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1 Introduction

Since Kydland and Prescott (1977) and Barro and Gordon (1983) it is widely
accepted that managing private expectations is one of the most important tasks
of central banks. This have had an enormous impact on the practice of central
banking. Yet, there still seems to be a divide between theory and practice. Most
theoretical models suggest that monetary policy has an immediate impact on pri-
vate expectations, while empirical research, analyzing actual central bank practice
suggests that this impact is sluggish.1

This paper explores the consequences of sluggish private expectations on the
design of optimal monetary policy. We use a standard monetary model which
features a trade-off between inflation and output gap stabilization. It is well known
that when the private sector has rational expectations (RE), a credible central
bank can decrease the inflation expectations of agents by committing to a series of
economic contractions; the equilibrium induced by commitment and RE (RECE)
leads to significant welfare gains compared to the RE discretionary equilibrium
(REDE).2 Our main question is to examine whether the the allocations of the
RECE remain optimal even if private expectations slightly deviate from rationality.

We assume agents’ expectations deviate from full rationality but we keep the
assumption that the bank is able to decrease inflation expectations by engineering
output contractions. The main difference with respect to rational agents is that
our agents are continuously learning about how output contractions affect infla-
tion. Therefore the central bank can “train” agents to understand how economic
contractions lead to lower inflation by engineering a series of equilibrium alloca-
tions consistent with the RECE. In other words, when agents are rational, the
central bank can impact expectations through promises, while in our framework
the central bank can only impact expectations by consistency of actions.

Evans and Honkapohja (2006) and Evans and Honkapohja (2003) have shown
that when private agents are learning about equilibrium allocations, both RECE
and REDE are attainable. Our paper extends their research by posing a normative
question, and asking which equilibrium is desirable under learning. We assume
private agents can learn the allocations of both RECE and REDE, it is up to the
benevolent central bank to decide which equilibrium to choose.

We show that the welfare ordering of equilibria is different under RE and
learning. Under learning, optimal monetary policy drives the economy far from
the RE commitment equilibrium, and to the RE discretionary equilibrium. This
holds true even if initial beliefs are consistent with RECE.

The intuition behind this surprising result comes from the sluggish nature

1See for example Haldane and Read (2000) and Thornton (2003).
2See Gali (2003), Woodford (2003).
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of inflation expectations. Substituting RE with learning does not influence the
stabilization bias: in the long run, being in the RECE the central bank is able to
counteract an adverse supply shock with a smaller welfare loss than being in the
REDE. However in the short run the central bank can gain a substantial welfare
increase by exploiting the sluggish nature of private expectations. Compared to
optimal policies derived assuming RE, optimal policy under learning engineers
much bigger output contractions, and this in turn will generate a bigger decrease in
inflation expectations and inflation. This short term gain of being able to decrease
inflation more gives such a big welfare gain, that it compensates for the long run
losses. This mechanism is similar to the old literature on adaptive expectations,
but an important difference is that learning agents cannot be fooled forever. As
the central banks deviates from the optimal RECE allocations, so will private
agents’ beliefs. In the long run expectations converge to the REDE allocations
and the central bank looses its ability to impact inflation expectations through
output contractions.

We follow the methodology of Gaspar, Smets, and Vestin (2006) and Molnar
and Santoro (2010), and determine optimal policy assuming the central bank knows
and makes active use of the exact form of private expectations. The central bank,
in other words, takes into account the effect of its policy choices on the expectation
formation process, and exploits it.

Note, that since agents form beliefs by running regressions on past data, the
central bank does not have a time inconsistency problem: current (and past) policy
determines future expectations. In other words, when the central bank internal-
izes the learning process of the agents, the optimal allocation is a Markov perfect
equilibrium. Such an equilibrium cannot be consistent with asymptotic conver-
gence to RECE, since the latter is not a Markov equilibrium. The optimal path is
Markov perfect, and it converges to the unique Markov perfect RE equilibrium in
this economy, the REDE.

The early literature often motivated learning of private agents as a device for
selecting among multiple equilibria: if agents’ expectations are perturbed out of an
equilibrium, are they able to converge back, or learn another one? In these papers
equilibrium stability depends on the stability of the learning algorithm, the so
called E-stability (see Marcet and Sargent (1989), Evans and Honkapohja (2001)).
Our paper extends this literature by examining equilibrium selection when learners
interact with an optimizing rational agent. The resulting equilibrium does not only
depend on the stability properties of the learners, but also on the incentives of the
rational agents.

A subtle, but important difference between learning agents and rational agents
is that the latter understand off-equilibrium strategies, while learning agents can-
not. As Chari and Kehoe (1990) and Kurozumi (2008) show, if the central bank
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(CB) is patient enough the RECE is a sustainable equilibrium even if there is no
commitment device, but the CB takes into account certain incentive compatibility
constraints that constitute an off-equilibrium threat of private agents. Would the
bank deviate, so would private agents, and this makes deviation suboptimal. In
our setup, contrary to Chari and Kehoe (1990) and Kurozumi (2008) the game is
not between two rational players, but a rational and a learning agent. The learn-
ing agent cannot posit credible threats, and can only change their actual behavior
sluggishly. As a result the bank remains with a strong incentive to deviate from
RECE, because of its time inconsistent nature.

Our research is most closely related to Sargent (1999), chapter 5, in which
a rational CB exploits the (mechanical) forecasting rule of the agents in a model
with natural rate of unemployment (the so called Phelps problem). Sargent (1999)
shows that a patient enough CB can asymptotically replicate the commitment so-
lution under RE. Also Molnar and Santoro (2010) and Gaspar, Smets, and Vestin
(2006) show that there are some qualitative similarities between the learning solu-
tion and the commitment solution under RE. However, they cannot make a formal
argument like Sargent (1999). The reason for this is that in the Phelps problem
considered in Sargent (1999) the equilibrium under discretion and commitment
have the same functional form, while in Molnar and Santoro (2010) and Gaspar,
Smets, and Vestin (2006) this is not true. In Sargent (1999) the discretionary and
the commitment solution under RE are a constant. Hence, agents are learning the
value of a constant, and they have the “possibility” to learn either discretion or
commitment equilibria. In the New Keynesian model, used by Molnar and Santoro
(2010) and Gaspar, Smets, and Vestin (2006), discretion and commitment solu-
tion under RE have different functional forms. Since they assume that the agents’
beliefs about policy have the functional form of the RE solution under discretion,
they cannot replicate the experiment carried out by Sargent: the commitment so-
lution has a very different form. In this paper we make a step further, and posit
that agents are learning in a form that is consistent with both RECE and REDE.
Therefore, by choosing the optimal policy, the central bank can drive the economy
either in one or the other.

One implication of our result is that RECE might not be optimal in the long
run. Other researchers questioned the importance of the commitment equilibrium
on different grounds. Levin, Wieland, and Williams (1999) show that commitment
policies can perform very poorly if the central bank’s reference model is badly
misspecified. Orphanides and Williams (2008) shows similar results when the
central bank has misspecified belief about private expectations.
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2 The Model

We consider the baseline version of the New Keynesian model; in this framework,
the economy is characterized by two structural equations.3 The first one is an IS
equation:

xt = E∗
t xt+1 − σ−1(rt −E∗

t πt+1), (1)

where xt, rt and πt denote the time t output gap (i.e. the difference between
actual and natural output), the short-term nominal interest rate and inflation,
respectively; σ is a parameter of the household’s utility function, representing risk
aversion. Note that the operator E∗

t represents the private agents’ conditional
expectation, which is not necessarily rational. The above equation is derived
by loglinearizing the household’s Euler equation and imposing the equilibrium
condition that consumption equals output.

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + κxt + ut, (2)

where β denotes the subjective discount rate, κ is a function of structural parame-
ters, and ut ∼ N(0, σ2

u) is a white noise cost-push shock4; this relation is obtained
from optimal pricing decisions of monopolistically competitive firms whose prices
are staggered à la Calvo (1983).5

The loss function of the CB is given by:

E0(1− β)
∞∑

t=0

βt
(
π2
t + αx2

t

)
, (3)

where α is the relative weight put by the CB on the objective of output gap
stabilization.6

3For details of the derivation of the structural equations of the New Keynesian model see,
among others, Yun (1996), Clarida, Gali, and Gertler (1999) and Woodford (2003).

4Note that the cost-push shock is usually assumed to be an AR(1) process, however we instead
assume it to be iid to make the problem more tractable. This assumption is also supported by
Milani (2006), who shows that learning can endogenously generate persistence in inflation data,
and assuming a strongly autocorrelated cost-push shock becomes redundant.

5In other words, the probability that a firm in period t can reset the price is constant over
time and across firms.

