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ABSTRACT We investigate if the presence of exporters, in the neighborhood of a firm, that 
previously transacted with a particular foreign buyer facilitates a match between the firm and this 
buyer for the first time. Using confidential U.S. customs data on trade transactions between U.S. 
importers and Bangladeshi exporters between 2002 and 2009, and information on the geographic 
location of Bangladeshi exporters, we show that the presence of neighboring exporters that 
previously transacted with a U.S. importer increases the likelihood of matching with the same 
U.S. importer for the first time. This suggests a role for business networks among trading firms, 
and for potential knowledge and information gains realized through them. Our research design 
allows us to isolate export spillovers that are partner-specific, from overall export spillovers 
previously documented in the literature. Thus, we further extend our understanding of network 
effects and spillovers at the micro level where international trade occurs.   
 
JEL Classification: F1, R12, L25  
Keywords: trade relationships, business networks, partner-specific spillovers  
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1. Introduction 

An international trade transaction is the result of a successful match between a buyer and 

a seller across national borders. Between 2002 and 2009, 21,281 unique trading pairs (matches) 

were responsible for all textile shipments between the U.S. and Bangladesh.3 Despite the 

importance of matching between individual exporters and importers in international trade, our 

understanding of the factors that facilitate international buyer-seller matches is limited. In this 

paper, we study a particular factor - the role of neighboring exporters that have previously 

transacted with a particular importer in facilitating first-time matches between a potential 

individual seller and that importer.  

We build on a nascent body of work exploring the formation of buyer-seller matches in 

international trade using confidential U.S. customs data. Eaton, Eslava, Jinkins, Krizan, and 

Tybout (2013) present a continuous-time model of heterogeneous sellers searching for buyers in 

a market and calibrate the model parameters using data on trade relationships between 

Colombian exporters and U.S. importers. Their study highlights the costs involved in matching 

internationally with a potential buyer. Initial matching costs are substantial, however, 

maintaining a trade relationship over time is also costly.  The authors find that the initial cost of 

searching for and locating a buyer is more than thirteen times higher than the per shipment cost 

of maintaining the relationship.  

Monarch (2013) and Dragusanu (2014) examine the U.S. importer’s supplier choice. 

Monarch examines the frictions U.S. importers face in their decision to switch their Chinese 

trading partners using a dynamic discrete choice model. He models and estimates switching costs 

that are specific to partners (price and quality) and geography (Chinese cities). Dragusanu 
                                                           
3 See Table 1 for an annual distribution of unique U.S.-Bangladesh trading pairs in textile products. 
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develops a model of sequential production where importers engage in costly search for suppliers 

at all stages of production. She finds empirical support for the model’s main prediction that there 

is positive assortative matching between U.S. buyers and Indian suppliers. 

In this paper, we move beyond characterizing buyer-seller relationships to examine a 

particular determinant of these relationships - the presence of other exporters selling to a 

particular importer in the neighborhood of a firm. We broadly draw on the networks literature in 

international trade, namely,  Rauch’s (1999) “network/search” view of international trade, the 

idea that the search process in matching international buyers and sellers is “strongly conditioned 

by proximity and preexisting ‘ties’ and results in trading networks […]” (p.8). Although we do 

not measure trading networks in the Rauch sense (Rauch, 1996 and 2001; Combes, Lafourcade, 

and Mayer, 2005)4, our measure of neighboring exporters represents a particular type of trading 

network - firms that are in the same geographic location selling to the same buyer in the previous 

period. Moreover, we are able to estimate the role of neighbors on individual international buyer 

and seller matches as opposed to trade flows at the national level, as has been the case in existing 

studies.  

A large literature that examines the determinants of exporter status (Bernard and Jensen, 

2004) has highlighted the role of neighboring exporters that improve the likelihood of firms 

exporting to foreign destinations (Koenig, 2009; Koenig, Mayneris, and Poncet, 2010). These 

studies find that greater presence of exporters selling to a specific foreign destination close to a 

firm can increase the likelihood that the firm exports to the same destination.5  The focus is on 

                                                           
4 These studies consider two types of networks – social and business. Social networks are typically measured as the 
stock of bilateral migrants and business networks are typically measured as links between plants/firms belonging to 
the same business group. 
5 Bernard and Jensen (2004) consider the role of both geographic and sectoral spillovers in the export decision of a 
U.S. plant. Koenig (2009) and Koenig, Mayneris, and Poncet (2010) further consider the role of export spillovers on 
the decision of French firms to export to a particular country. Compared to Bernard and Jensen, the spillovers 
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the role of information sharing enabled by having neighbors in close proximity exporting to a 

destination country. When firms do not internalize such information flows, it results in a positive 

externality, also known as export spillovers.   

The idea is that the presence of exporters nearby exporting to the same destination can 

lower fixed costs of exporting to a particular country.  This can happen if neighboring exporters 

facilitate knowledge transfer on destination-specific business norms and culture, of setting up 

foreign exchange accounts or service centers abroad, or of retaining customs agents, in addition 

to providing information on potential buyers, and easing search, and developing a buyer-supplier 

relationship.  Koenig (2009) and Koenig et al (2010) use data on French exporters to find that 

greater presence of exporters nearby affects the decision to start exporting to a particular country, 

but not the volume of exports.  Hence, the authors infer that the role of neighbors operates 

through lowering the fixed costs associated with exporting to a particular destination, but not the 

variable cost of exporting.  Fernandes and Tang (2012) find that for Chinese exporters, new 

exporters’ first-year sales and probability of survival are higher in cities where there are existing 

exporters selling to the same export destination within an industry.  

Our paper differs from these studies in a crucial way.  It looks at how the presence of 

neighboring exporters that have previously matched to a particular foreign buyer impacts the 

likelihood that a firm will match with the same foreign buyer for the first time.  Hence, our focus 

is on the match between the importing and exporting firm, the micro units at which international 

trade occurs.  In our analysis, since we examine the role of neighboring exporters on the 

likelihood of matching with a particular importer, we are able to separately identify export 

spillovers that are specific to the trade partner.  To the best of our knowledge, there is no existing 

                                                                                                                                                                                           
considered are destination specific and geography is at the much more disaggregated French employment area level 
rather than a U.S. state.   
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study that isolates the role of neighbors selling to a particular buyer in a given destination on the 

probability of matching with the same buyer.  We believe that it is important to fill this gap in the 

literature. First, it is important to identify determinants of buyer-seller matches across 

international borders.  Second, ascertaining if spillovers are specific to a trading partner at the 

firm level and not just at the country level is a step further in the direction of isolating the nature 

of export spillovers and the channels through which they operate.  This can be important for 

designing trade promotion measures.     

