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Abstract
In the current literature, fiscal policy is usually characterized by a single-
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1 Introduction

In the current literature, fiscal policy is usually characterized by a single-equation

rule1, i.e. fiscal reaction function, just as the monetary policy being characterized

by a Taylor-type interest rate rule. Generally, the fiscal policy rule defines primary

surplus as a function of lagged government debt, other controlled variables such as the

output gap or GDP growth, and a fiscal policy shock. Since the main interest of this

paper lies in the lagged government debt, we suppress the output gap or GDP growth

to simplify the analysis and specify the fiscal policy rule as the following

τ̃t = γ0 + γb̃t−1 + ψ̃t (1)

where τt is real primary surplus, bt−1 is lagged real government debt and ψt is fiscal

policy shock. Variables with “∼” are measured in logarithm.

In empirical work, applying Ordinary Least Squares (OLS) method on the fiscal

policy rule similar to (1) has been one of the common approaches to identify fiscal

policy behavior, such as Bohn (1998) with the U.S. data. For those papers running

policy rule regression, the fiscal rule is generally treated as a structural equation and

behavioral interpretation is usually attached to the regression results. For instance,

Bohn (1998) interprets the OLS estimator of the coefficient of government debt as the

indicator of fiscal sustainability2.

To guarantee the validity of the results, the papers applying OLS regression on the

fiscal policy rule always assume, implicitly or not, that the lagged government debt is

exogenous relative to the fiscal policy shock, which, in terms of (1), implies that b̃t−1 is

uncorrelated with ψ̃t. This assumption seems “justifiable” at the first glance because

b̃t−1 is predetermined relative to ψ̃t. Unfortunately, macroeconomic theory indicates

that b̃t−1 in (1) is generally endogenous so that b̃t−1 is correlated with ψ̃t
3 and the

1There is an extensive literature that specifies and estimates single-equation fiscal policy rule, to
name a few, such as Bohn (1998), Gaĺı and Perotti (2003) and Auerbach (2003).

2For those papers including output gap or GDP growth in the fiscal policy rule, the coefficient
of output gap or GDP growth is usually interpreted as the indicator of fiscal authority’s stance on
economic stabilization.

3For the papers including output gap or GDP growth in the fiscal policy rule, such as Gaĺı
and Perotti (2003), instrumental variables (IV) estimation is applied to correct for the endogeneity
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OLS regression is invalid. More specifically, according to the rational expectations

hypothesis, the economy is forward-looking in nature and the general equilibrium can

be summarized by a system of simultaneous equations. Based on the system, the

endogeneity of b̃t−1 relative to ψ̃t becomes obvious by looking at the intertemporal

government budget constraint (2), which always holds as an equilibrium condition

regardless of the fiscal policy rule in place

Gov.Debt = Expected Present Value of (Future Surpluses + Future Seigniorage) (2)

That is to say, in equilibrium, not only (1) but also (2) links the government debt to

the future primary surpluses. If the fiscal policy rule (1) is isolated from the whole

system, important information from other aspects of the economy, especially (2), will

be missing and the policy rule regression will suffer from simultaneity bias, which

induces inconsistency in the OLS estimator of γ, i.e. γ̂OLS
4. As a consequence, γ̂OLS

is not accurate and even worse, the OLS-based identification of fiscal policy behavior

is unreliable. This methodological problem has been recognized in the literature for

a long time5. But there has not been much work done to systematically illustrate the

nature and the severity of the problem by closely connecting with the macroeconomic

theory. Our paper tries to shed some light in that direction. Since the problem is best

illustrated in a specific model environment, we adopt a simple Dynamic Stochastic

General Equilibrium (DSGE) model, which is similar to Leeper (1991) and (2005), as

the data-generating process (DGP).

The first contribution of this paper is to investigate the simultaneity bias problem

analytically. From the simple analytical example, we illustrate that if an econome-

trician runs OLS regression on (1) using equilibrium data, which is generated by the

underlying DGP, the econometric model (1) is misspecified and γ̂OLS is inconsistent,

which makes the structural interpretation attached to γ̂OLS misleading and the iden-

tification of fiscal policy behavior unreliable. To help understand the nature of the

of the output gap. However, the exogeneity assumption of the lagged government debt is generally
preserved, which means that the problem examined in this paper also matters in that line of research.

4There are a few exceptions where γ̂OLS is consistent, which will be discussed later in the paper.
5A non-exhaustive list of papers addressing this issue includes Cochrane (1998), Woodford (1998),

(2001) and Davig, Leeper and Chung (2007).
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problem, we provide economic interpretation of the bias. Several results from the

analysis of the illustrative model are worth mentioning. First, with serially correlated

fiscal policy shock, which is a reasonable assumption consistent with the empirical

evidence, the simultaneity bias problem prevails in the parameter space. For example,

when the monetary and fiscal policy combination is non-Ricardian6 in the DGP, the

bias can be negative, positive or in some rare cases zero; when the policy combina-

tion is Ricardian in the DGP, the bias is always negative. Second, regardless of the

underlying DGP, OLS estimator of the fiscal policy rule is inaccurate and the corre-

sponding identification of fiscal policy behavior is unreliable. Third, monetary and

fiscal policy interaction matters for the identification of fiscal policy behavior. For ex-

ample, with a non-Ricardian policy combination in the DGP, as monetary policy pays

less attention to inflation, γ̂OLS would be biased up more so that the econometrician

would mistakenly regard the policy combination in the DGP as Ricardian with higher

probability.

The second contribution of the paper is to correct for the simultaneity bias by

applying the Generalized Method of Moments (GMM) for estimation and inference,

which provides more reliable results. In order to illustrate the distinct performance of

OLS and GMM, we calibrate the model to the U.S. data and carry out Monte Carlo

experiments. It turns out that over the whole parameter space we are interested in,

GMM performs better than OLS in terms of accuracy of estimator, size and power.

The rest of the paper is organized as follows. In section 2, we specify and solve the

simple DSGE model. We also derive the state-space representation of the model, which

is used to generate artificial data in the Monte Carlo experiments. In section 3, we

derive the analytical form of the simultaneity bias and provide economic interpretation

of the bias. Section 4 specifies the basic GMM setup. Section 5 reports the results of

the Monte Carlo experiments. Section 6 concludes.

6According to Leeper (1991)’s terminology, monetary policy is passive when interest rate responds
to inflation less than one-for-one and active when the response is more than one-for-one; loosely
speaking, fiscal policy is passive when tax responds outstanding government debt strongly and active
otherwise. In the literature of the fiscal theory of price level, an equilibrium is defined as non-
Ricardian when monetary policy is passive and fiscal policy is active. On the contrary, when monetary
policy is active and fiscal policy is passive, the equilibrium is defined as Ricardian.
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2 The Illustrative Model

2.1 Model Setup

This is an endowment economy model which is similar to Leeper (1991) and (2005).