6As is shown in Rotemberg and Woodford (1997), equation (3) can be obtained as a quadratic
approximation to the expected household’s utility function; in this case, α is a function of
structural parameters.
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2.1 Commitment and discretion solution under RE

Assume that the private sector has RE, and that the CB can credibly commit to a
future course of action. The policy problem is to minimize the social welfare loss
(3), subject to the structural equations (1) and (2), where E∗

t is replaced by Et:

min
{πt,xt,rt}

∞

t=0

E0

∞∑

t=0

βt
(
π2
t + αx2

t

)
(4)

s.t.(1), (2)

As shown, among others, in Clarida, Gali, and Gertler (1999), the optimality
conditions of this problem are:

π0 = −
α

κ
x0 (5)

πt = −
α

κ
xt +

α

κ
xt−1, t ≥ 1 (6)

Hence, the optimality condition at time 0 is different from that holding at t ≥ 1.
The term in xt−1 that appears when t ≥ 1 represents the past promises that the
CB committed to realize at time t; hence, is absent for t = 0, when there are
no promises to be kept. A policy characterized by the equations (5)-(6) is prone
to time inconsistency: if the policymaker could reoptimize at a date T > 0, the
optimality condition at T would be different from that implied by (6). To overcome
this problem, Woodford (2003) proposed to adopt the optimal policy (5)-(6) from
a “timeless perspective”, namely from such a long distance from the moment in
which the optimization is carried out that we can apply (6) as the only relevant
optimality condition.

Combining (6) with the NKPC (2), Clarida, Gali, and Gertler (1999) shows
that output gap and inflation evolve according to the following law of motion:

xt = bxxt−1 + cxut (7)

πt = bπxt−1 + cπut (8)

where the coefficients are given by:

bx =
κ2 + α(1 + β)−

√
(κ2 + α(1 + β))2 − 4α2β

2αβ
(9)

bπ =
α

κ
(1− bx) (10)

cx = −
κbx

α
(11)

cπ = −
α

κ
cx (12)
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Now assume the central bank cannot commit to future policy, and therefore it
acts discretionarily when a shock hits the economy. In this case, the monetary
authority solves the problem 4 by taking future expected policy as given. Clarida,
Gali, and Gertler (1999) shows that the optimal allocation obeys the following
equation

πt = −
α

κ
xt (13)

Using the NKPC (2), it is easy to show that output gap and inflation are charac-
terized by

xt = −
κ

α + κ2
ut (14)

πt =
α

α + κ2
ut (15)

2.2 Learning specification

In the rest of the paper, we dispose of the assumption that the private sector
has RE. Following Molnar and Santoro (2010), we posit that the central bank is
fully rational. However, we assume that private agents are adaptive learners. In
particular, they know the structure of the economy, but they do not know the
parameters’ values. Hence, they estimate them by observing past and current
allocations.7

Agents do not know the exact process followed by the endogenous variables,
but recursively estimate a Perceived Law of Motion (PLM) consistent with the
law of motion that the central bank would implement under RE and commitment
(7)-(8). Hence, the PLM is:

πt = bπxt−1 + cπut (16)

xt = bxxt−1 + cxut, (17)

Under least squares learning, agents estimate equations (16)-(17) and use the es-
timates

(
bπt−1, b

x
t−1

)
to make forecasts:

E∗
t πt+1 = bπt−1xt (18)

E∗
t xt+1 = bxt−1xt (19)

We can interpret this assumption as agents understanding that the central bank
is committed, but not knowing the exact quantitative impact of central bank’s
actions on equilibrium allocations.

7The modern literature on adaptive learning was initiated by Marcet and Sargent (1989), who
were the first to apply stochastic approximation techniques to study the convergence of learning
algorithms. For an extensive monograph on this paradigm, see Evans and Honkapohja (2001).
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In the above equations we are assuming that xt is part of the time t informa-
tion set of the agents. This introduces a simultaneity problem between E∗

t yt+1 and
yt that complicates the analysis of asymptotic convergence of the beliefs. In the
learning literature this simultaneity problem is often solved by adopting a differ-
ent timing convention, such that realized values of the endogenous variables y are
included in the time t information set only up to time t−1. However, this alterna-
tive information assumption would increase the dimension of the state space: the
forecasts of πt+1 and xt+1 would become:

E∗
t πt+1 = bπt−1

(
bxt−1xt−1 + cxt−1ut

)
(20)

E∗
t xt+1 = bxt−1

(
bxt−1xt−1 + cxt−1ut

)
. (21)

Since expectations depend also on the estimated values of the coefficients cπ and cx,
an optimizing CB should take into account their updating algorithms as well. This
way we would end up having two more state variables, with significant additional
complications in the numerical exercise.

We assume the coefficients are estimated with stochastic gradient learning (this
basically means that we abstract from the evolution of the estimated second mo-
ments of the regressors). The recursive formulation of the regression coefficients is
the following:

bπt = bπt−1 + γtxt−1

(
πt − xt−1b

π
t−1

)
(22)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
, (23)

We focus on two different learning algorithms. The first is decreasing gain learning,
where the gain parameter γt =

1
t
. In fact, this algorithm corresponds to the case in

which agents run least squares regressions on past data to estimate the parameters
of the PLM. The second algorithm is constant gain learning, where γt = γ ∈ (0, 1).

3 An heuristic presentation of the result

The problem of the central bank is to minimize the welfare loss function (3) subject
to the IS curve (1), the New Keynesian Phillips curve (2), and the learning up-
dating process (23)-(22). In the next section, we formally prove our main result:
under decreasing gain learning, the optimal policy drives the economy towards
REDE. However, in this section we present a non-technical, simplified analysis
that highlights the main effects at work. In particular, we disentangle three ef-
fects: an intratemporal stabilization trade-off, an intertemporal smoothing effect
and an intertemporal learning cost. In the next section, we show that the first
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order conditions for an optimum are

0 =− αxt −
[
(βbπt−1 + κ)xt + ut

]
(βbπt−1 + κ)− λ1,tγxt−1(βb

π
t−1 + κ)− (24)

− Et[λ1,t+1βγ((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)] (25)

0 =λ1,t − βEtλ1,t+1(1− γx2
t )− β2Et[((βb

π
t + κ)xt+1 + ut+1) xt+1]−

β2Et [λ1,t+1γxtxt+1] (26)

To gain intuition lets assume that learning is shut down: γ = 0 and agents have
initial beliefs different from the RECE coefficient bπt−1 &= bπ. As a result of γ = 0
agents keep their belief at bt−1 forever. The equations (25)-(26) yield:

xt = −
βbπt−1 + κ

α +
(
βbπt−1 + κ

)2ut (27)

Combining this with the Phillips curve, we obtain that

πt =
α

α +
(
βbπt−1 + κ

)2ut (28)

Comparing (28) to the inflation allocation under REDE (i.e. equation (15)) we
can see that the optimal policy under learning is very similar to the discretionary
policy. In fact, by setting bπt−1 = 0 we are back to the same policy under REDE,
and this isolates the classic intratemporal stabilization trade-off : the presence of a
cost push shock does not allow the central bank to set both zero inflation and zero
output gap. Hence when setting the optimal policy, the central bank must follow
a ”leaning against the wind” strategy: after a positive shock, it decreases current
output gap in order to avoid a huge increase in current inflation.

Assume now bπt−1 > 0 (the negative case is similar). There is a second effect
that the monetary authority must take into account, which we call the intertem-
poral smoothing effect. The interpretation is straightforward: when setting the
optimal policy, the central bank still follows a ”leaning against the wind” strategy
as in REDE. However, even if beliefs are fixed at bπt−1, inflation expectations are
not given: the central bank can influence them by choosing the output gap, since
Etπt+1 = bπt−1xt. Therefore, the benevolent monetary authority has to take into
account that the output gap today will determine the expected inflation tomorrow.
A lower expected inflation tomorrow allows the central bank to keep inflation low
today, therefore smoothing the effect of the shock between today’s and tomorrow’s
inflation. In order to do that, the reaction of output gap to the cost push shock
must be larger than under REDE. In particular, the larger is bπt−1, the stronger is
effect of a decrease in output gap on future inflation, and therefore the better the
central bank can smooth stabilization intertemporally. When inflation expecta-
tions decrease in response to an output contraction, bπt−1 > 0, the bank’s ability to
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intertemporally smooth out cost push shocks is reflected in a decreased volatility
of inflation: (28) yields lower volatility than (15).

Notice the similarity with RECE, where the central bank must commit to an
infinite sequence of future choices for output gap in order to smooth the cost of a
shock today. In RE, the NKPC can be solve forward to get

πt = βEtπt+1 + κxt + ut

= κ

∞∑

k=1

βkEt [xt+k] + κxt + ut

Therefore, when a positive shock hits, the optimal policy under RECE is to slightly
rise inflation in the current period while decreasing current output gap and com-
mitting to reduce output gap in the future. This commitment has a cost, which is
summarized in the past shadow value of the NKPC constraint, i.e. the Lagrange
multiplier associated with it. The benefit, however, is a better intertemporal allo-
cation of the fluctuations, and therefore higher welfare.

A difference to RECE is that in our framework without learning, this cost is
absent, since the optimal policy does not involve committing to future output gap
sequences: inflation expectations are anchored by the choice of current output gap
and the current beliefs (which are given).