Here, we note that either the importer or the exporter (either directly or through a buying 

house) might initiate the buyer-seller match.6 In our empirical analysis, we only observe the 

match, and not who initiated it or how it was initiated.  However, we argue that the presence of 

neighboring exporters matter in both instances - where the importer or the exporter initiates the 

match.  Neighboring exporters may enhance individual matches through various channels.  The 

presence of exporting firms in the neighborhood selling to the same buyer can facilitate 

information sharing about exporting to that particular buyer.  This might include knowledge of 

any needs of the importer that require customization such as the buyer’s product specifications, 

custom packaging requirements, and its clienteles’ tastes and preferences.  Additionally, there 

may be information sharing on locating a buyer, investing in activities that promote an exporter’s 

product to a potential buyer such as advertising or participating in trade shows.  The ability to 

obtain tacit knowledge is likely to lower the fixed and/or variable costs of exporting to a 

particular buyer. On the importer end, buyers may be more likely to learn about new suppliers 

                                                           
6 Buying houses are intermediaries that facilitate matches in numerous ways, for instance, by helping with search or 
by providing quality certification to buyers.  Buying houses could represent one potential channel through which 
observed networks effects, or spillovers, operate.  For instance, exporters might learn about one or more of these 
buying houses from their neighbors.  Similarly, a firm located close to other exporters, that matched in the earlier 
period with an importer via a buying house, might be more visible to the buying house.  Our conceptual framework 
allows for the alternative interpretation that buying houses act on behalf of, or substitute for, U.S. importers. 
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when they are located in close proximity to existing suppliers.  Buyers might also find it easier to 

verify product quality, or the likelihood that goods will be supplied on time and as per 

requirements when the potential exporter is geographically close, and part of the same business 

network as the exporter they already transact with.    

To reiterate, by looking at the match between a buyer and a seller, we highlight the role 

of neighbors in information sharing on partner-specific transaction costs in addition to country-

specific transaction costs. Thus, we relate the presence of exporters neighboring exporter  and 

selling to an importer  on the first match status, that is the first time exporter  matches with 

importer . We use confidential transaction level data on U.S. imports in textile products from 

Bangladeshi exporters between 2002 and 2009, sourced from the U.S. Census Bureau.  We select 

textile products because for textile shipments, we observe the manufacturer exporting the 

product, as opposed to an intermediary in the transaction.  Further, focusing on trade transactions 

between the U.S. and Bangladesh is motivated by the need to construct a sensible dataset while 

focusing on an important bilateral trade relationship.7 Bangladesh is the fourth largest apparel 

exporter to the U.S.8 Over three quarters of Bangladeshi exports are in textile and apparel 

products, with the U.S. being the second largest export destination (Tables 4 and 5, Trade Policy 

Review, 2012). Exporters in our sample are Bangladeshi textile manufacturing firms, while 

importers are U.S. firms operating in the manufacturing, wholesale, retail and other sectors of the 

economy.   

We estimate a linear probability model of the first match status between each 

Bangladeshi exporter and each U.S. importer over the time period, as a function of the number of 
                                                           
7 Our research design requires us to analyze all possible trading pair matches and therefore we select a bilateral trade 
relationship where the number of buyers and sellers is relatively small but at the same time captures a significant 
portion of the economic activity of the trading partner. See Section 3 for further detail on data construction.  
8 See http://www.bdembassyusa.org/uploads/US%20-%20BD%20trade.pdf. 
 

http://www.bdembassyusa.org/uploads/US%20-%20BD%20trade.pdf
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firms in the neighborhood that matched with that importer in the previous time period.  A match 

occurs when the importer and exporter transact at least once for the first time in that time period.  

We relate the likelihood of a first match to a measure of exporter presence (or the size of the 

exporter network) in the neighborhood. Controlling for unobservable time-varying exporter and 

importer shocks, results from our preferred specification indicate that a one percent increase in 

the number of exporters, that previously matched to a particular U.S. importer, in the 

neighborhood of a firm results in a 0.15% increase in the likelihood of the firm matching with 

the same importer for the first time.  

We also find that these partner-specific spillover effects differ by both exporter and 

importer characteristics. Spillovers are concentrated among small exporters (those that have 

smaller average export sales). This suggests that smaller exporters may not have the internal 

resources of larger exporters that facilitate buyer-seller relationships, and experience higher 

likelihoods of matching with U.S. buyers that transact with neighboring exporters. We further 

find that spillovers are stronger when the importer is small relative to when the importer is large.  

This suggests that U.S. importers vary in their behavior of procuring and maintaining supplier 

relationships. 

The rest of the paper is organized as follows.  Section 2 presents our empirical model and 

identification strategy.  Section 3 describes the data and measurement of key variables.  Section 

4 discusses the empirical findings and the final section concludes. 

 

2. Empirical model and strategy 

In order to motivate our empirical strategy, we assume that exporter  matches with 

importer  at time  if  
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                               (2.1) 

where  is the present discounted value of future profits from the match,  is a discount 

rate and  is the sunk fixed cost of matching that is specific to the match pair . Assuming 

that there is no uncertainty over future profits, we can rewrite (2.1) as an exporter  matches with 

importer  if 

                           (2.2) 

Profit, , is a function of exporter and importer characteristics, like productivity, destination 

and origin market-specific factors like aggregate prices of inputs and the final good, and demand 

in the destination market. We treat each   match as an independent match decision, which 

means that the alternative to exporter  not matching with importer  is that the match does not 

occur. 

Within our framework, network effects or spillovers operate through lowering the sunk 

fixed cost of matching, which can be considerable. Using U.S.-Colombian trade transactions 

data, Eaton et al. (2013) estimate that the initial search cost of locating one buyer per year is 

about $20,642.  The cost drops to $1,522 per shipment to maintain each client relationship once 

the initial match has been established.  Thus, the initial cost of matching is a significant portion 

of total matching fixed costs. These estimates provide a sense of the magnitude of the costs 

involved in forming exporter-importer relationships, and in subsequently maintaining them, and 

underline our rationale for explicitly introducing partner-specific fixed costs of trading.   

We decompose the initial fixed cost of matching (or the sunk cost) into three components 

as, 
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                  (2.3)  

Superscript  denotes partner-specific fixed costs of matching that are specific to each  pair and 

superscript  denotes country-specific fixed costs of matching. Country-specific initial period 

fixed costs include costs of navigating business norms and culture, search costs for a customs or 

shipping agent, setting up foreign sales or service offices and foreign currency accounts.  We 

allow for the possibility that destination-specific fixed costs may vary by exporter or importer 

characteristics over time. Partner-specific initial period fixed costs include costs of searching and 

advertising, learning about or communicating importers’ tastes, clientele, customization or 

packaging requirements, or exporter capabilities. 

