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Abstract

This paper demonstrates that insufficient liquidity, in the form of a shortage
of safe assets that are useful as collateral in facilitating exchange, can lead to
substantial movements in asset prices. There is a single asset that yields a
positive payoff stream and can be traded in a centralized market. The asset
can also be used to facilitate exchange in decentralized, or over-the-counter,
trade and if the asset is in sufficiently short supply the fundamental asset price
includes a liquidity premium. Traders, though, have imperfect information
about the future price at which the asset will trade and so they behave like a
Bayesian who estimates an econometric forecasting model for the asset price
that is updated in real-time via discounted least-squares. The paper has three
primary results: first, a permanent decrease in the supply of safe assets can lead
to a substantial over-shooting of the asset price from its fundamental value;
second, an increase in collateral requirements can lead to a substantial over-
shooting of asset prices; third, when asset prices include a liquidity premium
there can be recurrent bubbles and crashes that arise as endogenous responses
to economic shocks.

The world has a shortage of financial assets. Asset supply is having a hard
time keeping up with the global demand for store of value and collateral
by households, governments...The equilibrium response of asset prices and
valuations to these shortages has played a central role in ... the recurrent
emergence of speculative bubbles, the historically low real interest rates ...
all fall into place once on adapts this asset shortage perspective.

– Ricardo J. Caballero in “On the Macroeconomics of Asset Shortages.”
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The shrinking set of assets perceived as safe ... can have negative implica-
tions for global financial stability. It will increase the price of safety and
... could lead to more short-term volatility jumps, herding behavior, and
runs on sovereign debt.

–I.M.F. Global Financial Stability Report April 2012.

1 Introduction

This paper studies asset pricing in an environment where the asset has a dual role as a
store-of-value and in providing liquidity services. The liquidity role is formalized using
search frictions that are familiar in monetary theory. In a stationary equilibrium, the
asset carries a liquidity premium, above its discounted payment flows, whenever the
supply of the asset is not sufficient to support all of the trade in over-the-counter
transactions. However, the liquidity premium in the model does not generate the
kinds of price dynamics – such as bubbles, crashes and excess volatility – that are
typically observed in practice. This paper proposes a search-based asset pricing model
with imperfect knowledge and adaptive learning as a means of generating bubbles and
crashes in asset prices.

It has long been recognized that financial assets have important roles beyond a
store-of-value including the provision of liquidity services. Assets that can be consid-
ered safe are increasingly viewed to be in short supply: safe, liquid assets are used
as collateral in over-the-counter transactions and bilateral agreements while a rise in
global demand by investors, governments and central banks, and changes to macro-
prudential policies, are likely to exacerbate supply imbalances. When financial assets
play a similar liquidity role as money, variations in the supply of assets can affect
asset prices. For example,Krishnamurthy and Vissing-Jorgensen (2012) show that
changes in the (relative) supply of treasury debt, corporate and agency bonds affect
the price of these assets. Caballero, Farhi, and Gourinchas (2008) link global capital
flows to a shortage in the supply of assets. Holmstrom and Tirole (2011) highlight
a possible role for insufficient liquidity in the subprime crisis. Recently, the I.M.F.’s
Global Financial Stability Report (2012) predicts that imbalances in the supply of
safe assets could lead to bubbles, crashes, and excess volatility in asset prices.

In a frictionless environment, an asset’s price should reflect the discounted, ex-
pected payment flows and be independent of changes in the supply of assets. A
recent literature, building on insights from monetary theory, demonstrates that as-
sets can carry a liquidity premium when overcoming trading frictions (such as limited
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enforcement and lack of record keeping) that prevent the use of unsecured credit.1

Search-and-matching models of asset pricing are useful environments for studying
prices in economies with a shortage of safe assets since they make explicit the liq-
uidity properties of assets: safe assets can serve as collateral to facilitate bilateral,
or over-the-counter, trade when limited enforcement or imperfect recognizability pre-
clude unsecured credit arrangements as a means of payment. In search models, when
the amount, or supply, of the safe asset is sufficiently low, the asset price will reflect
its dual roles as a store of value and as a provider of liquidity services. The component
of the asset price attributable to a liquidity premium, is sometimes referred to as a
rational bubble.2 Although, search-based models have been useful in explaining cer-
tain empirical properties of asset prices, such as the risk-free rate and equity premium
puzzles (see, Lagos (2010)), to date, they have not been successful in generating other
salient features of asset prices such as the rapid price appreciations and depreciations
typically attributed to speculative bubbles.

This paper presents a search-based asset pricing model that is capable of generat-
ing asset price bubbles and crashes. The economic environment is based on Nosal and
Rocheteau (2011) and Rocheteau and Wright (2011): there is a single asset, similar
to a Lucas Tree, that pays an i.i.d. dividend and is traded in a centralized, compet-
itive market. The supply of this asset is subject to occasional, small iid shocks that
captures asset float and other exogenous factors that affects asset supply. Absent
trading frictions, this asset would price at the discounted present value of the divi-
dend flow. However, the economy also consists of a decentralized market where buyers
and sellers are bilaterally matched and buyers submit to sellers a “buyer-takes-all”
offer. Unsecured credit is not available in these pairwise meetings because of limited
enforcement. Instead, the “safe” asset can serve as collateral for secured credit giv-
ing rise to an endogenous liquidity role for financial assets. In a stationary (rational
expectations) equilibrium, the asset price consists of two components: the expected
present-value of future dividends and a liquidity premium. The liquidity premium
arises only when the supply of the asset is too small to support the efficient level of
bilateral trade.

In the model, the asset price is determined, in part, by the expected future price
of the asset. The departure point of this paper is to replace rational expectations with

1See Nosal and Rocheteau (2011) for an extensive survey of search-based monetary and asset-
pricing theory. Search-based models of asset pricing and liquidity include Duffie, Garleanu, and
Pedersen (2005),Geromichalos, Licari, and Suarez-Lledo (2007), Lagos (2010), Lagos and Rocheteau
(2009), Weill (2008), Lagos and Wright (2005),Lester, Postlewaite, and Wright (2012), Rocheteau
and Wright (2011).

2There is a long history of interpreting fiat monetary equilibria as a rational bubble and extending
that interpretation to assets, more broadly, since fiat money is an asset with a constant, zero payment
forever. See, Tirole (1985).
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price expectations formed from an adaptive learning rule as in Evans and Honkapo-
hja (2001).3 The imperfect knowledge environment under consideration assumes that
individuals understand a lot about the economic environment, but they do not know
– or harbor some doubt about – the particular values of the dividend process, the
asset supply process and other values/coefficients that determine asset prices. As a
result, individuals draw inferences about the asset price process from recent data by
adopting an econometric forecasting model whose reduced-form nests the rational ex-
pectations equilibrium. These agents are Bayesian and, because of uncertainty about
their model, they place a prior on structural change in their econometric model. This
imperfect knowledge framework implies that individuals forecast via an AR(1) econo-
metric model whose parameters are updated in real time with a form of discounted
least squares (“constant gain learning”). The priors for this Bayesian model are spec-
ified in such a manner that beliefs are, on average, close to rational expectations. We
show that the dynamic properties of an economy with a shortage of safe assets are
altered in interesting ways once agents must adaptively learn about the price process.