In sum, intertemporal smoothing effect for bt−1 > 0 and γ = 0 follows from the
fact that inflation expectations react to output contractions in a similar fashion as
in the RECE and as a result optimal policy is able to smooth out intertemporally
the effect of cost push shocks in a similar fashion as optimal policy in the RECE.

Finally, there is a another intertemporal effect that is related to the learning
process. This is a cost that does not arise in the RECE, only under learning,
therefore we call this the intertemporal learning cost. Assume now learning is
back at work, i.e. γ &= 0. For the sake of intuition let bπt−1 > 0. Then agents
will respond to optimal policy by reducing the absolute value of their learning
coefficients. This constitutes a cost: a lower bπt−1 implies that is more difficult to
exploit the smoothing trade-off. To show this analytically, we can calculate the
expected value of the learning coefficients. For a small γ , by a continuity argument
we can use the policy function (27)-(28), and approximate the learning algorithm
as

bπt =bπt−1 + γxt−1

(
πt − xt−1b

π
t−1

)

'bπt−1 + γxt−1

(
α

α +
(
βbπt−1 + κ

)2ut − xt−1b
π
t−1

)

'bπt−1 + γxt−1
α

α +
(
βbπt−1 + κ

)2ut − γx2
t−1b

π
t−1.

10



Taking expectations of bt at time t we get:

Et−1 [b
π
t ] 'bπt−1 + γxt−1

α

α +
(
βbπt−1 + κ

)2Et (ut)− γx2
t−1b

π
t−1

'bπt−1

(
1− γx2

t−1

)
, (29)

hence Et−1 [bπt ] < bπt−1, i.e. bt behaves almost like a supermartingale when γ is
very small, and hence tends to get closer to zero.8 In other words, the learning
algorithm on average reduces bπt−1 and therefore increases the variance of inflation.
If we calculate the instantaneous welfare loss we obtain

Et−1

[
π2
t + αx2

t

]
= Et−1




(

α

α+
(
βbπt−1 + κ

)2ut

)2

+ α

(

−
βbπt−1 + κ

α +
(
βbπt−1 + κ

)2ut

)2




=
α

α+
(
βbπt−1 + κ

)2σ
2
u

The cost of learning is thus that it worsens the bank’s ability to smooth out the
effect of shocks across time : by having a lower bπt−1, the same output gap jump
produces a smaller effect on expected inflation and therefore the stabilization has
to rely more on increases in current inflation. This results in higher current welfare
losses. However, short term gains are larger.

3.1 Evans and Honkapohja (2006)’s policy

We can easily see why the optimal policy under learning is Pareto superior to the
one suggested in Evans and Honkapohja (2006), which drives the economy towards
RECE:

xt =
α

α + κ
(
βbπt−1 + κ

)xt−1 −
κ

α + κ
(
βbπt−1 + κ

)ut

and

πt =
α
(
βbπt−1 + κ

)

α+ κ
(
βbπt−1 + κ

)xt−1 +
α

α + κ
(
βbπt−1 + κ

)ut.

8The case with bπt−1 < 0 is symmetric and equation (29) implies that the coefficient becomes
less negative and closer to zero.
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Assume again that learning is shut down. Hence, we can calculate the expected
instantaneous welfare loss as

Et−1

[
π2
t + αx2

t

]
= Et−1




(

α
(
βbπt−1 + κ

)

α+ κ
(
βbπt−1 + κ

)xt−1 +
α

α + κ
(
βbπt−1 + κ

)ut

)2

+

α

(
α

α + κ
(
βbπt−1 + κ

)xt−1 −
κ

α + κ
(
βbπt−1 + κ

)ut

)2




=

(
α
(
βbπt−1 + κ

)

α+ κ
(
βbπt−1 + κ

)
)2

x2
t−1 +

(
α

α + κ
(
βbπt−1 + κ

)
)2

σ2
u +

α




(

α

α + κ
(
βbπt−1 + κ

)
)2

x2
t−1 +

(
κ

α + κ
(
βbπt−1 + κ

)
)2

σ2
u





=
α2

[(
βbπt−1 + κ

)2
+ α

]

[
α + κ

(
βbπt−1 + κ

)]2 x2
t−1 +

α [α + κ2]
[
α + κ

(
βbπt−1 + κ

)]2σ
2
u

Let us compare it with the optimal policy. Notice that EH policy has an extra
term that depends on the variability of output gap. Therefore, if the variability
directly induced by the cost push shock would be the same, the EH policy would
be more costly. We therefore look at the variability induced by cost push shocks
only. Let us denote the ratio of the coefficients as R

R ≡

α[α+κ2]
[α+κ(βbπt−1+κ)]

2

α

α+(βbπt−1+κ)
2

=
(
α + κ2

)
(
α +

(
βbπt−1 + κ

)2)

[
α + κ

(
βbπt−1 + κ

)]2

We can do some simple analysis. If bπt−1 = 0, then we have

R =
(
α + κ2

) (α + κ2)

[α + κ2]2
= 1

i.e. the two coefficients are the same in REDE. Therefore, when the economy
approaches the discretionary equilibrium, EH policy induces larger variability be-
cause of its dependence on output gap variance. What happens if the economy is
close to the commitment equilibrium? The derivative with respect to bπt−1 is

∂R

∂bπt−1

≡
2 (α + κ2)αβ2bπt−1[
α+ κ

(
βbπt−1 + κ

)]3
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which is always positive as long as bπt−1 is positive. Since the derivative of R is
positive, then the variability induced by the cost push shock will be higher for EH
policy. In fact we have

R =
(
α+ κ2

)
(
α+ (βbπCOM + κ)2

)

[α + κ (βbπCOM + κ)]2

Figure 1 shows that the ratio R is always larger than 1 for reasonable values of
the parameters. Therefore, the coefficient of the EH policy is always larger and
the EH policy induces higher volatility. Now let learning be back in the picture.

Figure 1: The ratio R under different combinations of κ and α

Learning however implies

bπt =bπt−1 + γxt−1

(
πt − xt−1b

π
t−1

)

=bπt−1 + γxt−1

(
α
(
βbπt−1 + κ

)

α+ κ
(
βbπt−1 + κ

)xt−1 +
α

α + κ
(
βbπt−1 + κ

)ut − xt−1b
π
t−1

)

=bπt−1 +
α
(
βbπt−1 + κ

)

α + κ
(
βbπt−1 + κ

)γx2
t−1 + γxt−1

α

α + κ
(
βbπt−1 + κ

)ut − γx2
t−1b

π
t−1

and taking expectations

Et−1 [b
π
t ] = bπt−1 + γx2

t−1

(
α
(
βbπt−1 + κ

)

α + κ
(
βbπt−1 + κ

) − bπt−1

)
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which implies that the expected coefficient is higher if

α
(
βbπt−1 + κ

)

α + κ
(
βbπt−1 + κ

) − bπt−1 > 0

or
bπt−1

(
α + κ

(
βbπt−1 + κ

))
− α

(
βbπt−1 + κ

)
< 0

Rearranging:
κβ

(
bπt−1

)2
+

(
α (1− β) + κ2

)
bπt−1 − ακ < 0

The roots are

b =
− (α (1− β) + κ2)±

√
(α (1− β) + κ2)2 + 4αβκ2

2κβ

or

b =
α

κ

(

1−
κ2 + α(1 + β)∓

√
(κ2 + α(1 + β))2 − 4α2β

2αβ

)

where the positive root is the coefficient for RECE. Therefore, the expected coef-
ficient will be higher if

bπt−1 ∈

[
α

κ

(

1−
κ2 + α(1 + β) +

√
(κ2 + α(1 + β))2 − 4α2β

2αβ

)

,

α

κ

(

1−
κ2 + α(1 + β)−

√
(κ2 + α(1 + β))2 − 4α2β

2αβ

)]

In other words, on average the learning process increases the volatility more than
under the optimal policy when we approach RECE. The EH policy brings the
economy towards the RECE. In doing so, it overstates the benefits of the long run
stabilization versus the short term gains, and incurs in additional costs coming
from the learning process. Therefore, it increases the volatility of the economy
and decreases welfare.

4 Decreasing gain learning

In this section, we study the economy under decreasing gain learning. Since the
dynamic problem is non-standard, we first show that it has a recursive formulation
where the state variables are the output gap, the parameters of the PLM, and the
gain parameter. We then show the main convergence result: under the optimal
policy, the REDE is stable under learning.

