MORE EFFICIENT ESTIMATION UNDER
NON-NORMALITY WHEN HIGHER
MOMENTS DO NOT DEPEND ON THE
REGRESSORS, USING
RESIDUAL-AUGMENTED LEAST SQUARES*

Kyung So Im Peter Schmidt
Wichita State University Michigan State University

August 1999
This revision, May, 2000

Abstract

Suppose that the Gauss-Markov assumptions hold, so least squares is
best linear unbiased. Under normality, least squares is efficient. However,
if the errors are not normal, we can hope to find extra efficiency by ex-
amining higher order moments. We can gain efficiency from knowledge of
higher order moments of the errors, but also just from the assertion that
these moments do not depend on the regressors. Thus, for example, the
assumption of no conditional heteroskedasticity leads to more efficient es-
timation except when the third moment of the errors is zero, and similar
statements hold for higher-order moments. In this paper we show how the
assumption that higher moments do not depend on the regressors can be
exploited in a GMM framework, and we provide very simple estimators
that are equivalent to GMM estimators. These simple estimators can be
calculated by linear regressions which have been augmented with functions
of the least squares residuals.
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1 INTRODUCTION

In this paper we consider the efficiency gains that are possible in least squares
regression from consideration of higher order moments of the errors. These ef-
ficiency gains can be realized in a GMM framework if the moments are known,
but also if the moments are simply assumed to be unrelated to the regressors,
and should be possible except when the errors are normal.

To be more precise, consider first the case that y;, i = 1,..., N, is a random
sample from a distribution with mean g and variance o2, which corresponds to
the “intercept only” case of a regression. Define p; = E(y—p), j=2,3,..., and
assume for the moment that p; is finite for all j. The sample mean is based on the
moment condition E(y — p) = 0, and is the eflicient estimator under normality.
Suppose now that we add the second moment condition E[(y — p)? — %] = 0.
If 0? is unknown the GMM estimator of p is still the sample mean. But if o2
is known, we get a different estimator, and this estimator is more efficient than
the sample mean unless p; = 0. Similarly, knowledge of the third moment allows
us to improve on the sample mean unless p, = 30*. Of course, under normality
ps = 0 and p, = 30, so we don’t improve on the sample mean. We show that
this result extends to higher moments, and that in fact the only distribution
for which all higher moments exist but are uninformative for the mean is the
normal distribution. When efficiency gains are possible, we show that they can
be achieved by regressing 7; on an intercept and certain functions of the least
squares residuals. For example, when o2 is known, the linearized GMM estimator
can be calculated as the intercept in a regression of y; on [1,(e? — 0?)], where
e; = Yy; — ¥; and when the third moment is known, the appropriate function of e;
to include in the regression is e — p; — 36%¢;, where 62 is the usual error variance
estimate. We call these residual augmented least squares (RALS) estimators.
Note that we are augmenting the regression (of y; on intercept) with constructed
variables that are uncorrelated with the intercept, but correlated with the error.
Following Wooldridge (1993) or Qian and Schmidt (1999), we improve efficiency
by including variables with these properties (uncorrelated with the regressors
but correlated with the errors) in the regression. Specifically, the ratio of the
asymptotic variance of the augmented estimator to the asymptotic variance of
the original estimator (the sample mean) equals (1 — R?), where R is the multiple
correlation coefficient between the error and the set of augmenting variables.
Thus in constructing these simple estimators we have also highlighted a simple
method of quantifying their efficiency gain.

Now proceed to the regression case, so that y; = 23+ ¢;. The OLS estimator
comes from the moment conditions: FE[z;(y; — z;3)] = 0. Suppose that we add
the conditions that: E{z;[(y; — z,8)? — 0?]} = 0, which reflect an assumption of
no conditional heteroskedasticity. It could be assumed that ¢? is known, but it
need not be, so long as it does not depend on x. The condition for an efficiency
gain from these extra moment conditions is still just that pg % 0. If the third



conditional moment, say p4(z), depends on z, this condition is slightly more sub-
tle, but pz(z) = 0 for all z is sufficient for there to be no possible efficiency gain.
Thus we can obtain a more efficient GMM estimator by imposing no conditional
heteroskedasticity if g5 # 0. In the case that py(z) and p,(x) do not depend on
x, we can obtain a simple RALS estimator that is asymptotically equivalent to
the GMM estimator, and we can easily quantify the efficiency gain. Furthermore,
when p5 (x) and p, () do not depend on z, we show that the RALS estimator is
as efficient as the GMM estimator based on the conditional moment restrictions:
El(y—2'8) | 2] =0, E[(y—2'8)?—0? | z] = 0. The quantification of the efficiency
gain and the ability to achieve it with a RALS estimator, but not the existence of
the efficiency gain, depend on the assumption that the third and fourth moments
do not depend on z. A similar analysis applies to the use of moment conditions
that assert that third or higher order moments do not depend on zx, and this
analysis can also perhaps be extended to cover features of the distribution of y
other than moments.

An earlier paper by MaCurdy (1982) pursued essentially the same ideas as this
paper does, in that information on higher moments is used in a GMM framework.
However, the method of analysis is somewhat different, and the specific moment
conditions used are not the same, so that the estimators considered in the two
papers are different. Correspondingly the RALS estimators of this paper do not
appear in MaCurdy (1982). Another paper that discusses some of the same ideas
is Newey (1993). He considers moment conditions that arise when the conditional
variance is known up to some parameters, and this encompasses the case of no
conditional heteroskedasticity. However, because we consider a more specialized
case, we are able to achieve some new results and simpler estimators.

The plan of the paper is as follows. In section 2 we discuss the problem of
estimation of the mean in some detail. In section 3 we discuss the linear regression
model under the assumption of no conditional heteroskedasticity. In section 4 we
briefly discuss higher order moments. Some simulation results are given in section
5, and section 6 contains our concluding remarks. Some proofs are relegated to
the appendix.

2 ESTIMATION OF THE SAMPLE MEAN

In this section we consider the case that y;,2 = 1,..., N, is a random sample
from a distribution with mean p, which is the parameter of interest. Define
py; = By — p), and 0 = p,. We assume that p; is finite for all j; however,
the validity of the asymptotics for the GMM estimator based on knowledge of
p; only requires that p,; be finite. The sample mean is based on the moment
equation F(y; — p) = 0, and is the efficient estimator under normality. We are
interested in whether and how we can improve the efficiency of estimation of p if
we assume that we know the value of p, for some integer j > 2.



We first address the question of when knowledge of p; improves the efficiency
of estimation of . To do so, we consider the pair of moment conditions:

E(y; —p) =0, (1A)
El(y: — p)? — 5] = 0. (1B)

The GMM estimator of g using both (1A) and (1B) must be no less efficient
asymptotically than the GMM estimator using (1A) only, which of course is the
sample mean. But sometimes the additional set of moment conditions (1B) does
not increase efficiency, in the sense that the GMM estimator using both (1A) and
(1B) is no more efficient than the sample mean, in which case we can say that
(1B) is redundant given (1A). Conveniently evaluated conditions for redundancy
are given in Breusch et al. (1999) — hereafter BQSW — and can be used to prove
the following result.

