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Abstract

This paper develops a new framework for monitoring changes in the degree of

synchronization between many stochastic processes subject to regime changes, where

the estimated time-varying dependence relations among the hidden Markov processes

governing the system can be interpreted as a dynamic weighted network. Bayesian

estimates of an empirical application to the synchronization of business cycle phases

in U.S. states suggest that national recessions can be anticipated by an index that

accounts for the aggregate synchronization between states, con�rming its predictive

ability with real-time exercises. Moreover, the way in which an upcoming national

recession could simultaneously a¤ect each of its smaller economies at the state level

can be evaluated.
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1 Introduction

The interest in identifying changes in business cycles synchronization started to markedly

increase since the implementation of the European Monetary Union, due to more synchro-

nized countries are expected to face smaller costs of joining the Union than those countries

with relatively less synchronized cycles, Camacho et al. (2006). In other words, analyzing

synchronization changes is crucial for policy makers in order to determine which countries,

regions or even sectors of an economy could be more sensitive to global policy shocks and

which others could remain less a¤ected by them.

Since the seminal work by Hamilton (1989) in which U.S. business cycle phases are

characterized by using a Markov-switching (MS) model, a broad range of extensions related

to this approach have been developed due to its great success. In particular, multivariate

MS models have become a useful tool in analyzing synchronization between the business

cycle phases of di¤erent countries (Smith and Summers, 2005 and Camacho and Perez-

Quiros, 2006) or regions (Owyang et al., 2005 and Hamilton and Owyang, 2010). Although

all these studies provide a picture about how much some business cycles are in sync during

a given period, they are not able to capture changes in the degree of synchronization that

can occur due to economic unions, policy changes, or even aggregate contractionary shocks.

This is because in order to preserve parsimony in the model, a still non explored question

that could help to unveil this feature has remained unnoticed: What is the dynamic

relationship between the unobserved state variables governing a multivariate MS setting?

The approaches followed in the literature traditionally assume a �xed over time depen-

dence relation between such state variables that can be divided into two categories. There

are studies in which such relation is just a priori assumed based on the econometrician�s

judgement. Apart from the general Markovian speci�cation, which involves the estimation

of the full transition probability matrix,1 multivariate MS models are usually analyzed un-

der three di¤erent types of relationships between the unobserved state variables governing

1This approach presents computational di¢ culties as the model increases in the number of series, states

or lags.
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each time series, see Hamilton and Lin (1996) and Anas et al. (2007). The �rst one refers

to the case in which all series follow a common regime dynamics, Krolzig (1997). Second,

the use of totally independent Markov chains, which is the most followed approach, Smith

and Summers (2005) and Chauvet and Senyuz (2008). Third, the dynamics in one state

variable precede those of other state variables, Hamilton and Perez-Quiros (1996).

Other studies focus, on the one hand, in obtaining a degree of synchronization be-

tween MS processes for a given sample period, providing average dependence relationship

estimates, as in the case of Artis et al. (2004) who compute cross-correlations between

the smoothed state probabilities after estimating several univariate models. On the other

hand, some works focus on testing synchronization by relying on the extreme cases of in-

dependence and perfect synchronization. Some examples are Harding and Pagan (2006),

who propose tests of the hypotheses that cycles are either unsynchronized or perfectly syn-

chronized under complications caused by serial correlation and heteroscedasticity in cycle

states, and Pesaran and Timmermann (2009) who test independence between discrete

multicategory variables based on canonical correlations. One intuitive approach followed

by Camacho and Perez-Quiros (2006), Bengoechea et al. (2006), and Leiva-Leon (2011),

is based on modeling the data generating process as a linear combination between the two

polar cases, claiming that in most of real situations, the true MS multivariate dynamics

should be somewhere in between them. Although all these previous approaches can be

used to study how much synchronized are a set of MS processes for a given period of time,

they are not able to identify possible changes in synchronization of the state variables.

This paper proposes a novel framework for monitoring changes in the degree of ag-

gregate synchronization between many stochastic processes that are subject to regime

changes. Speci�cally, it computes regime inferences from a multivariate Markov-switching

model and simultaneously it obtains a measure of the time-varying synchronization be-

tween the unobserved state variables governing each process. Such measure is endoge-

nously estimated as a weighted average between the dependent and independent polar

cases by making inference on the regimes of high and low synchronization without requir-

ing a posteriori computations as in the case of the cooncordance in Harding and Pagan

(2006). One advantage of this approach in comparison to the conventional dynamic corre-

3



lation measure, is that pairwise synchronizations, which are estimated through Bayesian

methods, can be easily converted into desynchronization measures to be combined with

dynamic multidimensional scaling, and network analysis in order to provide assessments

regarding to possible changes in the clustering patterns that could experiment a system

of time series, the key components leading the system, and even to make inference about

its future behaviour.

The proposed framework is used as a tool for monitoring the time-varying synchroniza-

tion among U.S. states business cycle phases in order to assess, �rst, up to which extend

the interconnectedness between smaller economies can be helpful to anticipate national

recessions? and second, how an upcoming national recession could simultaneously a¤ect

each of its smaller economies at the state level?

In a network where U.S. states are interpreted as nodes and the strength of the links

between nodes is given by the degree of business cycle synchronization between two states,

an index of global prominence or centrality of U.S. is computed. It shows a markedly

high tendency to increase some months before national recessions take place, keeping

high values during the whole contractionary episode and even some months after it ends,

then returning to a stable level that seems to prevail during the rest of the expansion

period. This agrees with the premise that when U.S. states business cycles start to closely

move in the same way, the economy becomes more fragile. The reliability of this index

to anticipate recessions is con�rmed with real time exercises by reestimating it with the

available information up to some period before national recessions take place.

The interdependence among states and national business cycles is assessed relying on

a network analysis. The clustering coe¢ cient and closeness centrality measures are used

to make time-varying assessments of the comovement among economic phases, reporting

high values when economies are following the same pattern (recessions or expansions),

and dropping when their phases are independent of each other by following idiosyncratic

behaviors. Since the degree of interdependence between states can be monitored month-

to-month, it is possible to evaluate how much state "A" could be a¤ected by economic

shocks hitting state "B" or the nation as a whole.

Additionally, the study provides three noteworthy features that deserve attention.
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First, it reports abrupt changes in business cycle sync phases between U.S. states, specif-

ically, before the mid 90�s where the cohesiveness between states was cyclically changing

between high and low levels, followed by a period of relative stability at high levels that

has prevailed after that date.

Second, the set of economies with the highest centrality is composed by the most

central state, North Carolina, followed by Missouri, Wisconsin, Tennessee, and Alabama.

Interestingly, these �ve states are also geographically linked, constituting a region of the

U.S. business cycle core in terms of synchronization. This core is located in the inter-

section among three of the eight BEA regions, Southeast, Great Lakes and Plains, and

can be interpreted as the leading dynamics of the national economy, which is useful for

anticipating contractionary episodes.

Third, apart from dynamic estimates of the interdependence degree, this framework

also provides the possibility of computing stationary estimates. They are obtained with

the ergodic or time-independent probabilities associated to the latent variable measuring

synchronization. This stationary results report that states in the core roughly coincide

with the ones showing high cooncordance with the national business cycle found in Owyang

et al. (2005), that were obtained under a univariate approach. Moreover, U.S. states can

be grouped into three clusters, a highly, discreetly and lowly in sync with the national

business cycle, result that agrees with the one in Hamilton and Owyang (2010).

The paper is structured as follows. Section 2 provides the Markov-switching synchro-

nization modelling approach, the �ltering algorithm and the procedure of the Bayesian

parameter estimation. Section 3 analyzes the business cycle phases synchronization in

U.S. states relying on network analysis, providing multidimensional scaling, clustering

coe¢ cient, and closeness centrality estimates. Section 4 concludes.

2 Modelling Markov-Switching Synchronization

In this section, it is proposed an algorithm to monitor changes in the degree of pairwise

synchronization between stochastic processes that are subject to regime changes. Let yi;t

be a time series modeled as a function of a latent variable, Si;t, that indicates the regime
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at which it is, an idiosyncratic component �i;t, and a set of parameters, �i, to be estimated.

Accordingly, for i = a; b,

ya;t = f(Sa;t; �a;t; �a) (1)

yb;t = f(Sb;t; �b;t; �b); (2)

the goal will be to make an assessment on their synchronization for each period of time,

that is,

�abt = sync(Sa;t; Sb;t) = Pr(Sa;t = Sb;t): (3)

Speci�cally, this paper will focus on the time-varying sync between the two unobserved

state variables governing a bivariate Markov-switching model. In order to mainly focus on

modelling this dynamic dependence relation and to avoid complex notation, it is consid-

ered the following parsimonious and very tractable bivariate two-state Markov-switching

speci�cation:24 ya;t

yb;t

35 =
24 �a;0 + �a;1Sa;t

�b;0 + �b;1Sb;t

35+
24 "a;t

"b;t

35 ;
24 "a;t

"b;t

35 � N

0@24 0
0

35 ;
24 �2a �ab

�ab �2b

351A ;

(4)

The results obtained in this section can be straightforwardly applied to an extended speci-

�cation that could includes more lags in the dynamics or even Markov-switching variance-

covariance matrix. The state variable Sk;t indicates if ykt is in regime 0 with a mean

equal to �k;0 , where Sk;t = 0, or if ykt is in regime 1 with a mean equal to �k;1, where

Sk;t = 1, for k = a; b. Moreover Sa;t and Sb;t evolve according to irreducible two-state

Markov chains, whose transition probabilities are given by

Pr(Sk;t = jjSk;t�1 = i) = pk;ij , for i; j = 0; 1 and k = a; b: (5)

In order to characterize the dynamics of yt = [ya;t; yb;t]0, the information contained in

Sa;t and Sb;t can be summarized in the state variable, Sab;t, it will account for the possible

combinations that the vector, �Sab;t =
�
�a;0 + �a;1Sa;t; �b;0 + �b;1Sb;t

�0, could take trough
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the di¤erent regimes. It is de�ned as:

Sab;t =

8>>>>>><>>>>>>:

1, If Sa;t = 0; Sb;t = 0

2, If Sa;t = 0; Sb;t = 1

3, If Sa;t = 1; Sb;t = 0

4, If Sa;t = 1; Sb;t = 1

: (6)

In contrast to the previous ways of modelling Pr(Sab;t = jab) in the literature, where

some exogenous prior speci�c relationship between Sa;t and Sb;t is assumed, this paper

proposes to model Pr(Sab;t = jab) based on the individual dynamics of Sa;t and Sb;t,

and simultaneously accounting for the dynamic degree of dependence between each other,

which is endogenously estimated.

