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ABSTRACT

Minimum-t-statistics to test for a unit root are available when the form of break under the
alternative evolves according to the Crash, Changing Growth, and Mixed models. Serious
power distortions occur if the form of break is misspecified, and so the practitioner should use
the Mixed model as the appropriate alternative in empirical applications. The Mixed model
may reveal useful information regarding the location and form of break. A new maximal-F-
statistic is shown to have greater and less erratic power compared to the minimal-t-statistic.
Stronger evidence against the unit root is found for the Nelson-Plosser series and Quarterly
Real GNP.
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1. INTRODUCTION

Perron (1989) demonstrated that the conventional Dickey and Fuller (1979) t-statistic

(tDF ) accepts the null hypothesis of a unit root too often when the true data generating

process is in fact trend stationary with a break in the intercept and/or the slope of the trend

function. Three different characterizations of the trend-break alternative were considered:

(a) the Crash model that allows a break in the intercept; (b) the Changing Growth model that

allows for a break in the slope with the two segments joined at the break-date; and (c) the

Mixed model which allows for a simultaneous break in the intercept and the slope. In order to

devise unit root tests that have power against the trend-break stationary alternative, Perron

(1989) proposed the following methodology: first specify the location of break-date (Tb), and

then estimate a regression that nests the random walk null and the trend-break stationary

alternative of choice. Under the null hypothesis, he derives the limiting distribution of the

t-statistic on the first lag of the dependent variable, denoted by t i
DF (Tb) where i = A, B,

or C corresponds to the Crash, the Changing Growth, or the Mixed model respectively.

The limiting distribution of t i
DF (Tb) depends on the location and form of break under the

alternative hypothesis.

The assumption that the location of break is known a priori has been criticized by

a number of studies, most notably by Christiano (1992).1 Christiano (1992) argued that

1 Also see Banerjee, Lumsdaine and Stock (1992), and Zivot and Andrews (1992), and

Perron and Vogelsang (1992).
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the choice of the break-date is in most cases correlated with the data, for example, the

practitioner may determine the location of the break-date by visually inspecting a plot of

the time series. And since Perron’s (1989) methodology does not account for this ‘pretest

examination of data,’ the unit root null will be rejected too often. A number of studies

have proposed extensions for unit root tests that do not require the practitioner to pre-

specify the location of break, see Zivot and Andrews (1992), Banerjee, Lumsdiane and Stock

(1992), Perron and Vogelsang (1992), Perron (1997), Vogelsang and Perron (1998). The

strategy adopted by these studies is to apply Perron’s (1989) methodology for each possible

break-date in the sample which yields a sequence of t-statistics. Based on this sequence,

numerous ‘minimum-t-statistics’ can be constructed by choosing the t-statistic, based on

some algorithm, that maximizes evidence against the null hypothesis. For example, one may

simply use the minimum of the sequence of t-statistics, denoted by tmin
DF (i), i=A,B,C.

With the availability of the minimum-t-statistics, the practitioner no longer needs to

pre-specify the location of break. However, one must still specify the form of break under

the alternative hypothesis. If one assumes that the location of break is unknown, it is most

likely that the form of break will be unknown as well. We argue that selection of the form of

break is also correlated with the data and so one must proceed with the break specification

according to the most general Mixed model. In addition, one may expect power distortions if

the form of break is misspecified, that is, if one imposes the Crash (Changing Growth) model

when in fact the Changing Growth (Crash) or the Mixed model is appropriate. Consider,
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for example, the use of the Crash model specification under the alternative hypothesis when

the break occurs according to the Changing Growth or the Mixed model. The Crash model

minimum-t-statistic tmin
DF (A) is designed to maximize evidence against the null hypothesis in

favour of this particular alternative. If the true data generating process is given by the Mixed

model, we can expect the power of tmin
DF (A) to be lower than that of tmin

DF (C), especially if the

magnitude of the slope break is relatively large. We may expect even lower power of tmin
DF (A)

if the alternative evolves according to the Changing Growth model. On the other hand, if the

Crash hypothesis is the correct specification, then its use will yield superior power compared

to the Mixed model statistics. In practice, however, one is uncertain about the form of break.

Since one would like to guard against distortion in power owing to misspecification of the

form of break, we recommend that the practitioner use the Mixed model specification under

the alternative hypothesis.

Our first objective is to assess the performance of minimum-t-statistics when the form of

break is misspecified. To this end, we provide simulation evidence: (a) on the performance

of tests with the Crash model when the break occurs according to either the Changing

Growth or the Mixed model; (b) on the performance of tests with the Changing Growth

model when the break occurs according to either the Crash or the Mixed model; and (c) to

assess the loss in power of tests with the Mixed model when the break occurs according to

either the Crash or the Changing Growth model. We find that the loss in power is quite

small if the Mixed model specification is used when in fact the break occurs according to
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the Crash model. The loss in power is more substantial if the break occurs according to

the Changing Growth model. However, serious distortions can occur if the Crash (Changing

Growth) model is used when the appropriate model is either the Changing Growth (Crash)

model or the Mixed model. Therefore, our results indicate that one should use the form of

the break specified under the Mixed model, unless prior information about the nature of the

break suggests using either the Crash model or the Changing Growth model. In most cases,

we expect that information on the form of break will be accompanied with information on

the location of break in which case Perron’s (1989) tests should be used. Second, we propose

a new statistic for the Mixed model, denoted by Fmax
T , for the joint null hypothesis that

there is a unit root and no break in the intercept and slope of the trend function. We derive

the limiting distribution of the new statistic and tabulate the asymptotic and finite sample

critical values. Our simulation results show that the power properties of Fmax
T are less erratic

and can be greater than the Mixed model minimum-t-statistics.

Third, we illustrate our arguments within the context of an empirical example that has

received much attention in the literature. Numerous studies have used the Nelson and Plosser

(1982) data and post-war Quarterly Real GNP to test for the presence of a unit root. Perron

(1989) specified the Great Crash of 1929 as the break-date for all Nelson-Plosser series, and

the Oil Price Shock of 1973 for Quarterly Real GNP. Conditional on these break-dates, the

Crash model was specified for all Nelson-Plosser series, except Common Stock Prices and

Real Wages for which the Mixed model was used, and the Changing Growth model was used
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for Quarterly Real GNP. While subsequent studies by Zivot and Andrews (1992), Perron

(1997), and Nunes, Newbold, and Kuan (1997) have allowed for an unknown break-date,

they have retained the model specification proposed by Perron (1989). Unlike these studies,

we present empirical evidence for the presence of a unit root in all series when the alternative

allows for a simultaneous break in the intercept and slope. We find that the unit root null can

be rejected for all series with the exception of the GNP Deflator, Consumer Prices, Velocity,

and Interest Rate series. Our results are robust to possible misspecification of the form of

break and therefore reveal useful information regarding the location and form of break. For

instance, the empirical evidence in Zivot and Andrews (1992) indicates that Real Per Capita

GNP is characterized as a stationary process with break in the intercept occuring in 1929,

and both Money Stock and Quarterly Real GNP contain a unit root. By using the Mixed

model as the appropriate alternative, we strengthen the evidence against a unit root in Real

Per Capita GNP, and uncovered some evidence against the unit root for Money Stock and

Quarterly Real GNP. We estimate the break-date for Real Per Capita GNP in 1938, for

Money Stock in 1930, and for Quarterly Real GNP in 1964:IV. Our estimated break-dates

for these series are different from the estimated break-dates reported in Zivot and Andrews

(1992).

The outline of this paper is as follows. In section 2, we briefly discuss the minimum-t-

statistics that have been proposed in the literature. The power properties of these statistics

is assessed within the context of a simple simulation experiment when the form of break is
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misspecified. In section 3, we propose a statistic for the joint null hypothesis of a random

walk and no break in the intercept and slope, denoted by F max
T , and present its limiting null

distribution and critical values. In section 4, simulation evidence is used to contrast the finite

sample size and power properties of F max
T with those of the minimum-t-statistics. Empirical

evidence for the Nelson and Plosser (1982) data and U.S. Post-War Quarterly Real GNP is

presented in section 5. Concluding comments appear in section 6.

2. BACKGROUND AND MOTIVATION

We begin with a brief discussion of the null and alternative hypotheses of interest, and

the class of minimum-t-statistics. Our discussion follows the analysis in Zivot and Andrews

(1992). Consider the time series {yt}T
t=1 where T is the available sample size. The three dif-

ferent characterizations of the alternative hypothesis, originally discussed by Perron (1989),

are given by:

Model(A) : yt = µ0 + µ1 DUt(T
c
b ) + µ2 t+ α yt−1 + et (1)

Model(B) : yt = µ0 + µ2 t+ µ3 DTt(T
c
b ) + α yt−1 + et (2)

Model(C) : yt = µ0 + µ1 DUt(T
c
b ) + µ2 t+ µ3 DTt(T

c
b ) + α yt−1 + et (3)

where T c
b is the correct break-date, DUt(T

c
b) = 1(t>Tc

b
) , DTt(T

c
b) = (t− Tc

b) 1(t>Tc
b
) , and

1(t>T c
b
) is an indicator function that takes on the value 0 if t ≤ Tc

b and 1 if t > Tc
b. For

6



the asymptotic results, we assume that the break-date is a constant fraction of the sam-

ple size, that is, T c
b = λc T with the correct break-fraction λc ∈ (0,1). We assume that

A(L) et = B(L) νt , and νt is a sequence of i.i.d. (0, σ
2) random variables, A(L) and B(L) are

polynomials in the lag operator of order p and q respectively with all roots outside the unit

circle. Model (A) is referred to as the Crash model and it allows for a break in the intercept

alone, Model (B) is referred to as the Changing Growth model and it allows for a break in

the slope with the two segments joined at the break-date, and Model (C) is referred to as

the Mixed model and it allows for a simultaneous break in the intercept and the slope of

the trend function. Under the null hypothesis, the data generating process is a random walk

(possibly with drift), that is,

yt = µ0 + yt−1 + et (4)