14



4.1 Recursivity

We start stating the control problem of the CB in the case of decreasing gain; we
write it as a maximization (instead of a minimization) problem, in order to refer
more directly to the dynamic programming results.

sup
{πt,xt,rt,bπt ,b

x
t
}∞
t=0

E0(1− β)
∞∑

t=0

βt

[
−
1

2

(
π2
t + αx2

t

)]

s.t.

xt =
−σ−1rt

1− bxt−1 − σ−1bπt−1

πt = (βbπt−1 + κ)xt + ut

bπt = bπt−1 + γtxt−1

(
πt − xt−1b

π
t−1

)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
,

x−1, b
π
−1, b

x
−1, γ0 given

Since the IS curve is never a binding constraint (the CB can always use to the
interest rate to satisfy it), and using the NKPC to substitute out π, the above
problem can be written in a simpler form:

sup
{xt,bπt ,b

x
t
}∞
t=0

E0(1− β)
∞∑

t=0

βt

{
−
1

2

[(
(βbπt−1 + κ)xt + ut

)2
+ αx2

t

]}
(30)

s.t.

bπt = bπt−1 + γtxt−1

(
(βbπt−1 + κ)xt + ut − xt−1b

π
t−1

)
(31)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
, (32)

x−1, b
π
−1, b

x
−1, γ0 given (33)

In any period t the state variables in the above problem are five: three endoge-
nous (xt−1, b

π
t−1, b

x
t−1) that take values in R3, one exogenous and stochastic (ut)

defined on some underlying probability space and that takes values in a measur-
able space (Z,Z), and one exogenous and deterministic (γt) that takes values in
a countable set G ⊂ [0, 1] and evolves following the recursion 1

γt
= 1

γt−1
+ 1. We

denote the state space S ≡ R3 ×Z ×G. The actions decided by the CB are three
(xt, b

π
t , b

x
t ); we denote this vector as a and the action space is R3. The feasibility

correspondence Γ : S → R3 is defined as follows:

for any s ∈ S, Γ (s) =
{
a ∈ R

3 : equations (31) and (32) hold
}

15



This optimization problem has some non-standard features: first of all, the
graph of the feasibility correspondence is not convex, which implies that usual
tools of concave programming cannot be used; moreover, Γ is not compact-valued.
Finally, the quadratic return function is unbounded below. For these reasons, in
the statement of the problem we used the sup operator instead of the max, since the
existence of a maximizing plan cannot be taken for granted. We aim at proving
that there exists an optimal time-invariant policy function that maximizes the
objective function in (30). To do so, the strategy we adopt is the following: first
of all, we write down a new maximization problem augmented by some arbitrary
constraints that guarantee that the feasibility correspondence is compact-valued,
and show that in this case there exists a time-invariant optimal policy function;
then, we argue that these arbitrary constraints can be made so big that they don’t
bind in an optimum, and that no optimum of the original problem can lie outside
these constraints. Hence, we conclude that the standard FOCs can be used to
characterize the optima of the original problem.

Note that we do not prove uniqueness of the optimal policy function, but it
is not essential: in the analytical part we show asymptotic results valid for any
optimal policy function, while in the numerical part we check that only one solution
of the FOCs can be found.

We now write the new optimization problem:

sup
{xt,bπt ,b

x
t
}∞
t=0

E0(1− β)
∞∑

t=0

βt

{
−
1

2

[(
(βbπt−1 + κ)xt + ut

)2
+ αx2

t

]}
(34)

s.t.

bπt = bπt−1 + γtxt−1

(
(βbπt−1 + κ)xt + ut − xt−1b

π
t−1

)
(35)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
, (36)

x (st) ≥ xt ≥ −x (st) , (37)

x−1, b
π
−1, b

x
−1, γ0 given (38)

where the function of the states x (st) is an arbitrary continuous function. Let’s
now fix some notation. The vector of the state variables at time t is st ≡
[xt−1, b

π
t−1, b

x
t−1, ut, γt]′, while the vector of choice variables at t is at ≡ [xt, b

π
t , b

x
t ]

′.
We denote with a superscript i the i-th element of a vector. Hence, the evolution
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of the state variables can be summarized as follows:

s1t+1 = a1t
s2t+1 = a2t
s3t+1 = a3t
s4t+1 = ξ

s5t+1 =
s5t

1 + s5t

where ξ is the realization of a random variable with the same distribution as u.
We can represent the above relations in a more compact way:

st+1 = Ψ (st, at, ξ) (39)

Note that the operator Ψ is trivially continuous.
The transition probability from the graph of the feasibility correspondence to

a Borel set D ⊂ S is defined as:

Q (D|s, a) =

∫

Z

1D (Ψ (s, a, ξ)) dP (ξ) (40)

where 1D is the indicator function relative to set D, and P is the probability
distribution of ξ.

We can now state and prove this simple Lemma.

Lemma 1. The following results hold:

(i) The feasibility correspondence:

for any s ∈ S, Γc (s) =
{
a ∈ R

3 : equations (35), (36) and (37) hold
}

is compact-valued.

(ii) The feasibility correspondence:

for any s ∈ S, Γc (s) =
{
a ∈ R

3 : equations (35), (36) and (37) hold
}

is upper hemi-continuous.

(iii) For any bounded continuous function v : S → R, the function:

F (s, a) =

∫

S

v (y)Q (dy|s, a)

is continuous.

17



Proof. (i) For any value of s ∈ S, equation (35) is a linear function of bπt and xt,
and analogously equation (36) is a linear function of bxt and xt. Moreover,
define:

b
π
(st) = max

{
bπt−1 + γtxt−1

(
(βbπt−1 + κ)x (st) + ut − xt−1b

π
t−1

)
,

bπt−1 + γtxt−1

(
(βbπt−1 + κ) (−x (st)) + ut − xt−1b

π
t−1

)}

and:

bπ (st) = min
{
bπt−1 + γtxt−1

(
(βbπt−1 + κ)x (st) + ut − xt−1b

π
t−1

)
,

bπt−1 + γtxt−1

(
(βbπt−1 + κ) (−x (st)) + ut − xt−1b

π
t−1

)}

and analogously for b
x
(st) and bx (st). Hence, it is clear that:

Γc (s) ⊂ [−x (s) , x (s)]× [bπ (s) , b
π
(s)]× [bx (s) , b

x
(s)] (41)

Moreover, by linearity (conditional on s) of the equations (35) and (36), we
can argue that Γc (s) is closed; since it is a closed subset of a compact set,
we conclude that it is compact. Since s is arbitrary, Γc is compact-valued.

(ii) Let’s consider an arbitrary sequence {sn} with sn ∈ S for any n, converging
to a point ŝ, and an arbitrary sequence {xn} with xn ∈ [−x (sn) , x (sn)].
Then by continuity of x (·) it is easy to show that there exists a convergent
subsequence {xnk

} whose limit is in [−x (ŝ) , x (ŝ)]; moreover, the functional
form of (35) and (36) (they are formed by sums and products of elements
of {sn} and {xn}) implies that if the subsequences

{
bπnk

}
and

{
bxnk

}
satisfy

equations (35) and (36) for any nk, then they converge and the limit satisfies
(35) and (36) evaluated in the limits of {snk

} and {xnk
}. Since the sequences

{sn} and {xn} are arbitrary, upper hemi-continuity of Γc is proved.

(iii) Consider an arbitrary sequence {sn, an} with (sn, an) ∈ S × R3 for any n,
converging to a limit (s, a) ∈ S × R3. We can use the Bounded Conver-
gence Theorem (remember that the function v is bounded by assumption),
continuity of v and Ψ and equation (40) to claim that:

lim
n→∞

F (sn, an) = lim
n→∞

∫

S

v (y)Q (dy|sn, an) = lim
n→∞

∫

Z

v (Ψ (sn, an, ξ)) dP (ξ)

=

∫

Z

lim
n→∞

v (Ψ (sn, an, ξ)) dP (ξ) =

∫

Z

v (Ψ (s, a, ξ)) dP (ξ)

= F (s, a)

Since the sequence {sn, an} is arbitrary, continuity of F is proved.

18



We are now ready to prove the following Proposition.

Proposition 1. There exists a time-invariant policy function for the CB that
solves the optimization problem 34.

Proof. This result follows from Theorem 1 of Jaskiewicz and Nowak (2011). The
assumptions of their Theorem are satisfied in our setup; most of them are proved
in our Lemma 1, while the existence of a one-sided majorant function that satisfies
their conditions (M1) and (M2) is trivial in our model: since the quadratic return
function of the CB is non-positive, a constant function ω (s) = 1 for any s ∈ S has
the required properties.

Finally, note that their Theorem is derived in the case of a maxmin problem of
a controller in a two-players game; assuming that the second player can play only
one strategy allows us to the apply their results to our model.

Next, we prove that any optimal time-invariant policy function for the problem
34 is such that the constraint (37) never binds in the optimum, if an appropriate
continuous function x (s) is chosen. We define V c (s) the value function associated
to the solution of the problem 34 for a given initial vector of states s ∈ S.9 In the
following simple Lemma we characterize bounds of this value function.

Lemma 2. Let’s assume that the shock u has finite variance σ2
u. The following

results hold:

(i) For any s ∈ S and any choice of x (s):

V c (s) ≤ 0

(ii) For any s ∈ S and any choice of x (s):

V c (s) ≥ −
1

2

[
(1− β)u2 + βσ2

u

]

where u is the fourth component of the vector s of initial states.

Proof. (i) This follows trivially from the fact that the one-period return function
of the CB is non-positive.