In the model, there is an infinitely lived representative agent who chooses sequences

{ct,Mt, Bt}∞t=0 to solve the household problem:

max E0

∞∑
t=0

βt[ln(ct) + δln(Mt/Pt)] (3)

subject to the flow budget constraint

ct +
Mt +Bt

Pt
+ τt = y +

Mt−1 +Rt−1Bt−1

Pt
(4)

taking the initial liabilities M−1+R−1B−1 > 0 and sequences {y, τt, Rt, Pt}∞t=0 as given.

In (3) and (4), β ∈ (0, 1) is the discount factor, δ ∈ (0,∞) is the weight on real money

balance in the utility function, ct is the real consumption, Mt is the nominal money

balance, Bt is the nominal one-period government debt with gross nominal interest

rate Rt, Pt the is price level, y is the constant endowment and τt is the lump-sum

taxes (if positive) or transfers (if negative).

There is a government with policy sequences {Mt, Bt, τt}∞t=0 subject to the govern-

ment budget constraint

Mt +Bt

Pt
+ τt = gt +

Mt−1 +Rt−1Bt−1

Pt
(5)

where gt is the government spending.

The resource constraint is

ct + gt = y (6)

For simplicity, we assume gt = 0 for all t. So (6) reduces to ct = c = y, which is the

goods market clearing condition.

We obtain the following Fisher and money-demand relations from the standard
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first-order necessary conditions and the resource constraint (6):

1

Rt

= βEt

[
1

πt+1

]
(7)

mt = δc

[
Rt

Rt − 1

]
(8)

where πt+1≡Pt+1/Pt and mt≡Mt/Pt are the inflation rate and the real money balance,

respectively.

The model is closed by specifying monetary and fiscal policies, which are character-

ized by simple rules that determine their corresponding policy instruments. Monetary

policy is described by the Taylor-type interest rate rule

Rt = eα0παt θt (9)

and fiscal policy is described by the tax rule

τt = eγ0bγt−1ψt (10)

where bt−1≡Bt−1/Pt−1 is the real government debt. We assume that the exogenous

monetary and fiscal policy shocks θt and ψt have unit means and their logarithms

follow AR(1) processes

ln(θt) = θ0 + ρθln(θt−1) + εθt (11)

ln(ψt) = ψ0 + ρψln(ψt−1) + εψt (12)

where θ0 and ψ0 are drift terms. |ρθ| < 1 and |ρψ| < 1 are assumed for stationarity.

The innovations to both policy shocks, εθt and εψt , are assumed to be independent

and identically-distributed (i.i.d.)7 random variables with zero means and bounded

support. Their standard deviations are σθ and σψ, respectively.

7Here we make a strong assumption on εθt and εψt to separate effects of different shocks in a
clear manner, which makes the illustration more transparent. To allow for nonzero cross-correlation
between different policy shock innovations, which is more realistic, makes the derivation more cum-
bersome, but would not change the main results of the paper significantly.
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2.2 Model Solution

The general equilibrium of the model is fully characterized by (5), (7)-(12). To solve

the model, we firstly log-linearize the equilibrium conditions around the deterministic

steady state, as shown in Appendix A. The linearized system is organized in the

standard matrix form

Γ0Yt+1 = Γ1Yt + Πηt+1 + Ψεt+1 (13)

where Yt+1 =
[
π̂t+1, b̂t+1, θ̂t+1, ψ̂t+1

]′
, εt+1 =

[
εθt+1 , εψt+1

]′
. Any variable x̂t denotes log

deviation of xt from its corresponding steady state value x, i.e. x̂t≡ln(xt)− ln(x). We

also define the one-period-ahead endogenous forecasting error ηt+1≡π̂t+1 − Etπ̂t+1.

Since Γ0 is invertible, (13) can be expressed as

Yt+1 = Γ∗1Yt + Π∗ηt+1 + Ψ∗εt+1 (14)

where Γ∗1 = Γ−1
0 Γ1, Π∗ = Γ−1

0 Π and Ψ∗ = Γ−1
0 Ψ. Determinacy of bounded equilibrium8

of the model hinges on the eigenvalues of Γ∗1, which are [α, β−1 − γ(β−1 − 1), ρθ, ρψ].

According to Leeper (1991) and (2005), we are able to characterize four different

regions in the first quadrant of (α, γ) space9, two of which indicate determinacy:

(1) When α < 1 and γ < 1, monetary policy is passive and fiscal policy is active.

The equilibrium is determinate and non-Ricardian; (2) When α > 1 and γ > 1,

monetary policy is active and fiscal policy is passive. The equilibrium is determinate

and Ricardian; (3) When α < 1 and γ > 1, monetary and fiscal policies are both

passive and bounded equilibrium is indeterminate; (4) When α > 1 and γ < 1,

monetary and fiscal policies are both active and no bounded equilibrium exists. Figure

1 demonstrates these four regions, where determinacy regions are superimposed by red

lines.

In Appendix A, we apply a Jordan decomposition to obtain the analytical solution

of the model. If the bounded equilibrium is determinate, the following conditions that

8In this paper, we are only interested in the determinate equilibrium, which is bounded because
we have assumed that random variables εθt

and εψt
have bounded support.

9In fact, it is the absolute values of the eigenvalues that matter for the determinacy. However,
we only focus on the economically interesting regions in the paper, i.e. the first quadrant of (α, γ)
space.
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suppress the unstable root of the dynamic system must hold for all t:

P i·Yt = 0 (15)

P i·Π∗ηt+1 + P i·Ψ∗εt+1 = 0 (16)

where, according to Appendix A, P i· is the ith row of P−1 and i is the index denoting

the unstable eigenvalue in Λ. P−1 and Λ, which are defined in Appendix A, are

standard matrices appearing in the Jordan decompostion. In this model context, i = 1

is corresponding to Ricardian equilibrium and 2 is corresponding to non-Ricardian

equilibrium. In both cases, ηt+1 is uniquely determined by (16). If the bounded

equilibrium is indeterminate, there is no unique mapping between ηt+1 and εt+1. For

the rest of the paper, we will focus on the determinacy regions. The solution procedure

outlined here will be used later to derive the analytical form of the simultaneity bias

associated with the OLS estimator of the fiscal policy rule.

2.3 State-Space Representation

The state equation (17), which is also the numerical solution of the model, is obtained

by applying gensys algorithm10, which is based on Sims’ (2001).

Yt+1 = G1Yt +Mεt+1 (17)

The matrices G1 and M in (17) are outputs from gensys algorithm. Since both the

model and the data are quarterly, we define the observation equation as

[
π̂ot+1

b̂ot+1

]
=

[
1 0 0 0
0 1 0 0

]
π̂t+1

b̂t+1

θ̂t+1

ψ̂t+1

 (18)

where superscript “o” denotes observable variables.

Based on the state-space representation (17) and (18), we are able to simulate

artificial data, which is used by the econometrician in the Monte Carlo experiments.

