in market expectations of economic growth and associated concerns

about possible in�ation pressures.6

Then in his February 16, 2005, testimony, he expresses a completely di�erent concern about

long rates:

Long-term interest rates have trended lower in recent months even as the Federal

Reserve has raised the level of the target federal funds rate by 150 basis points.

Historically, even distant forward rates have tended to rise in association with

monetary policy tightening. ... For the moment, the broadly unanticipated

behavior of world bond markets remains a conundrum.7

Greenspan's comments are a re�ection of the fact that we do not yet have a satisfactory

understanding of how the yield curve is related to features of the macroeconomy such as

investors' preferences, fundamental sources of risk, and endogenous monetary policy.

Figure 1 plots the nominal yield curve for a variety of maturities from 1 quarter (which we

refer to as the short rate), up to 10 years (40 quarters) for US treasuries starting in the �rst
6Testimony of Chairman Alan Greenspan before the U.S. Senate Committee on Banking, Housing, and

Urban A�airs, May 27, 1994. Federal Reserve Bulletin, July 1994.
7Testimony of Chairman Alan Greenspan before the U.S. Senate Committee on Banking, Housing, and

Urban A�airs, February 16, 2005.
http://www.federalreserve.gov/boarddocs/hh/2005/february/testimony.htm
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quarter of 1970 and ending in the last quarter of 2005.8 Figure 2 plots the average yields

curve for the entire sample and for two subsamples. Finally, Figure 3 plots the standard

deviation of yields against their maturities. The basic patterns of yields is clear from these

�gures: (1) On average the yield curve is upward sloping, and (2) There is substantial

volatility in yields at all maturities. Greenspan's comments, therefore, must be framed by

the fact that long yields are almost as volatile as short rates. The issue, however, is the

relationship of this volatility at the long end to the volatility at the short end.

A signi�cant component of long rates is the risk premium. There is now a great deal of

evidence that documents that these risk premiums are time-varying and state-dependent.

Therefore, movements in long rates could be attributed to changes in expectations of future

nominal short rates, movements in risk premiums, or a combination of the two. Moreover,

if monetary policy is implemented using an short-interest-rate rule, e.g., a Taylor rule, then

the equilibrium endogenous in�ation rate will depend on the same risk factors that drive

risk premiums in long rates. Monetary policy itself could be a source for �uctuations in the

yield curve in equilibrium.

We explore these possibilities by experimenting with a model of time-varying risk premiums

generated by the recursive utility model of Epstein and Zin (1989) combined with stochastic

volatility of endowment growth. We show how this model can be easily solved using now

standard a�ne term-structure methods. These models have the convenient property that

yields are maturity-dependent linear functions of state variables. We examine some general

properties of multi-period default-free bonds in these models assuming �rst that in�ation

is an exogenous process, then by allowing in�ation to be endogenous and controlled by an

interest-rate rule.
8Yields up to 1991 are from McCulloch and Kwon (1993) then Datastream from 1991 to 2005.
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2 The Du�e-Kan A�ne Term Structure Model

The Du�e and Kan (1996) class of a�ne term-structure models, translated into discrete

time by Backus et al. (2001), is based on a k-dimensional vector of state variables z that

follows a �square-root� model

zt+1 = (I − Φ)θ + Φzt + Σ(zt)1/2εt+1,

where {εt} ∼ NID(0, I), Σ(z) is a diagonal matrix with typical element given by σi(z) =

ai + b′iz, and bi has nonnegative elements, and Φ is stable with positive diagonal elements.

The process for z requires that the volatility functions σi(z) be positive, which places further

restrictions on the parameters. The pricing kernel takes the form

− log mt+1 = δ + γ′zt + λ′Σ(zt)1/2εt+1,

where the k×1 vector γ is referred to as the �factor loadings� for the pricing kernel, the k×1

vector λ is referred to as the �price of risk� vector since it controls the size of the conditional

correlation of the pricing kernel and the underlying sources of risk, and the k × k matrix

Σ(zt) is the stochastic variance-covariance matrix of the unforecastable shock.

Multi-period default-free discount bond prices are built up using arbitrage-free restriction

b
(n)
t = Et[mt+1b

(n−1)
t+1 ], (1)

where b
(n)
t is the price at date-t of a default-free pure-discount bond that pays 1 at date

t + n, and b
(0)
t = 1. It is straightforward to show that bond prices of all maturities are

log-linear functions of the state:

− log b
(n)
t = A(n) + B(n)zt,
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where A(n) is a scalar, and B(n) is a 1× k row vector.