Proposition 1 For a given value of j € {2,3,...}, knowledge of p; fails to in-
crease the efficiency of estimation of i if and only if the following condition holds:

Hit1 = (72‘7'/%71- (2)

Proof. We will adopt the general notation of BQSW. The moment condi-
tions (1A) and (1B) are of the form Elg(y,0)] = 0, where 0 = p, g = (91,92),
D = E[0g(y,0)/0¢], C = Elg(y,0)g(y,0)], and D and C are partitioned into
submatrices Dy and Dy, and Ciy, Cha, Coy = Cig and Cyy, corresponding to the
partitioning of g. BQSW (Theorem 1, p. 94) and MaCurdy (1982, equation (5))
show that a necessary and sufficient condition for go to be redundant given gy s:

D2 — CQlcilDl. (3>

In the present case we have: Dy = =1, Dy = —jp,; 1, Cy = o? and Cy = g1
Inserting these into (3) and rearranging gives (2). A

A few special cases are instructive. Knowledge of 02 is useful unless py = 0.
Knowledge of p, is useful unless pu, = 30*. It is not coincidental that these
relationships between moments are true for the normal distribution, since under
normality the sample mean is efficient, and knowledge of higher moments cannot
be useful. Indeed, equation (2) is exactly the equation that gives the higher
moments (j > 3) for the normal distribution. It is well known that no other
distribution than the normal satisfies these relationships (i.e. has cumulants of
order three or higher equal to zero). So except under normality some higher
moment is non-redundant for estimation of p. We state this formally as the
following result.

Proposition 2 Lety;, 1 =1,..., N, be uud with mean 1, and define p1; = E(y—p)?.
Suppose that p; is finite for all positive integers j. Then knowledge of p; for all
j=2,3,... is redundant for estimation of p if and only if y is normal.
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Now consider estimation of p when g is known. The following result gives

a simple estimator that is as efficient as the GMM estimator based on (1A) and
(1B).

Proposition 3 Let y;, 1 = 1,.... N, be itd with mean p. For a given value of
j€{2,3,...}, suppose that p; = E(y — p)’ is known, and that pu,; is finite. Let
e; = y; — ¥, and define (for any integer k) my, = + Zi\; ¥, so that my, is the k™
central sample moment of y. Define the constructed variable

Wij = 6? — by = JM165 (4)

Let 1 be the coefficient of the intercept in a regression of y; on [1,w;;]. Then f
has the same asymptotic distribution as the GMM estimator based on the moment
conditions (1A) and (1B).
Proof. Sce Appendiz. R

We will call the estimator given in Proposition 3 a residual augmented least
squares (or RALS) estimator, since the regression of y; on intercept, which would
yield the sample mean, is augmented with a function of the residual ¢;. To un-
derstand intuitively why such an augmentation increases efficiency of estimation,
consider the following. Define ¢; = y;, — p and w;; = eg — p; — Jji; 6. The
quantity w;; is unobservable, but the observable w;; in (4) can be regarded as
an estimate of it. Since F(w;;) = 0, it is uncorrelated with the intercept. Since
Eewi;) = pjq — 02juj,1, it 1s correlated with the error so long as the re-
dundancy condition (2) does not hold. From Wooldridge (1993) and Qian and
Schmidt (1999), we increase efficiency of estimation by augmenting a regression
with variables that are uncorrelated with the regressor but correlated with the
error. By doing so, the relevant error variance now becomes the variance con-
ditional on the augmenting variables, which is smaller than the original error
variance. Equivalently, augmentation reduces the asymptotic variance of estima-
tion by the factor (1 — R?), where R is the multiple correlation between the error
(¢;) and the set of augmenting variables. In the present context, this correlation
is zero when the redundancy condition (2) holds, but it may be high when the
errors are sufficiently non-normal.

3 NO CONDITIONAL HETEROSKEDASTIC-
ITY

We now consider estimation of the regression model



where x; is a k X 1 vector of explanatory variables. We assume that the obser-
vations z; = (y;, ;)" are iid. We assume that the following moment conditions

hold:

Elai(y: — 2:0) = 0, (6A)
Bz [(y; —28)* — 0’} = 0. (6B)

Obviously (6A) asserts that z and ¢ are uncorrelated, while (6B) asserts a variant
of no conditional heteroskedasticity. Finally, we assume that the distribution of
z = (y,2') satislies regularity conditions such that the GMM estimators we
consider are consistent and asymptotically normal with variance matrix of the
usual form. Listings of such regularity conditions are widely available and will
not be repeated here.

Imposing (6A) alone leads to ordinary least squares. We seek to improve on
ordinary least squares using the homoskedasticity assumption (6B). We do not
assume that o2 is known, just that it does not depend on z. (Knowledge of o?
seems unlikely as a practical matter, but we will make a few comments on the
case that o? is known, at the end of this section.) The fact that (6B) adds k
moment conditions but only one parameter makes efficiency gains possible, even
when o2 is unknown; in that respect this case is different from the case of the
previous section.

An alternative to (6A) and (6B) would be the conditional moment restrictions:

Elly —2'6) | 2] =0, (7A)
E{{ly—2'p)—d*] |z} =0. (7B)

These assert that E(y | ) = 2/ and that var(y | x) is constant, and imply
(6A)-(6B). More precisely, (6A) and (6B) imply that the “errors” ¢ = y — 2'g
and n = (y — 2/8)? — 0% are uncorrelated with x, while (7TA) and (7B) imply that
€ and n are uncorrelated with any measurable function of z. Other functions
of x are possible and perhaps natural. For example, MaCurdy (1982) imposes
no conditional heteroskedasticity by calculating E(y*) = (2/8)? + 02, and then
considers nonlinear least squares applied to the regression

Y2 = (a:;ﬂ)Q + o2 + error. (8)

The first order conditions for this nonlinear regression can be regarded as the
following moment conditions:

E{mi(wB)]y; — o® — (233)°]} = 0. (9)
These moment conditions are very similar to those in (6B) above, since the “error”

in (9) is 2 — o? — (2/8)? = [(y; — 2,8)? — 0? — 2(2}B)s;. Thus, while (6A)
and (6B) assert that x; is uncorrelated with &; and 7;, (9) requires that z;(x.3)
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be uncorrelated with 7, and that a:l(atéﬂ)Q be uncorrelated with ;. There is
no obvious basis for asserting that (9) is more or less natural than (6B). Of
course, both would follow from the conditional moment restrictions (7A)-(7B).
An interesting question, to which we will return later in this section, is under
what circumstances GMM based on (6A)-(6B) is as efficient as GMM based on
the conditional moment restrictions (7A)-(7B).

We first ask under what conditions imposition of (6B) increases efficiency of
estimation of 3, relative to ordinary least squares. As in the previous section, this
depends on higher moments. As a matter of notation, we define 1, (x) = E(€ | x)
for positive integers j. The application of GMM to (6A)-(6B) requires that ps(x)
and p,(x) be finite. Then we have the following result.

Proposition 4 The use of the moment conditions (6B) in addition to (6A) fails
to increase the efficiency of estimation of 5 if Flexa'] = Elps(x)za’] = 0.
Proof. Sece Appendiz. R

This result is, loosely speaking, a generalization of the last section’s result
that knowledge of o2 is useful unless pu; = 0. We note the following. First,
the condition of Proposition 4 is sufficient, not necessary, but we cannot identify
any meaningful circumstances under which (6B) is redundant without this con-
dition holding. Equation (A8) of the Appendix gives a necessary and sufficient
condition, but it is not revealing. Second, if the conditional moment restriction
E(e | ) = 0 holds, then E(exz’) = 0 and the redundancy condition becomes
Elps(z)zz’] = 0. Clearly this condition reduces to pz = 0 if py(z) does not
depend on z. However, when p4(z) does depend on z, it is weaker than the
condition p4(x) = 0, which is the condition for (7B) to be redundant given (TA),
as we will discuss below.