10gensys algorithm can be downloaded from Chris Sims’ homepage.
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3 OLS Regression: An Analytical Investigation

Now we treat the DSGE model specified in the previous section as the underlying DGP

and suppose an econometrician tries to identify fiscal policy behavior. We assume

the data the econometrician uses are measured in logarithms, which are denoted by

x̃t ≡ ln(xt) for any variable xt. Because the observable variables are equivalent to the

model variables according to (18), we will suppress the superscript “o” henceforth.

Taking log on both sides of (10), the fiscal policy rule is in the following form

τ̃t = γ0 + γb̃t−1 + ψ̃t (19)

To simplify the analysis for the time being, we assume that the econometrician knew

the exact form of the fiscal policy rule (19). From the econometrician’s perspective,

b̃t−1 is predetermined relative to ψ̃t. Therefore, an OLS regression on the structural

equation (19) seems to be “justified”. Because of the “validity” of OLS regression, the

econometrician naturally attaches behavioral interpretation to the OLS estimator of

γ. The econometrician then identifies fiscal policy behavior based on γ̂OLS. Unfortu-

nately, as will be shown in this section, the OLS regression is not valid, which is not

recognized by the econometrician. The subtlety of the failure of OLS regression lies

in the fact that the econometric model is misspecified, which is due to the isolation of

the fiscal policy rule from the whole system of structural equations11.

Mathematically, Appendix B shows that the probability limit of γ̂OLS is

plimγ̂OLS = γ +
cov(b̃t−1, ψ̃t)

var(b̃t−1)
(20)

where cov(·, ·) and var(·) are covariance and variance operators, respectively. It is

clear in (20) that the probability limit of γ̂OLS contains an additional term besides γ.

Later we will illustrate that the additional term is nonzero everywhere in the parameter

space, with exceptions only in some special cases. As mentioned earlier, when running

OLS regression on (19), the econometrician isolates (19) from the system of structural

11Here we only consider one type of misspecification, i.e. isolation of one structural equation
from the system. In practice, it is possible that the functional form of the fiscal policy rule is also
misspecified, which will be considered in the future work.
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equations implied by the general equilibrium. So γ̂OLS is intrinsically subject to si-

multaneity bias, which, asymptotically, is captured by the term cov(b̃t−1, ψ̃t)/var(b̃t−1)

in (20).

In the next four subsections, we investigate the simultaneity bias through four

cases. DGPs of the first three cases are characterized by non-Ricardian policy com-

bination and that of the last case is characterized by Ricardian policy combination.

For each case, we provide economic interpretation of the bias, which helps understand

the nature of the problem. To make the economic interpretation straightforward, we

iterate (5) forward over B/P and take expectation conditional on the information set

at period t− 1. Then we get the intertemporal government budget constraint:

Bt−1

Pt−1

= Et−1

∞∑
i=0

(
i∏

j=0

πt+jR
−1
t+j−1

)[
τt+i +

Mt+i −Mt+i−1

Pt+i

]
(21)

where the transversality condition for government debt has been imposed. The in-

tertemporal government budget constraint (21) is a general equilibrium condition that

always holds in equilibrium regardless of the policy combination in place. This condi-

tion tells us that, in equilibrium, real government debt is always equal to the sum of

expected present value of future surpluses and seigniorage revenues.

3.1 Case I (Non-Ricardian): α = γ = ρθ = ρψ = 0

In this case, nominal interest rate is pegged; primary surplus is exogenous; both the

monetary and the fiscal policy shocks are serially uncorrelated. The solution is greatly

simplified under these assumptions. First, condition (15) reduces to

b̃t = ln(b) + β(ϕ1 + ϕ4)εθt (22)

Since ψ̃t is i.i.d., we have ψ̃t = εψt . Then the covariance term in (20) becomes

cov(b̃t−1, ψ̃t) = cov
[
ln(b) + β(ϕ1 + ϕ4)εθt−1 , εψt

]
= 0 (23)

where the covariance is 0 because we have assumed εθ and εψ are both i.i.d., which

indicates zero correlation between each other for all leads and lags. Consequently,
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plimγ̂OLS = γ and the OLS estimator of γ is free of simultaneity bias, which guarantees

reliable identification of fiscal policy behavior. However, to assume fiscal policy shock

being serially uncorrelated is not consistent with the empirical evidence.

3.2 Case II (Non-Ricardian): α = γ = ρθ = 0, ρψ 6= 0

In this case, we keep the assumptions of case I except that fiscal policy shock ψ̃t

becomes serially correlated. First, condition (15) reduces to

b̃t = ln(b) + β(ϕ1 + ϕ4)θ̃t +

[
(β−1 − 1)ρψ
β−1 − ρψ

]
ψ̃t

= ln(b) + β(ϕ1 + ϕ4)εθt +

[
(β−1 − 1)ρψ
β−1 − ρψ

]
εψt

(1− ρψL)
(24)

where we rewrite ψ̃t as εψt/(1 − ρψL) by introducing the lag operator. Then the

covariance term in (20) becomes

cov(b̃t−1, ψ̃t) = cov

[
ln(b) + β(ϕ1 + ϕ4)εθt +

(β−1 − 1)ρψ
β−1 − ρψ

εψt−1

(1− ρψL)
,

εψt
(1− ρψL)

]
=

[
(β−1 − 1)ρψ
β−1 − ρψ

]
cov

[
εψt−1

(1− ρψL)
,

εψt
(1− ρψL)

]
=

[
(β−1 − 1)σ2

ψ

β−1 − ρψ

] ∞∑
i=1

ρ2i
ψ

=
(β−1 − 1)ρ2

ψσ
2
ψ

(β−1 − ρψ)(1− ρ2
ψ)

> 0 (25)

It is obvious that the covariance is always positive, which implies that the simultaneity

bias is always positive, i.e. plimγ̂OLS > γ. The OLS estimator of γ is inconsistent.

Even though γ = 0 by assumption, asymptotically, γ̂OLS may be significantly large in

some cases so that the econometrician may mistakenly identify the underlying fiscal

policy as passive and the equilibrium as Ricardian. In small samples, this also has

negative effect on the econometrician’s inference, which will be illustrated in the Monte

Carlo experiments.

To get more economic insight into the positive bias, let us suppose in period t− 1,

there is a surprise tax cut, i.e. εψt−1 < 0. Since ρψ 6= 0 in this case, a tax cut at period
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t− 1 projects lower path of future taxes τt+i, for i ≥ 0. In this endowment economy,

the surprise tax cut has no impact on the expected discount factor in (21). Therefore,

expected future surpluses on the right-hand side (RHS) of (21) get lower, which is

called the expected surplus effect. Besides that, lower expected path of future taxes

makes people feel wealthier, i.e. the wealth effect, which immediately raises demand

for goods. Since the supply of goods is equal to the constant endowment, higher

demand leads to higher inflation. However, because α = 0, nominal interest rate is

pegged and does not respond to higher inflation. So expected future inflation and

seigniorage revenues are not affected. In summary, the RHS of (21) gets lower due to

the expected surplus effect, which makes Bt−1/Pt−1 and b̃t−1 lower. Because ψ̃t is on

a lower path, it tends to be lower than before. As a result, b̃t−1 and ψ̃t are positively

correlated, which is consistent with the positive covariance in (25).