The intercept and slope parameters, which we often refer to as �yield-factor loadings,� of

these bond prices can be found recursively according to

A(n+1) = A(n) + δ + B(n)(I − Φ)θ − 1
2

k∑

j=1

(λj + B
(n)
j )2aj

B(n+1) = (γ′ + B(n)Φ)− 1
2

k∑

j=1

(λj + B
(n)
j )2b′j , (2)

where B
(n)
j is the j-th element of the vector B(n). Note that since b(0) = 1, we can start

these recursions using A(0) = 0 and B
(0)
j = 0, j = 1, 2, ..., k.

We will often work with continuously compounded yields, y(n)
t , de�ned by b

(n)
t = exp(−ny

(n)
t ),

which implies y
(n)
t = −(log b

(n)
t )/n.

This is an equilibrium model of bond pricing since it satis�es the no-arbitrage/equilibrium

conditions in equation (1), however it is not yet a structural model, since the mapping of

the parameters of this pricing model to deeper structural parameters of preferences and

opportunities has not yet been speci�ed. However, as we will see below, the structural

models we consider will all lie within this general class, hence, can be easily solved using

these pricing equations.

3 A 2-Factor Model with Epstein-Zin Preferences

We begin our analysis of structural models of the yield curve by solving for equilibrium real

yields in a representative agent exchange economy. Following Backus and Zin (2006) we

consider a representative agent who chooses consumption to maximize the recursive utility

function given in Epstein and Zin (1989)

Wt = [(1− β)cρ
t + βµt(Wt+1)ρ]1/ρ,
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where 0 < β < 1 is a discount factor that characterizes impatience, ρ < 1 determines

the elasticity of intertemporal substitution for deterministic consumption paths, and α < 1

determines the degree of relative risk aversion for static gambles. We consider a pure-

exchange economy in which the representative agent consumes the stochastic endowment,

so that log(ct+1/ct) = xt+1 where xt+1 is the log of the ratio of endowments in t+1 relative

to t. Therefore, in equilibrium the marginal rate of intertemporal substitution given by

log mt+1 = log β + (ρ− 1)xt+1 + (α− ρ) [log Wt+1 − log µt(Wt+1)] , (3)

where

log µt(zt+1) = Et[zt+1] +
α

2
Vart[zt+1],

when zt is conditionally normally distributed. Assume that the endowment-growth process

evolves stochastically over time according to

xt+1 = (1− φx)θx + φxxt + v
1/2
t εx

t+1,

and

vt+1 = (1− φv)θv + φvvt + σvε
v
t+1

is the process for the conditional volatility of endowment growth. We assume that εx and εv

and independent of each other and are both distributed as standard normals independently

over time.

The state vector in this model conforms with the setup of the Du�e-Kan model above.
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De�ne the state vector zt ≡ [xt vt]′, and

θ = [θx θv]′

Φ = diag{φx, φv}

Σ(zt) = diag{a1 + b′1zt, a2 + b′2zt}

a1 = 0, b1 = [0 1]′, a2 = σ2
v , b2 = [0 0]′.

It will be simpler to work with the log utility function scaled by consumption. De�ne

wt ≡ log(Wt/ct) which, given the de�nition of utility, can be written as

wt = ρ−1 log[(1− β) + β exp(ρ log µt)].

We can approximate the right-hand side of this equation around the point log(µt) = m̄ to

obtain

wt ≈ ρ−1 log[(1− β) + β exp(ρm̄)] +
[

β exp(ρm̄)
1− β + β exp(ρm̄)

]
(log(µt)− m̄)

≡ κ̄ + κ log µt(wt+1 + xt+1).

Note that κ < 1. For the special case ρ = 0, i.e., a log time aggregator, this equation holds

exactly with κ̄ = 1−β and κ = β (see Hansen et al. (2005)). Similarly, if m̄ = 0, then κ̄ = 0

and κ = β.

Given the state variables and the log-linear structure of the model, we guess a solution for

the value function

wt = ω̄ + ωxxt + ωvvt,
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which implies

log µt = log µt (ω̄ + (ωx + 1)xt+1 + ωvvt+1)

= ω̄ + (ωx + 1)(1− φx)θx + ωv(1− φv)θv + (ωx + 1)ωxxt + ωvφvvt

+
α

2
(ωx + 1)2vt +

α

2
ω2

vσ
2
v .