There are several channels through which imperfect knowledge and adaptive learn-
ing affects asset prices. First, although over time beliefs tend to converge toward ra-
tional expectations, the combination of constant gain learning and a positive liquidity
premium can lead individuals to temporarily believe that asset prices follow a random
walk without drift. Under these beliefs, individuals will interpret recent innovations
to price as permanent shifts in the long-run value of the asset, the resulting increase
in asset demand will lead to higher asset prices. Random walk beliefs arise for a very
intuitive reason. Imperfect knowledge about the price process lead individuals to es-
timate the mean asset price from historical data. As a thought experiment, suppose
there is a slight (temporary) upward drift to asset prices. Individuals’ econometric
models will pick up that drift, leading to higher expectations about future asset prices
that feed back onto higher asset prices. This speculative bubble-like dynamic is self-
reinforcing and in some cases can lead individuals in the market to believe that asset
prices follow a random walk.

Second, random-walk beliefs, as will be shown below, are nearly self-fulfilling and,
consequently, such beliefs tend to persist for a substantial length of time. Further-
more, these beliefs generate excess volatility in asset prices, characterized by signifi-
cant bursts and collapses in asset prices that are reminiscent of speculative bubbles
and crashes. During a bubble episode, buyers demand greater amounts of the asset,
whose supply is exogenous and in short supply, and because of the higher anticipated
return to the asset it becomes more liquid in over-the-counter markets as sellers are
willing to part with more goods in exchange for the asset; a bubble leads to greater

3Baranowski (2012) is the first paper to study learning in a monetary search model.
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economic activity. A collapse of the bubble, or an asset price crash, will often exhibit
price dynamics that substantially under-shoot the long-run price. During a crash
episode, the asset becomes less liquid and, as a result, there is less economic activity.
Importantly, these changes in the liquidity property of the assets along a bubble or
crash path arise as an endogenous response to the fundamental economic shocks.

Third, a decline in the quantity of safe assets will introduce just the type of
drift in asset prices that can lead to random-walk beliefs and cause a substantial
overshooting of the new stationary equilibrium price. In one numerical example, the
asset price will overshoot the new equilibrium price by nearly 100% before collapsing
and converging at its new long-run value. These asset price dynamics confirm the
intuition of Caballero (2006) and the I.M.F.’s Global Financial Stability Report.
Fourth, structural changes to the economic environment that increase the demand
for collateral can also lead to a drift in asset prices that lead to random-walk beliefs
and an overshooting of the equilibrium price. This final result can be interpreted in
the context of recent macro-prudential policies in the Dodd-Frank Act and the Basel
III accord that requires more third-party clearing of bilateral or over-the-counter
transactions. Transactions that are run through clearinghouses typically require more
collateral, and less unsecured credit, than purely bilateral transactions between buyers
and sellers. We interpret the greater demand for collateral in terms of increased
frequency of trade in the decentralized market and demonstrate that such a structural
change in the trading environment can lead to an asset price bubble.

The results in this paper relate to a recent, and growing, literature that estimates
time series variation in liquidity premia. The model presented in this paper gener-
ates bubbles, crashes and excess volatility because imperfect knowledge and adaptive
learning lead to significant swings in the liquidity premium that arise in over-the-
counter markets. Dick-Nielsen, Feldhutter, and Lando (2012) find that excess volatil-
ity in estimated liquidity premia for investment grade corporate debt, and that this
estimated premium grew substantially after the onset of the financial crisis. Their re-
sults can be interpreted in the context of the present model as a decline in the supply
of safe assets. Moreover, Bao and Pan (2012) find excess volatility in monthly bond
and CDS returns that result from variation in the illiquidity of bonds. Most closely
related to the results here, they find that bond prices deviate from fundamental prices
because of variation in the liquidity premium in over-the-counter markets.

Is it reasonable to assume that individuals might have imperfect knowledge about
the asset price process? The answer is yes, for a variety of reasons. First, we adhere
to the cognitive consistency principle, as articulated by Sargent (1993) and Evans and
Honkapohja (2013), that economic agents should be assumed to behave like a good
econometrician who forecasts future economic variables using time-series econometric
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methods. This approach is reasonable since neither individuals or economists know
the model and instead formulate and estimate models that are frequently revised in
light of new data. Second, it is plausible to assume that the economy is subject to
occasional structural change – such as a decline in the supply, or an increase in the
global demand for safe assets – that is only revealed after some time has elapsed
and a sufficient quantity of data bears evidence of the change. Third, the imperfect
knowledge assumption assumes agents know the form of the law of motion for the
state variables and only attempt to estimate the true parameter value by adjusting
their estimates in light of recent data. On average, their beliefs are close to the
rational expectations equilibrium values and are determined endogenously with the
state variables, thereby, preserving the cross-equation restrictions that are a salient
feature of equilibrium models.

An important feature of the analysis is that imperfect knowledge can generate
instability in asset prices even though the departure from rational expectations is, on
average, small. The framework employed here is related to an extensive literature that
employs adaptive learning in macroeconomics. Most closely related are papers that
incorporate constant gain learning in studies of monetary policy and asset pricing:
see, for example, Branch and Evans (2011); Sargent (1999); Adam, Marcet, and
Nicolini (2010); Orphanides and Williams (2005); Cho, Williams, and Sargent (2002);
Williams (2004); Cho and Kasa (2008); McGough (2006).) Branch and Evans (2011),
in particular, find that risk-averse agents in an OLG asset pricing model forecast both
the risk and return of stock prices using a forecasting model whose parameters are
updated using constant gain least squares then traders may also come to believe that
stocks follow a random walk. These nearly self-fulfilling random walk beliefs lead
to recurrent bubbles and crashes in stock prices. While there are similarities in the
mechanism generating bubbles in Branch and Evans (2011) and in this paper, there
are important differences. The present environment includes a liquidity services role
for assets and this liquidity demand is essential for generating bubbles. While Branch
and Evans (2011) emphasizing variations in the perceived riskiness of assets.

There are alternative explanations for bubbles and variations in liquidity premia.
Rocheteau and Wright (2011), using a very similar search-based model, allow for en-
dogenous firm entry that depends, in part, on the asset price. They demonstrate the
possibility for multiple equilibria, and cycling between those equilibria, to generate
bubbles and crashes. Guerrieri and Shimer (2012) generate endogenous illiquidity
from an adverse selection problem that leads sellers of high quality, safe assets to
be unwilling to sell if prices are too low. A closely related economic environment
is in Kiyotaki and Moore (2008) who generate endogenous collateral constraints. A
number of papers demonstrate the efficiency enhancing properties of bubbles in over-
lapping generations models, including Tirole (1985), Grandmont (1985), and Santos
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and Woodford (1997). Bubbles can arise from agency problems in Allen and Gale
(2000), Barlevy (2011) and Farhi and Tirole (2011). This paper is complementary to
these, and other related papers, and instead emphasizes the liquidity role of assets
in an imperfect knowledge environment where endogenous expectations arise from a
real-time adaptive learning rule.

This paper proceeds as follows. Section 2 describes the economic environment.
Section 3 illustrates the main economic mechanism behind the results. Section 4
presents the main results. Section 5 includes further discussion. Section 6 concludes.