3.3 Case III (Non-Ricardian): γ = ρθ = 0, α 6= 0, ρψ 6= 0

In this case, we keep the assumptions of case II except that the monetary authority

starts to respond to inflation when setting the nominal interest rate. In general form,

condition (15) is

a21π̂t + b̂t + a23θ̂t + a24ψ̂t = 0 (26)

where aij is the ijth entry of P−1. Derivation of cov(b̃t−1, ψ̃t) and var(b̃t−1) is shown

in Appendix C.

From (53) in Appendix C, it is not obvious to determine the sign of the simultaneity

bias. Instead, we evaluate the bias numerically over a grid in the space of (α, ρψ),

where both parameters range from 0.01 to 0.99 with increments of 0.01. We normalize

the economy by setting y = 1. As assumed, γ and ρθ are both zero. We calibrate

the other parameters to match the U.S. data12. First, β and δ are calibrated as 0.99

and 0.001 so that the steady state nominal interest rate and normalized real money

12Since the model implies that output equals consumption, we use personal consumption ex-
penditures as output data, which is from NIPA Table 2.3.5. Data for the nominal interest
rate, the nominal monetary base and the inflation rate are from the Federal Reserve Bank
of St.Louis, which can be found at http://research.stlouisfed.org/fred2/. Data for the nom-
inal government debt is from the Federal Reserve Bank of Dallas, which can be found at
http://www.dallasfed.org/data/data/natdebt.htm.
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balance are 1.01 and 0.1, respectively. Second, γ0 is implicitly calibrated to match the

steady state normalized real government debt 0.8. Finally, at each grid point, σθ and

σψ are calibrated to match standard deviations of π̂ot and b̂ot , which are 0.007 and 0.3,

respectively. Here, π̂ot and b̂ot are percentage deviations of observed inflation and real

government debt from their corresponding long-run averages.

Figure 2 is the plot of the simultaneity bias over the grid, which is calculated based

on the analytical form. Conditional on the calibrated parameter values, the bias can

be either positive or negative, depending on α and ρψ. The bias function is continuous

at zero, which means that ρψ = 0 is only sufficient but not necessary for zero bias

in the non-Ricardian case. Obviously, with highly persistent fiscal policy shocks (e.g.

ρψ > 0.8) and relatively passive monetary policy (e.g. α < 0.5), the bias is mostly

positive and can be very huge. Sometimes, the bias even exceeds 1, the critical value

between active and passive fiscal policies in our model. In such cases, even though

γ = 0 by assumption, the econometrician may mistakenly identify the underlying fiscal

policy as passive and the equilibrium as Ricardian, which is similar to case II. On the

other hand, by keeping ρψ at high levels and increasing α, the sign of the bias may be

reversed, which may also disturb the econometrician’s inference.

To get more economic intuition into the bias, let us again suppose in period t− 1,

there is a surprise tax cut, i.e. εψt−1 < 0. The tax cut at period t − 1 lowers the

expected future surpluses on the RHS of (21), which is the expected surplus effect.

Also, lower expected path of future taxes leads to higher inflation at t − 1 through

wealth effect. Since α 6= 0, generally α > 0, higher inflation leads to higher nominal

interest rate through the monetary policy rule. According to the Fisher equation,

higher interest rate raises expected inflation, which in turn raises expected seigniorage

revenues. We call this the expected seigniorage effect. Since the expected discount

factor is constant, the net effect of a tax cut on the RHS of (21) depends on the tradeoff

between the expected surplus effect and the expected seigniorage effect. Consequently,

the correlation between the tax cut and b̃t−1 is ambiguous. Loosely speaking, given

α, higher ρψ implies stronger expected surplus effect, which tends to induce positive

correlation; given ρψ, higher α implies stronger expected seigniorage effect, which

tends to induce negative correlation. As a result, the correlation between b̃t−1 and ψ̃t
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can be either positive or negative, which is displayed in Figure 2.

3.4 Case IV (Ricardian)

In this case, monetary policy is active and fiscal policy is passive. Condition (15)

reduces to

π̃t = − 1

α− ρθ
θ̃t (27)

From condition (16), we can solve for the unique ηt

ηt = − 1

α− ρθ
εθt (28)

Since the DGP is characterized by Ricardian equilibrium, the second row of system

(51), as shown in Appendix A, is a stable first-order difference equation, from which

we can solve for b̃t as a function of εθ and εψ. Eventually, Appendix C shows that

cov(b̃t−1, ψ̃t) = −
ρψσ

2
ψ

[1− (β−1 − γ(β−1 − 1))ρψ](1− ρ2
ψ)

(29)

which is always negative unless ρψ = 0. This indicates that serially correlated fiscal

policy shock is sufficient and necessary for negative simultaneity bias in the case of

Ricardian equilibrium. Hence, plimγ̂OLS < γ and OLS estimator of γ is inconsistent.

Asymptotically, γ̂OLS in some cases may be significantly smaller than γ so that the

econometrician may mistakenly identify the underlying fiscal policy as active and the

equilibrium as non-Ricardian. The effect of the negative bias on the econometrician’s

inference in small samples will be illustrated in the Monte Carlo experiments.

The economic interpretation underlying the case of Ricardian equilibrium is straight-

forward. We again suppose in period t− 1, there is a surprise tax cut, i.e. εψt−1 < 0.

From the solution of b̃t−1, it can be shown that a tax cut at t − 1 raises b̃t−1 im-

mediately. According to the tax rule, higher b̃t−1 raises lump-sum tax at t, which

neutralizes the effect of a tax cut to the point that inflation at t− 1 keeps unchanged.

This is the standard result of Ricardian equivalence. On the other hand, a tax cut at

t− 1 reduces ψ̃t−1 and tends to reduce ψ̃t, provided ρψ > 0. So b̃t−1 and ψ̃t tend to be

negatively correlated, which is consistent with the negative covariance (29).
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3.5 Summary

From the above four cases, it is clear that the simultaneity bias associated with OLS

regression on the fiscal policy rule prevails no matter what the underlying DGP is.

This could make identification of true fiscal policy behavior very difficult. With non-

Ricardian equilibrium in the DGP, on one hand, fiscal policy could be very active,

which implies that γ could be very small and the link between b̃t−1 and τ̃t through

the fiscal policy rule could be very weak. On the other hand, correlation between

b̃t−1 and τ̃t through the equilibrium condition (21) could be very strong. When the

econometrician runs OLS regression on the fiscal policy rule using equilibrium data, it

is very possible that γ̂OLS is significantly large. With Ricardian equilibrium in place,

both fiscal policy rule and (21) imply relatively strong correlation between b̃t−1 and

τ̃t. So γ̂OLS mixes the correlation information from both channels, which obscures the

true fiscal policy behavior.