The form of the GMM estimator depends on p5(x) and py(x). The following
result shows that, if the conditional moment restrictions (7A)-(7B) hold and if
ps(z) and py(x) do not depend on z, a simple RALS estimator is as efficient as
the GMM estimator based on (6A)-(6B).

Proposition 5 For i = 1,...,N, let e; be the OLS residuals (from the regression
of y on x); let &2 be the usual error variance estimale; and define the constructed
variable wy = €2 — 6%, Define the RALS estimate of 3 to be the coefficients
of x; in a regression of y; on [x),wy]. Suppose that the regression contains an
intercept, that the conditional moment restrictions (7A) and (7B) hold, and that
ps(z) and p,(z) are finite and do not depend on x. Then the RALS estimate
has the same asymptotic distribution as the GMM estimate based on the moment
conditions (6A) and (6B).

Proof. Sece Appendiz. R

Chamberlain (1987) showed that, if the no conditional heteroskedasticity con-
dition (7B) holds (but is not used as a source of moment conditions in estima-
tion), the efficient GMM estimator using the conditional mean condition (7A) is
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ordinary least squares. Loosely speaking, when (7B) holds, the uncorrelatedness
condition (6A) efficiently captures the conditional mean information in (7A). It
is therefore natural to ask whether similar assumptions about higher moments
might also imply the efficiency of simple estimators under the conditional moment
restrictions (7A) and (7B). The answer is yes, as the next two results show.

Proposition 6 Suppose that the conditional moment restrictions (7A) and (7B)
hold and that ps(x) = 0 for all x. Then the efficient GMM estimator of 3 given
the conditional moment restrictions (7A) and (7B) is ordinary least squares.
Proof. Sece Appendiz. R

Proposition 6 is not surprising, since it essentially extends the earlier result
that second moment information is useless if the third moment is zero. The
results of Newey (1993, p. 427) imply that (7B) is redundant given (7A) if the
third conditional moment is zero for all x. Since ordinary least squares is efficient
when (7B) holds but is not imposed, as shown by Chamberlain (1987), it should
be efficient also when (7B) is imposed but redundant. The following result is
a perhaps more important implication of the constancy of the third and fourth
conditional moments.

Proposition 7 Suppose that the regression contains an intercept, that the con-
ditional moment restrictions (7A)-(7B) hold, and that ps(x) and p,(x) are finite
and do not depend on x. Then the GMM estimator based on (6A)-(6B) is as
efficient as the efficient GMM estimator based on the conditional moment re-
strictions (7A)-(7B).

Proof. Sce Appendiz. R

Proposition 7 is a possible justification for the particular form of the moment
conditions (6A)-(6B) and for the RALS estimator. Combining Propositions 5 and
7, we see that the RALS estimator efficiently exploits the conditional moment
restrictions (7A) and (7B) when the third and fourth conditional moments are
constant.

If (7A) and (7B) hold but ps(z) and p4(x) depend on z, then the efficient
GMM estimator based on (7A) and (7B) dominates GMM based on (6A) and
(6B), which dominates the RALS estimator and ordinary least squares. The
extent to which GMM is more efficient than RALS would depend on how strongly
s (z) and p, () depend on z. Given that no conditional heteroskedasticity is
assumed, it may be reasonable to choose a simple estimator (RALS) rather than
a complicated estimator (GMM) whose efficiency gain depends on the way that
s (z) and py (z) depend on z. In our view, the main implication for RALS of
the dependence of 5 (z) and py () on x is that the conventionally-calculated
standard errors (using the usual OLS formula) would be invalid. Rather, the
usual heteroskedasticity-robust standard errors would be needed.



As noted above, the discussion so far in this section treats ¢? as unknown.
Although knowledge of 02 would seem unlikely in general, for completeness we
will discuss this case briefly. Propositions 4, 6 and 7 still hold when o2 is known. If
we modify the RALS estimator of Proposition 5 by defining w;s = €?—0? (instead
of €2 — 6% as in Proposition 5), then Proposition 5 also still holds. Interestingly,
under the assumptions of Proposition 5, knowledge of o2 improves the efficiency
of estimation of 3 (by GMM based on (6A)-(6B) or RALS) so long as p3 # 0, but
the only difference is for the intercept. That is, for the non-constant regressors,
the efficiency of estimation is the same whether 02 is known or unknown. That
this is so is most easily seen from the last line of equation (A10) of the Appendix,
in which changing 6% to o affects only the intercept, but it does so in such a way
as to affect the asymptotic distribution of the intercept.

Although the efficiency of the estimate of the intercept is not a major point,
a precise comparison is possible. Let z; = (1,2},) so as to distinguish intercept
from non-constant regressors, and define ¥, = E (z;x,), p, = E(z:4) and
Vi, = %, — ppth. Then a tedious calculation (available from the authors on
request) yields the asymptotic variance of the estimated intercept when o2 is
unknown as

2
1 _
o’ + [02 - ml TR (10)

whereas when o? is known the asymptotic variance is

2
| (R A! (1)
l (i —
The difference between (10) and (11) equals p2/(p, — o) and is positive when
s # 0. We can also compare (10) to the variance of the OLS estimated intercept,
which is

(L + iV, ). (12)

The difference between (12) and (10) equals [3/ (1, — 0*)] gLV, ', and is pos-
itive unless p3 = 0 or p, = 0.

4 THIRD MOMENTS

We now consider the use of moments of higher order than two. Specifically, we
will consider the use of third moment first, then the use of second and third
moments together. The analysis of fourth or higher order moments would follow
very similar lines. It is interesting to see how our analysis of the assumption
of no conditional heteroskedasticity generalizes to higher moments, and it is not



transparent algebraically how things should work out when more than one set of
moments (e.g. second and third) is considered.
The unconditional third moment assumption is:

') {JTZ [(yz - 37;@3 - M3} } = 0. (6C>

The numbering (6C) is used to stress that this is a logical extension of the first
and second moment assumptions (6A) and (6B) above. We treat p; as unknown.
Knowledge of 5 would matter only for the intercept (just as knowledge of o?
mattered only for the intercept in the previous section). Known p, is perhaps
potentially more relevant than knowledge of ¢%; in particular, in some circum-
stances one could imagine asserting ps = 0.

The conditional moment restriction analogous to (6C) is:

gy -a8)° - | 12} =0 (7C)

As in the previous section, we are interested in circumstances in which the uncon-
ditional and conditional moment restrictions yield equally efficient estimators.

We first consider the case in which estimation is based on first and third
moments; that is, on (6A) and (6C) or (7TA) and (7C). This is not a terribly
interesting case, because it seems implausible to assume (6C) without assuming
(6B), or (7C) without (7B), but it could arise if, for example, we asserted p153 = 0
without an assumption of no conditional heteroskedasticity. The following results
are the generalizations of Propositions 4 - 7 of the previous section. We state
them without proof because the proofs are similar to those of the last section,
and more importantly because they overlap substantially with the proofs for the
case that all three moments are used.