In order to test the unit root null against the alternatives specified in (1)-(3), the following

methodology has been prescribed. Specify the interval Λ = [λ0, 1−λ0] ⊆ (0,1) that is believed

to contain the true break-fraction. For each possible λ ∈ Λ, estimate the following regression

that nests the null and the appropriate alternative:

yt = µ̂A
0 + µ̂A

1 DUt([λT ]) + µ̂A
2 t+ α̂A yt−1 +

k∑
j=1

ĉA
j ∆yt−j + êt (5)

yt = µ̂B
0 + µ̂B

2 t+ µ̂B
3 DTt([λT ]) + α̂B yt−1 +

k∑
j=1

ĉB
j ∆yt−j + êt (6)

yt = µ̂C
0 + µ̂C

1 DUt([λT ]) + µ̂C
2 t+ µ̂C

3 DTt([λT ]) + α̂C yt−1 +
k∑

j=1

ĉC
j ∆yt−j + êt (7)
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where [.] is the smallest integer function. The additional ‘k’ regressors {∆yt−j}k
j=1 are in-

cluded in the regression to eliminate the correlation in the disturbance term. Typically, the

value of the lag-truncation parameter (k) is unknown, and so a data-dependent method

for choosing the appropriate value of k is used, see Perron and Vogelsang (1992), Hall

(1992b,1994), Perron (1997), and Ng and Perron (1995). We use Perron and Vogelsang’s

(1992) data-dependent method k(t-sig) for selecting the lag-truncation parameter which is

described in what follows. Specify an upper bound ‘kmax’ for the lag-truncation parame-

ter. For each break-date [λT ], the chosen value of the lag-truncation parameter (k∗) is

determined according to the following ‘general to specific’ procedure: the last lag in an au-

toregression of order k∗ is significant, but the last lag in an autoregression of order greater

than k∗ is insignificant. The significance of the coefficient is assessed using the 10% critical

values based on a standard normal distribution. Regressions (5)-(7) are estimated for the

break-dates {[λ0T ], [λ0T ] + 1, . . . , T − [λ0T ]}, and the sequence of t-statistics for H0 : α = 1,

denoted by {t i
DF (Tb)}T−[λ0T ]

Tb=[λ0T ] (i=A,B,C) are calculated. Based on this sequence, a number

of minimum-t-statistics can be obtained by using an algorithm to choose the appropriate

break-date that maximizes evidence against equation (4), see Perron and Vogelsang (1992),

Banerjee, Lumsdaine and Stock (1992), Perron (1997) and Vogelsang and Perron (1998).

We consider two particular algorithms for choosing the break-date. The first statistic,

originally proposed by Perron and Vogelsang (1992) and Zivot and Andrews (1992), is ob-

tained by choosing the break-date that maximizes evidence against the unit root null, that
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is,

tmin
DF (i) = Min Tb∈{[λ0T ],[λ0T ]+1,...,T−[λ0T ]} t i

DF (Tb) (8)

for i=A,B,C. Perron (1997) demonstrated that tmin
DF (i) can be calculated with Λ=(0,1) so

that no trimming of the sample is necessary. The second statistic proposed by Banerjee,

Lumsdaine and Stock (1992) and Vogelsang and Perron (1998) is defined as:

t̂DF (i) = tDF (λ̂i) (9)

where λ̂i (i=A,B,C) is the break-date that maximizes the Wald statistic, F i
T ([λT ]), corre-

sponding to H0 : µ1 = 0 for the Crash model (i=A), H0 : µ3 = 0 for the Changing Growth

model (i=B), and H0 : µ1 = µ3 = 0 for the Mixed model (i=C).

The minimum-t-statistics, tmin
DF (i) and t̂DF (i) (i=A,B,C), do not require specification of

the location of break. However, the practitioner does need to specify the form of break under

the alternative hypothesis. Once the break-date is treated as unknown, the practitioner will

in most cases be unaware of the form of break. Since the Crash and Changing Growth

models are special cases of the Mixed model, we feel that the practitioner should specify the

Mixed model as the appropriate alternative. We can certainly expect some loss in power

from using the statistics from the Mixed model when in fact the break occurs according to

the Crash or Changing Growth model. However, we are uncertain about the behaviour of

the statistics from the Crash (Changing Growth) model when the break occurs according to

the Changing Growth (Crash) or Mixed model. In order to assess the power properties of
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tmin
DF (i) and t̂DF (i) (i=A,B,C) when the form of break is misspecified, we conduct a simple

simulation experiment. We generate data according to the alternative hypothesis:

yt = µ1 DU c
t + µ3 DT c

t + α yt−1 + et , t = 1, 2, . . . ,T (10)

where y0=0, et are i.i.d. N(0,1), DU c
t = 1(t > T c

b
), DT c

t = (t − T c
b ) 1(t > T c

b
), T

c
b=50, T=100,

α=0.8, µ1= {0, 1, 2, 4, 6, 8}, and µ3= {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We consider all parameter

combination of µ1 and µ3 (except µ1=0 and µ3=0). For each parameter combination, we

estimate regressions (5)-(7) and calculate tmin
DF (i) and t̂DF (i) with λ0=0.15 (i=A,B,C). We

set the lag-truncation parameter equal to its true value, that is, k=0. Based on 2,000

replications, we calculate the power of tmin
DF (i) and t̂DF (i) (i=A,B,C) using the asymptotic

critical values at the 5% significance level.2 The break occurs according to the Crash model

when µ1 �=0 and µ3=0, according to the Changing Growth model when µ1=0 and µ3 �=0,

and according to the Mixed model when µ1 �=0 and µ3 �=0. The power of tmin
DF (i) and t̂DF (i)

(i=A,B,C) when the true data generating process is given by the Crash model, the Changing

Growth model, and the Mixed model are presented in Tables 1, 2, and 3 respectively. We

briefly discuss the results from these simulations.3

2 The critical values for tmin
DF (i) (i=A,B,C) were obtained from Zivot and Andrews (1992),

see their Tables 2-4. The asymptotic critical values for t̂DF (i) (i=A,B,C) were obtained using

simulations.

3 Additional simulation evidence for tmin
DF (i) and t̂DF (i) (i=A,B,C) is presented in Section

4, see Tables 6-8, where the appropriate lag-truncation parameter is determined using the

10



We find that the power of tmin
DF (i) is greater than its counterpart t̂DF (i) (i=A,B,C) for all

cases considered here. The difference between tmin
DF (i) and t̂DF (i) is smallest for the Crash

model statistics and largest for the Mixed model statistics. Consider the results from the

Crash model simulations in Table 1. The statistics tmin
DF (A) and t̂DF (A) exhibit the best

power, and their power increase with the size of the intercept-break magnitude (µ1). In

comparison, the power of tmin
DF (C) and t̂DF (C) is less, but this difference diminishes as µ1

increases. The statistics tmin
DF (B) and t̂DF (B) have power close to zero in most cases. Next,

consider the results from the Changing Growth model simulations in Table 2. tmin
DF (B) and

t̂DF (B) exhibit the best power, and their power increase with the slope-break magnitude (µ3).

There is some loss in power from using tmin
DF (C), but this difference in power diminishes as

µ3 increases. The loss in power from using tmin
DF (C) is more severe compared to the Crash

model simulations. In all cases, tmin
DF (A) and t̂DF (A) have zero power.

Finally, consider the results from the Mixed model simulations in Table 3. For a fixed µ3,

the power of tmin
DF (A) and t̂DF (A) increase with the size of µ1, but this increase is dampened

for large values of µ3. For a fixed µ1, the power of t
min
DF (A) and t̂DF (A) falls with the size

of µ3. For example, when µ3=0.1, the power of t
min
DF (A) increases from 0.2985 for µ1=4 to

data-dependent k(t-sig) procedure of Perron and Vogelsang (1992). The use of the data-

dependent procedure to determine the appropriate lag-truncation parameter does not alter

the main results concerning the performance of tmin
DF (i) and t̂DF (i) (i=A,B,C). A few minor

differences in the power properties are discussed in Section 4.
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0.9980 for µ1=6. With µ3=0.3, the power of t
min
DF (A) falls to zero for µ1=4 and 0.1160 for

µ1=6. The statistics for the Changing Growth model, tmin
DF (B) and t̂DF (B), exhibit a similar

behaviour. For a fixed µ1, the power of t
min
DF (B) and t̂DF (B) increases with the size of µ3,

but this increase is dampened for large values of µ1. Further, for a fixed µ3, the power of

tmin
DF (B) and t̂DF (B) falls with the size of µ1. For example, when µ1=2, the power of t

min
DF (B)

increases from 0.0685 for µ3=0.1 to 0.9515 for µ3=0.3. With µ1=6, the power of tmin
DF (B)

falls to zero with µ3=0.1 and 0.0005 for µ3=0.3. Although the power of tmin
DF (C) and t̂DF (C)

does not always increase with the size of µ1 and µ3, there is general tendency for their power

to increase. For example, with µ3=0.2, the power of t
min
DF (C) falls from 0.3505 with µ1=1 to

0.2630 with µ1=2, and then increases with µ1. With µ1=4, the power of t
min
DF (C) falls from

0.7820 with µ3=0.1 to 0.5435 with µ3=0.3, but increase with further increase in µ3.

We can summarize the results from our simulations as follows. First, the Crash and

Changing Growth model simulations illustrate that substantial loss in power can occur if the

Changing Growth (Crash) model is used when in fact the true data generating process follows

the Crash (Changing Growth) model. In either case, the power of the Mixed model statistics

increase with the size of break, but there is some loss in power. This loss in power diminishes

with the size of the break. It is interesting to observe that the loss in power from using

the Mixed model statistics is larger if the break occurs according to the Changing Growth

model compared to the Crash model. Second, when the true data generating process occurs

according to the Mixed model, the statistics from the Crash (Changing Growth) model have
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the undesirable property that their power falls as the size of the slope-break (intercept-

break) increases. On the other hand, the power of Mixed model statistics in general increase

with the size of the slope-break and intercept-break. Therefore, using the Crash (Changing

Growth) model statistics will lead to incorrect acceptance of the null when the size of the

slope-break (intercept-break) is large. Our results indicate that misspecification of the form

of break can be crucial. We should point out that the use of the Crash (Changing Growth)

model may lead to higher power when the intercept-break (slope-break) is very large and

the slope-break (intercept-break) is small. In practice, however, one does not know the size

or form of the break and so we recommend using the test statistics from the Mixed model

so as to guard against misspecification.