4 GMM: Basic Setup

To overcome the pitfall of OLS regression on the fiscal policy rule, we apply the

Generalized Method of Moments (GMM)13 for estimation and inference.

As assumed earlier, innovation to the fiscal policy shock, εψt , is an i.i.d. random

variable with zero mean, which implies the following moment condition

E[εψt |It−1] = 0 (30)

where E[·|It−1] is the conditional expectation operator with information up to period

t− 1. Rearranging (12) using the lag operator, we get

(1− ρψL)ψ̃t = ψ0 + εψt (31)

Pre-multiplying (19) on both sides by (1− ρψL), we get

(1− ρψL)τ̃t = (1− ρψL)γ0 + γ(1− ρψL)b̃t−1 + ψ0 + εψt (32)

13Hamilton (1994) provides a nice description of the basic GMM procedure. Canova (2007) and
Ruge-Murcia (2007), among others, have more specific discussion of GMM in the context of estimating
DSGE models.
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where (31) has been applied. With (32), condition (30) can be written as

E[δ − τ̃t + ρψ τ̃t−1 + γb̃t−1 − γρψ b̃t−2|It−1] = 0 (33)

where δ ≡ (1− ρψ)γ0 + ψ0. Moment condition (33) basically says εψt is orthogonal to

the information set It−1. By choosing a set of instrumental variables from It−1, say zt,

we are able to set up a series of moment conditions, based on which GMM estimation

can be applied. More specifically, the set of population moment conditions looks like

E[(δ − τ̃t + ρψ τ̃t−1 + γb̃t−1 − γρψ b̃t−2)⊗ zt] = 0 (34)

where zt is the (r × 1) vector of instrumental variables and ⊗ denotes kronecker

product. Totally we have three parameters to estimate, i.e. Θ ≡ [γ, ρψ, δ]. Since

the moment conditions (34) are nonlinear in the parameters, the GMM specification

needs to be over-identified (r > 3) to pin down γ, which is the parameter to our central

interest.

To implement GMM estimation, we derive the following sample moments which

are analogous to (34)

m(Θ) =
1

T

T∑
t=3

(δ − τ̃t + ρψ τ̃t−1 + γb̃t−1 − γρψ b̃t−2)⊗ zt (35)

Then we solve for the following minimization problem

min
Θ

m(Θ)′W(Θ)m(Θ) (36)

where W(Θ) is the weighting matrix. The solution of (36) is the GMM estimator of

Θ, i.e. Θ̂GMM . The asymptotic properties of Θ̂GMM have been well developed, based

on which statistical inference on the fiscal policy behavior can be drawn.

5 Monte Carlo Experiments

In this section, we calibrate the model to the U.S. data and carry out a series of

Monte Carlo experiments to illustrate the distinct small-sample performance of OLS

and GMM in identifying fiscal policy behavior.
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In the experiment, we arbitrarily choose zt = [1, b̃t−1, τ̃t−1, b̃t−2, τ̃t−2]′ and carry

out two-step GMM. The weighting matrix in the first step is identity matrix and the

construction of the optimal weighting matrix in the second step follows Newey and

West (1987). The implementation is based on the GMM and optimization program

libraries in MATLAB written by Cliff14.

5.1 Simultaneity Bias: A Digression

First, in the region of [α, γ] space that is corresponding to the non-Ricardian equilib-

rium, we set up a grid where both parameters range from 0.01 to 0.99 with increments

of 0.01. Symmetrically, in the region that is corresponding to the Ricardian equilib-

rium, we set up a grid ranging from 1.01 to 1.99 with increments of 0.01. For both

regions, we calibrate [y, β, δ, γ0, σθ, σψ] in the same way as case III of section 3. We

choose moderate values for ρθ and ρψ, which are 0.75 and 0.9, respectively.

As a digression from the Monte Carlo experiments, we calculate the simultaneity

bias for both regions according to the formula derived in Appendix C, which provides

more insights into the Monte Carlo experiment results. The simultaneity bias is dis-

played in Figure 3 and 4. In Figure 3, which is for non-Ricardian region, it is noticeable

that the bias is positive when α is smaller than 0.3 and turns to negative as α gets

larger. Besides, the negative bias is nonlinear in α, which is indicated by the U-shaped

plane. This is because when α is very small, the expected surplus effect dominates the

expected seigniorage effect, which implies positive correlation between b̃t−1 and ψ̃t and

thus positive bias. In these cases, monetary policy is very passive and the nominal

interest rate is nearly pegged. So the volatility of expected inflation and seigniorage

is relatively small compared to the cases when α is large. From (21), we know that

the volatility of b̃t−1 should be relatively small, which makes the simultaneity bias

relatively large in magnitude. As α gets larger, the expected seigniorage effect starts

to dominate, which turns the correlation between b̃t−1 and ψ̃t to negative. However,

the expected seigniorage effect is not linear in α. In fact, there is an underlying Laf-

fer curve explaining the nonlinearity. As the economy gets to the downward-sloping

14The MATLAB code is located at http://mcliff.cob.vt.edu/ with documentation Cliff (2003).
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side of the Laffer curve, higher α induces weaker seigniorage effect, which makes the

expected surplus effect relatively stronger and drives the bias up back to zero after a

certain point. In figure 4, which is for Ricardian region, the bias is always negative

and turns out to be a downward-sloping plane in γ. This is because as γ gets larger,

taxes respond to government debt more strongly. This makes the expected seigniorage

less volatile because the wealth effect is weaker. Through (21), var(b̃t−1) gets smaller,

which makes the bias larger in magnitude.

5.2 Experiment 1

The first experiment is to explore the accuracy of the estimator of γ from both OLS

and GMM estimation. Specifically, for each combination of α and γ in each region,

we simulate 1000 independent data sets according to (17) and (18), each with 300

quarters. Based on each data set, the econometrician runs OLS regression on (19)

and then implements GMM procedure (36). With each estimator, the econometrician

tests the following hypotheses

H0 : γ = γ0 H1 : γ 6= γ0 (37)

where γ0 is the true value of γ at that grid point. The nominal size of the test is 5%.

Since the econometrician is always under the null hypothesis, we finally calculate the

empirical size at each grid point based on the 1000 repetitions.

Because of the computational cost, we define a more sparse grid for each region.

Specifically, in the non-Ricardian case, both parameters range from 0.1 to 0.9 with

increments of 0.1; in the Ricardian case, both parameters range from 1.1 to 1.9 with

increments of 0.1. The results are organized in Table 6 and 6, where Table 6 displays

the empirical size of both methods in the non-Ricardian region and Table 6 is for the

Ricardian region. In each table, rows are for γ and columns are for α. The empirical

size before “/” in each entry is based on OLS regression and that after “/” is based

on GMM.