9Note that this value function depends also on the choice of xs, even if we do not make this
dependence explicit.
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(ii) For any choice of x (s), the allocation xt = 0 for any t ≥ 0 and any history of
states is always feasible; with this allocation the welfare of the CB is given
by:

E0(1− β)
∞∑

t=0

βt

{
−
1

2

[(
(βbπt−1 + κ)xt + ut

)2
+ αx2

t

]}
=

E0(1− β)
∞∑

t=0

βt

{
−
1

2
(ut)

2

}
= −

1

2

[
(1− β)u2

0 + βσ2
u

]

Hence, the optimal allocation cannot deliver a welfare smaller than the one
associated with this feasible allocation.

We can now state and prove the following Proposition.

Proposition 2. Let x (s) = ε
√

(1−β)u2+βσ2
u

α(1−β) , for some ε > 1; then any optimal

time-invariant policy function for the problem 34 is such that the constraint (37)
never binds.

Proof. Theorem 1 of Jaskiewicz and Nowak (2011) shows that there exists a re-
cursive formulation of our maximization problem, which is the following:

V c (s) = − (1− β)
1

2

[
(βbπ + κ)x∗ (s) + u)2 + αx∗2 (s)

]
+β

∫

S

V c (s)Q (dy|s, a∗ (s))

(42)
for any s ∈ S, where the starred variables denotes actions taken under any optimal
policy function. Using Lemma 2 (i) and the fact that− (1− β) 1

2 (βb
π + κ)x∗ (s) + u)2

is non-positive, we have that:

V c (s) ≤ − (1− β)
1

2
αx∗2 (s)

Now, for the sake of contradiction, let’s assume that for some s ∈ S we have that
x∗ (s) = x (s).10 This means that:

−x∗2 (s) < −
(1− β)u2 + βσ2

u

α (1− β)

which implies:

V c (s) ≤ − (1− β)
1

2
αx∗2 (s) < −

1

2

[
(1− β)u2 + βσ2

u

]
(43)

which contradicts Lemma 2 (ii).

10We can proceed analogously for the case x∗ (s) = −x (s).
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4.2 Convergence

So far we proved that there exists an optimal time-invariant solution to the prob-
lem 34 and that it is interior; hence, any such solution can be characterized as
the solution of the standard FOCs, without having to worry about the Lagrange
multipliers on the constraints (37). The first order conditions of problem 34 are:

0 =− αxt −
[
(βbπt−1 + κ)xt + ut

]
(βbπt−1 + κ)− λ1,tγtxt−1(βb

π
t−1 + κ)− (44)

− Et[λ1,t+1βγt+1((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]− λ2,tγtxt−1

− Et[λ2,t+1βγt+1(xt+1 − bxt 2xt)]

0 =λ1,t − βEtλ1,t+1(1− γt+1x
2
t )− β2Et[((βb

π
t + κ)xt+1 + ut+1)xt+1]− (45)

β2Et [λ1,t+1γt+1xtxt+1]

0 =λ2,t − βEtλ2,t+1(1− γt+1x
2
t ), (46)

where λ1,t and λ2,t are the Lagrange multipliers of (35) and (36), respectively.
These first order conditions together with the law of motion for the learning coeffi-
cients constitute the necessary conditions for the optimal evolution of {xt, b

π
t , b

x
t }.

11

From equation (44) it is easy to show that the only stationary solution for λ2,t is
λ2,t = 0 for any t; hence the FOCs can be rewritten as:

0 =− αxt −
[
(βbπt−1 + κ)xt + ut

]
(βbπt−1 + κ)− λ1,tγtxt−1(βb

π
t−1 + κ)− (47)

− Et[λ1,t+1βγt+1((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]

0 =λ1,t − βEtλ1,t+1(1− γt+1x
2
t )− β2Et[((βb

π
t + κ)xt+1 + ut+1)xt+1]− (48)

β2Et [λ1,t+1γt+1xtxt+1]

Remembering that by Proposition 1 we can concentrate on time-invariant laws of
motion for the optimal x, we can rewrite equation (47) as:

xt = Φ1

(
bπt−1

)
ut + Φ2 (st) (49)

where the vector st is the vector of state variables defined above, and:

Φ1

(
bπt−1

)
≡ −

βbπt−1 + κ

α +
(
βbπt−1 + κ

)2 (50)

Φ2 (st) ≡ −
1

α +
(
βbπt−1 + κ

)2
{
λ1,tγtxt−1(βb

π
t−1 + κ)

+Et[λ1,t+1βγt+1((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]} (51)

11From the IS curve and the NKPC we can back out the optimal processes for inflation and
the nominal interest rate.
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Plugging (49) into equation (35), we get the following law of motion of bπ along
any optimal path:

bπt = bπt−1+γtxt−1

[
(βbπt−1 + κ)Φ1

(
bπt−1

)
ut + ut − xt−1b

π
t−1

]
+γtxt−1(βb

π
t−1+κ)Φ2 (st)

(52)
Using analogous arguments, we get that:

bxt = bxt−1 + γtxt−1

[
Φ1

(
bπt−1

)
ut − xt−1b

x
t−1

]
+ γtxt−1Φ2 (st) (53)

Our aim is to rewrite equations (52)-(53) as a Stochastic Recursive Algorithm
(SRA hereafter) in a form that can be analyzed using the stochastic approximation
tools. To do so, we start defining the vector of the state variables of the algorithm
Yt ≡ [xt, xt−1, ut, γt, ]′.12 Hence, we can rewrite (52)-(53) as follows:

bπt = bπt−1 + γtHπ

(
bπt−1, Y

2
t , Y

3
t

)
+ γ2

t ρπ
(
bπt−1, b

x
t−1, Y

2
t , Y

3
t , Y

4
t

)

bxt = bxt−1 + γtHx

(
bπt−1, Y

2
t , Y

3
t

)
+ γ2

t ρx
(
bπt−1, b

x
t−1, Y

2
t , Y

3
t , Y

4
t

)

where Y i
t denotes the i-th entry of the Yt vector, and:

Hπ

(
bπt−1, Y

2
t , Y

3
t

)
≡ xt−1

[
(βbπt−1 + κ)Φ1

(
bπt−1

)
ut + ut − xt−1b

π
t−1

]

Hx

(
bπt−1, Y

2
t , Y

3
t

)
≡ xt−1

[
Φ1

(
bπt−1

)
ut − xt−1b

x
t−1

]

ρπ
(
bπt−1, b

x
t−1, Y

2
t , Y

3
t , Y

4
t

)
≡ xt−1(βb

π
t−1 + κ)

Φ2 (st)

γt

ρx
(
bπt−1, b

x
t−1, Y

2
t , Y

3
t , Y

4
t

)
≡ xt−1

Φ2 (st)

γt

If we define θt ≡ [bπt , b
x
t ]

′, and:

H (·) ≡

(
Hπ (·)
Hx (·)

)
, ρ (·) ≡

(
ρπ (·)
ρx (·)

)

equations (52)-(53) can be written as:

θt = θt−1 + γtH (θt−1, Yt) + γ2
t ρ (θt−1, Yt) (54)

which is a SRA in the standard form studied in the Evans and Honkapohja (2001).
To study the asymptotic behavior of θt, we analyze the solutions and stability of
the Ordinary Differential Equation (ODE) associated to (54):

dθ

dτ
= h (θ) ≡ EH

(
bπ, Ŷ 2

t , Ŷ
3
t

)
(55)

12Note that the vector of state variables used for the convergence analysis is different from the
set used in the solution of the optimization problem.
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where the expectation is taken over the invariant distribution of the process Ŷt (θ),
which is the stochastic process for Yt obtained by holding θt−1 at the fixed value
θt−1 = θ. It is possible to prove that there exists an invariant distribution to which
the Markov process Ŷt (θ) converges weakly from any initial conditions; hence, the
function h (θ) is well defined.13 Note that xt−1 does not depend on ut; this implies
that:

h (θ) =

(
−bπEx2

t−1 (θ)
−bxEx2

t−1 (θ)

)

The only possible rest point of the ODE (55) is clearly θ = 0. Moreover it is
(locally) stable, since the Jacobian:

Dh (θ) =

(
−Ex2

t−1 (θ)− bπ
∂Ex2

t−1(θ)

∂bπ
−bπ

∂Ex2
t−1(θ)

∂bx

−bx
∂Ex2

t−1(θ)

∂bπ
−Ex2

t−1 (θ)− bx
∂Ex2

t−1(θ)

∂bx

)

(56)

has both eigenvalues smaller than zero when evaluated in θ = 0. In the terminology
commonly used in the adaptive learning literature, we can say that θ = 0 is the
only E-stable equilibrium; in Evans and Honkapohja (2001) an equivalence result
between E-stability and convergence under learning is derived. However, we cannot
directly apply such result, which draws on arguments contained in Benveniste,
Métivier, and Priouret (1990), since the state variables’ law of motion does not
satisfies the required assumptions.14 However, it turns out that we can adapt their
arguments, and prove the following result.