3. TEST FOR THE JOINT NULL OF A RANDOM WALK AND NO BREAK

In this section we propose a test statistic for the joint null hypothesis of a unit root and

no break in the intercept and slope of the trend function. The results in this section are

direct extensions of the results in Banerjee, Lumsdaine, and Stock (1992). The model under

the alternative hypothesis allows for a simultaneous break in the intercept and the slope of

the trend function, that is:

yt = µ0 + µ1 DUt(Tb) + µ2 t+ µ3 DTt(Tb) + α yt−1 +
k∑

j=1

cj ∆yt−j + et (11)

where DUt(Tb) and DTt(Tb) are defined above, and et satisfies the following assumption
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ASSUMPTION 1: {et} is a martingale difference sequence and satisfies E(et|et−1, . . .) = σ2,

E(|et|i|et−1, . . .) = κi (i=3,4), and suptE(|et|4+γ|et−1, . . .) = κ < ∞ for some γ > 0.

The specification of the Mixed model in (11) assumes that the lag-truncation parameter is

known. The joint null hypothesis of interest is HJ
0 : α= 1, µ1= 0, and µ3= 0. Assumption 1

has been taken from Banerjee, Lumsdaine and Stock (1992). Although the location of break

is unknown, we assume that the break-fraction lies in Λ = (λ0, 1−λ0). To test the joint null

hypothesis HJ
0 , we proceed as follows. For each break-date corresponding to λ ∈ Λ, that

is, Tb ∈ {[λ0T], [λ0T] + 1, . . . ,T− [λ0T]}, we estimate the regression (11) and calculate the

Wald statistic corresponding to HJ
0 as:

F̂T (Tb) =
(R µ̂(Tb)− r)

[
R
(∑T

t=1 xt(Tb) xt(Tb)
′
)−1

R′
]−1

(R µ̂(Tb)− r)

q σ̂2(Tb)
(12)

where µ̂(Tb) is the Ordinary Least Squares (OLS) estimator of µ = (µ0, µ1, µ2, µ3, α, c1, . . . , ck)
′,

xt = (1, DUt(Tb), t, DTt(Tb), yt−1,∆yt−1, . . . ,∆yt−k)
′, r = (0, 0, 1)′, σ̂2(Tb) =

1
(T−5−k)

∑T
t=1(yt−

xt (Tb)
′µ̂)2, q is the number of restrictions, and R is defined so that Rµ = r corresponds to

the restrictions imposed on the parameter vector µ by the joint null HJ
0 . Specifically,

R =




0 1 0 0 0 0k

0 0 0 1 0 0k

0 0 0 0 1 0k



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Using the sequence of Wald statistics {FT (Tb)}T−[λ0T ]
Tb=[λ0T ], we calculate the maximum-F-statistic

for HJ
0 as follows:

F max
T = MaxTb∈{[λ0T ],[λ0T ]+1,...,T−[λ0T ]}FT (Tb) (13)

In order to determine the asymptotic distribution of the test statistic we transform (11)

according to Banerjee, Lumsdaine, and Stock (1992). Define the transformed regressors

as Zt−1(Tb) = [Z1
t−1, 1, yt−1 − µ̄0 (t − 1), 1(t>Tb), (t − Tb) 1(t>Tb), t]

′ with Z1
t−1 = [∆yt−1 −

µ̄0,∆yt−2 − µ̄0, . . . ,∆yt−k − µ̄0], µ̄0 = E[∆yt] = µ0/(1−∑k
j=1 cj). The corresponding trans-

formed parameter vector is defined as θ = (θ′1, θ2, θ3, θ4, θ5, θ6) with θ1 = (c1, c2, . . . , ck)
′,

θ2 = µ0 + [
∑k

j=1 cj − α] µ̄0, θ3 = α, θ4 = µ1, θ5 = µ3, and θ6 = µ2 + α µ̄0. Using this

transformation, we can re-write (11) as: yt = Zt−1(Tb)
′ θ + et for t = 1, 2, . . . ,T. The OLS

estimator of the transformed parameter vector is

θ̂(Tb) =

[
T∑

t=1

Zt−1(Tb)Zt−1(Tb)
′
]−1 [ T∑

t=1

Zt−1(Tb) yt

]
(14)

Using the scaling matrix ΥT = Diag(T1/2 Ik,T
1/2,T,T1/2,T3/2,T3/2), we can get the following

expression:

ΥT

[
θ̂(Tb)− θ0

]
= [ΓT (Tb)]

−1 [ΨT (Tb)] (15)

where ΓT (Tb) = Υ−1
T

(∑T
t=1 Zt−1(Tb)Zt−1(Tb)

′
)
Υ−1

T and ΨT (Tb) = Υ−1
T

(∑T
t=1 Zt−1(Tb) et

)
.

The following result establishes the asymptotic distribution of the scaled parameter vector.
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THEOREM 1 : Suppose yt is generated according to (11) with µ1 = µ2 = µ3 = 0 and α = 1

and {et} satisfies Assumption 1. Then, ΥT

[
θ̂([λT ])− θ0

]
⇒ [Γ(λ)]−1 Ψ(λ), where Ψ(λ) =

σ{B(1),W (1),
∫ 1
0 J(λ) dW (λ),W (1)−W (λ), (1− λ)W (1)− ∫ 1

λ W (δ) dδ,W (1)− ∫ 1
0 W (δ) dδ}

and Γ11(λ) = Ωk, Γ22(λ) = 1, Γ33(λ) =
∫ 1
0 J(δ)2 dδ, Γ44(λ) = 1 − λ, Γ55(λ) =

1
3
(1 − λ)3,

Γ66(λ) =
1
3
, Γ1j(λ) = 0k for i = 2, 3, . . . , 6, Γ23(λ) =

∫ 1
0 J(δ) dδ, Γ24(λ) = 1 − λ, Γ25(λ) =

1
2
(1− λ)2, Γ26(λ) =

1
2
, Γ34(λ) =

∫ 1
λ J(δ) dδ, Γ35(λ) =

∫ 1
λ (λ− δ)J(δ) dδ, Γ36(λ) =

∫ 1
0 δJ(δ) dδ,

Γ45(λ) =
1
2
(1−λ)2, Γ46(λ) =

1
2
(1−λ2), Γ56(λ) =

1
3
− 1

2
λ+ 1

6
λ3, W (λ) is a standard Brownian

motion on [0,1], J(λ) ≡
(
1−∑k

i=1 ci

)−1
σW (λ), B(λ) is a p-dimensional Brownian motion

with covariance matrix Ωk, W and B are independent.

The proof of this result follows as a straightforward extension of the results in Banerjee,

Lumsdaine, and Stock (1992). For a fixed break-date Tb = [λT ], the Wald statistic for

testing the joint null hypothesis HJ∗
0 : θ4 = 0, θ5 = 0, θ3 = 1 is:

F̂T ([λT ]) =

(
R∗ θ̂([λT ])− r

) R∗
(

T∑
t=1

Zt−1([λT ])Zt−1([λT ])
′
)−1

R∗′


−1 (

R∗ θ̂([λT ])− r
)

q σ̂2∗([λT ])

where σ̂2∗([λT ]) = (T−5−k)−1∑T
t=1(yt−Zt−1([λT ])

′ θ̂([λT ]))2, q is the number of restrictions

under HJ∗
0 , r = (0, 0, 1)′, and R∗ is chosen so that R∗θ = r under HJ∗

0 . Specifically, we set
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R∗ =




0k 0 1 0 0 0

0k 0 0 1 0 0

0k 0 0 0 1 0




The limiting distribution of θ̂([λT ]) given in Theorem 1 implies that:

F̂T ([λT ]) ⇒
(R∗[Γ(λ)]−1Ψ(λ))

′ (
R∗[Γ(λ)]−1R∗′

)−1
(R∗[Γ(λ)]−1Ψ(λ))

q σ2
≡ F (λ) (16)

and using the continuous mapping theorem, we get:

F max
T ⇒ supλ∈Λ F (λ) (17)

The limiting distribution of F max
T in (17) depends on the choice of Λ = (λ0, 1−λ0). The crit-

ical values for supλ∈ΛF (λ) are tabulated for λ0=0.15, 0.10, 0.05 in Table 4. The asymptotic

critical values are obtained by simulation methods. First, we approximate one realization

of the Brownian Motion, denoted by W(.), on a sufficiently find grid [1/n,2/n,...,(n-1)/n,1].

We generate n=1000 independent random draws from a N(0,1/
√
1000) distribution and ap-

proximate W(.) by the cumulative sum of this sequence. We use the realization of W(.) to

calculate the various elements in Γ(λ) and Ψ(λ), the integrals are approximated by sums

over the grid on the unit interval. This in turn yields one realization from the distribution

of F max
T with λ0. We generate 5,000 realizations from the limiting distribution and calculate

the critical values from the sorted vector of replicated statistics. We also calculate finite

sample critical values for F max
T with λ0=0.15,0.10,0.05 for sample size T=100, 200. The
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finite sample critical values are simulated with data generated according to the null model

as:

yt = yt−1 + et , t = 1, 2, . . . ,T (18)

with y0=0, et are i.i.d. N(0,1), T is the sample size. The finite sample critical values are

calculated when the true value of the lag-truncation is chosen (k=0) and when the lag-

truncation parameter is determined using the data-dependent method k(t-sig) for choosing

the appropriate lag-truncation parameter. With the data dependent method k(t-sig), we

use kmax=5 and 2,000 replications. When the true value of the lag-truncation parameter is

used (k=0), we use 10,000 replications.

4. FINITE SAMPLE SIZE AND POWER

In this section, we present finite sample size and power results for the F max
T statistic.

We draw attention to the differences in the power of F max
T and the minimum-t-statistics

from the Mixed model, namely, tmin
DF (C) and t̂DF (C). We follow the experimental design in

Vogelsang and Perron (1998), and generate data according to:

[
1− (α + ρ)L+ ρL2

]
yt = (1 + ψ L) [µ1 DU c

t + µ3 DT c
t + et] , t = 1, 2, . . . ,T (19)

For the size simulations, we set α=1, and for the power simulations we set α=0.8. The

sample size for all simulations is T=100, the correct break-date T c
b=50 , DU c

t = DUt(T
c
b )

and DT c
t = DTt(T

c
b ), and et ∼ i.i.d. N(0,1). We use the following combinations of (ρ, ψ):
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{(0,0);(0.6,0);(-0.6,0);(0,0.5);(0,-0.5)}. For the size simulations, we set µ1 = µ3=0. For the

power simulations, we consider the data generating process under: (a) the Crash model with

a break in the intercept for µ1={1,2,4,6,8}; (b) the Changing Growth model with a break in

the slope for µ3={0.1,0.2,0.3,0.4,0.5}; (c) the Mixed model with a simultaneous break in the

intercept and slope for µ1={1,2,4,6} and µ3={0.1,0.2,0.3,0.4}. For each parameter combina-

tion we generated 2,000 replications. We calculate the size and power of following statistics

at the 5% significance level using the appropriate finite sample critical values: tmin
DF (i) and

t̂DF (i) for i=A,B,C, and F max
T . The lag-truncation parameter (k) in the regressions (5)-(7) is

chosen according to the k(t-sig) procedure mentioned in section 2 with kmax=5. The power

of all statistics under the Crash model, the Changing Growth model, and the Mixed model

are given in Tables 6, 7, and 8 respectively.