In Table 6, it is obvious that OLS regression has severe size distortion over the

whole region, especially when either α or γ increases. Generally speaking, the size
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distortion of the OLS approach is due to the fact that the OLS estimator is inconsis-

tent, which results in the poor accuracy of γ̂OLS. In contrast, γ̂GMM is consistent and

the empirical size of GMM is around the nominal size over the whole region.

Table 6 shows the same pattern as in Table 6. One thing to note is that in Table

6, GMM has relatively high empirical size when γ gets closer to the boundary value.

With other experiments, we find that, when γ is relatively small, the empirical size of

GMM approaches to the nominal size as T increases. This happens maybe because in

small samples: (1) information is not enough to pin down the parameter accurately;

(2) the asymptotic standard error of γ̂GMM understates the true volatility of γ̂GMM ,

which induces poor statistical inference. Even so, we still get strong evidence that

GMM performs uniformly better than OLS regression in terms of accuracy of the

estimator.

5.3 Experiment 2

The second experiment is a scenario where the econometrician tries to identify fiscal

policy behavior with both OLS and GMM methods. The basic setup is the same as

in experiment 1 except that now the econometrician tests the following hypotheses

H0 : γ ≥ 1 H1 : γ < 1 (38)

where the null and the alternative hypotheses are corresponding to passive and active

fiscal policy, respectively. In the non-Ricardian region, the econometrician is under

the alternative and we calculate the empirical power. While in the Ricardian region,

the econometrician is under the null and we calculate the empirical size.

We use the same grid as in experiment 1. The results are organized in Table 6 and

6, where Table 6 displays the empirical power of both methods in the non-Ricardian

region and Table 6 displays the empirical size of both methods in the Ricardian region.

The empirical power/size before “/” in each entry is based on OLS regression and that

after “/” is based on GMM.

In Table 6, it is clear that OLS regression has low power as α gets small, e.g.

α < 0.3, which is because in these cases, γ̂OLS is biased up significantly. When α is

relatively small, the power of OLS regression gets even lower as γ gets larger. For
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instance, OLS regression has zero power when α < 0.2 and γ > 0.7. On the other

hand, OLS regression has power equal to 1 as α gets large, e.g. α > 0.5. This comes

from the fact that γ̂OLS is downward biased when α is at relatively high levels. This

pattern indicates that how monetary policy behaves has impact on the reliability of the

OLS-based identification results, which is an important implication on the empirical

work that applies OLS regression on the identification of fiscal policy behavior. If

monetary policy is very passive, such as interest rate pegging (α ≈ 0), OLS regression

has a very hard time to recover an active fiscal policy. So a world consistent with

the fiscal theory of price level is difficult to be identified in practice. Considering the

literature trying to identify fiscal policy behavior or testing fiscal sustainability using

OLS regression, such as Bohn (1998), most papers get results favoring passive fiscal

policy. By connecting with our analysis, it might be the case that the fiscal policy in

place is actually active, which is just not identifiable by OLS approach. For GMM,

there is an overall power improvement compared to OLS regression. Since γ̂GMM is

consistent, there is no abnormal pattern in its power performance. Generally speaking,

GMM has uniformly high power when γ is small, which is useful to identify a world

of the fiscal theory of price level. The power of GMM decreases as γ gets closer to the

boundary value, which is a small-sample problem. According to some complementary

experiments, this could be remedied to some extent with larger sample size.

In Table 6, the size performance of OLS and GMM is in sharp contrast. Since γ̂OLS

is inconsistent, OLS regression has size distortion, especially when γ is relatively small.

In these cases, γ̂OLS is biased downwards. Because the asymptotic standard error is

also biased downwards in small samples, passive fiscal policy near the boundary is

hard to be identified by OLS regression. For GMM, the empirical size is zero for most

cases except for the experiments near the boundary, where the empirical size is slightly

greater than zero but smaller than the nominal size.

Overall, GMM outperforms the OLS regression over the whole parameter space in

terms of size and power. Therefore, we expect more reliable identification results from

GMM.
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6 Conclusion

If fiscal policy is specified as a single-equation rule, in which primary surplus is de-

fined as a function of lagged government debt and other controlled variables, how can

we identify fiscal authority’s behavior in a reliable way? We focus our interest on

the coefficient of lagged government debt and try to find the answer by starting from

OLS regression on the fiscal policy rule, one of the common approaches applied in

the current literature. From the rational expectations general equilibrium perspec-

tive, we illustrates that lagged government debt is generally endogenous and the OLS

approach is invalid because of the simultaneity bias. Consequently, the OLS-based

identification of fiscal policy behavior is unreliable. To correct for the simultaneity

bias associated with the OLS approach, we find a series of moment conditions from

the model and propose GMM estimation, which provides consistent estimator and

reliable inference. Monte Carlo experiments compare OLS with GMM in terms of ac-

curacy of the estimator, size and power, which turn out to support our proposal. As a

general suggestion, people should be cautious of the existing OLS-based identification

results of fiscal policy behavior and the empirical researchers should not consider OLS

regression as a reliable tool when trying to identify fiscal policy behavior in the future.

The main purpose of this paper is to illustrate the existing methodological problem

in a clear way and try to connect the econometric failure with macroeconomic theory

more closely, which is best done in a specific model environment. Even though the

results are based on the model setup and calibrated parameter values, the simultaneity

bias problem examined here is general and robust to model specification and parameter

values. As long as a fiscal policy rule, a basic component of the underlying general

equilibrium structure, is specified and estimated by OLS regression, the results tend

to be misleading.

In the future work, there are several issues we need to address. First, we want to

see if the GMM-based identification is robust to the potential misspecification in the

functional form of the fiscal policy rule. Second, we also want to see if the GMM-based

identification is robust to the potential misspecification in the policy shock process.