  To implement empirically we formulate,  

,       (2.4) 

where  captures the number of exporters selling to importer  in city  at time ,  

 encompasses exporter-year (importer-year) shocks, and  is an idiosyncratic error term.  

The key idea is that greater presence in the neighborhood of exporters transacting with a 

particular U.S. buyer lowers the fixed costs involved for a potential exporter in matching with 

the same buyer.  Evidence from surveys and case studies supports this idea. Egan and Mody 

(1992) document the search process from an importer’s point of view. The authors identify 

primary ways U.S. buyers of bicycle and footwear gather information on potential suppliers in 

developing countries based on interviews with 28 U.S. importers. They find that U.S. buyers 

seek information on potential suppliers from within a network of product-specific buyers and 

suppliers of both final and intermediate goods. They also find information about suppliers at 

trade fairs and conferences. Finally, a more direct method of identifying suppliers is visits to the 

suppliers’ factories to assess their logistical and human resource capabilities.  We argue that this 
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is likely easier if the potential exporter is in the neighborhood of an exporter they already 

transact with. 

Cadot, Iacovone, Pierola, and Rauch (2011) and Eaton et al (2013) provide evidence on 

the search process from an exporter’s point of view. Cadot et al (2011) present findings from 

survey responses from 395 firms across four African countries. ‘Competitor’s networks’, a 

measure close to our empirical formulation of neighbors, feature in the top three ways in which 

first time exporters find buyers.  Eaton et al (2013) provide references to results from interviews 

with Colombian exporters that rank activities firms pursued in order to meet potential buyers 

abroad. These activities include building up an online profile, attending trade fairs, sending sales 

representatives to visit foreign clients, and maintaining a foreign sales office.  Undertaking these 

activities are likely less costly if firms are able to learn through their business networks. 

The probability that exporter  matches with importer  at time  can be written as:  

.        (2.5) 

Substituting (2.4) into (2.5) above, we have, 

.      (2.6) 

We estimate a simple linear probability model of the first match, , between exporter  

and importer  at time  as follows, 

.                             (2.7) 

Here,  and  are exporter-time and importer-time fixed effects or control variables.  

We define a first match as the first time we observe a trade transaction in any textile products 

between an importer and exporter in a given year. Since we are interested in the first match 

decision, we drop all observations at the importer-exporter level after the year of the first match  
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We employ a linear probability model similar to Bernard and Jensen (2004) and Fernandes and 

Tang (2012) to estimate (2.7).9 In our preferred specification, we include exporter-year and 

importer-year fixed effects to account for time varying exporter and importer shocks.   

The time-varying exporter-time specific variables that enter the profit function, like 

exporter productivity, are absorbed by the exporter–time specific effect and any other 

unobserved time-varying exporter–specific shocks that determine match status.10 The exporter–

time fixed effects also capture destination-specific fixed costs that are common across all U.S. 

buyers, but vary across Bangladeshi exporters.  

In our preferred specification we include importer-time fixed effects to operationalize the 

 term. These effects control for time-invariant importer characteristics like firm ownership or 

state level programs aimed at increasing activity of local firms by providing matching services 

with foreign suppliers, and also for time varying shocks to productivity or subsequent 

profitability that may influence a trade relationship.   In addition, they capture destination-

specific fixed costs that are common across all Bangladeshi sellers, but vary across U.S. 

importers.  We also report results for a less demanding specification that includes importer fixed 

effects and importer controls, specifically, firm age and employment that are well known to be 

correlated with firm characteristics such as productivity (Foster, Haltiwanger, and Krizan, 2001) 

and subsequently profitability (Helpman, Melitz, and Yeaple, 2004) instead of the importer-year 

effects.   

                                                           
9 See Fernandes and Tang (2012) for a discussion of the choice of a linear probability model over other binary-
choice models.  
10 Since we are using U.S. import transaction records, we only observe the product and value associated with the 
exporter’s transaction with a U.S. importer. We do not observe exporter characteristics that may influence the 
decision to export to a U.S. importer such as total factor productivity, total wages, total employment, etc. Therefore, 
exporter-year fixed effects control for all time varying exporter characteristics that may influence export behavior. 
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The variable  captures network effects or spillovers from the presence of exporters 

to the same buyer  in exporter ’s area  in a previous period.  We posit that network effects or 

spillovers operate primarily by lowering the sunk costs of matching between importer and 

exporter, after accounting for country-specific sunk costs.  is an idiosyncratic error term.  

After controlling for exporter-year and importer-year fixed effects, we still leave out the 

determinants of match behavior that vary across city-importer and time. For instance, if there are 

efforts by local governments or trade associations to promote textile exports to particular U.S. 

importers within a city, or if particular U.S. importers have preferences to trade with exporters in 

particular Bangladeshi cities due to reasons that cannot be observed, then the coefficient on our 

own-city spillover variable may not be consistently estimated. To a certain extent, this 

endogeneity problem is mitigated by using a lagged measure of nearby exporter presence, thus 

circumventing spurious correlation with any contemporaneous city-importer-specific unobserved 

factors. Standard errors in all our specifications are clustered at the importer-city level.  

 

3. Data 

3.1. Source  

The data for this study are drawn from the Linked/Longitudinal Foreign Trade 

Transactions Database (LFTTD). The LFTTD is a confidential transaction-firm linked database 

linking individual trade transactions, both exports and imports, to the U.S. firms that make 

them.11 The dataset contains information on the value, quantity, and date of transaction of a ten-

digit Harmonized Commodity Description and Coding system (commonly called Harmonized 

System) products.  The Harmonized System is an internationally standardized system of names 

                                                           
11 See http://www.census.gov/ces/dataproducts/datasets/lfttd.html for more information. 

http://www.census.gov/ces/dataproducts/datasets/lfttd.html
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and numbers for classifying traded products. The LFTTD also contains information about the 

trading parties and in particular, U.S. Customs Border Protection (CBP) requires U.S. importers 

to collect information about its foreign trading partner.12 We focus on the universe of all U.S. 

import transactions (LFTTD-IMP) that occurred between 2002 and 2009.13 Moreover, we 

consider all import transactions of textile products from Bangladesh aggregated at the exporter-

importer and year level. We use the U.S. Textile and Apparel Category System of the U.S. 

International Trade Administration’s Office of Apparel and Textile to define textile products. 