The finite sample size for all statistics is presented in Table 5. The exact size of F max
T is

close to the nominal size in most cases, except when there is a negative MA component, that

is, (ρ, ψ)=(0,-0.5). The exact size of F max
T is lower compared to tmin

DF (C), but greater than the

size of all other statistics. Let us now turn to the results pertaining to the power simulations.

The power properties of the minimum-t-statistics is very similar to their behaviour in the

simulations reported in section 2, see Tables 1-3.4 First, consider the results from the Crash

4 One minor difference in the results is that there are numerous instances when the power of

t̂DF (i) is greater than the power of the corresponding tmin
DF (i) for i=A,B, but these differences

are quite small.
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Model simulations given in Table 6. Substantial loss in power can occur if the Changing

Growth model is specified since the power of tmin
DF (B) and t̂DF (B) is close to zero except

when the magnitude of the intercept-break (µ1) is very small. The power of F max
T , tmin

DF (C)

and t̂DF (C) increases with µ1. The power of F
max

T is greater than the power of tmin
DF (C) and

t̂DF (C), except for small µ1. When F max
T has lower power, the largest difference in the power

of F max
T and tmin

DF (C) occur when (ρ, ψ)=(0,0.6). In all other cases this difference is less than

0.0435. We find that the power of F max
T is greater than that of tmin

DF (A) and t̂DF (A), except

for small values of µ1. In these instances, the median difference in power is 0.0505.

Second, a similar pattern emerges in the Changing Growth simulations in Table 7. There

is considerable loss in power if the Crash model statistics are used when the true data

generating process follows the Changing Growth model, that is, the power of tmin
DF (A) and

t̂DF (A) is close to zero in most cases. In all cases, the power of t̂DF (B) is greater than the

power of tmin
DF (B). The power of F max

T , tmin
DF (C) and t̂DF (C) increases with the size of the

slope-break (µ3). The power of F max
T is greater than the power of tmin

DF (C) and t̂DF (C),

except for small values of µ3. When F max
T has lower power, the largest difference in the

power of F max
T and tmin

DF (C) occur when (ρ, ψ)=(0,0.6). In all other cases this difference is

less than 0.0430. The loss in power from using F max
T diminishes with the size of µ3.

Finally, consider the results of the Mixed model power simulations in Table 8. For a fixed

µ3, the power of the Crash model statistics increase with µ1, and the power of the Changing

Growth model statistics decrease with µ1. For a fixed µ1, the power of the Crash model
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statistics decreases with µ3 and the power of the Changing Growth statistics increases with

µ3. Therefore, t
min
DF (i) and t̂DF (i), i=A,B, can fail to reject the unit root null if the true data

generating process is given by the Mixed model with a relatively large µ3 (µ1). For example,

if µ1=4 and µ3=0.1 with (ρ, ψ)=(0,0), then the power of tmin
DF (A) is 0.2545, the power of

tmin
DF (B) is 0, and the power of F max

T is 0.9890. The power of F max
T is in most cases greater

than the power of tmin
DF (C) and t̂DF (C), except in cases when µ1 and µ3 are both small. In

this case the difference is less than 0.0280. The power of F max
T increases with the size of

both µ1 and µ3.
5 The power of F max

T is greater than the power of tmin
DF (A) and t̂DF (A) in all

cases. However, the power of F max
T is less than the power of tmin

DF (B) and t̂DF (B) when µ1

is small.

Our simulations indicate that the power of F max
T is greater than the power of tmin

DF (C) and

t̂DF (C) except when the magnitude of intercept-break and/or slope-break is relatively small.

In these cases, the use of F max
T does not result in large loss in power. In addition, F max

T has

5 The behaviour of the Mixed model minimum-t-statistics is sometimes erratic, in that,

their power does not always increase with the size of µ1 and µ3, except when (ρ, ψ)=(0,0.6).

The power of tmin
DF (C) and t̂DF (C) tend to fall slightly with the size of µ3 when µ1 is large.

For example, consider the power of tmin
DF (C) when (ρ, ψ)=(0,0). When µ1=1, the power of

tmin
DF (C) increases from 0.2115 with µ3=0.1 to 0.4750 with µ3=0.3. But with µ1=4, the power

of tmin
DF (C) falls from 0.6180 with µ3=0.1 to 0.4235 with µ3=0.3. The behaviour of t

min
DF (C)

and t̂DF (C) is even more erratic when µ3 is fixed and µ1 increases.
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the desirable property that its power increases with the magnitude of the intercept-break

and slope-break.

5. EMPIRICAL RESULTS FOR NELSON AND PLOSSER (1982) DATA

In this section, we revaluate the evidence for the presence of a unit root in all Nelson and

Plosser (1982) series, except Unemployment, and post-war U.S. Quarterly Real GNP.6 We

analyze the natural logarithm of all series except the Interest Rate series which is analyzed

in level form. Empirical evidence for the Nelson-Plosser data can be found in Zivot and

Andrews (1992), Perron (1997), and Nunes, Newbold, and Kuan (1997). While these studies

do not pre-specify the location of break, they retain Perron’s (1989) characterization of the

form of break under the alternative hypothesis. In particular, Perron (1989) specified the

Changing Growth model for Quarterly Real GNP, the Mixed model for Real Wages and

Common Stock Prices, and the Crash model the remaining series. However, Perron’s (1989)

specification of the form of break is based on his selection of the Great Crash of 1929 for

all Nelson-Plosser series and the Oil Price Shock of 1973 for Quarterly Real GNP series as

appropriate break-dates. We feel that once the location of break is treated as unknown, the

form of break should also be treated as unknown. So one must proceed with the most general

6 The Nelson and Plosser (1982) data was kindly provided by Herman Bierens. The data

for Quarterly Real GNP (1947:I - 2000:II) was retrieved from the Federal Reserve Economic

Data (FRED) database.
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characterization of the break under the alternative hypothesis, namely, a simultaneous break

in the intercept and/or slope.

We present empirical evidence for all Nelson and Plosser (1982) series and Quarterly

Real GNP when the Mixed model is used as the appropriate alternative. We use the k(t-

sig) method of Perron and Vogelsang (1992) to determine the appropriate order of the lag-

truncation parameter in regression (7). Following Zivot and Andrews (1992), we use kmax=8

for the Nelson-Plosser (1982) series and kmax=12 for Quarterly Real GNP. In Table 9, we

report the calculated statistics tmin
DF (C), t̂DF (C) and F max

T for each series, and the corre-

sponding estimated break-dates denoted by T̂b(t
min
DF ), T̂b(t̂DF ) and T̂b(F

max
T ) respectively.

The results for regression (7) corresponding to the different estimated break-dates is pre-

sented in Table 10.7

First, consider the results for tmin
DF (C) and T̂b(t

min
DF ). If we use the asymptotic critical

7 We found that the results for Common Stock Prices and Real Wages given in Table 6

of Zivot and Andrews (1992) are incorrect. The estimated regression results for Real Wages

with Tb= 1940 and k=8 yields the results reported in Zivot and Andrews (1992), but the

t-statistic on the ∆yt−8 was found to be 1.2277 which is less than 1.6. While the estimated

regression results for Common Stock Prices with Tb=1936 and k=1 yield the results reported

in Zivot and Andrews (1992), we found that with k=3 the t-statistic on ∆yt−3 is 1.96 which

is greater than 1.6. Therefore, in both cases the k(t-sig) procedure for choosing the lag-

truncation parameter was not applied correctly.
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values for tmin
DF (C) given in Zivot and Andrews (1992), we reject the unit root null at the

1% significance level for Real GNP, Nominal GNP, Industrial Production, at the 2.5% sig-

nificance level for Real Per Capita GNP, Common Stock Prices, Real Wages, at the 5%

significance level for Employment, Nominal Wages, Quarterly Real GNP, and the 10% sig-

nificance level for Money Stock. We fail to reject the unit root null for the GNP Deflator,

Consumer Prices, Velocity, and Interest Rate series. Of the series for which the unit root

null is rejected, the estimated break-date T̂b(T
min

DF ) does not coincide with the Great Crash

(1929) for Real Per Capita GNP, Money Stock, Common Stock Prices, and Real Wages.

In addition, the estimated break-date for Quarterly Real GNP does not coincide with the

Oil Price shock of 1973. The evidence against the unit root null is weakened if we use the

finite sample critical values given in Perron (1997) for tmin
DF (C) with lag-truncation parameter

selected using the k(t-sig) method. With the finite sample critical values, we cannot reject

the unit root null for Employment, Nominal Wages, Money Stock, and Quarterly Real GNP.

Since we do not allow for a break under the unit root null hypothesis, our results should be

compared to the results in Zivot and Andrews (1992). We reject the unit root null hypothesis

for Money Stock, Real Wages, and Quarterly Real GNP in addition to all series for which

Zivot and Andrews (1992) rejected the unit root null. Further, our evidence is stronger for

Real Per Capita GNP. Unlike Zivot and Andrews (1992), our estimated break-date for Real

Per Capita GNP is 1938, for Money Stock is 1930, for Common Stock Prices is 1939, and for

Quarterly Real GNP is 1964.IV. Our estimated break-date coincides with the Great Crash of
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1929 for Real GNP, Nominal GNP, Industrial Production, Employment, and Nominal Wages.