Proposition 8 The use of the moment conditions (6C) in addition to (6A) fails
to increase the efficiency of estimation of 3 if

E(*za') = 3B(xa) [E (x2)] ' E(Exa'). (13)

Proposition 9 For i = 1,...,N, let e; be the OLS residuals (from the regression
of y on x); let 62 be the usual error variance estimate; let ms = %Eil e
be the sample third moment (of the errors); and define the constructed variable
wis = €3 — mg — 36%;. Define the RALS estimate of 3 to be the coefficients
of x; in a regression of y; on [x),ws]. Suppose that the regression contains an
intercept, that the conditional moment restrictions (7A), (7B) and (7C) hold, and
that p,(x) and pe(z) are finite and do not depend on x. Then the RALS estimate
has the same asymptotic distribution as the GMM estimate based on the moment

conditions (6A) and (6C).
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Proposition 10 Suppose that the conditional moment restrictions (7A), (7B)
and (7C) hold and that p,(x) = 30 for all x. Then the efficient GMM estimator
of B given the conditional moment restrictions (7A) and (7C) is ordinary least
squares.

Proposition 11 Suppose that the regression contains an intercept, that the con-
ditional moment restrictions (7TA), (7B) and (7C) hold, and that p,(x) and pe(z)
are finite and do not depend on x. Then the GMM estimator based on (6A)
and (6C) is as efficient as the efficient GMM estimator based on the conditional
moment restrictions (TA) and (7C).

Propositions 8 and 10 are obvious extensions of the condition that knowledge
of pi3 does not help in estimation of p if 1, (z) = 30

We now turn to the case of main interest, in which estimation is based on
first, second and third moments; that is, on (6A), (6B) and (6C) or on (TA),
(7B) and (7C). We first give the redundancy result for estimation based on the
unconditional moments.

Proposition 12 The use of the moment conditions (6B) and (6C) in addition
to (6A) fails to increase the efficiency of estimation of (3 if

E(exa') = E [pg (2) 22/ = 0 and B(e'za') = 3E(Eax’) [E (x2')] ' B(Exd)).
(14)

Proof. Sce Appendiz. R

This result is basically just a combination of Propositions 4 and &, in the
sense that (14) just combines the conditions of those results. If the conditional
moment restrictions (7A)-(7C) hold, and if p,(z) does not depend on z, these
conditions reduce to p3 = 0 and g, = 30*, which are the conditions that would
arise in the case of estimation of the mean only, as in section 2. If € is normal and
independent of z, these conditions hold, and we do not improve on least squares,
which is efficient.

Proposition 13 Suppose that the conditional moment restrictions (7A), (7B)
and (7C) hold, and that py = 0 and py(z) = 30 for all z. Then the efficient
GMM estimator of B given the conditional moment restrictions (7A), (7B) and
(7C) is ordinary least squares.

Proof. Sece Appendiz. R

Proposition 14 Suppose that the regression contains an intercept, that the con-
ditional moment restrictions (7A), (7B) and (7C) hold, and that p(x), ps(z)
and pg(x) are finite and do not depend on x. Then the GMM estimator based on
(6A), (6B) and (6C) is as efficient as the efficient GMM estimator based on the
conditional moment restrictions (7A), (7B) and (7C).

Proof. Sce Appendiz. R
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Proposition 13 basically combines Propositions 6 and 10 to give conditions
under which ordinary least squares is efficient even given the information that the
second and third conditional moments of the error are constant. These conditions
are weaker than the assumption that ¢ is normal and independent of z, but
perhaps not much weaker. Proposition 14 is arguably more interesting. It gives
the conditions under which the unconditional moment conditions (6A), (6B) and
(6C) efficiently capture the information in the conditional moment conditions
(TA), (7B) and (7C), in the sense that the corresponding GMM estimators are
equally efficient. These conditions would be satisfied if € and x are independent.
It should be noted that the conditions identified in Proposition 14 are not just a
combination of the conditions in Propositions 7 and 11.

Our final result provides the RALS estimator that makes use of the assumption
that both second and third moments do not depend on z.

Proposition 15 Suppose that the regression contains an intercept, that the con-
ditional moment restrictions (7A), (7B) and (7C) hold, and that p(x), ps(z)
and pg(x) are finite and do not depend on x. Let wy and w;z be as defined in
the statements of Propositions 5 and 9, and define the RALS estimator of 3 to
be the coefficients of x; in a regression of y; on [z, wiy, wi]. Then the RALS
estimator has the same asymptotic distribution as the GMM estimator based on
the moment conditions (6A), (6B) and (6C).

Proof. Sce Appendiz. R

This result is in a logical sense a combination of Propositions 5 and 9 above.
From an algebraic point of view it is really not a trivial combination, because
the additional regressors wy and w;s are not generally orthogonal. (They are
orthogonal if py = 402u3.> However, whether w;s and w;3 are orthogonal or not
is not fundamentally important. The conditions that drive the efficiency gain
from the RALS estimator are that the variables [w;9,w;3] be uncorrelated with
x; but correlated with ¢;. As before, this reduces the asymptotic variance of
estimation by the factor (1 — R?), where R is the multiple correlation coefficient
between ¢; and [w;g, w;3].

Since the conditions of Proposition 15 are the same as those of Proposition
14, combining the two results provides a useful efficiency result. The moment
conditions (7A), (7B) and (7C) assert linearity of the regression, and that the
second and third moments of ¢ conditional on  do not depend on z. The
efficient GMM estimator based on these conditions is in general complicated.
However, when the higher moments of ¢ up to order six also do not depend on x,
we can without loss of efficiency replace the conditional moment restrictions by
the unconditional moment restrictions (6A), (6B) and (6C), and a simple RALS
estimator is as efficient as the efficient GMM estimator.
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5 EFFICIENCY CALCULATIONS AND MONTE
CARLO RESULTS

In this section we provide some calculations and comparisons of asymptotic vari-
ances for various estimators, and we report the results of some Monte Carlo
simulations that examine the relevance of these asymptotic results in finite sam-
ples.

We begin with the asymptotic efficiency comparisons. The asymptotic vari-
ance of the OLS estimate of 3 (normalized by VN ) is 0?E(z2’)". Under the
conditions of Proposition 15 (so that the moments of order two through six of the
error conditional on z do not depend on z), the asymptotic variance of the RALS
estimator is the same as the asymptotic variance of the efficient GMM estimator,
and is of the form ¢% F(xzz')~!, where

74 = (07 = BewSuSue), (15)

and where w = w9 as in Proposition 5 when only second moments are used,
whereas w = (wy, w3) as in Proposition 15 when second and third moments are
used. Thus the ratio of the asymptotic variance of the RALS estimator to the
asymptotic variance of the OLS estimator is just 0% /0?. For the case that only
no conditional heteroskedasticity is imposed, we have 0% = 0% — p3/ (g — o);
for the case that both second and third moments are used, we have

o? (16)
2
2 _ 113 (p6 — 61140° +90° — pi3) — 2p5 (p1g — 30*) (p15 — 4ps0”) + (g — 30*)" (g — %)

o
(g — 0*) (pg — 6240 + 906 — pi3) — (p5 — 4#3‘72)2

For the normal distribution, OLS is efficient and these ratios equal one. Table
1 gives these ratios of asymptotic variances for various non-normal distributions.
We consider chi-squared with one, two, three, four, six and ten degrees of freedom;
Student t with seven, eight and ten degrees of freedom; the double exponential
distribution; and the Beta(2,2) distribution. We do not consider t distributions
with degrees of freedom less than seven because the RALS/GMM estimator using
second and third moments requires the sixth moment to be finite, which requires
seven or more degrees of freedom; and there is not much point in considering the
RALS/GMM estimator using only second moments for the t distribution, since
there would be no efficiency gain over OLS.