Third, we need to formally study the choice of instrumental variables, while in this
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paper we choose them in an arbitrary manner. As is well known, this matters for the

parameter identification. Fourth, we would like to see if the bootstrap method is able

to correct for the small-sample bias in the GMM standard error and provide better

inference.
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Appendix A: Solution of the Model

To solve the model, we first log-linearize (7) and (9) as

R̂t = Etπ̂t+1 (39)

R̂t = απ̂t + θ̂t (40)

To get (39), we have imposed steady state condition R = β−1. For simplicity, we

assume π = 1. Combining (39) and (40), we get

Etπ̂t+1 = απ̂t + θ̂t (41)

We then define the one-period-ahead endogenous forecasting error ηt+1≡π̂t+1−Etπ̂t+1

and express (41) as

π̂t+1 = απ̂t + θ̂t + ηt+1 (42)

Next, we log-linearize (5), (8) and (10) as

mm̂t + bb̂t + τ τ̂t = mm̂t−1 −mπ̂t +RbR̂t−1 +Rbb̂t−1 −Rbπ̂t (43)

m(R− 1)m̂t = R(δc−m)R̂t (44)

τ̂t = γb̂t−1 + ψ̂t (45)

where relevant steady state conditions have been imposed. Combining (40), (43)-(45)

and rearranging terms, we get

ϕ1π̂t + b̂t + ϕ2π̂t−1 −
[
β−1 − γ(β−1 − 1)

]
b̂t−1 + ϕ3θ̂t + (β−1 − 1)ψ̂t + ϕ4θ̂t−1 = 0 (46)

where

ϕ1 ≡
m

b
(αχ+ 1) + β−1

ϕ2 ≡ −α
[m
b
χ+ β−1

]
ϕ3 ≡

m

b
χ

ϕ4 ≡ −
[m
b
χ+ β−1

]
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and χ ≡ 1/(1−R) is the interest elasticity of money demand. It is straightforward to

log-linearize (11) and (12) as

θ̂t = ρθθ̂t−1 + εθt (47)

ψ̂t = ρψψ̂t−1 + εψt (48)

After substituting (47) and (48) into (46), we get

ϕ1π̂t+1+b̂t+1 = −ϕ2π̂t+
[
β−1 − γ(β−1 − 1)

]
b̂t−(ϕ3ρθ+ϕ4)θ̂t−(β−1−1)ρψψ̂t−ϕ3εθt+1−(β−1−1)εψt+1

(49)

So far, (42), (47)-(49) form a self-contained system governing the dynamics of π̂t,

b̂t, θ̂t and ψ̂t. We organize the linearized system in the following matrix form

Γ0Yt+1 = Γ1Yt + Πηt+1 + Ψεt+1 (50)

where Yt+1 =
[
π̂t+1, b̂t+1, θ̂t+1, ψ̂t+1

]′
, εt+1 =

[
εθt+1 , εψt+1

]′
and

Γ0 =


1 0 0 0
ϕ1 1 0 0
0 0 1 0
0 0 0 1

 , Π =


1
0
0
0

 , Ψ =


0 0
−ϕ3 −(β−1 − 1)

1 0
0 1



Γ1 =


α 0 1 0
−ϕ2 β−1 − γ(β−1 − 1) −(ϕ3ρθ + ϕ4) −(β−1 − 1)ρψ

0 0 ρθ 0
0 0 0 ρψ


Since Γ0 is invertible, (50) can be expressed as

Yt+1 = Γ∗1Yt + Π∗ηt+1 + Ψ∗εt+1

where Γ∗1 = Γ−1
0 Γ1, Π∗ = Γ−1

0 Π and Ψ∗ = Γ−1
0 Ψ. Applying a Jordan decomposition on

Γ∗1, the above equation becomes:

Yt+1 = PΛP−1Yt + Π∗ηt+1 + Ψ∗εt+1

=⇒ P−1Yt+1 = ΛP−1Yt + P−1Π∗ηt+1 + P−1Ψ∗εt+1 (51)
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where Λ is a diagonal matrix with eigenvalues of Γ∗1 on the main diagonal, which is in

the following form

Λ =


α 0 0 0
0 β−1 − γ(β−1 − 1) 0 0
0 0 ρθ 0
0 0 0 ρψ


P is a matrix, each column of which is the eigenvector of Γ∗1 and is corresponding to

the eigenvalue in Λ. Since there are no repeated eigenvalues, P has full column rank

and P−1 can be shown as

P−1 =


αϕ1+ϕ2

β−1−γ(β−1−1)−α 0 αϕ1+ϕ2

[β−1−γ(β−1−1)−α](α−ρθ)
0

− αϕ1+ϕ2

β−1−γ(β−1−1)−α 1 P−1
2,3 − (β−1−1)ρψ

β−1−γ(β−1−1)−ρψ
0 0 1 0
0 0 0 1


where P−1

2,3 = − ϕ1[β−1−γ(β−1−1)]+ϕ2

[β−1−γ(β−1−1)−α][β−1−γ(β−1−1)−ρθ]
− ϕ3ρθ+ϕ4

β−1−γ(β−1−1)−ρθ
. If the bounded equi-

librium is determinate, the following conditions suppress the unstable root of the

dynamic system and must hold for all t:

P i·Yt = 0

P i·Π∗ηt+1 + P i·Ψ∗εt+1 = 0

where P i· is the ith row of P−1 and i is the index denoting the unstable eigenvalue in

Λ.

Appendix B: Derivation of (20)

For readers’ convenience, let us rewrite (19) as below.

τ̃t = γ0 + γb̃t−1 + ψ̃t

Stacking all observations in vectors, we get

τ̃ = 1γ0 + γb̃−1 + ψ̃

= X̃Γ + ψ̃ (52)
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where τ̃ = [τ̃2, . . . , τ̃T ]′, b̃−1 = [b̃1, . . . , b̃T−1]′, ψ̃ = [ψ̃2, . . . , ψ̃T ]′, X̃ = [1, b̃−1], Γ =

[γ0, γ]′ and 1 is a ((T − 1)× 1) vector consisting of 1’s. The OLS estimator of Γ based

on (52) is

Γ̂OLS =

[
γ̂0OLS

γ̂OLS

]
= (X̃ ′X̃)−1(X̃ ′τ̃) = Γ + (X̃ ′X̃)−1(X̃ ′ψ̃)

=

[
γ0

γ

]
+

[
1′1 1′b̃−1

b̃′−11 b̃′−1b̃−1

]−1 [
1′ψ̃

b̃′−1ψ̃

]

=

[
γ0

γ

]
+

1

(T − 1)
T∑
t=2

b̃2
t−1 − (

T∑
t=2

b̃t−1)2


T∑
t=2

b̃2
t−1

T∑
t=2

ψ̃t −
T∑
t=2

b̃t−1

T∑
t=2

(b̃t−1ψ̃t)

(T − 1)
T∑
t=2

(b̃t−1ψ̃t)−
T∑
t=2

b̃t−1

T∑
t=2

ψ̃t


Therefore, the probability limit of γ̂OLS is

plimγ̂OLS = γ + plim

(T − 1)
T∑
t=2

(b̃t−1ψ̃t)−
T∑
t=2

b̃t−1

T∑
t=2

ψ̃t

(T − 1)
T∑
t=2

b̃2
t−1 − (

T∑
t=2

b̃t−1)2

= γ +
E(b̃t−1ψ̃t)− E(b̃t−1)E(ψ̃t)

E(b̃2
t−1)− (E(b̃t−1))2

= γ +
cov(b̃t−1, ψ̃t)

var(b̃t−1)

where E(·) is the expectation operator.