They are comprised of two-digit HS codes 61, 62, 63, and 65 in the analysis sample where 89% 

of all transactions are in product codes 61 and 62.14  

 We only consider U.S. textile imports to permit focus on goods producing exporters and 

not other trading agents, such as export brokers or freight forwarders, who may have no role in 

the actual matching process.  The identifier for the exporter in the U.S. import transactions 

database is the manufacturer in case of textile products (see details below), and we exploit this 

useful feature of the data to circumvent this issue. In addition, we selected Bangladesh for two 

main reasons. First, textile exports account for close to 80% of total Bangladeshi exports over the 

sample period and this allows us to capture a significant portion of economic activity of this U.S. 

trading partner. Second, we wanted to select a trading partner that is a major player within the 

textile sector but that would still allow us to construct our dataset with ease as explained in the 

following section.     

3.2. Dataset Construction 

                                                           
12 A U.S. exporter is not required to assign and report a unique identifier for the foreign trading entity it transacts 
with.  
13 Although, the LFTTD-IMP is available from 1992, we have chosen to focus on the most recent eight-year period 
for ease of constructing the analysis dataset. At the time we began the study, 2009 was the latest available year. 
14 We use the correlations between the U.S. Textile and Apparel Category System and the Harmonized Trade 
Schedule at http://otexa.ita.doc.gov/corr.htm; see http://hts.usitc.gov/ for details on each HS chapter.  

http://otexa.ita.doc.gov/corr.htm
http://hts.usitc.gov/
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We utilize two sets of firm identifiers in the LFTTD-IMP. The first identifies the U.S. 

firm (importer) and the second identifies the Bangladeshi textile manufacturer (exporter). The 

exporter is uniquely identified by the “Manufacturer ID” (MID), a required field on Form 7501, 

the form U.S. importers are required to fill out by the U.S. CBP.15 The MID identifies the 

manufacturer or shipper of the merchandise by an alpha-numeric code that is constructed using a 

pre-specified algorithm with a maximum length of 15 characters (see Appendix for stylized 

examples).16 For textile shipments, the MID represents the manufacturer only in accordance with 

Title 19 Code of Federal Regulations.17 Therefore, our data captures Bangladeshi textile 

manufacturers rather than trading agents who may or may not engage in the matching decision. 

The last three characters in the MID designate the city where the manufacturer is located. 

Therefore, each manufacturer is assigned a MID that uniquely identifies its location.  

We perform several basic data checks. First, we exclude transactions between related 

parties.18 Over the sample period, only about 2% of the total value of trade in textile products 

between the U.S. and Bangladesh occurs between related parties. Since we are interested in 

exploring the role of neighbors on the first match status of a unique trade pair, we exclude trade 

transactions between the headquarters and subsidiaries of multinational firms. Next, we exclude 

transactions where the importer or exporter identifiers are missing or where the MID does not 

conform to the algorithm outlined in the CBP Form 7501 Instructions such as a MID that begins 

or ends with numeric characters, a MID that is a series of numbers, and the like.  

[Insert Table 1 here] 
                                                           
15 See form http://forms.cbp.gov/pdf/cbp_form_7501.pdf.  
16 See Block 13 (pg. 7) for description of MID and Appendix 2 (pg. 30) for instructions on constructing MID at 
http://forms.cbp.gov/pdf/7501_instructions.pdf. 
17 See http://www.gpo.gov/fdsys/pkg/CFR-2011-title19-vol1/pdf/CFR-2011-title19-vol1-sec102-23.pdf.  
18 “Related party” trade refers to trade between U.S. companies and their foreign subsidiaries as well as trade 
between U.S. subsidiaries of foreign companies and their foreign affiliates. For imports, firms are related if either 
owns, controls, or holds voting power equivalent to 6 percent of the outstanding voting stock or shares of the other 
organization (see Section 402[e] of the Tariff Act of 1930).  

http://forms.cbp.gov/pdf/cbp_form_7501.pdf
http://forms.cbp.gov/pdf/7501_instructions.pdf
http://www.gpo.gov/fdsys/pkg/CFR-2011-title19-vol1/pdf/CFR-2011-title19-vol1-sec102-23.pdf
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Once the basic data checks are complete, we construct unique trading pairs using the 

importer and exporter firm identifiers for each year in the sample. There are 2,329 and 8,104 

unique number of importers and exporters, respectively, over the sample period that results in 

18,874,216 possible trading pairs in any single year.19 We can see from Table 1 that as a share of 

the number of all possible trading pairs in a year, on average, only about 0.022% of pairings 

actually occur. This echoes the broader stylized fact in the trade literature, that trading is a rare 

activity. The final analysis dataset contains observations at the importer-exporter pair and year 

level.  

In subsequent analysis, we explore heterogeneity in neighbor effects by importer size. In 

particular, we differentiate between small (those that employ less than 250 workers) and large 

(those that employ 250 or more workers) importers. We obtain information on an importer’s 

basic firm characteristics from the Longitudinal Business Database (LBD). The LBD consists of 

data on all private, non-farm U.S. establishments in existence that have at least one paid 

employee (Jarmin and Miranda, 2002). There are 2,329 U.S. importers in our sample and we link 

2,306 of these to the LBD to obtain information on firm employment, age, sector, and multi or 

single-unit status. For multi-units or firms with multiple plants, age is calculated as the difference 

between the year of interest and the year of establishment of its oldest plant.  Since multi-unit 

firms may operate in several sectors of the economy, the firm is considered to be operating in the 

sector where the largest share of its employment is housed.20  Since the LBD is an establishment 

level dataset, employment is first aggregated up to the firm level by sector.  The firm is then 

assigned its “predominant” sector and its employment is aggregated to the firm level.21   

                                                           
19 This illustrates why we focus on a single sector and trading partner. The need to construct all possible trading 
pairs precludes considering the universe of U.S. import transactions. 
20 If instead payroll information is used to assign sectors, the categorization remains qualitatively unchanged. 
21 Sales data are not readily available for all firms in the sample.  Therefore, employment is used to assign a sector. 
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3.3. Variables 

Since we are interested in examining the role of neighbors in facilitating first time 

matches, our main independent variable of interest is  that is a dummy variable that takes on a 

value of 1 for the first year  that exporter  and importer  begin trading and 0 otherwise. For 

instance, if we observe a trade transaction between ABC Garments Company in Bangladesh and 

XYZ Corporation in the U.S. from 2003 through 2007,  takes on value of 1 in 2003 and all 

other observations in the subsequent years are dropped from the data. Our main dependent 

variable of interest, , is the number of other exporters that matched with importer  located 

in the same area, ,  as exporter  at time  and will be referred to as “# exporters-importer j, 

same city” in the tables.  