We can use this expression to solve for the value-function parameters and verify its log-linear

solution

ωx = κ(ωx + 1)φx

⇒ ωx =
(

κ

1− κφx

)
φx

ωv = κ[ωvφv +
α

2
(ωx + 1)2]

⇒ ωv =
(

κ

1− κφv

) [
α

2

(
1

1− κφx

)2
]

ω̄ =
κ̄

1− κ
+

1
1− κ

[
(ωx + 1)(1− φx)θx + ωv(1− φv)θv +

α

2
ω2

vσ
2
v

]
.

This solution allows us to simplify the new term (in square brackets) in the Epstein-Zin

marginal rate of substitution,

wt+1 + xt+1 − log µt(wt+1 + xt+1) = (ωx + 1)[xt+1 − Etxt+1] + ωv[vt+1 − Etvt+1]

−α

2
(ωx + 1)2Vart[xt+1]− α

2
ω2

vVart[vt+1]

= (ωx + 1)v1/2
t εx

t+1 + ωvσvε
v
t+1 −

α

2
(ωx + 1)2vt − α

2
ω2

vσ
2
v .

Therefore, the real pricing kernel in this model is of the Du�e-Kan class with 2-factors and
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with parameters

δ = − log(β) + (1− ρ)(1− φx)θx +
α

2
(α− ρ)ω2

vσ
2
v

γ = [γx γv]′

=

[
(1− ρ)φx

α

2
(α− ρ)

(
1

1− κφx

)2
]′

λ = [λx λv]′

=

[
(1− α)− (α− ρ)

(
κφx

1− κφx

)
−

(α

2

)(
κ(α− ρ)
1− κφv

)(
1

1− κφx

)2
]′

.

We can now use the recursive formulas in equation (2) to solve for real discount bond prices.

Note how the factor loadings and prices of risk depend on the deeper structural parameters,

and the greatly reduced dimensionality of the parameter space relative to the general a�ne

model. Also note that for the time-additive expected utility special case, α = ρ, the volatility

factor does not enter conditional mean of the pricing kernel, γv = 0, and the price of risk

for the volatility factor is zero, λv = 0.

Finally, we can see from these expressions for bond prices that the two key preference

parameters, ρ and α, provide freedom in controlling both the factor loadings and the prices

or risk.

4 Nominal Bond Pricing

The nominal pricing kernel is given by

log(m$
t+1) = log(mt+1)− pt+1, (4)

where pt+1 is the log of the money-price of goods at t + 1 relative to t, i.e., in�ation.
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4.1 Exogenous In�ation

If we expand the state space to include an exogenous in�ation process, pt, the state vector

becomes zt = [xt vt pt]′. Further, we assume that the stochastic process for in�ation is

given by

pt+1 = (1− φp)θp + φppt + σpε
p
t+1,

where εp
t+1 is also normally distributed independently of the other two shocks. In this case,

the parameters for the a�ne nominal pricing kernel are given by

δ$ = δ + (1− φp)θp

γ$ = [γx γv φp]′

λ$ = [λx λv 1]′.

Note that in this exogenous in�ation model, the price of in�ation risk is always exactly 1,

and does not change with the values of deeper parameters.

4.2 Endogenous Monetary Policy

We begin by assuming that monetary policy follows an very simple nominal interest-rate

rule (we will abuse conventional terminology and often refer to this rule as a Taylor rule):

it = τ̄ + τppt + st, (5)

where the monetary policy shock satis�es

st = φsst−1 + σsε
s
t ,

and where εs is a standard normal shock, independent across time and independent of the

other two real shocks. Note that there are a variety of ways to specify Taylor rules (see Ang

9



et al. (2004)). We begin with this simple rule that targets the short rate as a function of

current in�ation to derive our basic results. We discuss straightforward extensions of this

rule below.

Since this nominal interest rate rule must also be consistent with equilibrium in the bond

market, i.e., it must be consistent with the nominal pricing kernel in equation (4) as well as

equation (5), we can use these two equations to �nd the equilibrium process for in�ation.

Guess a log-linear solution for pt

pt = π̄ + πxxt + πvvt + πsst. (6)

Substitute this guess into both the Taylor rule and the nominal pricing kernel and choose

parameters π̄, πx, πv and πs to equate the pricing-kernel-determined short rate with the

Taylor-rule-determined short rate. This implies the parameters for the equilibrium in�ation

process are given by

πx =
γx

τp − φx

πv =
γv − 1

2(λx + πx)2

τp − φv

πs = − 1
τp − φx

π̄ =
1

τp − 1

[
δ − τ̄ + πx(1− φx)θx + πv(1− φv)θv − 1

2
(λv + πv)2σ2

v −
1
2
πsσ

2
s

]
. (7)

(See Cochrane (2006) for a more detailed account of this rational expectations solution

method.)