2 A Search-based Asset Pricing Model with Im-
perfect Knowledge

2.1 Environment

The economic environment is adapted from Rocheteau and Wright (2011) and Ro-
cheteau and Wright (2005).4 Each time period consists of two subperiods: in the
first subperiod agents gather in a decentralized, or over-the-counter, market, where
buyers and sellers meet in bilateral matches and exchange specialized goods; in the
second subperiod, agents interact in a centralized market where each agent is free
to consume and produce a general good using a linear production technology and
trade in a financial asset (claims to a Lucas tree). Following Rocheteau and Wright
(2005) agents are heterogeneous with a continuum of buyers and sellers, each with
measure one, in the decentralized market. The financial assets pay an iid dividend
yt to holders of the asset and have an exogenous supply At. This asset can be inter-
preted as a “safe” asset as all individuals in the economy have perfect information
about the (stochastic) dividend process. There is a stochastic process for At meant
to capture exogenous variation in the supply of safe assets. This variation could also
be considered “asset float” – i.e., IPO lock-up expirations, stock splits, repurchase
agreements, etc. – changes in the supply of safe government debt, or an increase
in global demand for safe assets that is external to the economy.5 Changes in asset
supply are implemented via lump-sum transfers to buyers at the beginning of the
centralized market. The exogeneity of the asset supply process is made for technical

4Rocheteau and Wright (2011) extend the monetary framework of Rocheteau and Wright (2005)
and Lagos and Wright (2005) to a model where the medium of exchange are claims to a Lucas tree
and there is endogenous firm entry.

5An alternative interpretation of the stochastic component to At is that only a fraction of the
asset can be used as collateral in the decentralized market (see Kiyotaki and Moore (2008)).
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convenience.

The model without decentralized trading is equivalent to the frictionless, risk-
neutral Lucas asset pricing model. With all trade taking place in the centralized
market the asset will be priced as the discounted expected capital return, reflecting
the “store of value” role of assets. Under rational expectations, the (unique) equilib-
rium asset pricing sequence has the property that the asset price equals the present
value of future expected dividends. With decentralized trading trade takes place
through an over-the-counter market with bilateral meetings and bargaining. Limited
enforcement, or a lack of commitment, precludes the use of unsecured credit arrange-
ments. Instead, buyers purchase goods with financial assets as a means of payment
or, equivalently, with the assets serving as collateral to secure loans extended by sell-
ers. This friction captures the role “safe” assets can play in facilitating trade. This
formalizes the liquidity properties of the financial asset. When the supply of assets is
in short supply, i.e. does not provide sufficient liquidity to facilitate the efficient level
of trade, then the fundamental price of the asset will carry an additional liquidity
premium. This paper demonstrates that the liquidity premium is essential for gener-
ating the departures from rational expectations that leads to bubbles, and subsequent
crashes, in asset market prices.

2.2 Model

Buyers choose sequences of the generalized good, the specialized good, labor, and
asset holdings to maximize

Ê0

∞∑

t=0

βt (U(xt) + u(qt)− lt)

subject to the constraints

xt + ptat = lt + (pt + yt)at−1 + Tt

where xt is the generalized good, qt is the differentiated good purchased in the de-
centralized market, lt is labor hours used to produce the generalized good according
to the production function xt = lt, at are asset holdings traded at price pt, yt is a
(stochastic) dividend, and Tt are the lump-sum transfers that distributes, without loss
of generality, the changes in asset supply to buyers. Ê is the (possibly) non-rational
expectations operator (to be specified below). As is standard in these models, define
U ′(x∗) = 1 and let U(x∗) = x∗. For simplicity, assume that the specialized good is
produced in the decentralized market according to the cost function c(q) = q. The
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efficient quantity of the decentralized good is, therefore, u′(q∗) = c′(q∗) = 1. Finally,
assume that agents rank alternative bundles of the specialized good by u(q) = q1−σ

1−σ .
6

The decentralized, or over-the-counter, market operates as follows. Buyers and
sellers meet in bilateral matches where the probability of a buyer and seller meeting
is given by the constant probability α. The parameter α captures the search friction
present in over-the-counter markets. Because of a lack of commitment, or imperfect
credit enforcement, trade involves issuing debt backed by collateral in the form of
claims to the asset, or equivalently, a quid pro quo transfer of shares in the asset.

The search and bargaining friction highlights two specific roles of the asset: as an
asset that yields a capital return in the form of pt + yt and as a liquid instrument
that enables trade that would otherwise not occur. Once matched a buyer and seller
bargain over the terms of trade. To keep the analysis simple, it is assumed that buyers
make a “take it or leave it” offer.7

The timing of the model assumes that buyers make asset holding decisions during
the centralized market and these assets can be used for trade in the following period.
Thus, asset demand will depend critically on expectations about the future price
of the asset. Individuals must have full information about the distribution of the
endogenous variables in order to form rational expectations. An alternative to rational
expectations is to assume that individuals behave like econometricians who hold a
(correctly) specified model of the economy, but they must recover the parameters in
real time from data. The imperfect knowledge assumption in this paper builds on
this approach.

Of course, along a learning path, the decisions that individuals make will be in-
formed, in part, by their forecasting model for price; as beliefs adjust, so will the
decisions made by agents. Because of the close interaction between beliefs and indi-
viduals’ choices, it is important to be be clear about several key assumptions regard-
ing the timing of decisions, outcomes, and the updating of beliefs. When solving the
buyers’ intertemporal optimization problem a central assumption regards the extent
to which individuals take the future evolution of beliefs into account when forming
their expectations. An individual that recognizes that the learning process will imply

6With search frictions, with positive probability there may not be trade and the utility function
u(q) may not be defined at zero. The literature deals with this possibility typically by altering the

utility function to be u(q) = (q+b)1−σ−b1−σ

1−σ so that it is defined at q = 0. For the present paper, it is
sufficient to assume that u(q) is locally CRRA, but defined at q = 0. Therefore, throughout we set
b arbitrarily close to zero.

7The qualitative results in this paper do not hinge on the specifics of the bargaining between
buyer and seller. What is needed is that the asset is in sufficiently short supply that it carries a
premium above its discounted payment flow.
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a probability distribution over all possible sequences of future beliefs, and takes this
uncertainty into account when formulating decision rules, is a fully Bayesian decision-
maker. On the contrary, an individual that takes his/her beliefs as given – that is,
that the coefficients in the econometric model are fixed and will not be updated again
in the future – when calculating the decision rule is called an anticipated utility max-
imizer (see Kreps (1998) and Cogley and Sargent (2008)). The present environment
assumes an anticipated utility framework for decision making. This assumption is
made for technical convenience and because it strikes us as a more plausible descrip-
tion of individuals’ behavior when they take actions conditional on their beliefs. An
individual that maximizes an infinite horizon optimization problem by accounting for
all of the potential sequences of beliefs will be faced with a more complicated task
than even agents with rational expectations. We note, however, that the qualitative
results below do not hinge on the anticipated utility assumption. A second assump-
tion that we make is that all individuals (buyers and sellers) are assumed to have
the same beliefs: they observe the same information, have the same learning rule,
and its common knowledge that they hold identical expectations. Finally, it is also
assumed that beliefs and endogenous state variables are not determined simultane-
ously. In particular, we assume that that current price of the asset is not observable
when agents form expectations. This breaks the simultaneity of beliefs and outcomes
that is a feature of rational expectations models but is not consistent with agents
who form expectations as out-of-sample forecasts given the available data. Define

Ωt =
(
{pj}t−1

j=0 , {Aj, yj}tj=0

)
as the information set available to agents when they

make decisions at time t.