Table 1 clearly shows the potential for non-trivial efficiency gains from assert-
ing the constancy of second or third conditional moments. When only the second
moment is used, i.e. we impose no conditional heteroskedasticity, there is no
efficiency gain for the symmetric distributions, but there are considerable gains
for all of the chi-squared distributions, even with degrees of freedom as high as
ten. When constancy of second and third moments is imposed, we still have only

13



modest gains in efficiency for the t distributions and the double exponential, but
we have considerable gains for the chi-squared and Beta(2,2). In the chi-squared
case, the gain from using the constancy of the third moment in addition to the
second moment is not very large, however, except when the number of degrees of
freedom is very small.

We now turn to Monte Carlo simulation to provide evidence on the finite
sample performance of these estimators. The data are generated from a simple
regression model:

Yy =+ Bry +e, i =1,...,N. (17)

We pick o« = 3 = 1; these values do not affect the results. The z;, are cho-
sen to be iid N(0,1). With this choice, and with the previously-used notation
that z; = [1,2:]) , we have E(z;x}) = I5. Our errors will be drawn from dif-
ferent distributions, but will be normalized to have mean zero and variance one.
(For example, for chi-squared with n degrees of freedom, we subtract n from
the generated x? variable, and then divide by the square root of 2n.) With this
normalization the variance of the OLS estimate of a or 7 will equal one, and
the asymptotic variance of the RALS estimator of 3 will equal 0% < 1, as given
above. We consider normal errors, and also errors following the same distribu-
tions as were considered in the asymptotic variance calculations above. We use
the following values of sample size: N = 50,100,1000,5000. The number of
replications is 5000.

The pseudo-normal random numbers used in the experiments are generated
by the built-in procedure in GAUSS, which uses a standard acceptance-rejection
algorithm. The various non-normal errors are generated by appropriate transfor-
mations of independent standard normals. In particular, the generation of the
Beta(2,2) random variables follows the method of Jambunathan (1954). See also
Johnson and Kotz (1970, p. 38). The double exponential random variables are
calculated by applying the inverse of the cdf to pseudo-uniform variables.

We consider three estimators: OLS; RALS, using second moments only (aug-
mentation of x; by w;s only); and RALS, using second and third moments (aug-
mentation of x; by w;» and w;s). We could also have considered various types
of GMM and linearized GMM estimators that are asymptotically equivalent to
RALS, but these estimators are all much more complicated computationally.

Table 2 gives N times the variance of the RALS estimates of 8. For OLS, N
times variance equals one, and that is one standard of comparison. The other
standard of comparison is the asymptotic variance, given in the last column (N =
00), which is the same as is reported in Table 1. We intended to report also the
mean (or bias) of the estimates, but do not do so because the estimates turned
out to be essentially unbiased even for the smallest sample sizes.

The results in Table 2 seem to support the applicability of the asymptotic the-
ory even for moderate sample sizes, such as N = 100. For N > 100, N-Variance
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of RALS is generally quite similar to the asymptotic value given in the last col-
umn of the table. This has several obvious implications. First, there is little loss
in finite samples in imposing conditions that are asymptotically redundant. That
is, in cases in which there is no gain to using higher moments (i.e., under normal-
ity, or for the symmetric distributions when only second moments are used), the
finite sample variance of RALS is only slightly larger than the variance of OLS.
Second, where higher moments are asymptotically useful, there is almost always
a gain in finite sample variance as well (N-Variance of RALS is less than one),
and the asymptotic variance does a reasonable job of predicting the size of the
gain.

Efficiency of estimation is important, but it is also relevant to ask whether the
RALS procedure leads to valid inference. In Table 3, we provide the frequency of
rejection (empirical size) of the Wald test of the null hypothesis that 5 equals one
(its true value). Nominal size is 5%. We give empirical size for the OLS estimator
as well as the RALS estimators, since the OLS Wald tests will not have size equal
to 5% in finite samples except under normality. For the RALS estimators, the
Wald test is just the usual t-test applied to the augmented regression. This test
is valid asymptotically but its finite sample size characteristics are unknown.

It is obvious from Table 3 that the empirical size of the test is usually quite
close to 0.05. The largest size distortions are for small values of N and for the
case that both second and third moments are used, but for N > 100 we would
categorize these as not terribly serious. For example, for N = 100 the worst case
is Beta(2,2), for which empirical size is 0.076, while for N > 1000, there are no
size distortions serious enough to comment on.

The lack of serious size distortions is not surprising given the results of Table 2,
which indicated that the finite sample variance is generally close to the asymptotic
variance. Both of these optimistic outcomes simply indicate that asymptotic
theory applies reasonably well to simple estimators such as our RALS estimator.

6 CONCLUDING REMARKS

This paper has asked when and by how much it is possible to improve on the
ordinary least squares estimator by using moment conditions implied by the as-
sumption that higher moments of the error do not depend on the regressors.
The most important case is undoubtedly the one in which we consider second
moments, so that the question is whether the assumption of no conditional het-
eroskedasticity is valuable for estimation of 3. Basically it is, unless the third
moment of the error is zero, and the efficiency gain from imposing no conditional
heteroskedasticity depends on the magnitude of the third moment.

Since no conditional heteroskedasticity is naturally phrased as a statement
about the conditional second moment of the error, it leads to conditional moment
restrictions and potentially complicated GMM estimation. We give conditions un-
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der which very simple estimators are as efficient as the efficient GMM estimator.
These conditions are straightforward: the third and fourth conditional moments
of the error do not depend on the regressors. The simple efficient estimators
just involve a regression augmented with functions of the least squares residuals.
Similar results hold for the imposition of conditional moment restrictions based
on higher order moments.

It is interesting to ask how general these results are. They would extend in a
simple way to nonlinear regression, but not to simultaneous equations. It is not
clear how easily they can be extended to features of the distribution of y given x
other than moments (e.g., conditional quantiles).