It is clear from these expressions that the equilibrium in�ation process will depend on the

preference parameters of the household generally, and attitudes towards risk speci�cally.

Extending the analysis to include more general Taylor rules is straightforward. For example,
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had we written the policy rule as a function of the endowment growth as well as in�ation,

it = τ̄ + τxxt + τppt + τsst,

the endogenous in�ation process would have the same values of τp and τs, but the in�ation

response to changes in endowment growth would become

πx =
γx − τx

τp − φx
.

In a similar fashion, we can extend the analysis to any Taylor rule that is linear in state

variables, including lagged short rates, other contemporaneous yields at any maturity, as

well as forward-looking rules (as in Clarida et al. (2000)), since in the a�ne framework,

these are all simply linear functions of the current state variables. (See Ang et al. (2004) for

concrete examples.)

4.3 A Monetary-Policy Consistent Pricing Kernel

Substitute the equilibrium in�ation process from equations (6) and (7) into the nominal

pricing kernel to obtain a 3-factor model that is consistent with the nominal-interest rate

rule. The state space is given by

zt ≡ [xt vt st]′

Φ = diag{φx, φv, φs}

θ = [(1− φx)θx (1− φv)θv 0]′

Σ(zt) = diag{a1 + b′1zt, a2 + b′2zt, a3 + b′3zt}

a1 = 0, b1 = [0 1 0]′

a2 = σ2
v , b2 = [0 0 0]′

a3 = σ2
s , b3 = [0 0 0]′,
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and the parameters of the pricing kernel are given by

δ$ = δ + π̄ + φx(1− φx)θx + πv(1− φv)θv

γ$ = [γx + φxπx γv + φvπv φxπs]′

λ$ = [λx + πx λv + πv πs]′.

Note that the Taylor-rule parameters, through their determination of the equilibrium in�a-

tion process, a�ect both the factor loadings on the real factors as well as their prices or risk.

Potentially, therefore, this endogenous monetary policy can predict signi�cantly di�erent

risk premiums in the term structure than the exogenous-in�ation model. We explore this

possibility through numerical examples.

5 Quantitative Exercises

We calibrate our model to post-war US data as follows:

1. Endowment Growth. φx = 0.3549, θx = 0.0052, σx = 0.0048(1− φ2
x)1/2;

2. In�ation. φp = 0.8471, θp = 0.0093, σp = 0.0063(1− φ2
p)

1/2;

3. Volatility. φv = 0.9000, θv = 0.0006, σv = 0.0085(1− φ2
v)

1/2;

4. Policy Shock. φs = 0, σs = 0.0060.

The endowment growth process is calibrated to quarterly per capita consumption of durables

and services and in�ation is calibrated to the nondurables and services de�ator, as in Piazzesi

and Schneider (2006). The volatility process is taken from Bansal and Yaron (2004). The

monetary policy shock does not bear any close resemblance to anything measured in data

and given its simple form, it does not contribute signi�cantly to the risk premiums in the

yield curve.
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Figure 4 depicts the average yield curve for the Epstein-Zin stochastic volatility model with

both exogenous in�ation and endogenous, Taylor-rule driven, in�ation. The parameters τ̄

and β are not separately identi�ed in these models, so we implicitly choose values so that

the average short rate matches the data. We �x the other parameters of the model such

that ρ = 0, α = −2.91, τp = 1.5. That is, deterministic substitution is logarithmic, risk

aversion is moderate, and the feedback of in�ation to the short rate through the Taylor rule

is governed by a fairly standard parameter value (see Clarida et al. (2000)). The value of α

is chosen to create a su�ciently large average risk premium to roughly match the average

long yield.

Figure 4 demonstrates that with these parameter values, the exogenous in�ation model does

a fairly good job of matching the shape of the historical average yield curve. Note that the

red ∗s in the graph represent properties of the data and the solid blue line is a property of

the calibrated the model. However, this model exhibits more volatility in short rates and

less volatility in long rates than found in the data (the lower line in Figure 5). This is a

fairly standard �nding for term structure models with stationary dynamics (see Backus and

Zin (1994)).

When we add to this environment a Taylor rule that raises the short interest rate aggressively

in response to current in�ation, τp = 1.5, and re-solve for yields using the endogenous

equilibrium process for in�ation, we see in Figure 4 that risk premiums increase substantially.

In addition, Figure 5 demonstrates that the volatility of yields increases as all maturities as

a result of this endogenous monetary policy.