In the centralized market, individuals hold expectations about the next period’s
price, conditional on all of the previously realized state variables, before they observe
the current price. Thus, we interpret the optimization problem as determining a
demand schedule that the agents turn into the Walrasian auctioneer in the centralized
market and the auctioneer sets the price to clear the market. More specifically, the
timing is as follows:

• At the beginning of the decentralized and centralized markets in time t, buyers
and sellers hold expectations Ê [pt + yt|Ωt], and yt, At are observable but pt "∈ Ωt.

• At the beginning of the centralized market, buyers submit their asset demand
schedule to the auctioneer based on Ê [pt+1 + yt+1|Ωt]. The auctioneer clears
the market.

• At the end of period t, after observing the realized price pt, buyers and sellers
update their information set Ωt+1 to include pt.
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To solve the model for an equilibrium asset price, we proceed sequentially begin-
ning with the bargaining solution in the decentralized market. During the decentral-
ized market, at the beginning of time t, a buyer makes a take-it-or-leave it offer in the
form of a pair (qt, dt) that specifies the exchange of q units of the good in exchange
for d units of the asset.8 This offer solves

(qt, dt) = argmax
qt,dt

[
u(qt) + Ê [pt + yt|Ωt] (at−1 − dt)− Ê [pt + yt|Ωt] at−1

]

subject to the seller’s participation constraint

−qt + Ê [p+ y|Ωt] dt ≥ 0

The buyer’s offer maximizes his surplus from an offer where the term Ê [pt + yt|Ωt] (at−1−
dt) − Ê [p+ y|Ωt] at−1 is the expected consumption foregone in the centralized mar-
ket after transferring d units of the asset to the seller. Because pt, the price of the
asset in the centralized market in time t, is not contemporaneously observable, the
bargaining terms between buyer and seller depend on their (possibly) non-rational
expectations of the value of the asset. The seller will participate so long as the an-
ticipated consumption in the centralized market, Ê [p+ y|Ωt] dt, is greater than their
cost of producing qt. This is how learning and beliefs can affect liquidity. The solution
to this bargaining problem is

qt =

{
q∗ if Ê [pt + yt|Ωt] at−1 > q∗

Ê [pt + yt|Ωt] at−1 else

If buyers have sufficient holdings of the asset they purchase the efficient quantity q∗,
otherwise they turn over all of their holdings of the asset and receive Ê [pt + yt|Ωt] at−1

in return.

The value function for a buyer in the decentralized market, given (qt, dt) is given
by the expression

Vt(at−1) = α [u(qt) +Wt(at−1 − dt)] + (1− α)Wt(at−1)

where Wt is the value function for a buyer in the centralized market:

Wt(a) = max
xt,lt,at

u(xt)− lt + βÊ [Vt+1(at)|Ωt]

8The take-it-or-leave it offer is a special case of proportional bargaining, where the buyer captures
the entire surplus from trade. Proportional bargaining has certain theoretical properties, such as
surpluses that increase along with the bargaining set, that are more attractive than other forms of
bargaining such as Nash bargaining. See Nosal and Rocheteau (2011) for details. The qualitative
results do not hinge on the proportion of the surplus assigned to the buyer.
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Combining these expressions, and making use of the quasi-linearity, leads to the
following equation

Wt(at−1) = (pt + yt)at−1 + Tt +max
x∗

[U(x∗)− x∗]

+ max
at≥0

{
−ptat + βÊ [α {u(qt+1)− (pt+1 + yt+1)dt+1}+ (pt+1 + yt+1)at|Ωt]

}

With these assumptions, asset demand at is the solution to

max
at≥0

{(
βÊt [pt+1 + yt+1|Ωt]− pt

)
at (1)

+ max
dt+1∈[0,at]

αβ
[
u(Ê [qt+1|Ωt])− Ê [pt+1 + yt+1|Ωt] dt+1

]}

To derive this expression for asset demand, we impose that (i.) agents use point

expectations, i.e. Ê [u(qt+1)|Ωt] = u
(
Ê [qt+1|Ωt]

)
, and, (ii.) expectations obey a

law of iterated expectations, i.e. Ê
[
Ê (z|Ωt+1) |Ωt

]
= Ê [z|Ωt] for any variable z.

That agents use point expectations is a behavioral assumption that essentially holds
that decisions only depend on the mean of their subjective beliefs. This assumption is
made for technical convenience and is a standard restriction imposed in many rational
expectations and adaptive learning models (see Evans and Honkapohja (2001)). The
law of iterated expectations, as expressed in (ii.), is a consequence of the anticipated
utility framework. This assumption does not impact the main results.

Notice that in (1), when α = 0, i.e. there is no decentralized market,the buyer’s
demand for the asset is equivalent to the risk-neutral Lucas asset pricing model. The
first expression in (1) shows that a part of the demand for the asset depends on the
expected return on the asset. The second expression is the liquidity demand for the
asset and here it depends on the expected surplus from trading in the decentralized
market.

There are three cases to consider:

1. When βÊ [pt+1 + yt+1|Ωt] > pt, then households desire an infinite amount of the
asset and the optimization problem does not have a solution.

2. When βÊ [pt+1 + yt+1|Ωt] = pt then households hold enough to purchase q∗ = 1,
dt+1 = 1/Ê [pt+1 + yt+1|Ωt+1], and any at ≥ dt+1 is a solution to the optimization
problem. In this case, there is no liquidity premium and the asset is priced as
the discounted expected payment flow of the asset.
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3. When βÊ [pt+1 + yt+1|Ωt] < pt, then the household is liquidity constrained and
qt+1 = Ê [pt+1 + yt+1|Ωt+1], and at solves

max
at

{(
βÊt [pt+1 + yt+1|Ωt]− pt

)
at + αβ

[
u(Ê [pt+1 + yt+1|Ωt] at)− Ê [pt+1 + yt+1|Ωt] at

]}

The first-order condition from the buyer’s problem combined with a market clearing
condition yields an expression for the equilibrium price.9

It remains to specify the stochastic processes for dividends and for the supply of
the asset. For simplicity, and without loss of generality, assume that dividends follow
the process yt = y + ηt where y > 0 and ηt is white noise with variance σ2

η. From
a theoretical perspective, and for the learning results presented below, the precise
details of the process followed by yt are not important. Since we are interpreting the
asset as a “safe asset” it is natural to assume that yt is known with certainty or subject
to small iid shocks. Assume also that the supply of the asset is given by the process
logAt = logA− 1

σ log ε̂t where A > 0 and Eε̂t = 1 with a small compact support. The
stochastic process for the supply of shares is meant to proxy for exogenous changes
in asset supply. Supply variation could arise because of changes in government debt
issuance (as in Krishnamurthy and Vissing-Jorgensen (2012)) or asset float where the
tradeable supply of shares may vary because of repurchase agreements, stock splits,
lock-up expirations etc. Asset float has been shown to be an important factor in asset
pricing (see Cochrane (2005), Baker and Wurgler (2000)). Because the stochastic
component of the transfers are unpredictable, buyers will not anticipate receiving
transfers in period t + 1 when deciding on their asset demand at time t. However,
the variation in the outside supply of shares will affect the equilibrium price at time
t through the market clearing condition.