The moment conditions we consider are obviously a subset of those implied
by independence of the errors and regressors. If one is willing to assume inde-
pendence, then adaptive estimation is possible, as shown by Bickel (1982) and
Manski (1984), so that the relevant efliciency bound is the efficiency of the MLE
(as if the distribution of the errors were known). The adaptive MLE estimators
of Bickel and Manski involve nonparametric estimation of the score function,
whereas Newey (1987) showed how to construct an efficient estimator using GMM
with the number of moment conditions growing with sample size. Compared to
these estimators, ours are less efficient under independence. The RALS/GMM
estimators require certain moments to exist, which the adaptive estimators do
not. However, if these moments exist, the RALS estimators rely on weaker as-
sumptions and so should be more robust. Independence is a very strong assump-
tion compared to no conditional heteroskedasticity, and one might not wish to
pursue efficiency gains that depended on obscure features of the distribution.
Furthermore, our RALS estimators are numerically simpler than the adaptive
estimatiors, and so they might be expected to have better small sample prop-
erties. Hsiech and Manski (1987) and Newey (1988) provide some Monte Carlo
evidence on the performance of the adaptive estimators in small samples, but
their results are hard to compare to ours because of the usual differences in setup
of experiments. For example, the only distributions used by both us and Hsieh
and Manski are normal and Beta(2,2), and their regressor is binary while ours is
normal. For sample size N = 50, in the normal case, their adaptive MLLE is closer
to the efficiency of OLS than our RALS estimators are. On the other hand, in the
Beta(2,2) case, we do better than OLS and the adaptive MLE doesn’t. Clearly
further simulations would be needed to give even a partial answer to the question
of how large a sample size is needed before the adaptive estimators are supe-
rior under independence. However, our intuition remains that there is always a
setting in which simple estimators are worth having.
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A Appendix

A.1 Proof of Proposition 3

Because we cannot express the GMM estimator in closed form, we will consider
instead a linearized GMM (LGMM) estimator, using the initial consistent estima-
tor 4. Subject to regularity conditions that are satisfied for this case, the LGMM
estimator has the same asymptotic distribution as the GMM estimator.

To define notation, we consider the moment conditions Eg (y;, 1) = 0; their
sample version, g (p) = % > .9 (i, 1) ; and the sample version evaluated at the
initial estimate, g (%), where

9 (v, p) = l (yiiyi/;)jﬂ_ﬂj ] Tl = l %Zi(yy_i:/;)j—ﬂj ] = lmn‘gﬂj ]
(A1)

The GMM estimator is
. _ 1 1,
p=g—(D'C'D) "D'Cg(7), (A2)

where D and C are defined in the proof of Proposition 1. We will evaluate D
and C at the true value of p, so that i is not a feasible estimator; but we simply
need it as a standard of comparison. (Fvaluating D and C' at p = g would give
a feasible estimator, with the same asymptotic distribution as fi.)

In the present case, Dy = —1, Dy = —ju; 1, Ciy = ot Cly = fip1 and
Cap = pg; — /L?. The determinant of C is DET = o2 (qu — M?) — /JJ§+1. Then we
have

D'CD = (pg; — 5 + 03%p5 1 = 2jp; 1py10) /DET, (A3a)
D'C g (g) =— (01 — 1) (my — ;) JDET, (A3b)
b
uzy—é(mj—uj), (A3c)
where
by = pj— (72‘7'/%717 (Ada)
by = po;— 1+ 55— 2 (A4b)

We now consider RALS estimator, which is the intercept in the regression of
Y; on [1, (eg — uj> — jmj,lei} . Using standard regression notation we have

iX’X: 1 (mﬂ'_”j)

N (my =) (may + 13 = 2myp; + j20%myq — 2jm;_1myq)
(Aba)
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—XY =

Y
j , A5b
N [ %Ziyi (ef —Nj> —jqu% > €ili ] ( )

(]
l myi1 4§ (my — p;) — jm; 16° 1 ’

using the facts that > ey = > €2, Yy (eg — ;) = > (e +7) (eg —p;) =
g3+ 3 el = N,

Then we have

(X'X) "Xy =
D,

| )=
Mjp1 + Y (mj - Mj) — Jjm;1G

where D* = My; + /,L? - QmJ/,LJ —I—jQO'Qmj,l - 2jmj,1mj+1 - (mj - /,LJ>2 . We need
only the first element, which we can write as:

fp=A7—B(m;— ), (ATa)
where
Mma; + /L? — 2myp,; + j202mj71 — 2ym; 1M

A = (ATD)

. . 9
Maj — i + j20%m; 1 — 2jmyamy — (m; — py)

. 2 - 2
s Mjy1 — JO My y(mj MJ) ] (AT7¢)

. . 2
Maj — i + j20%m; 1 — 2jmyamy — (m; — py)

But plimA = 1, while plimB = b, /by, with b; and by defined in (Ada) and (A4b).
It follows that 1 and ji have the same asymptotic distribution, and therefore f
and the GMM estimator have the same asymptotic distribution.

A.2 Proof of Proposition 4

The moment conditions (6A)-(6B) are of the form Fg(z,0) = 0, where as before
we partition g (z,0) = [gl (2,0) 92 (2, 9)/}/ . Now however we also partition 6 into
61 (= 8) and 6, (= 0?). We ask when g, does not aid in the estimation of 6, a
“partial redundancy condition” in the terminology of BQSW. Note that g, (2, 0)
depends on 6y only while g5 depends on both ¢y and 5. Theorem 8 (p.104) of
BQSW applies to this case.

We partition the expected derivative matrix, 1), and the variance matrix of the
moment conditions, C, so that fori,57 =1,2, D;; = F [agi (2,0) /3&;} and C;; =
E[gi (2,0) g;(2,0)"] . Define Gy = Dy — Co Cpy' D1y and gy = Cop — Co1C11' Chp.
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Then Theorem 8 of BQSW shows that gy is (partially) redundant for estimation
of 0, if and only if

Go1 = Day (D Ty Dag) ' Diyy Tl Glyy. (AR)

Routine calculations yield: Dyy = —FE (z2'), Dy = —2F (exa'), Cpy =
E(2z1)), Cyy = FE(*x2)) — 0?F (exx’) = E [uy (z) 22/] — 02F (exz’) . Then we

have
Go = —2F (exa) + [E [pg (2) x2'] — 0°F (exa’)] [F (za’)] B (zz'). (A9)

A sufficient condition for (A8) to hold is that (91 = 0. From (A9) we see that
this is so if F (exza’) = F [pg (z) z2'] = 0, which proves proposition 4. We finally
note that Gg; = 0 is sufficient but not necessary for (A8) to hold, but we could
find nothing informative to say about cases in which (A8) holds with Gy # 0.

A.3 Proof of Proposition 5

Let B = ordinary least squares, €; = y; — a:éﬁ = OLS residual, 6% = ¥ 2.6 =
error variance estimate. The RALS estimate is OLS of ; on |2/, wiQ]/ with w;y =
e? — 6%. As a matter of notation let I = [X, W5] represent the regressor matrix,
and W, = e? — (321N, where e? (N x 1) has i'" element €?, and 15 is N x 1 with
each element equal to one.

We now define the “estimator”

B o= p-—B_(xXx) I xXW, (A10)
g — 0"
I ~2
R ]
fy — O k-1

Here Oy_; is a (k — 1) dimensional vector of zeros, and the last equality follows
if 1 is the first column of X. The “estimator” is infeasible - it depends on both
ps and g, - but we will show that both the RALS and the LGMM estimators are
asymptotically equivalent to it.

We start with the RALS estimator, which we write as

3= (X'MX) " (X' MY), (A11)

with My = Iy — Wy (VVQ’VVQY1 Wsy. We have %X’WQ 2. 0 while N"V2X'W,
is asymptotically normal. The fact that %X’ Wy 2 0 implies ﬂ has the same
asymptotic distribution as ﬂ , defined by

B=(X'X) N X' MyY) = 3 — (X'X) " X'Wo (WiWso) ' WyY. (A12)
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We then calculate pim N 'W,W, = p, — 0* and pimN 'W,Y = plimN 'Wje =
fi5. Substituting p15/ (114 — 0*) for (W3Ws) " WY does not affect the asymptotic
distribution of ﬂ , and yields B above.