Although the degree of dependence between Sa;t and Sb;t is unknown, the two opposite

extreme cases of dependence relationships are known. That is, on the one hand, if Sa;t

and Sb;t are fully independent, then Pr(Sa;t = ja; Sb;t = jb) = Pr(Sa;t = ja) Pr(Sb;t = jb).

On the other hand, if Sa;t and Sb;t are totally dependent, in the sense that they are fully

synchronized, then ya;t and yb;t are driven by the same state variable, St, i.e. Sa;t = Sb;t =

St, remaining in this case Pr(Sa;t = ja; Sb;t = jb) = Pr(St = j). In empirical applications,

the true dependence degree should be located between these two extreme possibilities.

In order to make inference on the type of dependence between Sa;t and Sb;t, a new

unobserved state variable will be de�ned as:

Vt =

8<: 0 If Sa;t and Sb;t are fully independent

1 If Sa;t and Sb;t are totally dependent
; (7)

In order to maintain the nonlinear nature of the framework, it will also evolve according

to an irreducible two-state Markov chain whose transition probabilities are given by

Pr(Vt = jvjVt�1 = iv) = pv;kl, for iv; jv = 0; 1 (8)

Model in Equation (4) hence remains fully characterized by the state variable S�t ,

which collects information regarding to joint dynamics, individual dynamics and their
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dependence relationship over time simultaneously. In this way S�ab;t is de�ned as:
2

S�ab;t =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

1, If Vt = 0; Sa;t = 0; Sb;t = 0

2, If Vt = 0; Sa;t = 0; Sb;t = 1

3, If Vt = 0; Sa;t = 1; Sb;t = 0

4, If Vt = 0; Sa;t = 1; Sb;t = 1

5, If Vt = 1; Sa;t = 0; Sb;t = 0

6, If Vt = 1; Sa;t = 0; Sb;t = 1

7, If Vt = 1; Sa;t = 1; Sb;t = 0

8, If Vt = 1; Sa;t = 1; Sb;t = 1

; (9)

Inference on the possible states of S�ab;t, i.e. Pr(S
�
ab;t = j�ab) for j

�
ab = 1; : : : ; 8, can be

done by computing

Pr(Sa;t = ja; Sb;t = jb; Vt = jv) = Pr(Sa;t = ja; Sb;t = jbjVt = jv) Pr(Vt = jv) (10)

where Pr(Sa;t = ja; Sb;t = jbjVt = jv) indicates the inference on the dynamics of Sab;t

conditional on total independence, Vt = 0, or conditional on full dependence, Vt = 1. In

the former case the joint probability of S�ab;t will be

Pr(Sa;t = ja; Sb;t = jb; Vt = 0) = Pr(Sa;t = ja; Sb;t = jbjVt = 0)Pr(Vt = 0)

= Pr(Sa;t = ja) Pr(Sb;t = jb) Pr(Vt = 0); (11)

and in the latter case, it will be

Pr(Sa;t = ja; Sb;t = jb; Vt = 1) = Pr(Sa;t = ja; Sb;t = jbjVt = 1)Pr(Vt = 1)

= Pr(St = j) Pr(Vt = 1); (12)

therefore probabilities of the state variable Sab;t in Equation (6) after accounting for syn-

chronization, can be easily computed as

Pr(Sa;t = ja; Sb;t = jb) = Pr(Vt = 1)Pr(St = j)+(1�Pr(Vt = 1))Pr(Sa;t = ja) Pr(Sb;t = jb);

(13)

2States 6 and 7 in Equation (9) are truncated to zero by construction, since the two state variables can

not be in di¤erent states if they are perfectly synchronized, i.e. Pr(Sa;t = ja; Sb;t = jbjVt = 1) = 0 for any

ja 6= jb.
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which indicates that joint dynamics of Sa;t and Sb;t are characterized by a linear combi-

nation between the extreme dependent case and the extreme independent case, where the

weights assigned to each of them are endogenously determined by their sync degree

�abt = Pr(Vt = 1): (14)

2.1 Filtering Algorithm

Following the line of Hamilton�s (1994) algorithm, I propose an extension to estimate the

model described in Equations (4) and (13). The algorithm is composed by two uni�ed

steps, in the �rst one the goal is the computation of the likelihoods, while in the second

one the goal is to compute prediction and updating probabilities.

STEP 1: For the moment it is assumed that model�s parameters are known and col-

lected in the vector � = (�a;0; �a;1; �b;0; �b;1; �
2
a; �

2
b ; �ab; pa;00; pa;11; pb;00; pb;11; p00; p11; pv;00; pv;11)

0,

in the next section the Bayesian procedure to estimate � will be clari�ed. By using

the prediction probabilities3 Pr(Sk;t = jkj t�1; �) for k = a; b, Pr(Vt = jvj t�1; �) and

Pr(St = jj t�1; �), the joint probability corresponding to the state variable that fully

characterizes the model dynamics, S�ab;t, can be obtained relying on Equations (11) and

(12), that is

Pr(S�ab;t = j�abj t�1; �) = Pr(Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �)

= Pr(Sa;t = ja; Sb;t = jbjVt = jv;  t�1; �) Pr(Vt = jvj t�1; �); (15)

thereafter the density of yt given that it is on regime S�t , and the prediction probabilities

of the realizations of S�t , are used to compute the joint likelihood

f(yt; S
�
ab;t = j�abj t�1; �) = f(ytjS�ab;t = j�ab;  t�1; �) Pr(S

�
ab;t = j�abj t�1; �)

= f(yt; Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �); (16)

then summing across the respective terms, speci�c likelihoods corresponding individual

3The steady state or ergodic probabilities can be used as starting values of the �lter.
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processes are computed

fa(ya;t; Sa;t = jaj t�1; �) =
1X

jb=0

1X
jv=0

f(yt; Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �) (17)

fb(yb;t; Sb;t = jbj t�1; �) =
1X

ja=0

1X
jv=0

f(yt; Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �) (18)

fab(yt; St = jj t�1; �) =
X
ja=jb

f(yt; Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �) (19)

f(yt; Vt = jvj t�1; �) =
1X

ja=0

1X
jb=0

f(yt; Sa;t = ja; Sb;t = jb; Vt = jvj t�1; �): (20)

STEP 2: Once yt is observed at the end of time t, the prediction probabilities Pr(Sk;t =

jkj t�1; �) for k = a; b, Pr(Vt = jvj t�1; �) and Pr(St = jj t�1; �) can be updated as

follows

Pr(Sa;t = jaj t; �) =
fa(ya;t; Sa;t = jaj t�1; �)

f(ytj t�1; �)
(21)

Pr(Sb;t = jbj t; �) =
fb(yb;t; Sb;t = jbj t�1; �)

f(ytj t�1; �)
(22)

Pr(St = jj t; �) =
f(yt; St = jj t�1; �)

f(ytj t�1; �)
(23)

Pr(Vt = lj t; �) =
f(yt; Vt = lj t�1; �)

f(ytj t�1; �)
(24)

Where  t = f t�1; ytg, and the unconditional likelihood function is given by

f(ytj t�1; �) =
X8

j�=1
f(yt; S

�
ab;t = j�abj t�1; �): (25)

Forecasts of the updated probabilities in Equations (21)-(24) are done by using the cor-

responding transition probabilities in the vector �, that is pa;ij ; pb;ij ; pij ; pv;ij for Sa;t; Sb;t;

St; Vt respectively,

Pr(Sk;t+1 = jkj t; �) =
1X

ik=0

Pr(Sk;t+1 = jk; Sk;t = ikj t; �)

=
1X

ik=0

Pr(Sk;t+1 = jkjSk;t = ik) Pr(Sk;t = ikj t; �), for k = a; b (26)
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Pr(Vt+1 = jvj t; �) =
1X
i=0

Pr(Vt+1 = jv; Vt = ivj t; �)

=
1X
i=0

Pr(Vt+1 = jvjVt = iv) Pr(Vt = ivj t; �) (27)

Pr(St+1 = jj t; �) =
1X
i=0

Pr(St+1 = j; St = ij t; �)

=

1X
i=0

Pr(St+1 = jjSt = i) Pr(St = ij t; �). (28)

Finally the above forecasted probabilities are used to predict inferences on the realizations

of S�ab;t+1, again relying on Equations (11) and (12)

Pr(S�ab;t+1 = j�abj t; �) = Pr(Sa;t+1 = ja; Sb;t+1 = jb; Vt+1 = jvj t; �)

= Pr(Sa;t = ja; Sb;t = jbjVt = jv;  t; �) Pr(Vt = jvj t; �); (29)

By iterating these two steps for t = 1; 2; : : : ; T , the algorithm simultaneously provides

inferences on the joint dynamics and individual dynamics along with their time-varying

degree of dependence of the model in Equations (4) and (13).