The geographic area we consider is the city that is reported in the Manufacturer ID. The 

last three characters of the MID designates the city the manufacturer operates in. We verified the 

list of cities in our analysis sample against a list of all cities in Bangladesh. Bangladesh is 

divided into seven administrative divisions that are further divided into 64 districts (zila) and 

within districts, into 1,009 sub-districts (upazila).22 The city information extracted from the MID 

approximately conforms to sub-districts.23 Sub-districts are analogous to counties in the U.S. and 

are the second lowest tier of regional administration. Bangladesh is a small country with an area 

of about 57,000 square miles, roughly the size of the state of Iowa, therefore average area of a 

sub-district is about 56 square miles.24 There are 282 cities in our analysis sample.   

[Insert Table 2 here] 
                                                           
22 See list of geo codes at http://www.bbs.gov.bd/WebTestApplication/userfiles/Image/geocodeweb.pdf.  
23 See Appendix A and B for further details. 
24 The spillover measures in Koenig (2009) and Koenig et al (2010) are measured at the level of the French 
employment area that is on average 937 square miles. For a map of the sub-districts of Bangladesh see 
http://www.fao.org/fileadmin/templates/faobd/img/Administrative_Unit_Map.jpg. 
. 

http://www.bbs.gov.bd/WebTestApplication/userfiles/Image/geocodeweb.pdf
http://www.fao.org/fileadmin/templates/faobd/img/Administrative_Unit_Map.jpg
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3.4. Descriptive Statistics  

Table 2 presents summary statistics on the exporters and importers in our analysis 

sample. The first column is based on the entire analysis sample and the second and third columns 

further divide the sample by small and large U.S. importers. In our analysis sample, the number 

of Bangladeshi exporters is more than three times that of the number of U.S. importers.  The 

table shows that an average U.S. importer tends to transact with about six Bangladeshi exporters. 

There is heterogeneity across small and large importers.  Large U.S. importers, on average, tend 

to transact with about 12 Bangladeshi exporters while small importers match with only four 

exporters. However, the average Bangladeshi textile exporter matches with about two U.S. 

importers, no matter the size of the importer.   

This pattern persists at the city level.  On average, there are about 24 exporters and 14 

importers in a city with a little less than three times the number of small importers transacting in 

a city compared to large importers. Our main variable of interest, the number of exporters in a 

city selling to a particular U.S. importer, is 0.53 on average.  Here too, we see differences across 

small and large importers.  The average number of exporters in a city selling to a particular U.S. 

importer in the previous period is 0.37 in the sample of small importers and increases to 1.42 

when the importer is large.  We get a sense of networks at work when we look at the number of 

cities an average U.S. buyer sources from.  We see that an average importer sources from just 

under two cities, hinting at spatial clustering in buyer-seller matches.  Large importers are not 

very different from small importers.  A small U.S. importer sources from about two Bangladeshi 

cities while a large U.S. importer sources from about three Bangladeshi cities.  

 [Insert Table 3 here] 

4. Results 
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4.1 Identifying the role of neighbors in matching individual importers and exporters 

Table 3 presents results from our baseline regression described in equation (2.7).  We 

look at the impact of the presence of firms that previously matched with a U.S. buyer in the 

neighborhood of a Bangladeshi exporter, defined by a city, on the probability of a first-time 

match between the same importer and the exporter, successively adding exhaustive fixed effects 

in each column. Column (1) includes year fixed effects only; column (2) includes exporter-year 

and importer fixed effects; column (3) includes exporter-year and importer fixed effects as well 

as time-varying importer controls of age and employment and column (4) includes exporter-year 

and importer-year fixed effects. We focus on results from column (4) in our discussion below as 

it contains the most exhaustive set of fixed effects.  

We find that, controlling for exporter–time and importer-time factors that might 

determine first match status, nearby exporter presence is positively associated with the likelihood 

of a first–time match.  From column (4), we find that an additional exporter in the city that 

previously matched with the same importer is associated with an increase of 0.00006 in the 

likelihood of a first-time match between a Bangladeshi exporter and a U.S. importer.25  Our 

coefficient is statistically significant at the one percent level. In elasticity terms, our results in 

column (2) indicate that a one percent increase in the number of exporters in a city selling to a 

buyer results in a 0.51% increase in the likelihood of a match with the same buyer for the first 

time.26 This figure drops to 0.19% after we account for buyer fixed effects and controls, and to 

0.15%  once we account for buyer-year effects.27    

                                                           
25 We report magnitudes for the ‘typical’ Bangladeshi exporter and U.S. importer.  In other words, effects are 
calculated with all fixed effects set to zero. 
26 Elasticities are calculated using the “margins” command in STATA. 
27 Koenig (2009) finds that a 1% increase in the share of firms exporting to a country increases the probability of 
exporting to that country by 0.26%. This effect ranges from 0.15% to 0.33% when countries are grouped by a 
measure of market accessibility. 
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In the context of the literature on export spillovers, we can interpret our results as export 

spillovers that are specific to the trade partner. Thus, following our discussion in Section 2, we 

find that partner-specific spillovers are especially beneficial in lowering the sunk costs associated 

with a particular match that includes search costs that can be more than thirteen times higher than 

per period fixed costs of maintaining a trade relationship as indicated by estimates in Eaton et al 

(2013).  

In order to compare our results to that in the existing literature, we implement a 

conditional logit model as in Koenig et al (2010) with exporter-year fixed effects and time-

varying importer controls and report the results in Table A2. Koenig et al (2010) search for 

evidence of export spillovers on a French exporter’s decision to start exporting a particular 

product to a particular destination. Implementing a conditional logit model with year and firm-

product-country fixed effects, they find that an additional exporter in the neighborhood increases 

the likelihood of beginning to export to the same destination within a product category by 1.07 

percentage points.  

Our conditional logit estimation results imply that an additional exporter in the 

neighborhood increases the likelihood of exporting to the same buyer for the first time by 0.70 

percentage points.28 In our theoretical framework, we posit that the ‘overall’ fixed costs of 

exporting are comprised of both partner- and destination-specific fixed costs. Previous studies, 

including Koenig et al (2010), study spillovers from nearby exporters exporting to the same 

destination.  Thus, they estimate spillover effects that lower the ‘overall’ fixed cost of exporting.  

However, we focus on one single destination country and thereby abstract from the destination-

specific component of the fixed cost of exporting that all exporters to the U.S. face. In addition, 

using exporter-year (importer-year) fixed effects, we control for destination-specific fixed costs 
                                                           
28 Marginal effects are calculated using the “margins” command in STATA. 
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that vary across Bangladeshi (U.S.) exporters (importers). Hence, our estimates only capture 

spillover effects that operate by lowering partner-specific fixed costs. This implies that our 

estimates isolate a part of the ‘overall’ spillover effect estimated in previous studies. Following 

this line of reasoning, the above results suggest that partner-specific spillovers account for about 

65% of export spillovers for first time matches between a unique trading pair. This is an 

economically significant share and highlights the importance of isolating export spillovers that 

are partner-specific.  