We now turn to the GMM estimator. Again we will consider the LGMM esti-

mator, where in the present case the initial consistent estimate is 0 = (B/, (32) ,

where 3 = OLS and ¢ == LS. e? (with e; = OLS residual). We define p, = Ex,
Yy = Fxx'. Then we have the following:

Yy O o? 7 ]
D=—|"" , C = 3 @ Xg, Al3
l 0 p, ] l Mg Mg — ot ( a)
[ | i
- 1 (u NE: —psp P Q

/ 1 3Hx —
be b =ppr l —ugum Sty | | RS | (Al3c)

. 1 N7IX'W.

rov—1= _ M3 2
Dcg (9) = — [ L X0, 1 (A13d)

where DET = |C| will cancel later. The LGMM estimator is 0= 9—(D’C'71D)71 D'C g (9) .

We are interested in B , so we need to use partitioned inversion. In terms of par-
titioning in (Al3c), we have

2., 6 _
J = S-rplQ=2H"7_ “3,452% ", (Alda)
Py — 0O
(Dc D) = P lyp QIR Y (A14b)
1 H -1
— 271 3 2*1 /271 /271
M4_0—4 x +O_2M4_O_6_M§ mMm(MmmMm) /J“sz: m}u
(DC'D)? = —p QI = B sl (15 ) . (Alde)

0%y — 0% — pij
Then the LGMM estimator is
B = B—(D'C'D)" - [first block of D'C™g (é)] (A15)
— (D’C'le> 2. [second block of D'C™ g (9)]

Using (Al4b), (Al4dc), (A13d) and a lot of routine but messy algebra, we obtain

B=p- p /1042 INTIXTW, 4 ; = % e (1% 1) LN T,
4 4
(AL6)

To simplify this, we observe that, if the first column of X is an intercept, then
the first column of 3, equals . Then % 1u, equals the first column of identity,
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and g3 1y, = 1. Thus the matrix ¥_1p, (%2;1%)*1 w31 equals zero except
for a “one” in the 1,1 position. Since the first element of X'Ws equals zero if
there is an intercept [ZZ (e? — (32> = 0] , the last term in (A16) equals zero.

To obtain B in (A10), we simply replace X, in the second term in (Al6)
by N 'X'X, which does not affect the asymptotic distribution of the estimator.

Then the N~ terms cancel and we obtain (AlO).

A.4 Proof of Propositions 6 and 7

We follow the method of analysis of Chamberlain (1987). Suppose that the
conditional moment restrictions are of the form F [g (z,0) | z] = 0. Define D (z) =
E[0g(2,0) /00" | ) and C (z) = E [g (2,0) g (z,0)" | 2] . Then the efficient GMM
estimator based on the conditional moment restrictions can be calculated as the
GMM estimator based on the unconditional moment restrictions

E[D(z)C (z) 'g(z, 0)] = o. (A17)

We now proceed to calculate these quantities for the case of the conditional
moment restrictions (7A)-(7B). We have

g(Z,Q) = [ <y _ya;ﬂa):?ﬂ_ o2 1 ) D(‘x) == [ g _01 1 ) (A18>
_ 7 m@
@ = [ n o]
where as before p; (z) = F [(y — a:’ﬂ)j ] a:} , j = 3,4. Define the determinant
A(x) = |O(x)] = 02 [y (x) — 0] — pz ()*. Then we calculate

VOl ol = b | @) = o ly = 2B) + g (@) 2 [(y — 2/ )" — o]
Dl ) = 5 | T
(A19)

The efficient GMM estimators come from these unconditional moment con-
ditions. To prove proposition 6, we simply note that, when py (2) = 0, A(z) =
o2 [py (z) — 0] and we obtain

—z (y —2'B) [o? _
E l ) - o IAG) ] — 0. (A20)

This is an exactly identified set of moment conditions and so the estimators (say
3,52) satisfy the sample version exactly. In particular, 3 must satisfy

ﬁ:aﬁi (yZ — a:;B) =0, (A21)

=1
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the solution to which is obviously least squares.
To prove Proposition 7, we observe that, if z contains an intercept and p5 (x)

and g1, (z) do not depend on z, so that A (z) does not depend on z, the moment
conditions (A20) are implied by (6A) and (6B).

A.5 Proof of Proposition 12

Let g1, 92 and g3 represent the moments in (6A), (6B) and (6C). According to
BQSW (1999, Theorem 2), g and g3 are redundant given g; iff gy is redundant
given g1 and g3 is redundant given g;. Proposition 4 says that g, is redundant given
g1 if E(exx’) = E (py (x) z2’) = 0, and Proposition 8 says that g is redundant
given gy if (10) holds. Combining these conditions, we obtain (11).

A.6 Proof of Propositions 13 and 14

We now let g1 (2,6) = (y— 8). ga(z.0) = [(y— 2" — 0?] , and gs (=,0) =
[(y — aﬁ’ﬂ)3 — u3} . with 0 = (8,02, 13)" . Using the same generic notation as in
section A.4, we have

—a 0 O
D(x) = 0 -1 0 , (A22a)
i —3c22 0 -1
o’ 13 s (2)
C(r) = 3 py () — 0t ps(2) —o?ps | . (A22b)
| Ha (2) ps(2) —pg g () — 3

Again following Chamberlain (1987), the efficient GMM estimator is based on
the unconditional moment conditions ED (z) C (a:)fl g (z,0) = 0. Suppressing,
for the moment, the dependence of C' on x, and of g1, go and g3 on 2z and 0, we
obtain

D(x) C(x) 'g(z0) (A23)
(Cll + 302031) gy + <012 + 302032) G + (Cl3 + 302033) g3
= C?g 4 C?gy + C%g3 ;
C*lgy + CPgy + C%gs

where C% denotes the i, 7" element of C1.
Inspection of (A23) reveals that the first block reduces to zg; = z (y — 2/3) ,
and implies that the estimate of 3 is OLS, if the following conditions hold:

C™ (z) +30*C* (x) does not depend on z, (A24a)
C" (z) + 302C* (x) = 0, (A24b)
C" (z) 4+ 30%C* (z) = 0. (A24c)
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We impose the conditions of Proposition 12: u; (z) = 0 and p, (z) = 30?, so
that

Clxy=1| 0 20 py(z) |. (A25)

Then tedious calculation yields:

O (@) = [20%ug(x) — ps (2)°] /Det (), (A26a)
C?(z) = 30y (x) /Det(z), (A26b)
C¥(x) = —60°/Det(z), (A26¢)
C*? () = —0’pg(x) /Det(x), (A26d)
C*(z) = 60°/Det(z), (A26e)

Det = 0 [20%pg (x) — ps (a:)Q} — 1802 (A26f)

Finally, it is easy to verify that C' (z) +302C?! (z) = U%, which does not depend
on z, while C'? (z) + 36%2C*? () = C"¥ (z) 4+ 302C** () = 0. Thus, (A24) is
satisfied.

To prove Proposition 14, we note that the conditional moment restrictions
(TA), (7B) and (7C), plus the condition that p,, ps and pg do not depend on
x, ensure that C'(x) does not depend on z. Then, if the regression contains an
intercept, the moment conditions (A23) are a linear combination of the moment

conditions in (6A), (6B) and (6C).