2.2 Bayesian Parameter Estimation

The approach to estimate � will be relied on a bivariate extended version of the multi-move

Gibbs-sampling procedure implemented by Kim and Nelson (1998) for Bayesian estimation

of univariate Markov-switching models.4 In this setting both the parameters of the model

� and the Markov-switching variables ~Sk;T = fSk;tgT1 for k = a; b, ~ST = fStgT1 and

~VT = fVtgT1 are treated as random variables given the data in ~yT = fytgT1 . The purpose of

this Markov chain Monte Carlo simulation method is to approximate the joint and marginal

distributions of these random variables by sampling from conditional distributions.

4The motivation for the use of Bayesian methods relies on the fact that as the number of possible states

increase, the likelihood function could be characterized by many local maxima and there could be strong

convergence problems in performing maximum likelihood estimation, Boldin (1996).
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2.2.1 Priors

For the mean and variance parameters in vector �, the Independent Normal-Wishart prior

distribution is used

p(�;��1) = p(�)p(��1); (30)

where

� � N(�; V �)

��1 � W (S�1; �)

for the transition probabilities pa;00; pa;11 from Sa;t, pb;00; pb;11 from Sb;t, p00; p11 from St

and pv;00; pv;11 from Vt, Beta distributions will be used as conjugate priors

pk;00 � Be(uk;11; uk;10), pk;11 � Be(uk;00; uk;01), for k = a; b (31)

p00 � Be(u11; u10), p11 � Be(u00; u01) (32)

pv;00 � Be(uv;11; uv;10), pv;11 � Be(uv;00; uv;01) (33)

2.2.2 Drawing ~Sa;T , ~Sb;T , ~ST and ~VT given � and ~yT

Following the result in Equation (13), in order to make inference on the bivariate dynamics

of the model (4) driven by ~Sab;T = fSab;tgT1 and described in (6), it is just needed to make

inference on the dynamics of the single state variables ~Sa;T , ~Sb;T , ~ST and ~VT , this can be

done following the results in Kim and Nelson (1998) by �rst computing draws from the

conditional distributions

g( ~Sk;T j�; ~yT ) = g(Sk;T j~yT )
TY
t=1

g(Sk;tjSk;t+1; ~yt), for k = a; b (34)

g( ~ST j�; ~yT ) = g(ST j~yT )
TY
t=1

g(StjSt+1; ~yt) (35)

g( ~VT j�; ~yT ) = g(VT j~yT )
TY
t=1

g(VtjVt+1; ~yt): (36)

In order to obtain the two terms in the right hand side of Equation (34)-(35) the following

two steps can be employed:
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Step 1: The �rst term can be obtained by running the �ltering algorithm developed

in Section 2.1, to compute g( ~Sk;tj~yt) for k = a; b, g( ~Stj~yt) and g( ~Vk;tj~yt) for t = 1; 2; : : : ; T ,

saving them and taking the elements for which t = T .

Step 2: The product in the second term can be obtained for t = T � 1; T � 2; : : : ; 1,

by following the result:

g(Stj~yt; St+1) =
g(St; St+1j~yt)
g(St+1j~yt)

/ g(St+1jSt)g(Stj~yt), (37)

where g(St+1jSt) corresponds to the transition probabilities of St and g(Stj~yt) were

saved in Step 1.

Then, it is possible to compute

Pr[St = 1jSt+1; ~yt] =
g(St+1jSt = 1)g(St = 1j~yt)P1
j=0 g(St+1jSt = j)g(St = jj~yt)

; (38)

and generate a random number from a U [0; 1]. If that number is less than or equal to

Pr[St = 1jSt+1; ~yt], then St = 1, otherwise St = 0. The same procedure applies for Sa;t,

Sb;t and Vt, and by using Equation (13) inference of ~Sab;T can be done.

2.2.3 Drawing pa;00,pa;11,pb;00,pb;11, p00,p11,pv;00,pv;11 given ~Sa;T , ~Sa;T , ~ST and ~VT

Conditional on ~Sk;T for k = a; b, ~ST and ~VT , the transition probabilities are independent

on the data set and the model�s parameters, hence the likelihood function of p00, p11is

given by:

L(p00; p11j ~ST ) = pn0000 (1� p
n01
00 )p

n11
11 (1� p

n10
11 ); (39)

where nij refers to the transitions from state i to j, accounted for in ~ST .

Combining the prior distribution in Equation (32) with the likelihood, the posterior

distribution is given by

p(p00; p11j ~ST ) / pu00+n00�100 (1� p00)u01+n01�1pu11+n11�111 (1� p11)u10+n10�1 (40)

which indicates that draws of the transition probabilities will be taken from

p00j ~ST � Be(u00 + n00; u01 + n01); p11j ~ST � Be(u11 + n11; u10 + n10) (41)
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2.2.4 Drawing �0;a,�1;a,�0;b,�1;b given �2a,�
2
b ,�ab, ~Sa;T , ~Sb;T , ~ST , ~VT and ~yT

The model in Equation (4) can be compactly expressed as

24 ya;t

yb;t

35 =

24 1
0

Sa;t

0

0

1

0

Sb;t

35
26666664
�a;0

�a;1

�b;0

�b;1

37777775+
24 "a;t

"b;t

35 ;
24 "a;t

"b;t

35 � N

0@24 0
0

35 ;
24 �2a

�ab

�ab

�2b

351A

yt = �St�+ �t; �t � N(0;�); (42)

stacking as:

y =

26666664
y1

y2
...

yT

37777775 ; �S =
26666664
�S1

�S2
...

�ST

37777775 ; and � =
26666664
�1

�2
...

�T

37777775 ;

the model in Equation (42) remains written as a normal linear regression model with an

error covariance matrix of a particular form:

y = S�+ �; � � N(0; I 
 �) (43)

Conditional on the covariance matrix parameters, state variables and the data, by

using the corresponding likelihood function, the conditional posterior distribution

p(�j ~Sa;T ; ~Sb;T ; ~ST ; ~VT ;��1; ~yT ) takes the form

�j ~Sa;T ; ~Sb;T ; ~ST ; ~VT ;��1; ~yT � N(�; V �); (44)

where

V � =

 
V �1� +

TX
t=1

�S0t�
�1 �St

!�1

� = V �

 
V �1� �+

TX
t=1

�S0t�
�1yt

!
:

After drawing � =
h
�a;0 �a;1 �b;0 �b;1

i0
from the above multivariate distribution,

if the generated value of �a;1 or �b;1 is less than or equal to 0, that draw is discarded,

otherwise it is saved, this is in order to ensure that �a;1 > 0 and �b;1 > 0.
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2.2.5 Drawing �2a,�
2
b ,�ab given �0;a,�1;a,�0;b,�1;b, ~Sa;T , ~Sb;T , ~ST , ~VT and ~yT

Conditional on the mean parameters, state variables and the data, by using the correspond-

ing likelihood function, the conditional posterior distribution p(��1j ~Sa;T ; ~Sb;T ; ~ST ; ~VT ; �; ~yT )

takes the form

��1j ~Sa;T ; ~Sb;T ; ~ST ; ~VT ; �; ~yT �W (S
�1
; �); (45)

where

� = T + �

S = S +
TX
t=1

�
yt � �St�

� �
yt � �St�

�0
;

after ��1 is generated the elements is � are recovered.

3 Business Cycle Phases Synchronization in U.S. States

The global �nancial crisis has stimulated the interest on the sources and propagation

of contractionary episodes, calling to take a more careful look at the disaggregation of

the business cycle in order to study the mechanisms underlying economic �uctuations.

Two recent works have shown interesting features about the business cycle phases in U.S.

states, Owyang et al. (2005), and the propagation of regional recessions in the same

country, Hamilton and Owyang (2010). On the one hand, the former study that follows

a univariate approach, �nds that U.S. states di¤er signi�cantly in the timing of switches

between regimes of expansions and recessions, indicating large di¤erences in the extent

to which state business cycle phases are in concord with those of the aggregate economy.

On the other hand, the later work which follows a multivariate approach, focuses on

clustering the states sharing similar business cycle characteristics �nding that di¤erences

across states appear to be a matter of timing and they can be grouped into three clusters

with some of them entering in recession or recovering before others.

Although these previous studies provide insights about the synchronization among

di¤erent business cycles during a given period, they are not able to capture changes in

the degree of synchronization between the phases of economic �uctuations, that can be
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potentially caused by economic unions, policy changes, aggregate recessionary shocks, etc.

Analyzing synchronization changes is crucial for policy makers in order to determine at

every period of time, which states could be more sensitive to speci�c policy or recessionary

shocks and which others would remain less a¤ected.

The framework developed in Section 2 is applied for monitoring monthly changes in

the degree of sync among economic phases of U.S. states, and also between states and

the national business cycle. The state coincident indexes constructed in Crone (2002) and

provided by the Federal Reserve Bank of Philadelphia, are used as indicators of economic

activity at state level. Alaska and Hawaii are excluded, as in Hamilton and Owyang (2010),

and The Chicago Fed National Activity Index (CFNAI) is used as monthly measure of

the aggregate U.S. business cycle, the sample period is 1979:8 to 2012:3.