Proposition 3. Let θ evolve according to (54). If θ is E-stable, then it is locally
stable under adaptive learning.15

Proof. See the Appendix.

Strictly speaking, the above result does not establish an equivalence between
E-stability and convergence under learning, since it does not guarantee that any
locally stable equilibrium is E-stable; hence, there could exist initial conditions
of the states such that there are limiting equilibria which are E-unstable (like for
example the RECE). However, numerical investigation show that this is not the
case.

13The proof is available from the authors upon request.
14From a technical point of view, the problem is that the Markov chain followed by our state

variables Y is not necessarily geometrically ergodic, hence the assumption A.4 as stated in page
216 of Benveniste, Métivier, and Priouret (1990) is not satisfied (we cannot prove the existence
of a solution to the Poisson equation).

15For an explicit definition of what “locally stable under adaptive learning” means, see Evans
and Honkapohja (2001) page 275.
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5 Constant gain learning

In this section, we analyze the implications of the constant gain learning algorithm.
Under this assumption, proving convergence (even locally) is more difficult. There-
fore, we look at the ergodic distribution obtained from a Montecarlo experiment.
In this case, the economy converges close to REDE if the learning process is slow.
However, the learning coefficients bπt and bxt converge towards negative values when
learning is fast: the long run optimal policy is then to induce expectations cycles
in the economy: ceteris paribus, when agents observe positive output gap today,
they expect deflation and negative output gap tomorrow.

Finally, another natural question is if the optimal policy is a substantial Pareto
improvement with respect to policies that drive expectations towards the RECE
(Evans and Honkapohja (2006) (EH) policy). In fact, if the welfare difference
is small, then following EH might not a bad idea if the monetary authority has
strong preference for the long run. Hence, we compare the welfare losses obtained
under our optimal policy, and the ones generated by EH. What we find is that the
loss induced by EH policy is between 57% and 75% larger than the optimum. We
conclude that trying to drive the economy towards RECE may have large costs
for the economy.

5.1 The algorithm

Let us reproduce the Lagrangean first-order conditions necessary for an optimum:

0 =− αxt −
[
(βbπt−1 + κ)xt + ut

]
(βbπt−1 + κ)− λ1,tγxt−1(βb

π
t−1 + κ)− (57)

− Et[λ1,t+1βγ((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]

0 =λ1,t − βEtλ1,t+1(1− γx2
t )− β2Et[((βb

π
t + κ)xt+1 + ut+1) xt+1]− (58)

β2Et [λ1,t+1γxtxt+1] (59)

We can solve for λ1,t and xt. The state variables are xt−1, bπt−1 and ut. In or-
der to find a solution, we use a collocation algorithm. This method consists of
approximating the control variables as functions of the state variables over few
grid points. Typically, one can use Chebychev polynomials for the interpolation,
if the functions to be approximated are continuous and smooth (as in the model
at hand). Then one needs to find the coefficients of the polynomials that solve
the Lagrangean first-order conditions. In our specific case, we generate a three-
dimensional grid by choosing the Chebychev zeroes. We approximate λ1,t and
xt with Chebychev polynomials16 and we use tensor product to project the mul-
timensional state space on the policy space. We use quadrature to compute the

16In order to generate the approximated policy functions, we use the Miranda-Fackler Com-
pEcon Toolbox.
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expectation operators. The coefficients that solve the two equations17 are found by
using a version of the Broyden algorithm for nonlinear equations coded by Michael
Reiter. The optimal approximated policy functions are then used to simulate the
series.

The benchmark calibration is taken from (Woodford 1999), with β = 0.99,
σ = 0.157, κ = 0.024 and α = 0.04. The cost-push shocks are drawn from
Gaussian distribution with zero mean and variance 0.07. Robustness checks for
several of these parameters are also performed. Unless specified, in the simulations
we set the initial value for the learning coefficients equal to the values that they
would attain under RECE.

5.2 Simulated economies

Figure 2 shows the path for the learning coefficients bπt and bxt under the benchmark
parametrization with constant gain parameter γ = 0.05. We set initial conditions
for learning coefficients equal to the ones in RECE. The economy immediately
escapes far away from the RECE. Convergence is relatively fast, with the economy
reaching the long run ergodic distribution in around 20000 periods.

However, it is not clear if the economy converges exactly to REDE. In order
to check this, we perform a Montecarlo exercise: we draw 10000 realizations of
the shock, 100000 periods long, and we simulate the economy starting close to
REDE.18 We then look at the distribution of the learning coefficients bπt and bxt in
the last period of the simulation, which is a good proxy for the ergodic distribution.
Figure 3 reports the distributions obtained for different values of the constant gain
parameter γ. For small values of the learning parameters, the ergodic distribution
is approximately Gaussian with positive mean close to zero. However, when the
learning parameter is larger, the distribution is skewed towards negative values.
For very large γ, the economy converges towards negative values, which means
that in the long run it is optimal to induce cycles in the economy: when there is
positive inflation, agents must be induced to believe that there will be deflation
in the next period. Note however that standard stochastic approximation results
on the convergence of models with constant gain are valid only for γ going to zero
(see, among others, Benveniste, Métivier, and Priouret (1990)).

17Uniqueness of the solution might be an issue, since the Kuhn-Tucker conditions are only
necessary in our setup. However, we experimented with different initial conditions, different
interpolation techniques and the solution did not change.

18We find that the economy converges close to REDE for any possible initial condition for the
learning parameters. In particular, economies starting from, or close to, RECE values always
converge close to REDE
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5.3 Welfare analysis

Until here, we have shown the qualitative differences between the series of learn-
ing coefficients for the optimal policy and the RE-commitment equilibrium. One
question is then how much the economy would loose if the monetary authority
follows the Evans-Honkapohja (EH) policy rule (i.e., the one that makes private
sector learn RECE) instead of the optimal policy derived here. It turns out that
the welfare impact is substantial: the welfare loss under EH rule is almost the
double of the loss under the optimal policy. Figure 4 and Table 1 illustrate the
cumulated welfare loss for different types of learning algorithm (constant and de-
creasing gain) and for the EH policy. Apart from the learning parameter, all the
simulations start from the RECE. All the optimal policy losses are lower than EH,
obviously. However the difference is large: in the long run, EH policy has a loss
of .44, while all the learning welfare losses are between .2483 and .2822, which
implies the EH loss is between 57% and 75% higher than under optimal policy.

Table 1: Welfare Loss

Decr. Gain Const. Gain, Const. Gain, Const. Gain, EH
γ = .01 γ = .05 γ = .1

0.2584 0.2483 0.2660 0.2822 0.4417

Welfare loss for different policies and learning algorithms.

Figure 4 show the cumulated loss up to each period. We just show the first
1000 periods, since after that the welfare loss is pretty stable. As it can be seen,
the optimal policy outperforms the EH policy by large in every periods under every
specification of the learning process.

6 Conclusions

Expectations are crucial for monetary policy conduit. We have shown a case
where the expectations’ formation mechanism yields unexpected results: an op-
timally behaving central bank does not drive learning agents to the commitment
equilibrium, but instead the economy ends up in the discretionary one. Our result
can be interpreted as a word of caution in giving general monetary policy rules. In
particular, a Taylor rule that would drive the economy towards the commitment
equilibrium under rational expectations would deliver big welfare losses in our
economy. Therefore, asking the central bank to force convergence of the economy
towards a supposedly Pareto-superior RE equilibrium might be misleading.
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A natural question is how general is our result. In Stackelberg games with RE
there is a clear Pareto ranking between commitment and discretionary equilibria.
How sensitive is this ranking to different assumptions about information sets used
to form expectations? This is left for future research.
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Appendix

In this Appendix we prove proposition 3. To do so, we first show a series of
intermediate results.

First of all, we state and prove the following technical Lemma.

Lemma 3. Let λ1,t be a stationary solution of (48), and suppose that θt is fixed
at some θ; then, for any compact Q ⊂ R2, there exists a positive constant Cλ such
that:

|λ1,t| ≤ Cλ

(
1 + |ut|

2) (A.1)

for any θ ∈ Q.