With these assumptions in hand, it is straightforward to solve for the following
equilibrium price

pt =

{
(1− α)Êt (pt+1 + yt+1) + αβ

[
Êt (pt+1 + yt+1)

]1−σ

A−σ
t if At <

q∗

Êt(pt+1+yt+1)

βÊt (pt+1 + yt+1) else
(2)

where we now make use of the simplifying notation Êtz = Ê [z|Ωt]. Recall, also that
Êtyt+1 = y. This law of motion for the equilibrium price can be written compactly as

pt = G(Êtpt+1, At) (3)

9The liquidity premium implies that there is a holding cost to the asset. Since sellers do not use
the liquidity services of the asset, they will choose not to buy the asset in the competitive market.
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2.3 Rational Expectations Equilibria

A rational expectations equilibrium is a sequence {pt} that is a (bounded) solution to
(2). Because of the non-linear nature of the expectational difference equation (2) a
complete characterization of the set of equilibria is not possible. In the deterministic
version of this model, for some parameter values, there can exist cycles, complicated
dynamics and sunspot equilibria. (see Lagos and Wright (2005) and Rocheteau and
Wright (2011)). However, it is straightforward to verify that there exist solutions to
(2) that take the form of a noisy steady-state. In the analysis below, the model will
be parameterized so that it is locally determinate.

The expression in (2) also demonstrates that asset prices will include a liquidity
premium when α > 0 and the supply of the asset A is sufficiently low so that there is
an inefficient quantity traded in the decentralized market. These are rational bubbles
much like monetary equilibria are bubbles or as in rational bubbles in Tirole (1985)
which arise in dynamically inefficient economies. Because the liquidity premium arises
out of a fundamental property of the asset – that is, its ability to facilitate bilateral
exchange – we refer to this as the fundamental price.

Definition 1 The “fundamental,” or stationary, equilibrium price is the steady-state
p̄ = G(p̄, A).

Remark. Of course, when A is sufficiently high (or α = 0) then there is no liquidity
premium and p̄ = βy/(1 − β), which is the expected present value of the dividend
flow.

Definition 2 A noisy steady-state rational expectations equilibrium is a function
p(At) defined so that p(At) = G(p̂, At) with p̂ such that p̂ = EG(p̂, At), where the
expectation is taken with respect to the distribution of At.

The following result is a direct application of a theorem in Evans and Honkapohja
(1995).

Proposition 3 (Evans and Honkapohja (1995)) Consider a family of distribu-
tion functions for At, indexed by α, with Fα(−α) = 0, Fα(α) = 1 and Fα (weakly) con-
verges as α → 0 to F0(A) = 1. Define p̂(α) = EG(p̂(α), At(α) and p̄ = G(p̄, A) is the
fundamental steady-state. Then there exists a noisy steady-state p(At) = G(p̂(α), At)
with p̂(α) arbitrarily close to p̄, for sufficiently small α.
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In a noisy steady-state equilibrium, price are small iid deviations from the fun-
damental, or stationary, equilibrium price. Even though, the rational expectations
equilibrium features iid fluctuations around the fundamental price, under learning the
iid fluctutations are sufficient to generate substantial, temporarary departures from
the fundamental price.

3 Liquidity and Beliefs

This section presents results on the types of beliefs that can arise in an equilibrium
and along a typical learning path. The main insight is that imperfect knowledge can
introduce (nearly) self-confirming serial correlation into the model that would not
exist under full information.

3.1 Beliefs

Because there exist rational expectations equilibria that are noisy steady-states one
possible learning rule would be to simply recursively estimate the sample mean of
the asset price. Since it is not possible to rule out, in general, the existence of other
stochastic equilibrium paths it is not reasonable to expect that agents will know the
complete underlying economic structure and be able to form rational expectations.
In response, many modelers assume that agents behave like a good Bayesian who
holds priors about the perceived model of the economy and updates those priors
as new data becomes available. This adaptive learning approach typically assumes
that agents have a correctly specified model with unknown parameters and use a
reasonable estimator to update their parameter estimates. In many environments,
these beliefs converge to rational expectations.10

In practice, however, econometricians often misspecify their models. In partic-
ular, even though the actual data generating process may be non-linear, econome-
tricians and professional forecasters typically estimate linear models such as vector
autoregressive models. This section takes this approach seriously by imposing that
agents form their expectations via a linear AR(1) model of the asset price. Although
this forecasting model is misspecified, we will require that it be optimal within the
class of linear forecasting rules. In a stochastic consistent expectations equilibrium
(SCE) agents’ forecasting model is optimal within the class of misspecified models,
i.e. the optimal linear projection, so that, within the context of their perceived model,

10See Evans and Honkapohja (2001) for extensive treatment of adaptive learning and expectational
stability.
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they are unable to detect their misspecification. The projection parameters and the
equilibrium stochastic process for asset prices are jointly determined so that a SCE
preserves many of the cross-equation restrictions that are a salient feature of rational
expectations models. It is important to note that, although the AR(1) model may
be misspecified for some AR coefficients, the forecasting model nests the (unique)
noisy steady-state equilibrium. Thus, an AR(1) model is a natural and reasonable
assumption on agents’ beliefs.

Specifically, assume that agents form expectations from the forecasting model

pt = c+ b (pt−1 − c) + εt

Thus,
Êtpt+1 = c+ b2(pt−1 − c) (4)

Plugging (4) into (2) leads to the actual law of motion, given by

pt = G(y + c+ b2(pt−1 − c);At) (5)

where G(Êt(pt+1 + yt+1);At) is given by the expression (2). Linear beliefs, such as
those in (4), can be justified when the non-linear environment is not completely known
since agents would be unable to exploit the non-linear structure for the purpose of
forecasts. Indeed, in a SCE, as will be seen below, agents are unable to detect
their misspecification within the context of their perceived model. The next sections
discuss, in detail, how the coefficients (c, b) are determined in equilibrium and how
they are updated by the learning rule.

The forecasting model and beliefs in (4), formalize the nature of individuals’ im-
perfect knowledge. These agents have considerable understanding of their economic
environment. They have an imperfect understanding of the process that determines
the market asset price, pt, and they specify a linear econometric forecasting model
that nests the noisy rational expectations equilibrium price (i.e. where c = p̄, b = 0).
Given these beliefs, they determine their optimal asset demand and bargain over terms
of trade with sellers (who share the same beliefs) in the over-the-counter market.

3.2 Stochastic Consistent Expectations Equilibria

This subsection presents insights on the nature of beliefs in an SCE. Branch and
McGough (2005) characterize an equilibrium where agents hold linear beliefs, as in
(5), and the state variable follows a non-linear reduced-form, as in (2), such that the
belief parameters c, b are linearly consistent with the associated equilibrium dynamics.
To state a precise definition of a stochastic expectations equilibrium (SCEE), the
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following adapts Branch and McGough (2005) to the present environment. Define
the following notation: for any initial distribution λ0 on a compact set, with the
initial condition p0 chosen with respect to this distribution, and for t ≥ 1, let λt(λ0)
be the unconditional distribution of pt, and let Λt(λ0) be the unconditional joint
distribution of (pt, pt−1), as determined by (5).