3.1 Bivariate Synchronization

The analysis that was performed for 48 U.S. states required to model each of the C482 =

1; 128 pairwise comparisons, where in each of them 12,000 draws were generated from the

posterior with an initial burn of 2,000 draws that were discarded.5 In order to assess

the performance of the proposed MS synchronization model, two selected examples are

analyzed.6

The �rst one focuses on the case of two states which presents high and similar percent-

age of national GDP, that is, New York with 7.68% and Texas with 7.95%. Table 1 shows

the posterior means and medians for the model parameters along with their corresponding

standard deviation. All means and medians of parameters are similar and also statistically

signi�cant. It is worth to highlight the estimates of the transition probabilities associated

to the state variable that measures synchronization, Vt. For the New York vs. Texas

case, the probability of going from a regime of high sync to another regime of high sync

is almost equal to the probability of going from a regime of low sync to another regime

of low sync, since both are about 0.95. These estimates are corroborated in Chart A of

5Due to the high technology nowadays available, such high number of computations is not a problem

anymore.
6The results for the other cases are available upon request to the author.
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Figure 1, where the probabilities of recession for New York and Texas along with their

synchronization are plotted. As can be seen during the �rst half of the sample, both states

were lowly synchronized, however since 1994 they started to experiment high sync levels.

The second example focuses on analyzing two states of di¤erent GDP share by selecting

the polar case, that is, the state with the highest share, California with 13.34%, along

with the state with the lowest share, Vermont with 0.18%. Table 2 presents the Bayesian

estimation results of the model parameters. Unlike to the previous case, in the California

vs. Vermont model, the probability of remaining in a high sync regime (0.97) is higher

than the probability of remaining in a low sync regime (0.93). This can be observed in

Chart B of Figure 1, since with the exception of the 1987-1994 period, both states have

experimented high levels of synchronization among their business cycle phases.

These two examples, apart from documenting the existence of abrupt changes in busi-

ness cycle sync phases between U.S. states, show that their synchronization is independent

on their GDP share, since the proposed approach only focuses on making a time-varying

assessment of the comovement among economic phases, reporting high values when both

are following the same pattern (recessions or expansions), and dropping when their phases

are independent of each other by following idiosyncratic behaviors.

The analysis regarding to the cooncordance between states and national recessions is

performed in Owyang et al. (2005) by following the line in Harding and Pagan (2006),

where the degree to which two business cycles are in sync is calculated as the percentage

of time the two economies were in the same regime. However, such approach provides

an average synchronization measure without the possibility of making inference on the

potential changes that it could experiment trough time. The approach in this paper is

used to analyze this issue. Figure 2 shows the dynamic sync degree between states and

national business cycle, showing a high heterogeneity across states. On the one hand,

some of them show an almost constant and low sync degree, e.g. Louisiana, Oklahoma

and Wyoming, while others an almost constant and high sync degree, e.g. Alabama,

Minnesota, Nebraska, South Carolina, Tennessee and Vermont. On the other hand, the

rest of states in general experiment abrupt sync changes, that usually take place before or

after national recessions, as in the case of Massachusetts and North Dakota respectively
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for the 1990�s recession, and North Carolina for 2007�s recession, these features agree with

Hamilton and Owyang (2010) who states that di¤erences across states appear to be a

matter of timing.

By means of the performed analysis, it can be evaluated how much state "A" could

be a¤ected by an economic shock that is hitting state "B", or which states could be more

sensitive when a period of national recession is coming, since the degree of interdependence

between states and national economic activity can be monitored month-to-month. How-

ever, an aggregate dynamic representation of the results presented so far seems needed in

order to deal with the question: How an upcoming national recession could simultaneously

a¤ect each of its smaller economies at the state level?

As suggested by Timm (2002) and Camacho et al. (2006), multidimensional scaling

methods are a helpful tool to identify cyclical a¢ liations between economies. Although,

traditionally studies focus in providing a map of just one general picture of the business

cycle similarities for a given sample period, for the present case a dynamic approach is

needed.

3.2 Dynamic Multidimensional Scaling

This methodology seeks to �nd a low dimensional coordinate system to represent n-

dimensional objects and create a map of lower dimension (k) which gives approximate

distances among them. The dimensional coordinates of the projection of any two objects,

a and b, are computed by minimizing a stress function which measure the squared sum of

divergences between the true distances or the measure of desynchronization, abt = 1��abt ,

and the approximate distances, ~abt , among these objects. Moreover given that this repre-

sentation can be obtained for each t = 1; : : : ; T , it is applied a dynamic version, in which

the evolution of states synchronization is presented by a discrete-time sequence of graph

snapshots. In order to preserve the �mental map�between snapshots so that the transition

between frames in the animation can be easily interpreted, the movements between time

steps are constrained by adding a temporal penalty to the stress function of a static graph
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layout method, Xu et al. (2011), so that the minimization problem is:

min~abt
=

nP
a=1

nP
b=1

(abt � ~abt )2P
a;b(

ab
t )

2
+ �

nX
a=1

~atjt�1; (46)

where � can be chosen as the average standard deviations of the series in order to adjust

the movements according to the variability of the data and with

~abt = (jjza;t � zb;tjj2)1=2 =
"
kX
i=1

(zai;t � zbi;t)2
#1=2

(47)

~atjt�1 = (jjza;t � za;t�1jj2)1=2 =
"
kX
i=1

(zai;t � zai;t�1)2
#1=2

: (48)

where za;t and zb;t are the k-dimensional projection of the objects a and b, and zai;t and

zbi;t each of their corresponding elements at time t.

Figure 3 plots the U.S. states synchronization map for the �rst month of the 1990�s

recession, showing that for this period of time U.S. states could be grouped into three

clusters, coinciding with the number of clusters found in Hamilton and Owyang (2010).

Speci�cally, there is a bunch of states that were more a¤ected by that recession, being

highly in sync with the national business cycle, some examples are Nevada, Ohio, Michigan,

Florida, etc., and two separate groups that experimented low synchronization with respect

to the national activity and moreover with respect to each other, in one of them are located

states like Texas, Oklahoma, Wyoming, etc., while in the other asynchronized group are

found states like Rhode Island, New Jersey, Maine, etc.7

In Figure 4 and Figure 5, the same exercise performed in the previous �gure is applied

for the 2001�s and 2007�s recessions respectively, showing that for both episodes U.S.

states can be grouped only into two clusters, which can be interpreted as the "core" and

the "periphery". The "core" that is highly in sync with the national cycle contains the

great part of the states, while the "periphery" just few of them, some examples are North

Dakota, Wyoming, Oklahoma, Montana, etc.

7The full animated representation can be found at https://sites.google.com/site/daniloleivaleon/media
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3.3 Clustering Coe¢ cient

The intuition behind the proposed framework for monitoring synchronization in Section 2,

relies on the fact that if �abt � 1, then it is likely that states a and b are sharing the same

business cycle dynamics, or in other words, economic shocks a¤ecting to a could also be

a¤ecting to b creating a link of dependence between them. By means of this, U.S. states,

denoted by hi for i = 1; : : : ; n, and collected in H = fhign1 , can be interpreted as nodes,

interacting in the weighted network gt, with the relationship between each pair of nodes

ha and hb at t, given by the strength of their link �abt 2 [0; 1] and collected in �t.

The previous graphs mapping states business cycle similarities for the beginning of the

last three recessions showed two di¤erent scenarios. In the �rst one, 1990�s recession, states

tend to be less synchronized between them and also with respect to the National business

cycle than the other two, 2001�s and 2007�s recessions. These changes in interconnectedness

can be monitored by using the clustering coe¢ cient for each of the n = 48 states weighted

by the degree of synchronization, CLi;t, in order to compute the clustering coe¢ cient for

the whole network at time t by averaging them, see Watts and Strogatz (1998):

CLt =
1

n

nX
i=1

CLi;t; (49)

where CLt would measure the statistical level of cohesiveness between the business cycle

phases of U.S. states for every period of time.

In Figure 6 is plotted the dynamic average clustering coe¢ cient, not surprisingly it

presents low values during the 1990�s recession, but high values during the 2001�s and

2007�s recessions. Moreover, that series shows that in the mid 90�s there was a change in

the cohesiveness between states since before that date it was cyclically changing from high

to low values, but after that, it remained almost stable in high values.

In order to assess if these features can be evaluated in real time for monitoring purposes,

the framework was reestimated two times with data up to one month before the beginning

of the last two recessions.8 The top and bottom charts in Figure 7 plot the index of

states cohesiveness for the 2007�s and 2001�s recessions respectively, showing a very similar

8The same analysis was not performed for the 1990�s, an the previous recessions due to the small size

of the sample.
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performance as in the estimation with the full data set, corroborating the reliability of the

U.S. states cohesiveness index.

Another fundamental issue regarding to the business cycle synchronization literature

is the existence of a well de�ned core or atractor, which is usually represented by a leading

economy or a weighted average between a set of economies representing such core, that

could help to anticipate the movements in the aggregate business cycle. Camacho et al.

(2006) develop a speci�c procedure, based on simulations of the similarities among pairs

of economies, in order to assess if the points (economies) plotted in the business cycle

map are randomly distributed or there is any kind of atractor that keep them together.

This paper tries to explore up to which extend the interconnectedness between smaller

economies can be helpful to anticipate national recessions?

The Markov-Switching Synchronization Network (MSYN) will be used to determine the

connectedness between nodes (states) and therefore the "key" nodes (states) composing

the U.S. business cycle core or leading economies, that will help to anticipate global

recessions. In order to have a glimpse about the form that the MSYN would take during

contractionary episodes, Figure 8 plots the corresponding graph for the �rst month of

the last three recessions. Given that the MSYN is a weighted network, in order to make

possible the graphical representation, the link between a and b is plotted if �abt > 0:5,

otherwise there is no link between them. It is important to note that although the U.S.

business cycle is not included in the network analysis, just the states, all the three plots

show close relation with the ones in Figures 3, 4 and 5, respectively, where the national

cycle is included, corroborating the grouping pattern.