Appendix C: Derivation of Simultaneity Bias

• Case III (Non-Ricardian): γ = ρθ = 0, α 6= 0, ρψ 6= 0

Since a21 6= 0 in (26), we substitute (26) into (46) and get(
ϕ1

a21

− 1

)
︸ ︷︷ ︸

A1

b̂t +

[
ϕ2

a21

+ β−1 − γ(β−1 − 1)

]
︸ ︷︷ ︸

A2

b̂t−1 =

(
ϕ3 −

ϕ1a23

a21

)
︸ ︷︷ ︸

A3

θ̂t +

(
β−1 − 1− ϕ1a24

a21

)
︸ ︷︷ ︸

A4

ψ̂t +

(
ϕ4 −

ϕ2a23

a21

)
︸ ︷︷ ︸

A5

θ̂t−1 +

(
−ϕ2a24

a21

)
︸ ︷︷ ︸

A6

ψ̂t−1
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Since A1 6= 0, we have

b̃t = ln(b) +
A3 + A5L

(A1 + A2L)(1− ρθL)
εθt +

A4 + A6L

(A1 + A2L)(1− ρψL)
εψt

= ln(b) +
A3

A1
+ A5

A1
L

(1 + A2

A1
L)(1− ρθL)

εθt +
A4

A1
+ A6

A1
L

(1 + A2

A1
L)(1− ρψL)

εψt

= ln(b) +
C3 + C5L

(1 + C2L)(1− ρθL)︸ ︷︷ ︸
B1

εθt +
C4 + C6L

(1 + C2L)(1− ρψL)︸ ︷︷ ︸
B2

εψt

where Ci = Ai/A1, for i = 2, 3, 4, 5, 6.

It can be shown that

B1 =
m1

1 + C2L
− n1

1− ρθL
and B2 =

m2

1 + C2L
− n2

1− ρψL

where

m1 =
C2C3 − C5

ρθ + C2

, m2 =
C2C4 − C6

ρψ + C2

, n1 = −C3ρθ + C5

ρθ + C2

, n2 = −C4ρψ + C6

ρψ + C2

So we have

b̃t−1 = ln(b) +B1εθt−1 +B2εψt−1

= ln(b) + (m1 − n1)εθt−1 − (m1C2 + n1ρθ)εθt−2 + (m1C
2
2 − n1ρ

2
θ)εθt−3 − · · ·

+(m2 − n2)εψt−1 − (m2C2 + n2ρψ)εψt−2 + (m2C
2
2 − n2ρ

2
ψ)εψt−3 − · · ·

Since

ψ̃t =
εψt

1− ρψL
= εψt + ρψεψt−1 + ρ2

ψεψt−2 + · · ·

We can show that

cov(b̃t−1, ψ̃t) = (m2 − n2)ρψσ
2
ψ − (m2C2 + n2ρψ)ρ2

ψσ
2
ψ + (m2C

2
2 − n2ρ

2
ψ)ρ3

ψσ
2
ψ − · · ·

= [(m2ρψ −m2C2ρ
2
ψ +m2C

2
2ρ

3
ψ − · · · )− (n2ρψ + n2ρ

3
ψ + n2ρ

5
ψ + · · · )]σ2

ψ

=

(
m2ρψ

1 + C2ρψ
− n2ρψ

1− ρ2
ψ

)
σ2
ψ (53)
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where the last equality holds because in non-Ricardian equilibrium, C2 = −αβ >
−1 and |C2ρψ| < 1.

Finally, we can show that

var(b̃t−1) = cov(b̃t−1, b̃t−1)

= [(m1 − n1)2 + (m1C2 + n1ρθ)
2 + (m1C

2
2 − n1ρ

2
θ)

2 + · · · ]σ2
θ

+[(m2 − n2)2 + (m2C2 + n2ρψ)2 + (m2C
2
2 − n2ρ

2
ψ)2 + · · · ]σ2

ψ

=
m2

1σ
2
θ +m2

2σ
2
ψ

1− C2
2

+
n2

1σ
2
θ

1− ρ2
θ

+
n2

2σ
2
ψ

1− ρ2
ψ

− 2m1n1σ
2
θ

1 + C2ρθ
−

2m2n2σ
2
ψ

1 + C2ρψ

(54)

• Case IV (Ricardian):

Recall (27) and (28),

π̃t = − 1

α− ρθ
θ̃t

ηt = − 1

α− ρθ
εθt

Let us define g ≡ −1/(α− ρθ) and λ = β−1− γ(β−1− 1). Since the equilibrium

is Ricardian, the second row of system (51) is a stable first-order difference

equation, from which we can solve for b̃t as a function of εθ and εψ:

b̃t = ln(b) +
D3 +D5L

(D1 +D2L)(1− ρθL)
εθt +

D4 +D6L

(D1 +D2L)(1− ρψL)
εψt

+
D7

D1 +D2L
εθt +

D8

D1 +D2L
εψt

28



where

D1 = 1

D2 = −λ

D3 = −(a21g + a23)

D4 = −a24

D5 = λ(a21g + a23)

D6 = λa24

D7 =

(
−ϕ1α + ϕ2

λ− α
− ϕ1

)
g − ϕ3 + a23

D8 = −(β−1 − 1)− (β−1 − 1)ρψ
λ− ρψ

It can be shown that

D3 +D5L

(D1 +D2L)(1− ρθL)
=

m1

1− λL
− n1

1− ρθL
= m1 + λm1L+ λ2m1L

2 + · · ·

−n1 − ρθn1L− ρ2
θn1L

2 − · · ·
D4 +D6L

(D1 +D2L)(1− ρψL)
=

m2

1− λL
− n2

1− ρψL
= m2 + λm2L+ λ2m2L

2 + · · ·

−n2 − ρψn2L− ρ2
ψn2L

2 − · · ·

where

m1 =
D5 + λD3

λ− ρθ
, m2 =

D6 + λD4

λ− ρψ
, n1 =

D5 + ρθD3

λ− ρθ
, n2 =

D6 + ρψD4

λ− ρψ

Besides,

D7

D1 +D2L
= D7 + λD7L+ λ2D7L

2 + · · ·

D8

D1 +D2L
= D8 + λD8L+ λ2D8L

2 + · · ·

29



With some algebra, we can show

cov(b̃t−1, ψ̃t) = −
ρψσ

2
ψ

[1− λρψ](1− ρ2
ψ)

< 0

var(b̃t−1) =

[
(m1 +D7)2

1− λ2
+

n2
1

1− ρ2
θ

− 2n1(m1 +D7)

1− λρθ

]
σ2
θ

+

[
(m2 +D8)2

1− λ2
+

n2
2

1− ρ2
ψ

− 2n2(m2 +D8)

1− λρψ

]
σ2
ψ

Obviously, the simultaneity bias in the case of Ricardian equilibrium is always

negative unless ρψ = 0.
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Figure 1: First Quadrant of (α, γ) Space

Figure 2: Simultaneity Bias in the Numerical Example (Case III)
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Figure 3: Simultaneity Bias (Non-Ricardian)

Figure 4: Simultaneity Bias (Ricardian)
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