A.7 Proof of Proposition 15

We will show that the asymptotic variance of the RALS estimator is the same as
that of the GMM estimator. From Proposition 14, we can compare the asymptotic
variance of RALS to the asymptotic variance of the GMM estimator using the
moment restrictions (6A), (6B) and (6C).

Let g1 = 2 (s — i0) , g = T [(yz - aT;ﬂ)Q - ‘72} g3 = X [(yz - $§ﬂ)3 - /%J ;
9= (dh.90.05), 0= (F,0", )", D = E(dg/d0') and C = Elgg]. Then the
asymptotic variance of the GMM estimator, é, using the moment restrictions

(6A), (6B) and (6C) is
AvarV'NO = (D'C'D) . (A27)

Let z; = (1,2,,)", p, = B (%5) and V, =V (2;,), and

1 o Hs3 Hyq
d= 0 and c= | p3  pry— 00 py—0Cpy
30? [ty s — Opy Mg — [
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Then, from (A27), after lengthy but straightforward algebra (available from the
authors), we obtain for the GMM estimator of 3 :

-1

1 1 .7
JINBY = | ® o7 M
Amr( Np ) B [ st (de'd) Vit e, (A28)

Letting 0 = (a, ﬂ;)/, we have, for the GMM estimator of the slope coefficients
/6*7

Avar (\/NB*) =

Straightforward calculation gives

1
deld
o? — 13 (pg — pi3 — 607y + 90°) — 205 (py — 30") (115 — 40%p15) + (g — 30™)% (g — ‘74>‘

(114 — o) (16 — 13 — 602, + 90°) — (1 — 402y, )’
And we have, for the GMM estimator of the intercept,

Avar (\/N&) =0’ +

v, L (A29)

(A30)

TATTS (A31)

1
d'cd

Next we derive the asymptotic variance of the RALS estimator of the slope
coeflicient 3,. Let &, = x;,—Z,, where 7, = % > Zix. Then, the RALS estimator of
i

3, is obtained from a regression y; on (&}, wa;, U)3Z‘)/ , where wq; = €? — 6% and ws; =
e?—m3—3(32ei, defined in Proposition 5 and 9. Let w; = (wg;, ws;) . Then, we have
for the RALS estimator § = [X'MX] ' X'’MY, where M = Iy — W(W'W) "W’
and W is the N x 2 matrix with w; at the i** row. Therefore,

VN (8.-8,) = (A32)
T e L T L e IR N fpey
Nzlja:la:l \/—Nzljatzq — \/—NZ%U& Nzi:wiwi Nzi:wzfi +o0p(1).

Consider the 3 estimator obtained by regressing y; on (atéz.wi)/, where w; =

(wai,ws;) With we; = €2 — 0% and wsz; = € — py — 30%¢;. Let 3 be the resulting

estimator of 3. Then we have the asymptotic variance
AvarVN (B - ﬂ) = (02— 2,515, B (va)) (A33)
where X, = F (W'e), Bpw = F (Ww) . A straightforward calculation yields

=SSN, =

we T ww d/cfld'

(A34)
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which is given in (A30). Now the proof for the slope coeflicients 3, is complete
if we show

1
T e =) (A%5)
But, it is shown in White (1980, Appendix) that

= s =) == S [(€ = ) = (07— o) =0, (1) (A36)

Also, noting that e; = ¢, — 2, (B — ﬂ) , where 3 is the OLS estimator of 3, we

e
77 2 )

= Jp Ll ) -3 (o)~ ma ) (37

= g S [ (3-0) v (3-5)] -3~ e} )

= o,(1),

which completes the proof for the slope estimators.
For the intercept estimator of RALS we have

VN& = \/N(y —a‘:;ﬁ*) (A38)
= VN |@-7.8) -7 (8. -5.)].
from which it is easy to deduce that

AvarvVNae = o+, [Avar\/ﬁﬁ} I,

= o'+ T (A39)

d'c1d
which is what we have in (A31).
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TABLE 1

ASYMPTOTIC VARIANCE of RALSASYMPTOTIC VARIANCE of OLS

Distribution | 2 [ %2 [ 2 | x> | 22 | x5 | t t, | t, |DEX|BR2
2ndMoment | 43 [ 50 | .56 [ 60 | 67 [ .75 | 1 1 1 1 1
Only
2nd& 3rd | 26 | 33 | 40 [ 46 | 56 | 68 | .90 | 95 | .98 | .86 | .65
Moments
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N-VARIANCE of RALS, ALTERNATIVE DISTRIBUTIONS

TABLE 2

DISTRIBUTION MOMENTS N=50 N=100 N=1000 N=5000 N=o
Normal 2 1.110 1.066 1.009 0.949 1
2&3 1.195 1.116 1.012 0.950 1
X 2 0.340 0.338 0.404 0.418 0.43
283 0.182 0.159 0.196 0.226 0.26
y 2 0.493 0.456 0.487 0.489 0.50
2&3 0.328 0.271 0.287 0.313 0.33
y o 2 0.576 0.514 0.560 0.546 0.56
283 0.439 0.369 0.384 0.387 0.40
X 2 0.641 0.611 0.595 0.603 0.60
283 0.516 0.462 0.435 0.444 0.46
y o 2 0.730 0.675 0.656 0.681 0.67
283 0.659 0.599 0.539 0.558 0.56
o 2 0.839 0.774 0.743 0.767 0.75
2&3 0.840 0.745 0.665 0.688 0.68
t, 2 1.040 1.031 1.041 0.995 1
2&3 1.081 0.994 0.972 0.917 0.90
tg 2 1.062 0.985 1.030 1.013 1
2&3 1.112 0.967 0.959 0.960 0.95
tyo 2 1.122 1.049 0.965 1.025 1
2&3 1.166 1.041 0.924 0.980 0.98
Double Exp. 2 1.044 0.988 1.014 1.021 1
283 0.951 0.833 0.864 0.842 0.86
Beta(2,2) 2 1.106 1.052 1.030 0.991 1
2&3 0.877 0.770 0.687 0.638 0.65
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TABLE 3

SIZE OF 5% TEST,H,: =1

N = 50 N = 100 N = 1000 N = 5000
DISTRIBUTION  OLS RALS RALS OLS RALS RALS OLS RALS RALS OLS RALS RALS
2 283 2 283 2 283 2 283

Normal 053 .060 .091 055 .056 .069 053 .053 .054 042 043 .043

X2 054 050 .080 055 .048 .060 051 .052 .052 049 .048 .051

X2 058 .056 .08l 047 050 .065 046 046 .050 049 .046 .049

X2 059 .056 .085 049 .044 061 047 049 .053 047 049 .050

X2 062 .054 .083 053 .052 .064 050 .048 .046 048 054 .049

X2 053 .052 .084 056 .048 .063 049 .048 .052 051 .051 .053

X2 058 .056 .088 050 .051 .072 048 047 .049 046 052 .052

t, 054 061 .077 054 059 .059 058 .056 .059 052 .051 .049

ty 057 .058 .077 051 .054 .058 056 .057 .053 052 .051 .052

ty 056 .065 .080 054 056 .059 047 048 .048 051 .051 .052
Double Exp. 059 .062 .059 051 .050 .045 055 .056 .054 051 .051 .049
Beta(2,2) 053 .062 .104 049 057 .076 052 051 .054 050 .051 .049
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