Definition 4 The triple ({pt}, c, b) is a stochastic consistent expectations equilibrium
(SCE) provided the following hold:

1. pt is generated by (5);

2. there exists a unique distribution λ so that for initial distribution λ0, the distri-
bution λt(λ0) converges weakly to λ;

3. for any λ0, limt→∞ Eλt(λ0)(pt) = c and limt→∞ corrΛt(λ0)(pt, pt−1) = b.

An SCE occurs when there is a unique distribution to which pt converges weakly, for
any initial condition, and the asymptotic mean and autocorrelation coincide with the
beliefs of agents. It is in this sense that agents are unable to detect their misspec-
ification within the context of their model as a check of regression residuals would
not reveal any first order autocorrelation that would lead the forecaster to reject the
econometric model.

Notice that if p̄ = G(p̄;A) is a steady-state of the model (2) then in an SCE c = p̄.
In an SCE, the mean asset price will coincide with the mean price under rational
expectations. Thus, showing existence of an SCE is straightforward: if p̄ is a fixed
point of G then the pair (p̄, 0) characterizes an SCE. Branch and McGough refer to an
SCE with zero autocorrelation as a ‘trivial SCE,’ though in the present context it ac-
cords with the (locally unique) rational expectations equilibrium. Showing existence
of non-trivial SCE is challenging and many of the sufficient conditions in Branch and
McGough (2005) are violated in the present environment. In a linear model (which
arises here when σ = 1), Hommes and Zhu (2011) show that a non-trivial SCE does
not exist for iid stochastic shocks but do exist if the shocks are serially correlated.
Moreover, Branch and McGough (2005) showed that non-trivial SCE, when p̄ "= 0,
will be unstable under learning.

Studying asset pricing properties in an SCE may nevertheless yield important
intuition for understanding asset pricing dynamics under adaptive learning. In par-
ticular, numerical simulations under learning show that bubbles and crashes can arise
when agents’ approximating model becomes close to a random walk, i.e. b ≈ 1. This
subsection and the next present an argument that the onset of such beliefs is intuitive
and expected in this environment.
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To illustrate the possible types of equilibria it is useful to define the map

T (b) = lim
t→∞

corr(pt, pt−1)

as the asymptotic first-order serial correlation, given b, between pt and pt−1. If p̄
is a fixed point of (2) then an SCE is a pair (p̄, b̄) where b̄ = T (b̄) is a fixed point
of the map T . It is straightforward to numerically compute an SCE. Figure 1 plots
two different examples of SCE. In each plot the parameters are set to the baseline
parameterization in Table 1. The value of β accords with a 2% real interest rate,
while α was chosen to match the velocity of collateral estimate in Singh (2011). All
values of σ < 2 yield a determinate model. In the baseline parameterization σ = 1.75,
though the subsequent analysis considers alternative values for σ. The values of A and
y were chosen so that there was a liquidity premium in the fundamantal price, and
the value of σ2

ε ensures that the supply shocks are “small”. The two plots in Figure
1 differ by the utility curvature parameter σ. This is a key parameter governing how
strongly the expectational feedback in the liquidity premium impacts asset prices.
The right panel is for σ = 1.75 and the left panel plots σ = 0.05. Where the line
T (b) crosses the 45◦ line is a SCE. In the case of a small σ, so that there is a negative
feedback in the liquidity premium, then there exists a unique SCE at b = 0, which
corresponds to the fundamental equilibrium. For a value of α = 0.05, where there is
now positive expectational feedback in the liquidity premium, then there exists two
SCE one with b = 0 and the other at b = 1.

Table 1: Baseline parameterization

β σ α A y σ2
ε

0.98 1.75 0.10 0.40 0.01 0.004

There are two quick conclusions to draw from Figure 1. First, for small values of
σ there can exist an equilibrium with self-fulfilling serial correlation. The equilibrium
with b = 1 has non-zero serial correlation, even though the shocks and rational
bubbles equilibrium are iid, entirely because agents’ perceive serial correlation, that
is reinforced through the self-referential property of the asset-pricing model. In the
non-trivial SCE it is the case that Etpt+1 = pt−1 so that agents’ perceived model
of the asset price process is a random walk. Second, we can expect that the b = 0
equilibrium will be stable under learning since at b = 1 the slope of T (b) is greater
than one. This is not unexpected as Branch and McGough (2005) showed that non-
trivial SCE are unstable in models with a non-zero steady-state. The analysis below,
however, will demonstrate that along a transition path to the stable SCE, the learning
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Figure 1: Stochastic Consistent Expectations Equilibria. Left panel is for the baseline
parameterization. Right panel sets β = 0.99, A = 0.1, σ = 0.05.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T b

b ,
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T b

b

dynamics will bring beliefs close to the non-trivial SCE so that there can be (nearly)
self-fulfilling serial correlation for finite stretches of time. This will be the key intuition
for why bubbles and crashes arise in this model.

3.3 Learning

The previous subsection examined an equilibrium where the belief parameters (c, b)
are linearly consistent with the sample mean and first-order autocorrelation coeffi-
cients of the actual data generating process. A natural question is whether individuals
will learn to coordinate on a SCE. This question is addressed by assuming agents re-
cursively estimate the coefficients of their (linear) perceived law of motion and use
these estimates to form expectations. These expectations generate new data via the
reduced form model (5), and agents use these new data to again update their esti-
mates.

Given the perceived law of motion

pt = c+ b(pt−1 − c) + εt
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the actual law of motion is given by (5). Given parameters c and b it is possible to
define the map T : R× [0, 1] → R2 as follows

Tc(c, b) = lim
t→∞

Ept

Tb(c, b) = lim
t→∞

corr(pt, pt−1)

and T (c, b)′ = (Tc(c, b), Tb(c, b)). The map T can be interpreted as follows: given
fixed beliefs (c, b), the actual law of motion is given by (5) and the corresponding
asymptotic mean and first-order autocorrelation is given by T (c, b). Unsurprisingly,
an equilibrium is a fixed point of the T-map.

Under real-time learning the parameters (c, b) are not fixed, and instead are ad-
justed gradually over time using least-squares to update their values in response to the
changing data. The learning literature, e.g. Evans and Honkapohja (2001), has shown
that the T-map can be used to compute a stability condition, known as E-stability,
which often governs whether or not equilibrium parameters are locally stable under
learning and that the differential equation, used to define E-stability, also provides
information on the global dynamics under learning. The mathematical theorems un-
derlying the E-stability principle rely on the stochastic approximation approach, and
those theorems could be applied to the present non-linear environment. However, the
form of the T-map is sufficiently complicated that general results are not available.
It is possible to numerically solve for the E-stability dynamics and present available
analytic results for the special case σ = 1.

The E-stability principle states that locally stable rest points of the ordinary
differential equation

d(c, b)′

dτ
= (T (c, b)− (c, b))′ (6)

will be attainable under least squares and closely related learning algorithms.11. That
the E-stability principle governs stability under learning is intuitive since under (6)
the parameters (c, b) are adjusted in the direction of the asymptotic moments implied
by the actual law of motion generating the data given (c, b). Local stability of (6)
then answers the question of whether, under these E-stability dynamics, a small
displacement of (c, b) from a SCE would return to the equilibrium.