[Insert Table 4 here] 

4.2 Heterogeneous neighbor effects 

In order to explore the nature of the network/spillover effects established in our baseline 

results,  in Table 4, we estimate equation (2.7) separately for small, medium, and large exporters. 

Exporters are designated into three size categories based on their average export sales in each 

year – large exporters have sales in the first quantile, medium exporters have sales in the second 

quantile, and small exporters have sales in the third quantile. The average annual value of a 

transaction between a trade pair in our sample is a little over half a million U.S. dollars. Figure 1 

shows the distribution of export value, in thousands of current U.S. dollars, over our sample 

period. We can see that about three-quarters of annual Bangladeshi textile export transactions are 

valued at less than $500,000.  

[Insert Figure 1 here] 

In addition to establishing the heterogeneity of the neighbor effects based on exporter 

characteristics, this exercise addresses and alleviates concerns about results predominantly being 

driven by the presence of multi-plant exporters. The concern about multi-plant firms is that 

although our independent variable correctly assigns manufacturers to the cities they are located 
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in, it is possible that the headquarter, rather than the manufacturing location of a multi-plant firm, 

is the unit responsible for developing trade relationships. Since we do not have firm level 

information for the Bangladeshi manufacturers in our sample to identify multi-plant status of a 

firm, we offer two reasons why we believe our results are not disproportionately being driven by 

the presence of multi-plant firms.   

First, the export-oriented Bangladeshi textile sector is characterized by a large number of 

small firms rather than a few large firms (Yamagata, 2007) and large firms are typically 

associated with multi-unit status. Second, we rerun our baseline regressions on three separate 

samples that are divided according to exporters’ average sales. It is more likely that units of 

multi-plant firms will tend to be larger in terms of total export value and therefore if the presence 

of such exporters in our sample are disproportionately driving our results we would expect the 

spillovers to be more pronounced for large exporters. Our results suggest otherwise – partner-

specific spillovers exist only for small exporters. In fact, for medium and large exporters, the 

evidence for spillovers is not robust to controlling for buyer-year specific shocks to match status 

(see columns (4) and (6)).  Intuitively, this makes sense because we would expect smaller 

exporters to benefit more from the presence of neighboring exporters selling to the same buyer 

since large exporters are more likely to have well-established, internal networks that facilitate 

fostering buyer-seller relationships. 

[Insert Table 5 here] 

In Table 5, we estimate equation (2.7) separately for small and large U.S. importers. This 

is motivated by evidence that there is substantial heterogeneity within U.S. trading firms in terms 

of size and this could mask interesting patterns in the neighbor effect. Bernard, Jensen, and 

Schott (2010) document that pure wholesalers and retailers (defined as importers with 100% of 



22 
 

their employment in either of those two sectors) are smaller in terms of employment, trade value 

and domestic sales, operate fewer U.S. establishments and are present in fewer U.S. states. 

Meanwhile “mixed” firms (defined as firms with less than 100% employment in retailing and/or 

wholesaling) are substantially larger, trade more products, trade with more countries, and are 

more likely to engage in related-party trade. In our sample, more than half of U.S. importers are 

wholesalers while a third are manufacturing and retail firms.  

[Insert Figures 2 and 3 here] 

Figures 2 and 3 show that the average export value and number of exporters per importer 

differ vastly by importer size in each of the sample years. The average import value of small 

importers are less than half that of large importers. Large importers also transact with almost 

twice the number of Bangladeshi exporters compared to small importers, on average.  Large 

firms in the U.S. importing textile products from Bangladesh are likely to behave differently in 

procuring suppliers and so we expect spillover effects to differ across size categories. For 

instance, small U.S. importers might be more reliant on their existing suppliers for information 

on potential future suppliers than large U.S. importers, who might have alternative means of 

search.  Similarly, on the Bangladeshi side, exporters might find it more difficult to search and 

match with smaller U.S. buyers. Indeed, we do find support for the hypothesis that spillovers 

play a larger role in buyer-seller matches when the buyer is small.29 In Table 5, we divide the 

sample by importer size – small and large. Columns (1) and (2) presents results for the sample of 

small importers and columns (3) and (4) for the sample of large importers. We find that spillover 
                                                           
29 This, partly, also address the concern that the network effects we observe exist because large U.S. importers 
buying from small Bangladeshi exporters realize that the exporter cannot fulfill their order, and hence are forced to 
break their order up and allocate them to nearby exporters. Finding stronger positive network effects for small 
importers alleviates this concern. As an additional test, available upon request, we decomposed our exporter 
presence variable by size in terms of export value into small, medium, and large exporter presence in the 
neighborhood and ran equation (2.7) on the full sample.  The estimated effects are mostly significant for all three 
variables in the first match status regressions, indicating that this scenario is not the predominant channel operational 
in matches between Bangladeshi exporters and U.S. importers. 
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effects for large firms are smaller than that for small firms, though both effects are positive and 

statistically significant.    

[Insert Table 6 here] 

4.3 Robustness checks 

We carry out two additional checks of our baseline results presented in Table 6. Columns 

(1) and (2) test whether the impact of a higher number of neighbors that previously matched to 

the same U.S. importer remains significant for the top end of our sample in terms of number of 

neighbors, similar to Koenig et al (2010). The sample is restricted to observations for which the 

number of neighboring exporters exporting to the same importer is greater than 1.30 The purpose 

is to ensure that the partner-specific spillover effects are not only due to cases of textile exporters 

starting to export to a particular U.S. importer following an increase in the number of neighbors 

from zero to one. From our preferred specification in column (2), we find that, controlling for 

exporter–time and importer-time specific factors that might determine matches, an additional 

exporter in the city selling to the same importer is associated with an increase of 0.000059 in the 

likelihood of a first-time match between a Bangladeshi exporter and a U.S. importer.  This is 

quantitatively and qualitatively similar to results from our preferred specification in Table 3, 

column 4. Our results confirm that the impact of spillovers remains positive, significant, and 

almost identical in magnitude when considering cities with more than one neighboring exporter. 

Therefore, partner-specific export spillovers persist for exporters surrounded by one or more 

neighbors. 

Columns 3 and 4 test whether the impact of a higher number of neighbors that previously 

matched to the same U.S. importer remains significant when we only consider cities where 

multiple products are produced.  This addresses a particular concern that if there are cities that 
                                                           
30 The results remain unchanged if we consider a cutoff of 3. 
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specialize in a product, and there are only certain U.S. importers who import those products, then 

these importers would have to trade with exporters in particular cities. Subsequently, all 

exporters in the neighborhood would be solely transacting with particular U.S. importers who 

demand particular products and our results would be an artifact of this specific scenario. Two-

digit HS products 61 and 62 represent about 93% of all transaction value in our analysis sample. 