By looking at a disaggregated perspective, this paper has shown that U.S. states present

a high dynamic heterogeneity among their business cycle phases, due to while some states

are entering in recession, the others may or may not follow the same pattern. This study

takes advantage of this fact departing from the hypothesis that when this heterogeneity

starts to decrease, meaning that all states start to converge to the same phase, something

bad is going to happen, agreeing with the traditionally view that economies tend to show

higher converge during periods of recessions than during periods of expansion.

In order to �nd the core dynamics leading the national economy, it is required to
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look at the prominence of each node (state) in the present synchronization network, for

this purpose the concept used to answer these kind of questions is the one of centrality.

There are several measures regarding to the centrality of a node in a network, but given

that desynchronization measures, abt , under the present framework are interpreted as

distances, providing information about the farness among U.S. states business cycles, the

most appropriate measure for this context is the one of closeness centrality.

3.4 Closeness Centrality

The farness of a given node is de�ned as the sum of its distances to all other nodes, where

the distance between two nodes i and j is given by the length of the shortest path between

them, denoted by d(i; j). In order to compute d(i; j), the Dijkstra�s (1959) algorithm is

applied since it solves the shortest path problem on a weighted graph Gt = (H;�t) for

the case in which all edges weights are nonnegative. For example, in a set H 0 = fa; b; cg

where �ab = 0:5, �ac = 0:9 and �bc = 0:2, the shortest path between a and c will be 0:7,

since �ab+ �bc < �ac, hence notice that d(a; c) does not necessarily have to be equal to �ac.

The closeness between two nodes is de�ned as the inverse of the farness. Thus, the

more central is a node, the lower is its total distance to all other nodes. Closeness can

be regarded as a measure of how fast it will take to spread information, risk, economic

shocks, etc., from node i to all other nodes sequentially.9 The total distance from node i

to all other nodes in the network g, i.e. the farness of i at time t, is given by
P
j 6=ijt dt(i; j),

being its reciprocal the closeness centrality of node i:

Ct(i) =
1P

j 6=ijt dt(i; j)
: (50)

This measure of centrality has a natural analogue at the aggregate network level. Let

i� be the node that attains the highest closeness centrality across all nodes and let Ct(i�)

be this centrality at time t, then the closeness centrality of the network is given by

Ct =

kX
i=1jt

[Ct(i
�)� Ct(i)]: (51)

9For an overview regarding to de�nitions in network analysis, see Goyal (2007).
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This measure is calculated for every period of time with the information available in

�t for the whole sample, i.e. since 1979:8 until 2012:3, plotting in Figure 9 the dynamics

of the closeness centrality for the MSYN involving U.S. states, showing a clear and easy to

interpret pattern. The centrality shows a markedly high tendency to increase some months

before national recessions take place, keeping high values during the whole contractionary

episode and even some months after it ends, then returning to an stable level that seems to

prevail in general during the rest of the expansion period. High centrality levels reported

after recessions have ended could be in part attributed to the so-called "third phase" in

the business cycle of some U.S. states, since the pattern associates stable growth with low

centrality, while recessions and recoveries with high centrality.

The most useful feature of the centrality index, Cc;t, is the capacity to anticipate

national recessions, since some periods before a contractionary episode begin, it starts

to increase. In order evaluate this predictive power the index was reestimated two times

with data up to one month before the beginning of the last two recessions.10 The top and

bottom charts in Figure 10 plot the centrality index for the 2007�s and 2001�s recessions

respectively, corroborating its reliability to anticipate U.S. recessions.

Additionally, by accounting for the centrality of each node (state) trough time using

Equation (50), the states with the highest centrality at each month during the sample

period can be interpreted as the atractor. The results show that there is a set of �ve

"main" states which includes, the main atractor, North Carolina with the 43.9% of times

being the state with the highest centrality, followed by Missouri with 22.7%, Wisconsin

with 21.4%, Tennessee with 11.2%, and Alabama with a 0.8%, the rest of states never

experienced the highest centrality at any period. These states are highlighted in Figure

11, showing that, with the exception of Wisconsin, they are also geographically linked,

composing a region of the U.S. business cycle sync core.

10The same analysis was not performed for the 1990�s, an the previous recessions due to the small size

of the sample.
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3.5 Stationary Synchronization

Apart from dynamic estimates of the interdependence degree, this framework also pro-

vides the possibility of computing stationary estimates, obtained with the ergodic or

time-independent probabilities of Vt, as in Hamilton (1994), that can be interpreted as

an average sync during the period under study. Table 3 reports the matrix containing

the stationary synchronization among U.S. states, �, in which the shaded cells refer to

pairs of states with the highest sync degree (� � 0:9). The values in � range from 0.1,

which is the Delaware vs. Louisiana case, until 0.95, some examples are Kentucky vs.

Tennessee, North Carolina vs. South Carolina, and Tennessee vs. Wisconsin, which no

coincidentally contain states that belong to the core previously speci�ed. This information

can be helpful, for example, to assess which states would be more a¤ected if there is an

oil shock hitting Texas, since according to Table 3, the answer will be Colorado, followed

by Oklahoma.

The same procedure can be followed to compute stationary state vs. national synchro-

nizations, that are reported in Table 4. Not surprisingly the states in the core show high

values, that is, Missouri (0.84), Wisconsin (0.87), Alabama (0.92), Tennessee (0.93), and

the main atractor, the highest value, i.e. North Carolina (0.94). Interestingly, these states

also show high cooncordance with the National business cycle according to the results in

Owyang et al. (2005), obtained under a univariate approach. Moreover, a whole stationary

sync picture is obtained and the resulting map is reported in Figure 12, showing that for

1979:8-2012:3, U.S. states can be grouped into three clusters, a highly, discreetly and lowly

in sync with the national business cycle. This results also nests the one in Hamilton and

Owyang (2010), where it is found three clusters with individual states in a given cluster

sharing certain business cycle characteristics.

4 Conclusions

This paper proposes a novel framework for monitoring changes in the degree of aggregate

synchronization between many stochastic processes that are subject to regime changes.

Speci�cally, it computes regime inferences from a multivariate Markov-switching model
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and simultaneously estimate a measure of the time-varying synchronization between the

unobserved state variables governing each process involved in the system.

The proposed framework is used as a tool for monitoring the time-varying synchro-

nization among U.S. states business cycles in order to assess, �rst, up to which extend

the interconnectedness between smaller economies can be helpful to anticipate national

recessions? and second, how a national recession that is coming soon is going to a¤ect

each of its smaller economies at the state level?

The results suggest that national recessions can be anticipated by an index that ac-

counts for the aggregate synchronization of states in an interdependent environment, con-

�rming its reliability with real time exercises, and that it can be evaluated how much state

"A" could be a¤ected by economic shocks hitting state "B" or the nation as a whole, since

the degree of interdependence between states can be monitored month-to-month.

Additionally, by taking into account the centrality of each state in terms of synchro-

nization, it is obtained the leading economies in the U.S. business cycle, composed by the

main atractor, North Carolina, followed by Missouri, Wisconsin, Tennessee, and Alabama.

Interestingly this set of �ve states are also geographically linked, providing a region of the

core leading the national economy that helps to anticipate contractionary episodes, and

that is located in the intersection among three of the eight BEA regions, Southeast, Great

Lakes and Plains.
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Table 1. Bivariate MS Synchronization Model for New York and Texas 

 

Parameter Mean Std. Dev. Median 

ny,0 -0.0934 0.0131 -0.0944 

ny,1  0.2480 0.0126  0.2485 

ny
2  0.0073 0.0005  0.0072 

pny,11  0.9837 0.0073  0.9847 

pny,00  0.9312 0.0263  0.9346 

tx,0 -0.0601 0.0102 -0.0601 

tx,1  0.1691 0.0107  0.1692 

tx
2  0.0064 0.0004  0.0064 

ptx,11  0.9839 0.0070  0.9852 

ptx,00  0.9358 0.0251  0.9390 

ny,tx  0.0013 0.0004  0.0013 

p11  0.9808 0.0079  0.9819 

p00  0.9292 0.0264  0.9323 

pV,11  0.9501 0.0481  0.9647 

pV,00  0.9480 0.0360  0.9565 

 

Note: The selected example presents the case of two states with high and similar U.S. GDP 

share, New York with 7.68%, and Texas with 7.95%. The results for the other cases are 

available upon request to the author. 