Analytic results on E-stability of SCE are not available because there is not a
closed-form expression for the T-map.12 However, it is straightforward to demonstrate

11Here τ denotes “notional” time
12Analytic E-stability results are available for alternative learning rules. For example, in the

monetary version of this model (e.g. y = 0) Baranowski (2012) shows that the stationary equilibrium
is E-stable when agents simply estimate the conditional mean (i.e. omit the lag from their forecasting
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Figure 2: E-stability Dynamics
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E-stability by numerically calculating the T-map for a specific parameter choice.
A numerical investigation revealed that only the trivial SCE, i.e. the fundamental
equilibrium, is E-stable as anticipated by the results in Branch and McGough (2005).
Figure 2 demonstrates the E-stability dynamics for the baseline parameterization in
Table 1. In this case, the mean price, i.e. the fundamental equilibrium, is p̄ ≈ 2.3.

Figure 2 shows that the SCE corresponding to the fundamental equilibrium (p̄, 0) is
E-stable. The figure plots the resting points of the E-stability ODE and the associated
vector field. There are rest points at (0, 2.3) and (12.3) and the arrows indicate the
direction of adjustment in (6). The figure shows that the non-trivial SCE with b = 1
is unstable under the E-stability dynamics. In contrast, the fundamental equilibrium
with c = p̄ and b = 0 is a sink under learning.

Figure 2 illustrates three further features. First, the fundamental equilibrium is
E-stable and its basin of attraction includes all initial conditions. The price that

model). Baranowski demonstrates the E-stability arises across a number of specifications for the
Lagos and Wright (2005) model, including Nash and proportional bargaining.
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would arise without a liquidity premium, i.e. discounted present value of dividends,
which lies below p̄, is not an equilibrium and would not arise under learning. Thus,
learning dynamics drive asset prices towards the price that includes the liquidity pre-
mium. Third, most analyses of asset pricing under learning focus on the E-stability
properties of a particular equilibrium. The figure also demonstrates that the tran-
sitional dynamics might be of independent interest. The vector field indicates that
some transitional paths may include non-linear paths to the fundamental equilibrium.

3.4 A Special Case: σ = 1

The E-stability dynamics govern the stability of the rational expectations equilibrium.
However, they do not give the full picture of global learning dynamics. This section
details the learning dynamics and illustrates how the liquidity properties of the asset
can alter the qualitative nature of learning dynamics. The central idea is the following:
agents are aware of the form of the asset pricing process but the specifics, such as
the frequency of transactions in the decentralized market, the illiquidity of the asset,
etc., are unknown. An agent in this setting would be wise to remain alert to potential
changes in the liquidity of the asset. Such an agent will then place a prior probability
on drifting coefficients in their forecasting model. There are two central ingredients
to the results that come below: the asset is in a sufficiently low supply (i.e. illiquid)
that is imperfectly known by agents, and a prior belief of possible structural change.
The results from this section will be instructive for the asset price dynamics featured
in subsequent sections.

3.4.1 Asymptotic Learning Dynamics

In the case that σ = 1 the form of the asset pricing equation is simplified and addi-
tional analytic results are available on the global learning dynamics. In this case, the
law of motion for asset prices is conditionally linear:

pt = (1− α)βÊt (pt+1 + yt+1) + αβA−1(1 + εt) (7)

where εt is white noise with variance σ2
ε . For fixed belief parameters (a, b), the law of

motion in (7) is conditionally linear and the analysis in Branch and Evans (2011) can
be used to gain analytic insight into the nature of real-time learning dynamics. When
σ = 1 there is a unique SCE that corresponds to the fundamentals equilibrium. The
next section presents simulation results for σ > 1.

To formulate a least-squares updating rule, it is convenient to formulate the fore-
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casting rule as a linear AR(1) model:

pt = c+ bpt−1 + εt

so that
Êtpt+1 = c(1 + b) + b2pt−1 (8)

Plugging these expectations into (7) leads to the actual law of motion

pt = (1− α)β(y + c(1 + b)) + αβA−1 + βb2pt−1 + αβεt (9)

≡ T (a, b)′Xt−1 + αβεt (10)

A key assumption of the approach in this paper is that the agents must jointly
learn the mean and serial correlation of asset prices. Let θ′ = (c, b), X ′ = (1, p).
Agents are assumed to update their parameter estimates according to the following
recursive algorithm

θt = θt−1 + γSt−1Xt−1 (pt − θ′Xt−1)
′ (11)

St = St−1 + γ (XtX
′
t − St−1) (12)

The equations in (11)-(12) are the updating equations for recursive least squares
where the data are discounted by a constant “gain” γ. Here St is an estimate of
EXtX ′

t, the second moment matrix of the regressors. Least-squares updating arises
when the constant gain γ is replaced by a decreasing sequence γt = t−1. Sargent
and Williams (2005) demonstrate that constant gain learning equations (11)-(12)
arise from an approximate Bayesian learning process in which the prior on parameter
drift, a common assumption in applied econometric work, is proportional to the ratio
of observation noise variance to the covariance of the regressors, with the speed of
drift controlled by the constant gain γ. An alternative interpretation of (11)-(12) is
that agents use least squares modified to discount past data due to a concern about
(possible) structural change of an unknown form. In the stochastic simulations below,
we set γ = 0.10 which equates to an effective sample size of approximately 80 years.13

The asymptotic behavior of θt is non-trivial because the model (7) is self-referential.
It turns out that for small gains γ it is possible to obtain results on the asymptotics
by studying a continuous time approximation to the recursive algorithm. More specif-
ically, Evans and Honkapohja (2001) demonstrate that asymptotically the dynamics

13Empirical estimates of constant gains typically fall in the range of 0.02− 0.10, see Branch and
Evans (2006). Bubbles and crashes arise more often in stochastic simulations for larger values of γ
but also introduce a greater amount of volatility.
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are governed by the “mean dynamics” ordinary differential equation (ODE)

dθ

dτ
= S−1M(θ) (T (θ)− θ) (13)

dS

dτ
= M(θ)− S (14)

where τ = γt, M(θ) is the unconditional covariance matrix of the regressors holding
θ fixed. The ODE (13) guiding the evolution of θ is identical to the E-stability differ-
ential equation with the exception that it includes weighting terms that depend on
estimates of the covariance matrix. It is straightforward to see that the fundamental
equilibrium is a locally stable rest point provided that (1− α)β < 1.

Under decreasing gain learning γ is replaced with 1/t and it can be shown that
in the limit as t → ∞ the learning dynamics converge with probability one to the
bubble equilibrium. This paper focuses on constant gain learning, in which param-
eter estimates weight recent data more heavily than past. We next summarize the
analytical results for constant gain learning by directly applying the results in Branch
and Evans (2011).

The first result establishes that for a sufficiently small constant gain the perceived
coefficients θt will be an approximately normal random variable with a mean equal
to its fundamental equilibrium value and a variance that depends on both the con-
stant gain and other parameters of the model including the illiquidity parameter A.
The second result shows that from a given intitial condition (θ0, S0) the solution to
the “mean dynamics” of the ODE (13-14) give the expected transition path to the
fundamental equilibrium values.

Proposition 5 The belief parameters θt are approximately distributed as θt N(θ̄, γV )
for small γ > 0 and large t, where θ̄ = (p̄, 0)′ and for appropriately defined V .