Proof. Solving forward equation (48), we get that any stationary solution must
satisfy:

λ1,t = β2Et

∞∑

i=1

{
βi [((βbπ + κ)xt+1+i + ut+1+i) xt+1+i]Π

i
j=0ϑt+j

}
+

+β2Et [((βb
π + κ)xt+1 + ut+1) xt+1] (A.2)

where ϑt+j is defined as follows:

ϑt = 1, ϑt+j = 1− γt+jxt+j−1 (xt+j−1 − βxt+j) for j > 0

Let x (ut) be defined as in the statement of Proposition 2, let:

π (ut) ≡ MQx (ut) + ut

where MQ ≡ maxθ∈Q(βbπ + κ).19 Moreover, note that for any j > 0:

|ϑt+j | = |1− γt+jxt+j−1 (xt+j−1 − βxt+j)| ≤ 1 + γt+j |xt+j−1|
2 + βγt+j |xt+j−1xt+j |

< 1 + γ1+j |x (ut+j−1)|
2 + βγ1+j |x (ut+j−1)x (ut+j)| ≡ ϑt+j

where we used the triangle inequality, the fact that the sequence of gains is decreas-
ing, and the result of Proposition 2 that at an optimum we must have |xt| < x (ut).
Because the stochastic process of u is assumed to be iid, it follows that ϑt+j is in-
dependent of x (ut+1+i) and π (ut+1+i), for any j ≤ i. Using this observation, the
bounds derived on x, ((βbπ + κ)x+ u) and ϑ, the triangle inequality, the Schwartz
inequality, the monotonicity of the expectation operator, we can write:

|λ1,t| ≤ β2Mx,πEt

∞∑

i=1

{
βiΠi

j=0ϑt+j

}
+ β2Mx,π

19This maximum exists, since the function is continuous and Q is compact by assumption.
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where Mx,π ≡ Etx (ut+1+i)π (ut+1+i) which is constant for any t and any i because
of the iid assumption. Note that the series in the RHS of the above inequality
converges, since β < 1 and limj→∞Etϑt+j = 1. Finally, note that the only ϑt+j

that depends on ut is ϑt+1; hence, we can write the above inequality as follows:

|λ1,t| ≤ β2Mx,πEt

∞∑

i=2

{
βi

[
Πi

j=2ϑt+j

] [
1 + γ2 |x (ut)|

2 + βγ2 |x (ut) x (ut+1)|
]}

+

β3Mx,πEt

[
1 + γ2 |x (ut)|

2 + βγ2 |x (ut) x (ut+1)|
]
+ β2Mx,π

= β2Mx,π

[
1 + γ2 |x (ut)|

2]Et

∞∑

i=2

βi
[
Πi

j=2ϑt+j

]
+

β3Mx,πγ2x (ut)Et

∞∑

i=2

βi
{[
Πi

j=2ϑt+j

]
x (ut+1)

}
+

β3Mx,π

[
1 + γ2 |x (ut)|

2 + βγ2x (ut)Etx (ut+1)
]
+ β2Mx,π

≤ Ĉλ

(
1 + |ut|+ |ut|

2) (A.3)

where we used the fact that, due to the iid assumption on u, the conditional
expectations of the random variables considered in (A.3) are independent of t, and
the definition of x (ut) to get:

x (s) = ε

√
(1− β)u2 + βσ2

u

α (1− β)
≤ ε

√
[(1− β) |u|+ βσu]

2

α (1− β)
= ε

(1− β) |u|√
α (1− β)

+ε
βσu√

α (1− β)

Finally, note that inequality (A.3) implies that there exists a Cλ such that (A.1)
holds.20 This completes the proof.

We can now state and prove the following Proposition.

Proposition 4. Let θt evolve according to (54), and fix an open set D ⊂ R2

around the point θ = 0. Then, for any compact Q ⊂ D, there exist C and q such
that for any θ ∈ Q:

|ρ (θ, Y )| ≤ C (1 + |Y |q) (A.4)

Proof. In what follows, we show that a bound of the form reported in the above
inequality holds for the absolute value of any of the two components of the function
ρ(·), which clearly implies (A.4).

20For example, Cλ = 3Ĉλ would work.
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Let’s start from ρπ(·); plugging equation (51) into the definition of this function
we get:

∣∣ρπ
(
bπt−1, b

x
t−1, Y

2
t , Y

3
t , Y

4
t

)∣∣ =

∣∣∣∣∣−xt−1
(βbπt−1 + κ)

α +
(
βbπt−1 + κ

)2
{
λ1,txt−1(βb

π
t−1 + κ)

+β
γt+1

γt
Et[λ1,t+1((βb

π
t + κ)xt+1 + ut+1 − bπt 2xt)]

}∣∣∣∣

≤ βM2 |Et[λ1,t+1((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]|

+M1 |xt−1|
2 |λ1,t| (A.5)

where we used the triangle inequality and the fact that γt+1

γt
< 1, and where:

M1 ≡ max
θ∈Q

(βbπt−1 + κ)2

α +
(
βbπt−1 + κ

)2 , M2 ≡ max
θ∈Q

(βbπt−1 + κ)

α+
(
βbπt−1 + κ

)2

Using Lemma 3, we can write:

M1 |xt−1|
2 |λ1,t| ≤ M1 |xt−1|

2Cλ

(
1 + |ut|

2) ≤ M1Cλ |xt−1|
2+2M1Cλmax

{
|xt−1|

2 , |ut|
2}

Remember that the max between two real numbers define a norm on R2; by
the well-known result that in a finite-dimensional normed linear space any two
norms are equivalent, there exists a positive constant Ĉ such that max {z1, z2} ≤
Ĉ (|z1|+ |z2|) for any (z1, z2) ∈ R2, where |z1|+ |z2| is a p-norm with p = 1. Hence,
we get:

M1Cλ |xt−1|
2 + 2M1Cλ max

{
|xt−1|

2 , |ut|
2} ≤ M1Cλ |xt−1|

2 + C1

(
1 + |xt−1|

2 + |ut|
2)

≤ C
(
1 + |xt−1|

2 + |ut|
2 + |γt|

2)

Using similar arguments, we can obtain similar bounds for the term:

βM2 |Et[λ1,t+1((βb
π
t + κ)xt+1 + ut+1 − bπt 2xt)]|

which implies that the condition in the statement of the Proposition holds for ρπ(·)
with q = 2. In the case of ρx(·) the proof is analogous.

The above Proposition implies that the assumptions made in Benveniste, Métivier,
and Priouret (1990) on the SRA are satisfied by our model. In what follows, we
show that the result that E-stability implies learnability holds even if we do not
invoke their assumptions on the state variables’ law of motion.

Following the steps described in Benveniste, Métivier, and Priouret (1990),
Chapter 1 Part II, we rewrite the learning algorithm as follows

θt = θt−1 + γth (θt−1) + εt−1 (A.6)
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where:
εt−1 = γt [H (θt−1, Yt)− h (θt−1) + γtρ (θt−1, Yt)] (A.7)

Heuristically, what we want to obtain are bounds on the fluctuations of the
error term εt−1; more generally, we look for upper bounds of the expressions:

εt−1 (φ) = φ (θt)− φ (θt−1)− γtφ
′ (θt−1) h (θt−1) (A.8)

where φ is an arbitrary twice continuously differentiable function from R2 to R

with bounded second derivatives, and φ′ is its gradient. In what follows we show
that, fixing a compact set Q ⊂ R2, for any integer m there is a mean squares upper
bound for the fluctuation:

sup
n≤ m∧τ

∣∣∣∣∣

n−1∑

k=0

εk (φ)

∣∣∣∣∣ (A.9)

where τ is the stopping time at which the process θ leaves for the first time the
compact set Q:

τ (Q) = inf {t : θt &∈ Q} (A.10)

Note that the assumptions on the function φ imply that:

φ (θk+1)− φ (θk)− (θk+1 − θk)φ
′ (θk) = R (φ, θk, θk+1) (A.11)

where the function R, for all θk and θk+1 has the upper bound21

|R (φ, θk, θk+1)| ≤ |θk − θk+1|
2 (A.12)

In order to find bounds on the error term εk (φ), we can use equation (A.11) to
decompose it as follows:

εk (φ) = φ (θk+1)− φ (θk)− γk+1φ
′ (θk)h (θk)

= γk+1φ
′ (θk) (H (θk, Yk+1)− h (θk)) + γ2

k+1ρ (θk, Yk+1) +R (φ, θk, θk+1)

= γk+1φ
′ (θk)

(
H (θk, Yk+1) + x2

k+1θk
)
+ γk+1φ

′ (θk)
(
−h (θk)− x2

k+1θk
)
+

γ2
k+1ρ (θk, Yk+1) +R (φ, θk, θk+1) (A.13)

Then, the running sum from r < n to n of εk (φ) on {n ≤ τ} can be written as:

n−1∑

k=r

εk (φ) =
n−1∑

k=r

ε1k (φ)+
n−1∑

k=r+1

ε2k (φ)+
n−1∑

k=r+1

ε3k (φ)+
n−1∑

k=r

ε4k (φ)+
n−1∑

k=r

ε5k (φ)+
n−1∑

k=r

ε6k (φ)+ηn,r (φ)

(A.14)

21For all the details, see Benveniste, Métivier, and Priouret (1990) page 221.