 

 

 

Table 2. Bivariate MS Synchronization Model for California and Vermont 

 

Parameter Mean Std. Dev. Median 

ca,0 -0.0211 0.0100 -0.0215 

ca,1  0.1674 0.0103  0.1673 

ca
2  0.0068 0.0005  0.0068 

pca,11  0.9773 0.0090  0.9785 

pca,00  0.9450 0.0205  0.9472 

vt,0 -0.0523 0.0136 -0.0523 

vt,1  0.2012 0.0141  0.2010 

vt
2  0.0127 0.0010  0.0127 

pvt,11  0.9764 0.0093  0.9774 

pvt,00  0.9413 0.0217  0.9432 

ca,vt  0.0028 0.0005  0.0027 

p11  0.9772 0.0092  0.9784 

p00  0.9432 0.0210  0.9458 

pV,11  0.9742 0.0242  0.9817 

pV,00  0.9362 0.0417  0.9461 

 

Note: The selected example presents the case of the states with the highest and the lowest 

U.S. GDP share, i.e. California with 13.34% and Vermont with 0.18%. The results for the 

other cases are available upon request to the author. 
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Table 3. Stationary MS Synchronization among U.S. States Business Cycle Phases 

 
 

 AL AZ AR CA CO CT DE FL GA ID IL IN IA KS KY LA 

AL 1 0.84 0.92 0.64 0.54 0.73 0.64 0.62 0.89 0.78 0.84 0.83 0.81 0.93 0.90 0.23 

AZ 0.84 1 0.75 0.84 0.55 0.85 0.82 0.92 0.94 0.73 0.73 0.65 0.44 0.75 0.66 0.25 

AR 0.92 0.75 1 0.60 0.56 0.56 0.66 0.71 0.78 0.80 0.83 0.74 0.86 0.87 0.89 0.15 

CA 0.64 0.84 0.60 1 0.52 0.78 0.74 0.82 0.83 0.61 0.76 0.61 0.45 0.73 0.62 0.15 

CO 0.54 0.55 0.56 0.52 1 0.57 0.27 0.45 0.59 0.69 0.58 0.36 0.66 0.61 0.51 0.53 

CT 0.73 0.85 0.56 0.78 0.57 1 0.89 0.68 0.80 0.36 0.66 0.49 0.53 0.62 0.58 0.14 

DE 0.64 0.82 0.66 0.74 0.27 0.89 1 0.85 0.93 0.48 0.75 0.58 0.47 0.60 0.62 0.10 

FL 0.62 0.92 0.71 0.82 0.45 0.68 0.85 1 0.91 0.59 0.73 0.48 0.38 0.53 0.52 0.22 

GA 0.89 0.94 0.78 0.83 0.59 0.80 0.93 0.91 1 0.61 0.81 0.56 0.60 0.73 0.70 0.14 

ID 0.78 0.73 0.80 0.61 0.69 0.36 0.48 0.59 0.61 1 0.62 0.64 0.86 0.87 0.66 0.33 

IL 0.84 0.73 0.83 0.76 0.58 0.66 0.75 0.73 0.81 0.62 1 0.67 0.89 0.77 0.85 0.16 

IN 0.83 0.65 0.74 0.61 0.36 0.49 0.58 0.48 0.56 0.64 0.67 1 0.74 0.84 0.89 0.29 

IA 0.81 0.44 0.86 0.45 0.66 0.53 0.47 0.38 0.60 0.86 0.89 0.74 1 0.88 0.92 0.24 

KS 0.93 0.75 0.87 0.73 0.61 0.62 0.60 0.53 0.73 0.87 0.77 0.84 0.88 1 0.92 0.27 

KY 0.90 0.66 0.89 0.62 0.51 0.58 0.62 0.52 0.70 0.66 0.85 0.89 0.92 0.92 1 0.22 

LA 0.23 0.25 0.15 0.15 0.53 0.14 0.10 0.22 0.14 0.33 0.16 0.29 0.24 0.27 0.22 1 

ME 0.68 0.88 0.69 0.76 0.39 0.92 0.91 0.74 0.89 0.62 0.74 0.62 0.56 0.68 0.66 0.21 

MD 0.63 0.90 0.67 0.84 0.46 0.77 0.91 0.73 0.83 0.64 0.63 0.52 0.49 0.53 0.52 0.17 

MA 0.53 0.70 0.55 0.64 0.43 0.92 0.80 0.59 0.83 0.19 0.65 0.39 0.50 0.49 0.48 0.13 

MI 0.86 0.65 0.79 0.67 0.33 0.48 0.65 0.60 0.62 0.54 0.66 0.95 0.62 0.85 0.89 0.23 

MN 0.80 0.83 0.82 0.73 0.56 0.51 0.68 0.69 0.83 0.84 0.87 0.84 0.88 0.88 0.88 0.28 

MS 0.86 0.51 0.84 0.49 0.37 0.43 0.44 0.40 0.62 0.77 0.74 0.81 0.80 0.82 0.87 0.23 

MO 0.91 0.89 0.92 0.69 0.55 0.70 0.89 0.85 0.93 0.72 0.92 0.76 0.79 0.91 0.93 0.13 

MT 0.60 0.35 0.41 0.24 0.51 0.23 0.17 0.25 0.33 0.85 0.31 0.41 0.53 0.49 0.46 0.31 

NE 0.85 0.62 0.78 0.49 0.60 0.40 0.43 0.43 0.66 0.87 0.88 0.60 0.89 0.89 0.84 0.26 

NV 0.80 0.93 0.66 0.85 0.48 0.41 0.72 0.91 0.84 0.75 0.67 0.73 0.65 0.73 0.67 0.24 

NH 0.71 0.92 0.69 0.73 0.59 0.94 0.87 0.81 0.87 0.50 0.64 0.36 0.58 0.62 0.46 0.16 

NJ 0.66 0.93 0.67 0.85 0.50 0.94 0.91 0.90 0.87 0.55 0.61 0.52 0.52 0.64 0.54 0.18 

NM 0.72 0.84 0.62 0.57 0.60 0.37 0.27 0.78 0.79 0.85 0.70 0.66 0.54 0.85 0.63 0.35 

NY 0.70 0.73 0.49 0.88 0.57 0.92 0.89 0.74 0.80 0.33 0.68 0.63 0.53 0.71 0.61 0.19 

NC 0.92 0.91 0.88 0.82 0.62 0.76 0.92 0.78 0.95 0.65 0.84 0.82 0.62 0.91 0.90 0.17 

ND 0.32 0.23 0.22 0.16 0.43 0.26 0.14 0.20 0.14 0.42 0.26 0.33 0.36 0.35 0.33 0.30 

OH 0.89 0.67 0.78 0.77 0.32 0.45 0.68 0.53 0.76 0.60 0.79 0.94 0.68 0.86 0.85 0.30 

OK 0.31 0.26 0.22 0.23 0.74 0.29 0.18 0.25 0.28 0.27 0.34 0.18 0.45 0.61 0.26 0.77 

OR 0.89 0.71 0.90 0.62 0.47 0.41 0.74 0.50 0.63 0.73 0.91 0.88 0.91 0.79 0.91 0.27 

PA 0.87 0.78 0.64 0.79 0.42 0.73 0.80 0.73 0.81 0.59 0.88 0.84 0.77 0.83 0.89 0.26 

RI 0.53 0.81 0.41 0.48 0.17 0.63 0.84 0.62 0.67 0.56 0.37 0.45 0.30 0.45 0.34 0.18 

SC 0.93 0.91 0.86 0.79 0.42 0.74 0.87 0.77 0.94 0.66 0.86 0.79 0.70 0.83 0.85 0.21 

SD 0.89 0.63 0.89 0.57 0.55 0.44 0.35 0.43 0.47 0.85 0.73 0.73 0.90 0.87 0.85 0.27 

TN 0.94 0.88 0.90 0.75 0.49 0.66 0.67 0.67 0.90 0.69 0.84 0.93 0.84 0.91 0.95 0.22 

TX 0.49 0.41 0.39 0.42 0.92 0.41 0.28 0.43 0.50 0.35 0.63 0.30 0.56 0.59 0.47 0.72 

UT 0.69 0.85 0.73 0.61 0.89 0.60 0.31 0.47 0.63 0.78 0.82 0.34 0.78 0.86 0.77 0.30 

VT 0.74 0.90 0.58 0.71 0.48 0.91 0.84 0.79 0.89 0.53 0.68 0.64 0.49 0.74 0.52 0.22 

VA 0.81 0.93 0.76 0.79 0.53 0.86 0.95 0.88 0.95 0.63 0.83 0.57 0.56 0.68 0.62 0.15 

WA 0.93 0.85 0.91 0.60 0.60 0.65 0.73 0.53 0.89 0.76 0.91 0.83 0.86 0.88 0.91 0.18 

WV 0.45 0.39 0.46 0.27 0.22 0.22 0.19 0.47 0.22 0.38 0.77 0.44 0.71 0.67 0.56 0.39 

WI 0.92 0.78 0.87 0.69 0.59 0.60 0.68 0.58 0.81 0.79 0.84 0.89 0.91 0.93 0.92 0.27 

WY 0.27 0.26 0.16 0.17 0.30 0.15 0.14 0.24 0.16 0.25 0.16 0.25 0.27 0.27 0.25 0.82 
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Table 3 (cont.) Stationary MS Synchronization among U.S. States Business Cycle Phases 

 