In cases for which the unit root null is rejected, we can determine the significance of constant

(µ0), the intercept-break coefficient (µ1), the trend (µ2), and the slope-break coefficient (µ3)

using the standard normal distribution. The estimated coefficients and their respective t-

statistics are presented in Table 10. The t-statistics for µ0, µ1, and µ2 are significant for all

series, with the sole exception of µ2 for Real Per Capita GNP. The slope-break coefficient µ3

is significant for Nominal GNP, Real Per Capita GNP, Money Stock, Common Stock Prices,

Real Wages, and Quarterly Real GNP.

Second, the results for t̂DF (C) are qualitatively similar to those of t̂min
DF (C). The critical

values for t̂DF (C), both asymptotic and finite sample with lag-truncation parameter chosen

according to the k(t-sig) method, can be found in Vogelsang and Perron (1998). Based on

the asymptotic critical values, we reject the unit root null at the 1% significance level for

Nominal GNP, Industrial Production, at the 2.5% significance level for Real GNP, Common

Stock Prices, Real Wages, at the 5% significance level for Real Per Capita GNP, Employment,

and at the 10% significance level for Money Stock, and Quarterly Real GNP. The unit root

null cannot be rejected for GNP Deflator, Consumer Prices, Nominal Wages, Velocity, and

Interest Rate. The results for all series are in agreement with the results corresponding to

tmin
DF (C), with the exception of Nominal Wages. The estimated break-date T̂b(t̂DF ) is the

same as T̂b(t
min
DF ) for all series for which the unit root is rejected, except Common Stock

Prices for which the estimated break-date is 1936. The use of finite sample critical values
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weakens the evidence against the unit root null somewhat.

Finally, consider the results with F max
T . The critical values for F max

T , both asymptotic and

finite sample, are obtained from Table 4 above. Based on the asymptotic critical values, we

can reject the joint null hypothesis at the 1% significance level for Nominal GNP, Industrial

Production, Real Wages, at the 2.5% level for Real GNP, Real Per capita GNP, Common

Stock Prices, at the 5% significance level for Employment, Nominal Wages, Interest Rate.

The use of finite sample critical values leads to a rejection of the joint null hypothesis for

these series at higher significance levels. Although F max
T fails to reject HJ

0 for the Money

Stock and Quarterly Real GNP series, it is borderline significant at the 10% significance level.

Also, F max
T is significant for the Interest Rate series. The estimated break-date T̂b(F

max
T ) is

the same as T̂b(t
min
DF ) for all series for which the joint null hypothesis is rejected, except for

Nominal Wages and Interest Rate. The break-date, T̂b(F
max

T ), for Nominal Wages is 1920

and 1964 for Interest Rate.

The failure of tmin
DF (C) and t̂DF (C) to reject H0 : α=1 for the Interest Rate series, and

the significance of F max
T can be explained as follows. It is reasonable to rule out a non-

zero trend (µ2 �= 0 and µ3 �= 0) in the presence of a unit root, see Perron (1988), pp 304.

Therefore, F max
T will be significant if either |α| < 1 or if α=1 and µ1 �= 0. Since Vogelsang

and Perron (1998) have shown that the limiting distribution of tmin
DF (C) is invariant to a shift

in the intercept under the null, the rejection of HJ
0 can be attributed to the presence of a

break under the unit root null hypothesis. To sum up, our results indicate that the unit
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root null hypothesis cannot be rejected for GNP Deflator, Consumer Prices, Velocity, and

Interest Rate. For all other series, we reject the unit root null hypothesis. Since we have

not imposed the form of break under the alternative hypothesis, our results are robust to

possible misspecification and reveal important information regarding the location and form

of break. Consider, for example, the results with Real Per Capita GNP. In this case, the

evidence against a unit root is strengthened by using the Mixed model as the appropriate

alternative, and we find that unlike previous empirical evidence the estimated break-date

does not coincide with the Great Crash but rather the break occurs considerably later in

1938. Also, we uncover evidence against the unit root null for Money Stock and Quarterly

Real GNP when the Mixed model is used. While the estimated break-date for Money Stock

is 1930, that for Quarterly Real GNP is 1964.IV. The estimated break date of 1964 for

the Quarterly Real GNP series coincides with the tax-cut mentioned in Christiano (1992).

In contrast to earlier studies, our results indicate that a slope-break coefficient should be

included for Nominal GNP, Real Per Capita GNP, Money Stock, and Quarterly Real GNP.

6. CONCLUSION

In this paper, we have argued that the practitioner should treat the form of break as

unknown when testing for the presence of a unit root. Earlier studies have considered

three different characterizations of the form of break under the alternative of trend-break

stationarity, namely, the Crash model, the Changing Growth model, and the Mixed model.
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The Crash model allows for a break in the intercept alone, and the Changing Growth model

allows for a break in the slope with the two segments joined at the break-date. On the other

hand, a simultaneous break in the intercept and slope is permitted under the Mixed model.

Minimum-t-statistics to test for a unit root have been developed for all three characterizations

of the alternative when the location of break is unknown. Once the form of break is treated

as unknown, the Mixed model is the appropriate alternative.

Misspecification of the form of break can have serious implications for the power of the

minimum-t-statistics. Our simulations indicate that the Crash (Changing Growth) model

minimum-t-statistics fail to reject the unit root null if the break occurs according to the

Changing Growth (Crash) model. However, there is some loss in power from using the

Mixed model minimum-t-statistics when the break occurs according to the Crash or Changing

Growth models. While the loss in power when the break occurs according to the Crash is

negligible, the loss in power can be fairly large when the break occurs according to the

Changing Growth model. We propose a maximal-F-statistic for the joint null hypothesis

that there is a unit root and no break in the intercept and slope. We derive the limiting

distribution of the maximal-F-statistic, and also tabulate its finite sample and asymptotic

critical values. We find that the maximal-F-statistic can have greater power than the Mixed

model minimum-t-statistics, and its power properties are less erratic. The use of Mixed model

with both the minimal-t-statistics and the maximal-F-statistic yield a testing procedure that

is robust to misspecification of the form of the break. In addition, these statistics may

28



reveal important characteristics pertaining to the location and form of break. We test for

the presence of a unit root in all Nelson and Plosser (1982) series except unemployment,

and post-war U.S. Quarterly Real GNP. Unlike previous studies, we specify the alternative

according to the Mixed model. Our results are most directly comparable to those in Zivot

and Andrews (1992) since we do not allow for a break under the unit root null. We find

evidence against the presence of a unit root in all series except GNP Deflator, Consumer

Prices, Velocity, and Interest Rate.
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Table 1: Finite Sample Power of tmin
DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size

Crash Model DGP: yt = µ1DU
c
t + αyt−1 + et, et ∼ i.i.d. N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C)

µ1=1.0 µ3=0 0.3000 0.2285 0.1075 0.0730 0.2430 0.2210
µ1=2.0 0.5135 0.4035 0.0010 0.0005 0.3140 0.2870
µ1=4.0 0.9960 0.9865 0.0000 0.0000 0.8790 0.8650
µ1=6.0 1.0000 1.0000 0.0000 0.0000 1.0000 0.9990
µ1=8.0 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
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Table 2: Finite Sample Power of tmin
DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size

Changing Growth Model DGP: yt = µ3DT
c
t + αyt−1 + et, et ∼ i.i.d. N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C)

µ1=0.0 µ3=0.1 0.0015 0.0015 0.4345 0.3700 0.2325 0.2060
µ3=0.2 0.0000 0.0000 0.6330 0.5650 0.2740 0.2175
µ3=0.3 0.0000 0.0000 0.8795 0.8420 0.4010 0.2735
µ3=0.4 0.0000 0.0000 0.9785 0.9720 0.6430 0.4115
µ3=0.5 0.0000 0.0000 0.9975 0.9965 0.8460 0.5200
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Table 3: Finite Sample Power of tmin
DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size

Mixed Model DGP: yt = µ1DU
c
t + µ3DT

c
t + αyt−1 + et, et ∼ i.i.d. N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C)

µ1=1.0 µ3=0.1 0.0020 0.0015 0.3570 0.3040 0.2390 0.2040
µ1=2.0 0.0000 0.0000 0.0685 0.0535 0.2440 0.2155
µ1=4.0 0.2985 0.2080 0.0000 0.0000 0.7820 0.7565
µ1=6.0 0.9980 0.9965 0.0000 0.0000 0.9970 0.9960
µ1=8.0 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000

µ1=1.0 µ3=0.2 0.0000 0.0000 0.7420 0.6750 0.3505 0.2340
µ1=2.0 0.0000 0.0000 0.5285 0.4580 0.2630 0.1725
µ1=4.0 0.0000 0.0000 0.0020 0.0010 0.6580 0.6175
µ1=6.0 0.7485 0.6440 0.0000 0.0000 0.9895 0.9875
µ1=8.0 1.0000 0.9995 0.0000 0.0000 1.0000 1.0000

µ1=1.0 µ3=0.3 0.0000 0.0000 0.9480 0.9315 0.5670 0.3175
µ1=2.0 0.0000 0.0000 0.9515 0.9355 0.5230 0.1750
µ1=4.0 0.0000 0.0000 0.2920 0.2170 0.5435 0.4850
µ1=6.0 0.1160 0.0650 0.0005 0.0000 0.9710 0.9635
µ1=8.0 0.9865 0.9725 0.0000 0.0000 1.0000 1.0000

µ1=1.0 µ3=0.4 0.0000 0.0000 0.9910 0.9855 0.7745 0.4150
µ1=2.0 0.0000 0.0000 0.9980 0.9975 0.8505 0.2175
µ1=4.0 0.0000 0.0000 0.9710 0.9505 0.5800 0.3480
µ1=6.0 0.0055 0.0020 0.2415 0.1440 0.9405 0.9290
µ1=8.0 0.7765 0.6725 0.0000 0.0000 1.0000 1.0000

µ1=1.0 µ3=0.5 0.0000 0.0000 0.9995 0.9995 0.9310 0.5190
µ1=2.0 0.0000 0.0000 1.0000 1.0000 0.9740 0.2695
µ1=4.0 0.0000 0.0000 1.0000 1.0000 0.8915 0.2280
µ1=6.0 0.0005 0.0005 0.9715 0.9205 0.8825 0.8270
µ1=8.0 0.3040 0.2020 0.2210 0.0770 0.9990 0.9990
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Table 4: Critical Values for F max
T with Λ0 = [λ0, 1− λ0]