The reason for these increases is evident when we look at the yield-factor loadings, B(n),

across the exogenous in�ation model and the Taylor rule model. Figure 6 plots the loadings

on each of the state variables for the two models. The �rst panel shows that the factor

loading on endowment growth increases slightly and second panel shows that the factor

loading on the volatility factor increases substantially. This accounts for both the increased

premiums and the increased volatility. (The third panel plots the loadings on the exogenous
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in�ation factor and the monetary policy shock which are not directly comparable.)

Finally, when we can see that if we lower the degree of risk aversion in the endogenous-

in�ation economy from α = −2.91 to α = −2.77, we �nd that the model once again �ts the

shape of the average yield curve (Figure 7). Moreover, it exhibits the volatility of yields is

still high at the short end relative to the data and low at the long end (Figure 8). It appears

that when contemplating more serious econometric exercises with this model, it may be

di�cult to distinguish the monetary policy parameter, τp, from the degree of risk aversion,

α. (See Cochrane (2006) for a deeper discussion of similar identi�cation issues.)

6 Related Research

This model we develop is similar to a version of Bansal and Yaron (2004) that includes

stochastic volatility, however our simple autoregressive state-variable processes do not cap-

ture their richer ARMA speci�cations. This paper adds to a large and growing literature

combining structural macroeconomic models that include Taylor rules with arbitrage-free

term structures models. Ang and Piazzesi (2003), following work by Piazzesi (2005), have

shown that a factor model of the term structure that imposes no-arbitrage conditions can

provide a better empirical model of the term structure than a model based on unobserved

factors or latent variables alone. Estrella and Mishkin (1997), Evans and Marshall (1998),

Evans and Marshall (2001), Hördahl et al. (2003), Bekaert et al. (2005), and Ravenna and

Seppala (2006) also provide evidence of the bene�ts of building arbitrage-free term-structure

models with macroeconomic fundamentals. Rudebusch and Wu (2004) and Ang et al. (2004)

investigate the empirical consequences of imposing an optimal Taylor Rule on the perfor-

mance of arbitrage-free term-structure models.
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7 Conclusions

This paper demonstrates that an endogenous monetary policy that involves an interest-rate

feedback rule, can contribute to the riskiness of multi-period bonds by creating an endoge-

nous in�ation process that exhibits signi�cant covariance risk with the pricing kernel. We

explore this through a recursive utility model with stochastic volatility which generates siz-

able average risk premiums. Our results provoke a number of additional questions: The

Taylor rule that we work with is arbitrary. How would the predictions of the model change

with alternative speci�cation of the rule? In particular, how would adding monetary non-

neutralities along the lines of a New Keynesian Phillips curve (as in Clarida et al. (2000) and

Gallmeyer et al. (2005)) alter the monetary-policy consistent pricing kernel? What Taylor

rule would implement an optimal monetary policy in this context? (Note that since prefer-

ences have changed relative to the models in the literature, this is a nontrivial theoretical

question.)

In addition, the simple calibration exercise in this paper is not a very good substitute for a

more serious econometric exercise. Further research will explore the tradeo�s between shock

speci�cations, preference parameters and monetary policy rules for empirical yield curve

models that closer match historical evidence.

Finally, it would be instructive to compare and contrast the recursive utility model with

stochastic volatility to other preference speci�cations that are capable of generating realistic

risk premiums. The leading candidate on this dimension is the external habits models

of Campbell and Cochrane (1999). We are currently pursuing an extension of the external

habits model in Gallmeyer et al. (2005) to include an endogenous, Taylor-rule driven in�ation

process.
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Figure 1: Time series properties of the yield curve, 1970:1 to 2005:4.
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Figure 2: Average yield curve behavior.
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Figure 3: Volatility of yields of various maturities.
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Figure 4: Average yield curve for the Epstein-Zin model with stochastic volatility. Pref-
erence parameters: ρ = 0, α = −2.91. Monetary policy parameter: τp = 1.5.
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Figure 5: Volatility of the yield curve for the Epstein-Zin model with stochastic volatil-
ity. Preference parameters: ρ = 0, α = −2.91. Monetary policy parameter: τp = 1.5.
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Figure 6: Yield-Factor Loadings for the Epstein-Zin model with stochastic volatility.
Preference parameters: ρ = 0, α = −2.91. Monetary policy parameter: τp = 1.5.
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Figure 7: Average yield curve for the Epstein-Zin model with stochastic volatility. Pref-
erence parameters: ρ = 0, α = −2.77. Monetary policy parameter: τp = 1.5.
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Figure 8: Volatility of the yield curve for the Epstein-Zin model with stochastic volatil-
ity. Preference parameters: ρ = 0, α = −2.77. Monetary policy parameter: τp = 1.5.
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