 
 ME MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND 

AL 0.68 0.63 0.53 0.86 0.80 0.86 0.91 0.60 0.85 0.80 0.71 0.66 0.72 0.70 0.92 0.32 

AZ 0.88 0.90 0.70 0.65 0.83 0.51 0.89 0.35 0.62 0.93 0.92 0.93 0.84 0.73 0.91 0.23 

AR 0.69 0.67 0.55 0.79 0.82 0.84 0.92 0.41 0.78 0.66 0.69 0.67 0.62 0.49 0.88 0.22 

CA 0.76 0.84 0.64 0.67 0.73 0.49 0.69 0.24 0.49 0.85 0.73 0.85 0.57 0.88 0.82 0.16 

CO 0.39 0.46 0.43 0.33 0.56 0.37 0.55 0.51 0.60 0.48 0.59 0.50 0.60 0.57 0.62 0.43 

CT 0.92 0.77 0.92 0.48 0.51 0.43 0.70 0.23 0.40 0.41 0.94 0.94 0.37 0.92 0.76 0.26 

DE 0.91 0.91 0.80 0.65 0.68 0.44 0.89 0.17 0.43 0.72 0.87 0.91 0.27 0.89 0.92 0.14 

FL 0.74 0.73 0.59 0.60 0.69 0.40 0.85 0.25 0.43 0.91 0.81 0.90 0.78 0.74 0.78 0.20 

GA 0.89 0.83 0.83 0.62 0.83 0.62 0.93 0.33 0.66 0.84 0.87 0.87 0.79 0.80 0.95 0.14 

ID 0.62 0.64 0.19 0.54 0.84 0.77 0.72 0.85 0.87 0.75 0.50 0.55 0.85 0.33 0.65 0.42 

IL 0.74 0.63 0.65 0.66 0.87 0.74 0.92 0.31 0.88 0.67 0.64 0.61 0.70 0.68 0.84 0.26 

IN 0.62 0.52 0.39 0.95 0.84 0.81 0.76 0.41 0.60 0.73 0.36 0.52 0.66 0.63 0.82 0.33 

IA 0.56 0.49 0.50 0.62 0.88 0.80 0.79 0.53 0.89 0.65 0.58 0.52 0.54 0.53 0.62 0.36 

KS 0.68 0.53 0.49 0.85 0.88 0.82 0.91 0.49 0.89 0.73 0.62 0.64 0.85 0.71 0.91 0.35 

KY 0.66 0.52 0.48 0.89 0.88 0.87 0.93 0.46 0.84 0.67 0.46 0.54 0.63 0.61 0.90 0.33 

LA 0.21 0.17 0.13 0.23 0.28 0.23 0.13 0.31 0.26 0.24 0.16 0.18 0.35 0.19 0.17 0.30 

ME 1 0.92 0.90 0.69 0.69 0.54 0.80 0.43 0.61 0.75 0.90 0.93 0.56 0.87 0.86 0.18 

MD 0.92 1 0.76 0.59 0.75 0.37 0.82 0.31 0.54 0.66 0.79 0.92 0.37 0.82 0.75 0.20 

MA 0.90 0.76 1 0.50 0.42 0.35 0.53 0.17 0.32 0.30 0.93 0.91 0.23 0.88 0.74 0.17 

MI 0.69 0.59 0.50 1 0.87 0.81 0.86 0.31 0.54 0.61 0.46 0.60 0.67 0.69 0.88 0.32 

MN 0.69 0.75 0.42 0.87 1 0.72 0.89 0.48 0.87 0.85 0.62 0.58 0.72 0.66 0.86 0.42 

MS 0.54 0.37 0.35 0.81 0.72 1 0.84 0.57 0.75 0.78 0.41 0.33 0.71 0.52 0.86 0.27 

MO 0.80 0.82 0.53 0.86 0.89 0.84 1 0.47 0.88 0.84 0.72 0.75 0.79 0.69 0.94 0.31 

MT 0.43 0.31 0.17 0.31 0.48 0.57 0.47 1 0.62 0.40 0.23 0.32 0.67 0.17 0.40 0.34 

NE 0.61 0.54 0.32 0.54 0.87 0.75 0.88 0.62 1 0.77 0.44 0.47 0.81 0.42 0.74 0.39 

NV 0.75 0.66 0.30 0.61 0.85 0.78 0.84 0.40 0.77 1 0.67 0.72 0.91 0.46 0.78 0.23 

NH 0.90 0.79 0.93 0.46 0.62 0.41 0.72 0.23 0.44 0.67 1 0.94 0.53 0.84 0.82 0.15 

NJ 0.93 0.92 0.91 0.60 0.58 0.33 0.75 0.32 0.47 0.72 0.94 1 0.59 0.93 0.85 0.15 

NM 0.56 0.37 0.23 0.67 0.72 0.71 0.79 0.67 0.81 0.91 0.53 0.59 1 0.37 0.81 0.29 

NY 0.87 0.82 0.88 0.69 0.66 0.52 0.69 0.17 0.42 0.46 0.84 0.93 0.37 1 0.83 0.27 

NC 0.86 0.75 0.74 0.88 0.86 0.86 0.94 0.40 0.74 0.78 0.82 0.85 0.81 0.83 1 0.30 

ND 0.18 0.20 0.17 0.32 0.42 0.27 0.31 0.34 0.39 0.23 0.15 0.15 0.29 0.27 0.30 1 

OH 0.62 0.52 0.45 0.95 0.89 0.82 0.89 0.35 0.74 0.68 0.55 0.57 0.63 0.64 0.91 0.39 

OK 0.24 0.21 0.25 0.19 0.35 0.27 0.27 0.24 0.45 0.21 0.25 0.22 0.26 0.26 0.31 0.43 

OR 0.74 0.65 0.44 0.85 0.89 0.85 0.77 0.42 0.79 0.60 0.48 0.59 0.56 0.63 0.79 0.34 

PA 0.80 0.78 0.64 0.81 0.88 0.79 0.91 0.38 0.82 0.75 0.67 0.77 0.78 0.89 0.87 0.42 

RI 0.89 0.58 0.64 0.54 0.45 0.39 0.45 0.30 0.40 0.48 0.83 0.80 0.37 0.54 0.51 0.18 

SC 0.80 0.84 0.73 0.87 0.86 0.82 0.92 0.43 0.72 0.82 0.79 0.75 0.64 0.81 0.95 0.26 

SD 0.64 0.54 0.38 0.68 0.88 0.77 0.75 0.76 0.90 0.60 0.45 0.41 0.71 0.54 0.75 0.38 

TN 0.74 0.57 0.51 0.94 0.90 0.87 0.94 0.40 0.79 0.80 0.68 0.70 0.69 0.79 0.94 0.30 

TX 0.29 0.28 0.45 0.26 0.55 0.36 0.50 0.21 0.54 0.27 0.48 0.34 0.59 0.50 0.48 0.48 

UT 0.47 0.51 0.41 0.34 0.69 0.67 0.74 0.48 0.67 0.76 0.61 0.58 0.88 0.63 0.70 0.35 

VT 0.91 0.79 0.87 0.75 0.70 0.52 0.81 0.29 0.58 0.69 0.91 0.94 0.55 0.83 0.89 0.24 

VA 0.92 0.94 0.83 0.73 0.83 0.54 0.91 0.35 0.58 0.77 0.81 0.93 0.47 0.84 0.93 0.18 

WA 0.67 0.76 0.63 0.80 0.86 0.83 0.91 0.50 0.83 0.84 0.65 0.65 0.63 0.57 0.89 0.25 

WV 0.38 0.25 0.19 0.47 0.74 0.72 0.61 0.34 0.67 0.37 0.29 0.29 0.41 0.31 0.37 0.53 

WI 0.73 0.46 0.52 0.90 0.92 0.87 0.93 0.43 0.91 0.77 0.60 0.55 0.82 0.74 0.93 0.44 

WY 0.22 0.20 0.14 0.22 0.30 0.27 0.16 0.25 0.27 0.25 0.15 0.20 0.37 0.22 0.20 0.31 
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Table 3 (cont.) Stationary MS Synchronization among U.S. States Business Cycle Phases 

 