1% 2.5% 5% 10%
λ0=0.15

T=100 k=0 12.0157 10.8744 10.0248 9.0628
k(t-sig) 13.0842 11.8875 10.7809 9.7820

T=200 k=0 11.6450 10.4785 9.6730 8.8708
k(t-sig) 12.6811 11.0691 10.3038 9.3692

T=∞ 10.9288 10.1691 9.4376 8.6958

λ0=0.10
T=100 k=0 12.1731 10.9391 10.0970 9.1282

k(t-sig) 13.0842 11.8875 10.8409 9.8127

T=200 k=0 11.7058 10.5348 9.7310 8.9164
k(t-sig) 12.7662 11.1565 10.3460 9.3941

T=∞ 10.9841 10.2152 9.4931 8.7353

λ0=0.05
T=100 k=0 12.1958 10.9940 10.1425 9.1871

k(t-sig) 13.0842 11.9215 10.8752 9.8674

T=200 k=0 11.7236 10.5892 9.7763 8.9535
k(t-sig) 12.7662 11.1565 10.4089 9.4368

T=∞ 11.0364 10.2414 9.5427 8.7946
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Table 5: Finite Sample Size of F max
T , tmin

DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size
DGP: yt = (α + ρ)yt−1 − αρyt−2 + (1 + ψL) et, α=1, et ∼ i.i.d N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C) F max

T

ρ=0.0 ψ=0.0 0.0420 0.0405 0.0495 0.0530 0.0585 0.0535 0.0525
ρ=0.6 ψ=0.0 0.0550 0.0505 0.0605 0.0615 0.0580 0.0545 0.0695
ρ=-0.6 ψ=0.0 0.0405 0.0390 0.0530 0.0545 0.0540 0.0520 0.0510
ρ=0.0 ψ=0.5 0.0640 0.0585 0.0785 0.0790 0.0845 0.0800 0.0865
ρ=0.0 ψ=-0.5 0.3160 0.2815 0.3180 0.3080 0.4320 0.4030 0.4125
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Table 6: Finite Sample Power of F max
T , tmin

DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size
Crash Model DGP: yt = (α+ ρ)yt−1 − αρyt−2 + (1 + ψL) [µ1DU

c
t + et], et ∼ i.i.d N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C) F max

T

α=0.8, ρ=0.0, ψ=0.0
µ1=1 0.2380 0.2440 0.0740 0.0725 0.1995 0.1885 0.1560
µ1=2 0.3660 0.3800 0.0010 0.0010 0.2305 0.2270 0.3640
µ1=4 0.9825 0.9815 0.0000 0.0000 0.7875 0.7860 0.9850
µ1=6 1.0000 1.0000 0.0000 0.0000 0.9970 0.9945 1.0000
µ1=8 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

α=0.8, ρ=0.6, ψ=0.0
µ1=1 0.8030 0.7655 0.5695 0.5510 0.7620 0.7150 0.6875
µ1=2 0.8800 0.8690 0.1965 0.1955 0.8200 0.7920 0.7870
µ1=4 0.9985 0.9985 0.0060 0.0075 0.9825 0.9790 0.9915
µ1=6 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000
µ1=8 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

α=0.8, ρ=-0.6, ψ=0.0
µ1=1 0.0780 0.0825 0.0205 0.0215 0.0670 0.0640 0.0770
µ1=2 0.2100 0.2100 0.0005 0.0005 0.0585 0.0575 0.3440
µ1=4 0.9685 0.9545 0.0000 0.0000 0.4515 0.4355 0.9940
µ1=6 1.0000 1.0000 0.0000 0.0000 0.9530 0.9305 1.0000
µ1=8 1.0000 1.0000 0.0000 0.0000 1.0000 0.9975 1.0000

α=0.8, ρ=0.0, ψ=0.5
µ1=1 0.2245 0.2185 0.0750 0.0730 0.2080 0.1965 0.1740
µ1=2 0.3710 0.3655 0.0015 0.0010 0.2280 0.2160 0.3755
µ1=4 0.9820 0.9810 0.0000 0.0000 0.7795 0.7790 0.9850
µ1=6 1.0000 1.0000 0.0000 0.0000 0.9975 0.9970 1.0000
µ1=8 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

α=0.8, ρ=0.0, ψ=-0.5
µ1=1 0.7265 0.6935 0.4345 0.4145 0.7580 0.7065 0.7325
µ1=2 0.7215 0.6775 0.0770 0.0755 0.6840 0.6275 0.7060
µ1=4 0.9820 0.9810 0.0000 0.0000 0.8685 0.8525 0.9830
µ1=6 1.0000 1.0000 0.0000 0.0000 0.9965 0.9960 0.9995
µ1=8 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000
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Table 7: Finite Sample Power of F max
T , tmin

DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size
Changing Growth Model DGP: yt = (α+ ρ)yt−1 − αρyt−2 + (1 + ψL) [µ3DT

c
t + et], et ∼ i.i.d N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C) F max

T

α=0.8, ρ=0.0, ψ=0.0
µ3=0.1 0.0000 0.0000 0.3110 0.3340 0.1870 0.1720 0.1440
µ3=0.2 0.0000 0.0000 0.5150 0.5400 0.2120 0.1720 0.2350
µ3=0.3 0.0000 0.0000 0.7470 0.7680 0.3153 0.2390 0.4400
µ3=0.4 0.0000 0.0000 0.9365 0.9445 0.5190 0.3475 0.7655
µ3=0.5 0.0000 0.0000 0.9915 0.9930 0.7385 0.4495 0.9450

α=0.8, ρ=0.6, ψ=0.0
µ3=0.1 0.1010 0.1085 0.8225 0.8315 0.7215 0.7040 0.6265
µ3=0.2 0.0000 0.0000 0.8625 0.8765 0.7030 0.6740 0.6360
µ3=0.3 0.0000 0.0000 0.9225 0.9305 0.7430 0.6815 0.7165
µ3=0.4 0.0000 0.0000 0.9675 0.9725 0.7845 0.7020 0.7925
µ3=0.5 0.0000 0.0000 0.9880 0.9930 0.8190 0.7000 0.8790

α=0.8, ρ=-0.6, ψ=0.0
µ3=0.1 0.0000 0.0000 0.1985 0.2105 0.0680 0.0590 0.0775
µ3=0.2 0.0000 0.0000 0.4055 0.4215 0.1085 0.0825 0.2350
µ3=0.3 0.0000 0.0000 0.7940 0.8000 0.3220 0.2105 0.7140
µ3=0.4 0.0000 0.0000 0.9800 0.9780 0.6755 0.4380 0.9600
µ3=0.5 0.0000 0.0000 0.9990 0.9955 0.9165 0.6150 0.9870

α=0.8, ρ=0.0, ψ=0.5
µ3=0.1 0.0010 0.0010 0.3155 0.3415 0.1860 0.1725 0.1555
µ3=0.2 0.0000 0.0000 0.5375 0.5625 0.2220 0.1840 0.2570
µ3=0.3 0.0000 0.0000 0.7450 0.7660 0.3160 0.2340 0.4495
µ3=0.4 0.0000 0.0000 0.9360 0.9430 0.5040 0.3310 0.7200
µ3=0.5 0.0000 0.0000 0.9910 0.9910 0.7230 0.4610 0.9045

α=0.8, ρ=0.0, ψ=-0.5
µ3=0.1 0.0100 0.0095 0.7600 0.7700 0.7210 0.7215 0.7060
µ3=0.2 0.0000 0.0000 0.8125 0.8205 0.7110 0.7050 0.7000
µ3=0.3 0.0000 0.0000 0.8940 0.9015 0.7000 0.6840 0.7280
µ3=0.4 0.0000 0.0000 0.9565 0.9630 0.7460 0.7025 0.8150
µ3=0.5 0.0000 0.0000 0.9920 0.9925 0.8095 0.7035 0.9245
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Table 8: Finite Sample Power of F max
T , tmin

DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size
Mixed Model DGP: yt = (α+ ρ)yt−1 − αρyt−2 + (1 + ψL) [µ1DU

c
t + µ3DT

c
t + et], et ∼ i.i.d N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C) F max

T

α=1, ρ=0.0, ψ=0.0
µ1=1 µ3=0.1 0.0005 0.0005 0.3070 0.3345 0.2115 0.1900 0.2100
µ1=2 0.0015 0.0015 0.0760 0.0845 0.1770 0.1640 0.4350
µ1=4 0.2545 0.2615 0.0000 0.0000 0.6180 0.6175 0.9890
µ1=6 0.9920 0.9805 0.0000 0.0000 0.9930 0.9915 1.0000
µ1=1 µ3=0.2 0.0000 0.0000 0.6450 0.6720 0.3100 0.2335 0.3650
µ1=2 0.0000 0.0000 0.5835 0.6130 0.2735 0.1525 0.6625
µ1=4 0.0110 0.0115 0.0380 0.0455 0.5065 0.4995 0.9960
µ1=6 0.5835 0.5720 0.0000 0.0000 0.9645 0.9605 1.0000
µ1=1 µ3=0.3 0.0000 0.0000 0.8705 0.8820 0.4750 0.3325 0.6075
µ1=2 0.0000 0.0000 0.9480 0.9545 0.5885 0.2540 0.8525
µ1=4 0.0005 0.0005 0.4920 0.5290 0.4235 0.3610 0.9995
µ1=6 0.1360 0.1350 0.0250 0.0320 0.9245 0.9190 1.0000
µ1=1 µ3=0.4 0.0000 0.0000 0.9740 0.9770 0.6530 0.3930 0.8595
µ1=2 0.0000 0.0000 0.9950 0.9970 0.8010 0.2950 0.9660
µ1=4 0.0005 0.0000 0.9600 0.9695 0.5945 0.2545 0.9985
µ1=6 0.0330 0.0350 0.3915 0.4430 0.8350 0.8285 1.0000
α=1, ρ=0.6, ψ=0.0
µ1=1 µ3=0.1 0.1025 0.1110 0.7845 0.7945 0.7480 0.7295 0.7015
µ1=2 0.0635 0.0690 0.4970 0.5185 0.8035 0.7875 0.8150
µ1=4 0.3505 0.3610 0.0825 0.0890 0.9720 0.9630 0.9905
µ1=6 0.9905 0.9905 0.0040 0.0045 1.0000 1.0000 1.0000
µ1=1 µ3=0.2 0.0000 0.0000 0.8875 0.9015 0.7695 0.7240 0.7375
µ1=2 0.0005 0.0010 0.7855 0.8040 0.8000 0.7645 0.8625
µ1=4 0.0025 0.0030 0.2525 0.2775 0.9650 0.9585 0.9960
µ1=6 0.3135 0.3505 0.0500 0.0590 0.9985 0.9985 1.0000
µ1=1 µ3=0.3 0.0000 0.0000 0.9565 0.9610 0.8005 0.7140 0.7980
µ1=2 0.0000 0.0000 0.9470 0.9550 0.8390 0.7605 0.9205
µ1=4 0.0005 0.0005 0.5760 0.6085 0.9655 0.9510 0.9985
µ1=6 0.0110 0.0150 0.2205 0.2375 0.9995 0.9995 1.0000
µ1=1 µ3=0.4 0.0000 0.0000 0.9885 0.9895 0.8500 0.7155 0.8860
µ1=2 0.0000 0.0000 0.9900 0.9915 0.8935 0.7540 0.9615
µ1=4 0.0000 0.0000 0.8835 0.9065 0.9685 0.9415 0.9995
µ1=6 0.0005 0.0005 0.5025 0.5360 0.9990 0.9990 1.0000
α=1, ρ=-0.6, ψ=0.0
µ1=1 µ3=0.1 0.0010 0.0010 0.2710 0.2935 0.1265 0.1105 0.1465
µ1=2 0.0005 0.0000 0.1365 0.1545 0.0740 0.0545 0.4850
µ1=4 0.2660 0.2365 0.0000 0.0000 0.2205 0.2155 0.9950
µ1=6 0.9910 0.9675 0.0000 0.0000 0.8315 0.8190 1.0000
µ1=1 µ3=0.2 0.0000 0.0000 0.6715 0.6930 0.2700 0.2025 0.4265
µ1=2 0.0000 0.0000 0.8605 0.8745 0.4295 0.1530 0.7825
µ1=4 0.0130 0.0075 0.2205 0.2525 0.1395 0.1050 0.9980
µ1=6 0.6400 0.5860 0.0035 0.0040 0.6130 0.5965 1.0000
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Table 8 (Continued): Finite Sample Power of F max
T , tmin