31



where:

ε
(1)
k (φ) ≡ γk+1φ

′ (θk)xk [(βb
π
k + κ)Φ1 (b

π
k) uk+1 + uk+1,Φ1 (b

π
k) uk+1]

′(A.15)

ε
(2)
k (φ) ≡ γk+1φ

′ (θk)x
2
k (θk − θk−1) (A.16)

ε
(3)
k (φ) ≡ (γk − γk+1)φ

′ (θk−1) x
2
kθk−1 (A.17)

ε
(4)
k (φ) ≡ γk+1φ

′ (θk) θkΦ
2
1 (b

π
k)

(
σ2
u − u2

k+1

)
(A.18)

ε
(5)
k (φ) ≡ −γk+1φ

′ (θk) θk
(
Φ2

2 (sk+1) + 2Φ2 (sk+1)Φ1 (b
π
k)uk+1

)
(A.19)

ε
(6)
k (φ) ≡ γ2

k+1ρ (θk, Yk+1) +R (φ, θk, θk+1) (A.20)

ηn,r (φ) ≡ −γr+1φ
′ (θr)x

2
rθr + γnφ

′ (θn−1)x
2
nθn−1 (A.21)

In the above decomposition we used the definition of H and the fact that in
the optimum the square of the output gap is given by:

x2
k = Φ2

1

(
bπk−1

)
u2
k + Φ

2
2 (sk) + 2Φ1

(
bπk−1

)
ukΦ2 (sk)

The terms ε(2)k (φ), ε(3)k (φ), ε(6)k (φ) and ηn,r (φ) are particular cases of expressions
studied in Benveniste, Métivier, and Priouret (1990).22 Hence, we concentrate on

ε
(1)
k (φ), ε(4)k (φ) and ε

(5)
k (φ). We start with ε

(1)
k (φ).

Lemma 4. There exist constants A1 and q1 such that:

Ey,a

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε1k (φ)

∣∣∣∣∣

}2

≤ A1 (1 + |y|q1)
m−1∑

k=0

γ2
k+1 (A.22)

where Ey,a denotes expectations taken with respect to the distribution of histories
induced by the transition probability of the Markov chain (Yk, θk) with initial con-
ditions Y0 = y and θ0 = a. Moreover, on {τ ≤ ∞},

∑n−1
k=0 ε

1
k converges a.s. and in

L2.

Proof. Let’s define:
(

(βbπk + κ)Φ1 (bπk)uk+1 + uk+1

Φ1 (bπk) uk+1

)
I (k + 1 ≤ τ) ≡ Zk (A.23)

and:

Zn ≡
n−1∑

k=0

γk+1φ
′ (θk)xkZk (A.24)

Equipped with these definitions, we can make four crucial observations: (i) Zn is a
martingale with respect to the σ-algebra Fn generated by θ0, Y0, Y1, ..., Yn: u is a

22See Lemmas 3-6, pages 225-228.
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zero mean iid shock, which implies that Zk is a martingale difference with respect
to Fk; (ii) the following inequality holds:

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε1k (φ)

∣∣∣∣∣ ≤ |Zn| (A.25)

and (iii) the fact that Zk is a martingale difference with respect to Fk implies
that23:

E |Zn|
2 =

n−1∑

k=0

γ2
k+1Eφ′ (θk)

2 x2
kZ

2
k (A.26)

Finally, (iv) we note that:

Ex2
kZ

2
k ≤ Ex (uk)

2 Z
2
k ≤ Ã1 (1 + |y|q1) (A.27)

where we used the upper bound on the absolute value of the output gap in an
optimum derived in the construction of the recursive representation of the CB
problem, the assumption that u is an iid with finite moments and the fact that we
are considering θ’s inside a compact set.

We can combine these four observations with the Doob’s martingale inequality
as in Benveniste, Métivier, and Priouret (1990), Lemma 2 page 224, to conclude
that:

E

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε1k (φ)

∣∣∣∣∣

}2

≤ E

{
sup
n≤m

|Zn|
2

}
≤ 4 sup

n≤m
E |Zn|

2 (A.28)

≤ A1 (1 + |y|q1)
m−1∑

k=0

γ2
k+1 (A.29)

hence proving the first part of the Lemma; note that we again used the fact that
φ′ (θ) is a continuous function defined on a compact set, and hence has a maximum.
The second part of the Lemma is a simple implication of the first one, and of the
results derived to obtain it.24

Lemma 5. There exist constants A4 and q4 such that:

Ey,a

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε4k (φ)

∣∣∣∣∣

}2

≤ A4 (1 + |y|q4)
m−1∑

k=0

γ2
k+1 (A.30)

Moreover, on {τ ≤ ∞},
∑n−1

k=0 ε
1
k converges a.s. and in L2.

23See Evans and Honkapohja (1998), page 81 for the details.
24See Benveniste, Métivier, and Priouret (1990), Lemma 2, page 225.
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Proof. The proof is analogous to the one of Lemma 4, once we note that:

I (k + 1 ≤ τ) θkΦ
2
1 (b

π
k)

(
σ2
u − u2

k+1

)
(A.31)

is a martingale difference with respect to Fk.

Lemma 6. There exist constants A5 and q5 such that:

Ey,a

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε5k (φ)

∣∣∣∣∣

}2

≤ A5 (1 + |y|q5)

(
m−1∑

k=0

γ2
k+1

)2

(A.32)

Proof. First of all, let’s define:

Dn ≡
n−1∑

k=0

I (k + 1 ≤ τ) ε5k (φ) (A.33)

and note that:

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε5k (φ)

∣∣∣∣∣ ≤ sup
n≤m

|Dn| ≤ sup
n≤m

n−1∑

k=0

I (k + 1 ≤ τ)
∣∣ε5k (φ)

∣∣(A.34)

≤
m−1∑

k=0

I (k + 1 ≤ τ)
∣∣ε5k (φ)

∣∣ (A.35)

Moreover, we can use the same arguments used to derive polynomial bounds
for the function |ρ (θ, Y )| to get:
∣∣ε5k (φ)

∣∣ =
∣∣γk+1φ

′ (θk) θk
(
Φ2

2 (sk+1) + 2Φ2 (sk+1)Φ1 (b
π
k)uk+1

)∣∣ (A.36)

≤

∣∣∣∣∣γk+1φ
′ (θk) θk

(

γ2
k+1

(
Φ2 (sk+1)

γk+1

)2

+ 2γk+1
Φ2 (sk+1)

γk+1
Φ1 (b

π
k) uk+1

)∣∣∣∣∣(A.37)

≤

∣∣∣∣∣γ
2
k+1φ

′ (θk) θk

((
Φ2 (sk+1)

γk+1

)2

+ 2
Φ2 (sk+1)

γk+1
Φ1 (b

π
k)uk+1

)∣∣∣∣∣ (A.38)

≤
∣∣∣γ2

k+1φ
′ (θk) θkÃ5

(
1 + |Yk+1|

q5
)∣∣∣ (A.39)

Putting these results together, and using the Cauchy-Schwarz inequality, we
get:

E

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

ε5k (φ)

∣∣∣∣∣

}2

≤ E

{
m−1∑

k=0

I (k + 1 ≤ τ)
∣∣ε5k (φ)

∣∣
}2

(A.40)

≤

(
m−1∑

k=0

γ2
k+1

)(
m−1∑

k=0

γ2
k+1E

{
I (k + 1 ≤ τ)

∣∣∣φ′ (θk) θkÃ5

(
1 + |Yk+1|

q5
)∣∣∣

2
})

(A.41)

≤ A5 (1 + |y|q5)

(
m−1∑

k=0

γ2
k+1

)2

(A.42)
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We can now state and prove our main result.

Proposition 5. There exist constants A and q such that:

Ey,a

{

sup
n≤m

I (n ≤ τ)

∣∣∣∣∣

n−1∑

k=0

εk (φ)

∣∣∣∣∣

}2

≤ A (1 + |y|q)

(

1 +
m−1∑

k=0

γ2
k+1

)
m−1∑

k=0

γ2
k+1

(A.43)
Moreover, on {τ ≤ ∞},

∑n−1
k=0 ε

1
k converges a.s. and in L2.

Proof. The decomposition of the error term ε (φ) derived above, together with
Lemmas 4-6 and the arguments in Benveniste, Métivier, and Priouret (1990),
Lemmas 3-6, pages 225-228, imply that the first term in the inequality (A.43) is
bounded above by expressions of the form:

Ai (1 + |y|qi)
m−1∑

k=0

γ2
k+1 or Ai (1 + |y|qi)

(
m−1∑

k=0

γ2
k+1

)2

(A.44)

By the Cauchy-Schwarz inequality, we have that:

(
m−1∑

k=0

γ2
k+1

)2

≤

(
m−1∑

k=0

γ2
k+1

)(
m−1∑

k=0

γ2
k+1

)

(A.45)

which implies that the inequality (A.43) holds. The second part of the Proposition
is a trivial consequence of these upper bounds.

Proof of Proposition 3. In the above Proposition we have established upper
bounds on the fluctuations of the error term ε (φ); in particular, our result is the
exact counterpart of Proposition 7 of Benveniste, Métivier, and Priouret (1990),
pages 228-229. The rest of the arguments leading to their convergence result
(Theorem 13, page 236) go through also in our setup, so that we can conclude
saying that E-stability does imply (local) stability under learning in our model.
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Figure 2: Dynamics of bπ and bx under constant gain, benchmark parameterization,
γ = .05
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Figure 3: Ergodic distribution (after 10000 draws of 100000 periods), constant
gain learning
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