 
 OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY 

AL 0.89 0.31 0.89 0.87 0.53 0.93 0.89 0.94 0.49 0.69 0.74 0.81 0.93 0.45 0.92 0.27 

AZ 0.67 0.26 0.71 0.78 0.81 0.91 0.63 0.88 0.41 0.85 0.90 0.93 0.85 0.39 0.78 0.26 

AR 0.78 0.22 0.90 0.64 0.41 0.86 0.89 0.90 0.39 0.73 0.58 0.76 0.91 0.46 0.87 0.16 

CA 0.77 0.23 0.62 0.79 0.48 0.79 0.57 0.75 0.42 0.61 0.71 0.79 0.60 0.27 0.69 0.17 

CO 0.32 0.74 0.47 0.42 0.17 0.42 0.55 0.49 0.92 0.89 0.48 0.53 0.60 0.22 0.59 0.30 

CT 0.45 0.29 0.41 0.73 0.63 0.74 0.44 0.66 0.41 0.60 0.91 0.86 0.65 0.22 0.60 0.15 

DE 0.68 0.18 0.74 0.80 0.84 0.87 0.35 0.67 0.28 0.31 0.84 0.95 0.73 0.19 0.68 0.14 

FL 0.53 0.25 0.50 0.73 0.62 0.77 0.43 0.67 0.43 0.47 0.79 0.88 0.53 0.47 0.58 0.24 

GA 0.76 0.28 0.63 0.81 0.67 0.94 0.47 0.90 0.50 0.63 0.89 0.95 0.89 0.22 0.81 0.16 

ID 0.60 0.27 0.73 0.59 0.56 0.66 0.85 0.69 0.35 0.78 0.53 0.63 0.76 0.38 0.79 0.25 

IL 0.79 0.34 0.91 0.88 0.37 0.86 0.73 0.84 0.63 0.82 0.68 0.83 0.91 0.77 0.84 0.16 

IN 0.94 0.18 0.88 0.84 0.45 0.79 0.73 0.93 0.30 0.34 0.64 0.57 0.83 0.44 0.89 0.25 

IA 0.68 0.45 0.91 0.77 0.30 0.70 0.90 0.84 0.56 0.78 0.49 0.56 0.86 0.71 0.91 0.27 

KS 0.86 0.61 0.79 0.83 0.45 0.83 0.87 0.91 0.59 0.86 0.74 0.68 0.88 0.67 0.93 0.27 

KY 0.85 0.26 0.91 0.89 0.34 0.85 0.85 0.95 0.47 0.77 0.52 0.62 0.91 0.56 0.92 0.25 

LA 0.30 0.77 0.27 0.26 0.18 0.21 0.27 0.22 0.72 0.30 0.22 0.15 0.18 0.39 0.27 0.82 

ME 0.62 0.24 0.74 0.80 0.89 0.80 0.64 0.74 0.29 0.47 0.91 0.92 0.67 0.38 0.73 0.22 

MD 0.52 0.21 0.65 0.78 0.58 0.84 0.54 0.57 0.28 0.51 0.79 0.94 0.76 0.25 0.46 0.20 

MA 0.45 0.25 0.44 0.64 0.64 0.73 0.38 0.51 0.45 0.41 0.87 0.83 0.63 0.19 0.52 0.14 

MI 0.95 0.19 0.85 0.81 0.54 0.87 0.68 0.94 0.26 0.34 0.75 0.73 0.80 0.47 0.90 0.22 

MN 0.89 0.35 0.89 0.88 0.45 0.86 0.88 0.90 0.55 0.69 0.70 0.83 0.86 0.74 0.92 0.30 

MS 0.82 0.27 0.85 0.79 0.39 0.82 0.77 0.87 0.36 0.67 0.52 0.54 0.83 0.72 0.87 0.27 

MO 0.89 0.27 0.77 0.91 0.45 0.92 0.75 0.94 0.50 0.74 0.81 0.91 0.91 0.61 0.93 0.16 

MT 0.35 0.24 0.42 0.38 0.30 0.43 0.76 0.40 0.21 0.48 0.29 0.35 0.50 0.34 0.43 0.25 

NE 0.74 0.45 0.79 0.82 0.40 0.72 0.90 0.79 0.54 0.67 0.58 0.58 0.83 0.67 0.91 0.27 

NV 0.68 0.21 0.60 0.75 0.48 0.82 0.60 0.80 0.27 0.76 0.69 0.77 0.84 0.37 0.77 0.25 

NH 0.55 0.25 0.48 0.67 0.83 0.79 0.45 0.68 0.48 0.61 0.91 0.81 0.65 0.29 0.60 0.15 

NJ 0.57 0.22 0.59 0.77 0.80 0.75 0.41 0.70 0.34 0.58 0.94 0.93 0.65 0.29 0.55 0.20 

NM 0.63 0.26 0.56 0.78 0.37 0.64 0.71 0.69 0.59 0.88 0.55 0.47 0.63 0.41 0.82 0.37 

NY 0.64 0.26 0.63 0.89 0.54 0.81 0.54 0.79 0.50 0.63 0.83 0.84 0.57 0.31 0.74 0.22 

NC 0.91 0.31 0.79 0.87 0.51 0.95 0.75 0.94 0.48 0.70 0.89 0.93 0.89 0.37 0.93 0.20 

ND 0.39 0.43 0.34 0.42 0.18 0.26 0.38 0.30 0.48 0.35 0.24 0.18 0.25 0.53 0.44 0.31 

OH 1 0.17 0.86 0.84 0.45 0.84 0.76 0.93 0.29 0.36 0.75 0.74 0.82 0.62 0.92 0.26 

OK 0.17 1 0.22 0.33 0.16 0.24 0.35 0.22 0.83 0.42 0.27 0.22 0.31 0.48 0.22 0.81 

OR 0.86 0.22 1 0.76 0.43 0.86 0.89 0.87 0.30 0.59 0.66 0.73 0.89 0.44 0.89 0.23 

PA 0.84 0.33 0.76 1 0.63 0.86 0.70 0.92 0.52 0.62 0.84 0.86 0.82 0.71 0.92 0.30 

RI 0.45 0.16 0.43 0.63 1 0.65 0.49 0.48 0.17 0.19 0.84 0.69 0.41 0.32 0.51 0.18 

SC 0.84 0.24 0.86 0.86 0.65 1 0.76 0.94 0.41 0.54 0.76 0.94 0.90 0.41 0.90 0.24 

SD 0.76 0.35 0.89 0.70 0.49 0.76 1 0.82 0.42 0.64 0.46 0.51 0.84 0.55 0.89 0.26 

TN 0.93 0.22 0.87 0.92 0.48 0.94 0.82 1 0.40 0.73 0.74 0.81 0.91 0.52 0.95 0.27 

TX 0.29 0.83 0.30 0.52 0.17 0.41 0.42 0.40 1 0.76 0.35 0.33 0.36 0.34 0.59 0.61 

UT 0.36 0.42 0.59 0.62 0.19 0.54 0.64 0.73 0.76 1 0.60 0.51 0.85 0.51 0.87 0.33 

VT 0.75 0.27 0.66 0.84 0.84 0.76 0.46 0.74 0.35 0.60 1 0.88 0.59 0.35 0.76 0.18 

VA 0.74 0.22 0.73 0.86 0.69 0.94 0.51 0.81 0.33 0.51 0.88 1 0.80 0.21 0.77 0.16 

WA 0.82 0.31 0.89 0.82 0.41 0.90 0.84 0.91 0.36 0.85 0.59 0.80 1 0.36 0.92 0.20 

WV 0.62 0.48 0.44 0.71 0.32 0.41 0.55 0.52 0.34 0.51 0.35 0.21 0.36 1 0.77 0.47 

WI 0.92 0.22 0.89 0.92 0.51 0.90 0.89 0.95 0.59 0.87 0.76 0.77 0.92 0.77 1 0.31 

WY 0.26 0.81 0.23 0.30 0.18 0.24 0.26 0.27 0.61 0.33 0.18 0.16 0.20 0.47 0.31 1 
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Table 4. Stationary MS Synchronization between State and U.S. business cycle phases 

 

State Sync  State Sync  State Sync  State Sync 

Alabama 0.92  Iowa 0.64  Nebraska 0.61  Rhode Island 0.58 

Arizona 0.79  Kansas 0.85  Nevada 0.75  S. Carolina 0.92 

Arkansas 0.71  Kentucky 0.84  N. Hampshire 0.60  S. Dakota 0.71 

California 0.87  Louisiana 0.24  New Jersey 0.78  Tennessee 0.93 

Colorado 0.41  Maine 0.80  New Mexico 0.75  Texas 0.38 

Connecticut 0.66  Maryland 0.48  New York 0.77  Utah 0.72 

Delaware 0.80  Massachusetts 0.44  N. Carolina 0.94  Vermont 0.85 

Florida 0.68  Michigan 0.90  N. Dakota 0.32  Virginia 0.90 

Georgia 0.80  Minnesota 0.90  Ohio 0.92  Washington 0.75 

Idaho 0.62  Mississippi 0.85  Oklahoma 0.22  W. Virginia 0.55 

Illinois 0.86  Missouri 0.84  Oregon 0.74  Wisconsin 0.87 

Indiana 0.92  Montana 0.39  Pennsylvania 0.88  Wyoming 0.28 

           
Note: The table reports the stationary degree of synchronization for 1979:8 to 2012:3. Those estimates 

correspond to the ergodic probability that the business cycle phases of the corresponding state and the one of 

the U.S. economic activity are totally dependent, i.e. Pr(Vt=1). 
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Figure 1. MS Synchronization between Selected States 
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Note. The Chart A of the figure plots the probabilities of recession for New York and Texas and its time-

varying synchronization. The Chart B of the figure plots the probabilities of recession for California and 

Vermont and its time-varying synchronization. Shaded areas correspond to NBER recessions. The full set of 

pairwise cases can be available upon request to the author. 
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Figure 2. MS Synchronization between States and U.S. Economic Activity 

Alabama 

Note. Each chart plots the time-varying degree of synchronization between the U.S. business cycle 

phases and the ones of each State. Shaded areas correspond to NBER-referenced recessions. 
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Figure 2 (continued). MS Synchronization between States and U.S. Economic Activity 

Note. Each chart plots the time-varying degree of synchronization between the U.S. business cycle 

phases and the ones of each State. Shaded areas correspond to NBER-referenced recessions. 
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Figure 2 (continued). MS Synchronization between States and U.S. Economic Activity 

Note. Each chart plots the time-varying degree of synchronization between the U.S. business cycle 

phases and the ones of each State. Shaded areas correspond to NBER-referenced recessions. 
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Figure 2 (continued). MS Synchronization between States and U.S. Economic Activity 

Note. Each chart plots the time-varying degree of synchronization between the U.S. business cycle 

phases and the ones of each State. Shaded areas correspond to NBER-referenced recessions. 
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Figure 6. Cluster Coefficient 
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Figure 7. Real Time Estimates of Closeness Centrality 

Note. The figure plots the cluster coefficient of the synchronization network composed by the U.S. 

State for each period of time. Shaded areas correspond to recessions as documented by the NBER. 

Note. The top chart plots the dynamic cluster coefficient with the data until 12/2007. The bottom 

chart plots the dynamic cluster coefficient with the data until 03/2001. Shaded areas correspond to 

recessions as documented by the NBER. 



Figure 8. Synchronization Network for the Beginning of Recessions 

Note. The figure plots the interconnectedness in terms of synchronization between the business cycle 

phases of U.S. States. Each node represent a State, and the green each green line represent the link 

between two states, which take place only if Pr(Vt=1)>0,5. The full animated version is available 

upon request to the author. 
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Figure 10. Real Time Estimates of Closeness Centrality 
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Note. The top chart plots the dynamic closeness centrality with the data until 12/2007. The bottom 

chart plots the dynamic closeness centrality with the data until 03/2001. Shaded areas correspond to 

recessions as documented by the NBER. 
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Figure 9. Closeness Centrality 

Note. The figure plots the closeness centrality of the synchronization network composed by the U.S. 

state for each period of time. Shaded areas correspond to recessions as documented by the NBER. 
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