DF (i) and t̂DF (i) (i=A,B,C), 5% nominal size
Mixed Model DGP: yt = (α+ ρ)yt−1 − αρyt−2 + (1 + ψL) [µ1DU

c
t + µ3DT

c
t + et], et ∼ i.i.d N(0,1)

tmin
DF (A) t̂DF (A) tmin

DF (B) t̂DF (B) tmin
DF (C) t̂DF (C) F max

T

α=1, ρ=-0.6, ψ=0.0
µ1=1 µ3=0.3 0.0000 0.0000 0.9145 0.9245 0.5390 0.3500 0.8140
µ1=2 0.0000 0.0000 0.9765 0.9795 0.7645 0.2760 0.9455
µ1=4 0.0000 0.0000 0.9515 0.9580 0.5210 0.0460 0.9995
µ1=6 0.1585 0.1205 0.2765 0.3170 0.3380 0.3245 1.0000
µ1=1 µ3=0.4 0.0000 0.0000 0.9865 0.9870 0.8080 0.4850 0.9625
µ1=2 0.0000 0.0000 0.9980 0.9980 0.9215 0.3870 0.9930
µ1=4 0.0000 0.0000 0.9995 0.9945 0.9295 0.0625 1.0000
µ1=6 0.0075 0.0050 0.9555 0.9535 0.4935 0.1620 1.0000
α=1, ρ=0.0, ψ=0.5
µ1=1 µ3=0.1 0.0000 0.0010 0.3285 0.3530 0.2220 0.2010 0.2405
µ1=2 0.0010 0.0010 0.1120 0.1240 0.2065 0.1875 0.4995
µ1=4 0.2775 0.2920 0.0005 0.0005 0.6005 0.5900 0.9860
µ1=6 0.9920 0.9890 0.0000 0.0000 0.9805 0.9805 1.0000
µ1=1 µ3=0.2 0.0000 0.0000 0.6875 0.7145 0.3720 0.2855 0.4170
µ1=2 0.0000 0.0000 0.6685 0.6965 0.3495 0.1865 0.6750
µ1=4 0.0180 0.0165 0.0500 0.0620 0.4805 0.4640 0.9940
µ1=6 0.6055 0.6355 0.0005 0.0015 0.9530 0.9505 1.0000
µ1=1 µ3=0.3 0.0000 0.0000 0.8910 0.8995 0.4930 0.3300 0.6260
µ1=2 0.0000 0.0000 0.9635 0.9700 0.6435 0.2905 0.8640
µ1=4 0.0025 0.0015 0.6265 0.6620 0.4140 0.3190 0.9965
µ1=6 0.1820 0.1965 0.0530 0.0690 0.8820 0.8810 1.0000
µ1=1 µ3=0.4 0.0000 0.0000 0.9735 0.9785 0.6630 0.4255 0.7200
µ1=2 0.0000 0.0000 0.9915 0.9920 0.8160 0.3515 0.8395
µ1=4 0.0000 0.0000 0.9795 0.9845 0.6635 0.2335 0.9405
µ1=6 0.0430 0.0470 0.5100 0.5610 0.7755 0.7605 1.0000
α=1, ρ=0.0, ψ=-0.5
µ1=1 µ3=0.1 0.0075 0.0085 0.7275 0.7385 0.7410 0.7325 0.7265
µ1=2 0.0015 0.0015 0.4005 0.4110 0.7120 0.6880 0.7785
µ1=4 0.1755 0.1950 0.0030 0.0030 0.7960 0.7680 0.9845
µ1=6 0.9780 0.9810 0.0000 0.0000 0.9890 0.9890 1.0000
µ1=1 µ3=0.2 0.0000 0.0000 0.8565 0.8660 0.7565 0.7405 0.7575
µ1=2 0.0000 0.0000 0.7580 0.7755 0.7450 0.7125 0.8375
µ1=4 0.0030 0.0025 0.0770 0.0840 0.7500 0.6945 0.9935
µ1=6 0.3810 0.4205 0.0000 0.0000 0.9860 0.9855 1.0000
µ1=1 µ3=0.3 0.0000 0.0000 0.9365 0.9445 0.7760 0.7330 0.7950
µ1=2 0.0000 0.0000 0.9635 0.9705 0.8380 0.7425 0.9250
µ1=4 0.0000 0.0000 0.4025 0.4405 0.7205 0.6240 0.9975
µ1=6 0.0650 0.0745 0.0035 0.0045 0.9640 0.9640 1.0000
µ1=1 µ3=0.4 0.0000 0.0000 0.9840 0.9855 0.8250 0.7555 0.8925
µ1=2 0.0000 0.0000 0.9925 0.9940 0.9000 0.7680 0.9680
µ1=4 0.0000 0.0000 0.9030 0.9175 0.7665 0.5975 0.9995
µ1=6 0.0075 0.0080 0.1200 0.1450 0.9210 0.9185 1.0000
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Table 9: Empirical Results for the Nelson-Plosser (1982) Data and Quarterly Real GNP
Mixed Model Regression: yt = µ̂0 + µ̂1DUt(Tb) + m̂u2 t+ µ̂3DTt(Tb) + α̂ yt−1 + êt

Series tmin
DF (C) T̂b(tmin

DF ) t̂DF (C) T̂b(t̂DF ) F max
T Tb(F max

T )
Real GNP −5.6577(a,c) 1929 −5.6577(b,b) 1929 10.9804(b,c) 1929

Nominal GNP −6.1741(a,b) 1929 −6.1741(a,a) 1929 13.0122(a,b) 1929

Real Per Capita GNP −5.2983(b,d) 1938 −5.2983(c,c) 1938 10.2524(b,d) 1938

Industrial Production −5.8192(a,c) 1929 −5.8192(a,b) 1929 12.0478(a,b) 1929

Employment −5.1995(c,.) 1929 −5.1995(c,d) 1929 10.2154(c,d) 1929

GNP Deflator −4.1723 1929 −4.1723 1920 8.5103 1920

Consumer Prices −3.5120 1893 −2.1086 1869 8.3915 1863

Nominal Wages −5.2147(c,.) 1929 −3.6338 1920 9.9920(c,d) 1920

Money Stock −4.9709(d,.) 1930 −4.9709(d,d) 1930 8.7065 1930

Velocity −3.9737 1929 −3.9737 1929 5.5704 1929

Interest Rate −1.8785 1963 −1.3131 1964 9.8964(c,d) 1964

Common Stock Prices −5.5152(b,d) 1939 −5.5015(b,c) 1936 10.2942(b,d) 1939

Real Wages −5.4509(b,d) 1940 −5.4509(b,c) 1940 11.3206(a,c) 1940

Quarterly Real GNP −5.1135(c,.) 1964.IV −5.1135(d,d) 1964.IV 8.7649 1964.IV

NOTE: The small letters in parenthesis that appear as superscript indicate the significance of these statistics.
The first letter in the parenthesis indicates significance with respect to the asymptotic critical values, and
the second letter indicates significance with respect to the appropriate finite sample critical values. ‘a’, ‘b’,
‘c’, and ‘d’ indicate significance at the 1%, 2.5%, 5%, and 10% significance level, and ‘.’ appears if the
statistic is not significant at the 10% significance level. The asymptotic and finite sample critical values of
tmin
DF (C) are taken from Table 4 in Zivot and Andrews (1992) and Table 1 in Perron (1997) respectively. The
asymptotic and finite sample critical values for t̂DF (C) were obtained from Table 3 in Vogelsang and Perron
(1998). The asymptotic and finite sample critical values for F max

T are taken from Table 4 above.
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Table 10: Estimated Regressions for the Nelson-Plosser (1982) Data and Quarterly Real GNP
Mixed Model Regression: yt = µ̂0 + µ̂1DUt(Tb) + m̂u2 t+ µ̂3DTt(Tb) + α̂ yt−1 + êt

Series Tb k∗ µ̂0 µ̂1 µ̂2 µ̂3 α̂ S(ê)
Real GNP 1929 8 3.6921 -0.1793 0.0241 0.0045 0.2352 0.0503

(5.6850) (-4.2164) (4.1459) (1.0059) (-5.6577)
Nominal GNP 1929 8 5.4047 -0.2799 0.0224 0.0115 0.5057 0.0680