Therefore, we restrict our sample to cities where both product categories are manufactured. We 

find from column 4 that, controlling for exporter–time and importer-time specific factors that 

might determine matches, an additional exporter in the city that previously transacted with a U.S. 

importer is associated with an increase of 0.00006 in the likelihood of a first-time match between 

a Bangladeshi exporter and the same U.S. importer. This is quantitatively and qualitatively 

similar to results from our preferred specification in column 4, Table 3.    

In summary, our results suggest that a one percent increase in the number of exporters in 

a city that previously matched with a U.S. importer results in a 0.15% increase in the likelihood 

of a match between an exporter in that city and the same buyer for the first time. Comparison 

with existing evidence suggests that this effect is economically significant – partner-specific 

spillovers account for about two-thirds of export spillovers previously documented in the 

literature. We also find evidence of positive partner-specific export spillovers that vary with both 

exporter and importer characteristics. In particular, spillovers are stronger for small exporters and 

small importers. 

 

5. Conclusion 

This paper finds a statistically positive and economically significant role for other 

exporters in the neighborhood of a firm, that have previously matched to a particular importer, in 
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improving the likelihood of that firm matching with the same importer for the first time. Thus, 

we further build on the existing empirical body of evidence that documents network effects in 

trade and positive export spillovers specific to destinations and products. Our study also 

contributes to the nascent investigations in the international trade literature on matches between 

buyers and sellers and their determinants.  

  Our results establish the importance of isolating the buyer-specific component of export 

spillovers and recognizing that there may be further variation in spillovers depending on exporter 

and importer characteristics. Earlier studies have underscored the role of trade promotion 

measures that bring about learning and information exchange among potential exporters about 

destination markets, including prevailing consumer tastes, demand conditions and customs 

procedures. We find that information externalities at the firm level are significant, and 

disseminating information on identifying individual buyers and sellers in the foreign country and 

their requirements and capabilities can help spur trade relationships. Finally, our study 

underscores the importance of linking firm-trade transactions data between country pairs to shed 

further light on the determinants of the relationship between buyers and sellers transacting across 

borders.  
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TABLE 1.-UNIQUE MATCHES, BY YEAR  

Year Matches 
2002 3,586 
2003 3,327 
2004 3,407 
2005 4,012 
2006 4,763 
2007 4,785 
2008 5,492 
2009 4,924 

2002 - 2009 21,281 
Notes: The statistics are based on all U.S.-
Bangladesh trade transactions in textile products 
only; “Matches” refers to unique importer-exporter 
combinations that have transacted in the given 
year in at least one textile product. 
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TABLE 2.-SUMMARY STATISTICS      
 All Importers Small Importers Large Importers 

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Number of exporters/importer 5.64 14.15 4.10 7.55 12.27 27.37 

Number of importers/exporter 1.82 1.64 1.84 1.64 1.77 1.63 

Number of Exporters-Importer , Same City 0.53 3.20 0.37 1.81 1.42 6.85 

Number of Cities/Importer 1.87 1.76 1.67 1.16 2.81 3.05 

Number of Importers/City 14.45 64.62 15.54 60.68 6.35 17.99 

Number of Exporters/City 23.72 129.84 - - - - 

Notes: The statistics are based on our analysis sample, all possible U.S.-Bangladesh trade transactions in textile products only between 2002 and 2009; 
“Small” refers to importers that employ 1-249 workers and “Large” refers to importers that employ 250+ workers. 
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TABLE 3.-FIRST MATCH STATUS, ROLE OF NEIGHBORS 
 (1) (2) (3) (4) 
# exporters-importer j, same city 0.00013*** 0.00013*** 0.000069*** 0.000062*** 
 (0.000) (0.000) (0.000) (0.000) 
     
Observations 131,965,095 99,454,323 99,454,323 131,965,095 
Year Fixed Effect Y - - - 
Importer Fixed Effect - - Y - 
Importer Controls - Y Y - 
Importer x Year Fixed Effect - - - Y 
Exporter x Year Fixed Effect - Y Y Y 
Notes: Standard errors are clustered at the importer-city level. Significance: *10%, **5%, ***1%. The dependent variable, “First Match 
Status”, takes on the value 1 in the first year a transaction is observed between a unique importer-exporter pair and is 0 otherwise. The 
independent variable is lagged one year.  
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TABLE 4.-FIRST MATCH STATUS, ROLE OF NEIGHBORS BY EXPORTER SIZE. 
 Small Medium Large 
 (1) (2) (3) (4) (5) (6) 
# exporters-importer j, same city 0.00012*** 0.00012*** 0.00004*** 0.00004 0.00005*** 0.00004 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 31,927,890 42,369,329 31,985,128 42,438,424 32,004,507 42,464,555 
Importer Controls Y - Y - Y - 
Importer Fixed Effect Y - Y - Y - 
Importer x Year Fixed Effect - Y - Y - Y 
Exporter x Year Fixed Effect Y Y Y Y Y Y 
Notes: Standard errors are clustered at the importer-city level. Significance: *10%, **5%, ***1%. The dependent variable, “First Match Status”, takes on the value 1 in 
the first year a transaction is observed between a unique importer-exporter pair and is 0 otherwise. The independent variable is lagged one year. Exporters are 
designated as small, medium, large based on three size quantiles using average value of export sales each year in the sample period. 
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TABLE 5.-FIRST MATCH STATUS, ROLE OF NEIGHBORS BY IMPORTER SIZE. 
 Small Large 
 (1) (2) (3) (4) 
# exporters-importer j, same city 0.000091*** 0.000088*** 0.000061*** 0.00005*** 
 (0.000) (0.000) (0.000) (0.000) 
     
Observations 81,514,392 109,897,375 17,939,931 20,763,398 
Importer Controls Y - Y - 
Importer Fixed Effect Y - Y - 
Importer x Year Fixed Effect  - Y - Y 
Exporter x Year Fixed Effect Y Y Y Y 
Notes: Standard errors are clustered at the importer-city level. Significance: *10%, **5%, ***1%.  The dependent variable, “First Match 
Status”, takes on the value 1 in the first year a transaction is observed between a unique importer-exporter pair and is 0 otherwise. The 
independent variable is lagged one year. Importers are categorized into two size bins using average number of employees over the sample 
period. “Small” refers to 1-249 employees and “Large” refers to 250+ employees. 
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TABLE 6.-FIRST MATCH STATUS, ADDITIONAL TESTS. 
 Test 1 Test 2 
 (1) (2) (3) (4) 
# exporters-importer j, same city 0.000067*** 