(6.2240) (-4.5282) (3.0520) (1.7811) (-6.1741)
Real Per Capita GNP 1938 2 3.2484 0.1326 0.0010 0.0072 0.5490 0.0522

(5.3017) (4.0687) (0.7412) (3.1672) (-5.2983)
Industrial Production 1929 8 0.1339 -0.3239 0.0331 0.0012 0.3005 0.0876

(4.3925) (-5.1854) (5.6933) (0.9001) (-5.8192)
Employment 1929 8 5.1709 -0.0747 0.0098 -0.0015 0.4914 0.0289

(5.2386) (-3.8435) (4.5430) (-1.6187) (-5.1995)
GNP Deflator 1929 5 0.6601 -0.0899 0.0061 0.0010 0.7831 0.0435

(4.2638) (3.1706) (3.6491) (1.0358) (-4.1723)
1920 5 0.2720 -0.0997 0.0060 -0.0026 0.9042 0.0418

(2.4134) (4.2269) (4.0137) (-2.0290) (-2.6100)
Consumer Prices 1893 5 0.3813 -0.0205 -0.0009 0.0031 0.8921 0.0361

(3.3150) (-1.1960) (-0.8578) (2.2153) (-3.5120)
1869 0 0.3109 -0.0077 -0.0193 0.0204 0.9528 0.0520

(3.7658) (-0.2035) (-2.8023) (2.9934) (-2.1086)
Nominal Wages 1929 7 2.1348 -0.1640 0.0177 -0.0004 0.6581 0.0542

(5.2841) (-3.8359) (4.4476) (-0.1847) (-5.2147)
1920 7 0.9733 -0.1516 0.0211 -0.0133 0.8357 0.0535

(3.4607) (-4.3287) (4.4541) (-3.0775) (-3.6338)
Money Stock 1930 8 0.4831 -0.1053 0.0212 -0.0023 0.6893 0.0419

(5.4325) (-3.4871) (4.6864) (-1.9341) (-4.9709)
Velocity 1929 1 0.3540 -0.0473 -0.0041 0.0060 0.7635 0.0636

(3.6305) (-1.7643) (-3.3186) (3.6149) (-3.9737)
Interest Rate 1963 3 0.4049 -0.0231 -0.0016 0.1594 0.9047 0.2481

(1.8000) (-0.0987) (-0.7641) (2.8927) (-1.8785)
1964 0 0.2403 -0.1287 -0.0004 0.2157 0.9421 0.2475

(1.2593) (-0.5393) (-0.1989) (3.4392) (-1.3131)
Common Stock Prices 1939 1 0.5320 -0.1942 0.0078 0.0261 0.6038 0.1397

(5.2391) (-2.5958) (4.7365) (4.6067) (-5.5152)
1936 3 0.5743 -0.2783 0.0090 0.0252 0.5702 0.1392

(5.2399) ( -3.6409) (4.8941) (4.9949) (-5.5015)
Real Wages 1940 3 1.8163 0.0842 0.0086 0.0047 0.3892 0.0307

(5.4785) (4.3846) (5.3509) (3.3869) (-5.4509)
Quarterly Real GNP 1964.IV 12 1.3289 0.0171 0.0015 -0.0001 0.8218 0.0086

(5.1524) (4.1128) (4.8642) (-1.7395) (-5.1135)

NOTE: Tb is the chosen break-date, k∗ is the value of the lag-truncation parameter chosen according to the
k(t-sig) procedure of Perron and Vogelsang (1992) with kmax=8 for all series except Quarterly Real GNP
for which kmax=12. The t-statistics appear in parenthesis. The t-statistic for α̂ tests the hypothesis that
α=1. S(ê) is the estimated standard deviation of the regression error.
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APPENDIX

Outline of Proof for Theorem 1: For any λ ∈ Λ, we would like to show that: [ΓT ([λT ])]−1 [ΨT ([λT ])] ⇒
[Γ(λ)]−1 [Ψ(λ)]

First consider: ΨT ([λT ]) = [Ψ1,T ([λT ]),Ψ2,T ([λT ]),Ψ3,T ([λT ]),Ψ4,T ([λT ]),Ψ5,T ([λT ]),Ψ6,T ([λT ])]′.
Using the results in Banerjee, Lumsdaine, Stock (1992), it follows that:

Ψ1,T ([λT ]) = T−1/2 ∑T
t=1 Z

1
t−1 et ⇒ σB(1)

Ψ2,T ([λT ]) = T−1/2 ∑t
t=1 et ⇒ σW (1)

Ψ3,T ([λT ]) = T−1 ∑T
t=1[yt−1 − µ̄0(t− 1)]et ⇒ σ

∫ 1
0 J(δ) dW (δ)

Ψ4,T ([λT ]) = T−1/2 ∑T
t=[λ T ]+1 et ⇒ σ[W (1)−W (λ)]

Ψ5,T ([λT ]) = T−3/2∑T
t=[λ T ]+1(t− [λT ])et

= T−3/2∑T
t=1 t et − T−3/2∑[λT

t=1 t et − ([λT ]/T )
[
T−1/2∑T

t=1 et − T−1/2∑[λT ]et

t=1

]

⇒ σ [W (1)− ∫ 1
0 W (δ) dδ − λW (λ) +

∫ λ
0 W (δ) dδ − λW (1) + λW (λ)]

= σ [(1− λ)W (λ)− ∫ 1
λ W (δ) dδ]

Ψ6,T ([λT ]) = T−3/2∑T
t=1 tet ⇒ σ[W (1)− ∫ 1

0 W (δ) dδ ]

where J(λ) ≡ [1−∑k
i=1 ci]

−1σW (λ). Therefore, ΨT ([λT ]) ⇒ Ψ(λ)

The convergence of Ψ2,T ([λT ]), Ψ4,T ([λT ]), Ψ5,T ([λT ]), and Ψ6,T ([λT ]) follows from the As-
sumption 1 and the Functional Central Limit Theorem. The convergence of Ψ3,T ([λT ]) fol-
lows from T−1∑T

t=1[yt−1−µ̄0(t−1)] et ⇒ σ
∫ 1
0 J(δ) dW (δ), and the convergence of Ψ1,T ([λT ])

follows from T−1/2∑[λT ]
t=1 Z1

t−1 et ⇒ σ B(λ) where B(λ) is a k-dimensional Brownian motion
with covariance matrix E[Z1

t Z1 ′
t ] = Ωk.

Next, consider [ΓT ([λT ])] = Υ−1
T

[∑T
t=1 Zt−1([λT ])Zt−1([λT ])′

]
Υ−1

T . Let Γi,j,T (.) denoted

the (i,j)th element of ΓT (.). Straightforward calculations yield the results for Γi,j,T ([λT ])
for i,j=2,4,5,6. The convergence of Γ2,3,T ([λT ]) and Γ3,i,T ([λT ]) for j=3,4,5,6 follows from

T−1/2∑[λT ]
t=1 (∆ yt − µ̄0) ⇒ (1 − ∑k

j=1 cj)
−1σW (λ) ≡ J(λ). The convergenc of Γ1,1,T ([λT ])

follows from T−1∑T
t=1 Z

1
t−1 Z

1 ′
t−1

p→ Ωk, the convergence of Γ1,j,T ([λ t]) for j=2,4,5,6 follows
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from the Functional Central Limit Theorem, and the convergence of Γ1,3,T ([λT ]) follows
from T−3/2∑T

t=1 Z
1
t−1 yt ⇒ 0k. Combining these results, we obtain ΓT ([λT ]) ⇒ Γ(λ), and

the result in Theorem 1 follows, that is:

Γ1,1,T ([λT ]) = T−1
T∑

t=1

Z1
t−1 Z

1 ′
t−1 ⇒ Ωk, Γ1,2,T ([λT ]) = T−1

T∑
t=1

Z1
t−1 → 0k

Γ1,3,T ([λT ]) = T−3/2
T∑

t=1

Z1
t−1 [yt−1 − µ̄0(t− 1)] → 0k,Γ1,4,T ([λT ]) = T−1

T∑
t=[λ T ]+1

Z1
t−1 → 0k

Γ1,5,T ([λT ]) = T−2
T∑

t=[λ T ]+1

(t− [λT ])Z1
t−1 → 0k Γ1,6,T ([λT ]) = T−2

T∑
t=1

t Z1
t−1 → 0k

Γ2,2,T ([λT ]) = 1, Γ2,3,T ([λT ]) = T−3/2
T∑

t=1

[yt−1 − µ̄0 (t− 1)] ⇒
∫ 1

0
J(δ) dδ

Γ2,4,T ([λT ]) = (T − [λT ])/T → (1− λ) Γ2,5,T ([λT ]) = T−2
T∑

t=[λ T ]+1

(t− [λT ]) → (1− λ)2/2

Γ2,6,T ([λT ]) = T−2
T∑

t=1

t → 1/2 Γ3,3,T ([λT ]) = T−2
T∑

t=1

[yt−1 − µ̄0 (t− 1)]2 ⇒
∫ 1

0
J(δ)2 dδ

Γ3,4,T ([λT ]) = T−3/2
T∑

t=[λT ]+1

[yt−1 − µ̄0 (t− 1)] ⇒
∫ 1

λ
J(δ) dδ

Γ3,5,T ([λT ]) = T−5/2
T∑

t=[λT ]+1

[yt−1 − µ̄0 (t− 1)] (t− [λT ]) ⇒
∫ 1

λ
(δ − λ) J(δ) dδ

Γ3,6,T ([λT ]) = T−5/2
T∑

t=1

[yt−1 − µ̄0 (t− 1)] t ⇒
∫ 1

0
δ J(δ) dδ

Γ4,4,T ([λT ]) = (T − [λT ])/T → 1− λ, Γ4,5,T ([λT ]) = T−2
T∑

t=[λ T ]+1

(t− [λT ]) → (1− λ)2/2

Γ4,6,T ([λT ]) = T−2
T∑

t=[λ T ]+1

t → (1− λ2)/2, Γ5,5,T ([λT ]) = T−3
T∑

t=[λ T ]+1

(t− [λT ])2 → (1− λ)3/3

Γ5,6,T ([λT ]) = T−3
T∑

t=[λ T ]+1

(t− [λT ]) t → 1/3− λ/2 + λ3/6, Γ6,6,T ([λT ]) = T−2
T∑

t=1

t2 → 1/3

45