(0.000) 
0.000059*** 

(0.000) 
0.00007*** 

(0.000) 
0.000063*** 

(0.000) 
     
Observations 93,183,914 123,622,485 96,678,819 128,282,482 
Importer Controls Y - Y - 
Importer Fixed Effect Y - Y - 
Importer x Year Fixed Effect  - Y - Y 
Exporter x Year Fixed Effect Y Y Y Y 
Notes: Standard errors are clustered at the importer-city level. Significance: *10%, **5%, ***1%. The dependent variable, “First Match 
Status”, takes on the value 1 in the first year a transaction is observed between a unique importer-exporter pair and is 0 otherwise. The 
independent variable is lagged one year.  In columns 1 and 2 (3 and 4), the sample is restricted to observations for which the number of 
exporters selling to importer j in a city is greater than 1 (are located in cities where multiple products are produced). 
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FIGURE 1.-DISTRIBUTION OF TOTAL EXPORT VALUE, 2002 – 2009. 
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Source: Authors’ calculations. 
Notes: Values are in current U.S. dollars. 
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FIGURE 2.-EXPORT VALUE BY IMPORTER SIZE, 2002 – 2009. 
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Source: Authors’ calculations. 
Notes: Importers are categorized into two size bins using average number of employees over the sample period. “Small” 
refers to importers that employ 1-249 workers and “Large” refers to importers that employ 250+ workers; Values are in 
current U.S. dollars. 
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FIGURE 3.-NUMBER OF EXPORTERS PER IMPORTER, 2002 – 2009. 
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Source: Author’s calculation. 
Notes: Importers are categorized into two size bins using average number of employees over the sample period. “Small” refers to importers that employ 1-249 
workers and “Large” refers to importers that employ 250+ workers. 
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APPENDIX A 

TABLE A1.-MANUFACTURER ID EXAMPLE 
Country Exporter Name Address City MANUFID 

Bangladesh Red Fabrics 1234 Tiger Road Dhaka BDREDFAB1234DHA 
Bangladesh Green Fabrics 1111 Lion Road Dhaka BDGREFAB1111DHA 
Bangladesh Blue Fabrics 88 Zebra Road Chittagong BDBLUFAB88CHI 

Note: The above examples are based on fictitious names and addresses and are meant for illustrative purposes only.  

 

TABLE A2.- FIRST MATCH STATUS, CONDITIONAL LOGIT. 
 (1) 
# exporters-importer j, same city 0.03536*** 

(0.000) 
  
Observations 29,413,835 
Exporter x Year Fixed Effect Y 
Importer Controls Y 
Notes: Standard errors are clustered at the importer-city level. Significance: 
*10%, **5%, ***1%. The dependent variable, “First Match Status”, takes 
on the value 1 in the first year a transaction is observed between a unique 
importer-exporter pair and is 0 otherwise. The independent variable is 
lagged one year. Importer controls include firm age and employment.  
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APPENDIX B: Uniqueness of City Information in MID 

We extract the Bangladeshi textile manufacturer’s location information from the 

manufacturer identifier (MID) as represented by the last three letters (refer to Table A1 for 

examples). It is possible that a three-letter city code could represent multiple cities. For instance, 

“TAN” could refer to either Tangail or Tanore that are located in Dhaka and Rajshahi divisions, 

respectively. We ensure that the city codes do not refer to multiple possible cities where textile 

manufacturers may be located. To this end, we first create a list of all unique three-letter city 

codes and then match it against the 2013 geographic administrative codes compiled by the 

Bangladesh Bureau of Statistics.31 Close inspection of the three-letter city list indicate that cities 

conform to sub-districts (upazilas), the third lowest level of geographic administrative divisions. 

We compile a list of all possible sub-districts that correspond to each three-letter city code. We 

then identify the most likely sub-district using external information on textile manufacturers.  

We utilize three external sources of firm information. We compile a list of all member 

firms belonging to the Bangladesh Garment Manufactures and Exporters Association (BGMEA), 

Bangladesh Knitwear Manufactures and Exporters Association (BKMEA), and the Bangladesh 

Textile Mills Association (BTMA) that all include a mailing and factory address for the firm.32 

BGMEA member factories account for 100% of total woven garments exports, over 95% of total 

sweater exports, and about 50% of total light knitwear exports from Bangladesh.33 These three 

directories are the most reliable sources of information on Bangladeshi textile manufacturers. 

The BGMEA directory has been used as the sample frame for the country specific enterprise 

surveys conducted by the World Bank (Fernandes, 2008) as well as independent surveys 

                                                           
31 See http://www.bbs.gov.bd. 
32 Accessed at http://www.bgmea.com.bd/member/memberlist#.UnEBEKyAqSo, 
http://www.bkmea.com/member/index.php, http://www.btmadhaka.com/Mill%20List.html respectively.  
33 See http://www.bgmea.com.bd/home/pages/AboutBGMEAT#.UnEBd6yAqSo.  

http://www.bbs.gov.bd/
http://www.bgmea.com.bd/member/memberlist#.UnEBEKyAqSo
http://www.bkmea.com/member/index.php
http://www.btmadhaka.com/Mill%20List.html
http://www.bgmea.com.bd/home/pages/AboutBGMEAT#.UnEBd6yAqSo
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(Klepper and Mostafa, 2009) examining issues specific to the Bangladesh garments industry. The 

World Bank enterprise survey for Bangladesh utilizes all three directories to form its sample 

frame.34  

 We generate frequencies of the number of firms for all cities that appear in the directories. 

Then, we use this information to identify the most likely city represented by the three-letter code 

where it corresponds to more than one possible city from the list of geographic administrative 

codes. However, there are instances where a three-letter code corresponds to multiple cities of 

similar frequencies. For example, the three-letter code “MIR” may correspond to Mirzaganj in 

Barisal division, Mirsharai in Chittagong division, Mirpur (in Dhaka or Khulna divisions), or 

Mirzapur in Dhaka division. Both Mirpur and Mirzapur in Dhaka division are likely candidates. 

We identify three such codes that may correspond to multiple cities where textile manufacturers 

are located and that together account for about 6% of the total number of textile exporters in the 

sample. To confirm the robustness of our results to dropping these cities from our sample, we re-

run our baseline specifications excluding firms located in these three cities. Our baseline results 

remain almost identical in both statistical significance and magnitude and are available upon 

request.  

 

                                                           
34 See http://siteresources.worldbank.org/INTPSD/Resources/336195-1092412588749/00--Bangladesh--1-78.pdf for 
detailed discussion. 

http://siteresources.worldbank.org/INTPSD/Resources/336195-1092412588749/00--Bangladesh--1-78.pdf