Proposition 6 Define φt = (θt, vec(St))′. For any φ0 within a suitable neighborhood
of the fundamental equilibrium, define φ̃(τ, φ0) as the solution to the differential equa-
tion (13)-(14), with initial condition φ0. Fix T > 0. The mean dynamics of (11)-(12)
satisfy Eφt ≈ φ̃(γt, φ0) for γ sufficiently small and 0 ≤ t < T/γ.

There are important conclusions to draw from these propositions. First, the fun-
damental equilibrium provides a natural benchmark in the sense that the coefficients
for the forecast rule under learning are centered on these equilibrium values. Second,
for γ → 0, the learning dynamics are arbitrarily close to their fundamental equilib-
rium values with high probability. Third, we can gain insight into the global learning
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dynamics, for finite stretches of time, by studying the solution paths to the mean
dynamics differential equation given initial conditions. Moreover, these initial condi-
tions can be drawn from the asymptotic distribution for θ computed in Proposition
5.

3.4.2 Learning Dynamics and Random-Walk Beliefs

Under constant gain learning there can be occasional, temporary departures from
rational expectations. These departures can arise as an endogenous response to the
exogenous liquidity shocks. This section illustrates these possibilities for the special
case σ = 1.

Proposition 6 shows that for any initial condition, and finite period of time, that
the expected learning path to the fundamental equilibrium will be the solution path
to the mean dynamics equations (13)-(14). One can think of constant gain learning,
which respond more strongly to recent shocks, as re-initializing the mean dynamics.
Figure 3 plots representative mean dynamics where initial values for c, b > 0 are
drawn from the asymptotic distribution in Proposition 6. To generate this figure
the parameter values are chosen according to Table 1 except σ = 1. The initial
values are c = 3.73 and b = .4 correspond to an increase in the perceived mean and
serial correlation of the asset price. The top panel plots the perceived value for the
intercept, c, while the bottom panel plots the perceived lag coefficient b.

Figure 3 illustrates two aspects of the expected learning path. First, the bub-
ble equilibrium is a stable rest point of the mean dynamics implying that learning
paths converge to the bubble equilibrium. Second, the transition path to the bubble
equilibrium is interesting. At first the path for (c, b) moves back toward the bubble
equilibrium then abruptly reverses course with c ≈ 0 and b ≈ 1 for a finite period
of time, before converging to the bubble equilibrium values. The mean dynamics,
therefore, show that the expected learning path has agents perceiving, for stretches
of time, that the asset price follows a random walk without drift.

As discussed in the above subsection on stochastic consistent expectations equi-
libria, random-walk beliefs play a key role in the learning dynamics. First, they
can be nearly self-fulfilling and the additional serial correlation introduced through
beliefs has important implications for the dynamic nature of asset prices. Second,
random-walk beliefs can arise through learning as temporary deviations from the
bubble equilibrium. Third, as the next section will demonstrate, random walk be-
liefs can lead to speculative bubbles and crashes. In essence, agents come to believe
that recent innovations in asset prices are permanent shifts and not mean-reverting
fluctuations. They trade on these beliefs and bid asset prices up.
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Figure 3: Mean Dynamics.
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3.4.3 Implications of Asset Shortages

Having established the possibility of random-walk beliefs emerging under learning, we
turn to the comparative effects of asset shortages. One can proxy for asset shortages
via the parameter A which measures the average asset float in the economy. Of course,
if A is sufficiently large then there is no liquidity premium. Smaller values of A then
yield a larger liquidity premium and the asset can be said to be illiquid since there
is not sufficient supply to support an efficient quantity of trade in the decentralized
market. The onset of random-walk beliefs depends on a complicated interaction of
the entire set of structural parameters. It is natural, though, to wonder what role the
supply of the asset has in leading to random-walk beliefs.

To address this question, Figure 4 plots the mean dynamics for A = 0.4 and
A = 0.75, keeping the other parameter values the same as in Figure 3 and Table 1.
As above, the learning dynamics are initialized from the 95% confidence ellipse around
the stationary equilibrium. For each value of A, the learning dynamics converge to
the stationary equilibrium. The transitional dynamics differ between the two learning
paths. For a larger asset supply – or, smaller liquidity premium – there is a slow drift
in the estimated intercept coefficient, c, and the learning dynamics do not feature
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Figure 4: Mean Dynamics.
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random walk beliefs that arise when the asset is in shorter supply (e.g. A = 0.4).

When the asset is in short supply, it directly affects asset price dynamics through
the mean price, i.e. a larger liquidity premium, and by making asset prices more
volatile. The results in Figure 4 also show that a smaller supply can have an indirect
effect via the learning dynamics. Only when the liquidity properties are sufficiently
high – and asset prices are volatile – do the learning dynamics feature random walk
beliefs which, as will be seen below, are key to generating bubbles and crashes.

4 Asset Shortages, Bubbles and Crashes

When the asset is in short supply, its stationary equilibrium price consists of two
components the discounted dividend flow and a liquidity premium. The results from
the previous section show that with a large liquidity premium, random walk beliefs
can arise in transitional learning dynamics. This section presents three implications
of the model with adaptive learning: first, a permanent change in the (mean) asset
supply leads to an asset price path that overshoots its new higher level; second, an
increase in the demand for collateral – arising, for example, from macroprudential
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policies that emphasize secured over unsecured credit – will lead to an asset price
path that overshoots its new higher level; third, occasional temporary shocks to the
supply of assets can lead to bubbles and crashes.

4.1 A Change in Asset Supply

An imbalance in the supply of safe assets can be interpreted, within the context of
the model, as a decrease in the (mean) asset share supply A. Since A is the per-capita
supply of the asset, values of A < 1 imply a demand imbalance that manifests as a
liquidity premium in the stationary equilibrium price. A decrease in A is a further
shortening of asset supply.

This subsection considers the following experiment of a decrease in the (mean)
asset supply. The model parameters are chosen according to the baseline parame-
terization with an initial asset share supply A = 0.40. The model is initialized in a
stationary equilibrium and individuals’ beliefs are set to their rational expectations
equilibrium values. Then A is lowered permanently to A = 0.2, a change that reflects
a decrease in the supply of safe assets. Although, the economy is initially in a ratio-
nal expectations equilibrium, the agents in the economy have imperfect information
about the change in the supply of assets and the greater liquidity premium that will
eventually arise. Figure 5 plots the resulting belief and price dynamics.14 At time
0, the asset supply A decreases, raising the liquidity premium and the asset price
without a corresponding increase in price expectations (which are determined by an
adaptive learning rule). Initially, the asset price is below the new stationary equilib-
rium price. The increase in the asset price is tracked by agents’ econometric model
as an increase in the persistence of prices, reflected in an increase in the estimated
value for bt. As the mean dynamics predict (for the special case), eventually agents’
beliefs are that prices follow a random walk. At this point, there is a burst in prices
as the asset price increases to nearly double its new long-run value before converging
to the new equilibrium price.

Thus, a decrease in the supply of safe assets can lead to price dynamics that
resemble speculative bubbles. This bubble-like path arises because the initial upward
drift in prices leads to a nearly self-fulfilling belief that the asset price follows a random
walk.15 The price dynamics are consistent with the observation that a shortage in
safe assets will lead to asset bubbles.

14Figures 5 and 6 are generated as the average time-path across 10,000 stochastic simulations of
length 1,000.

15These results are similar to McGough (2006) who examines changes to the natural rate of
unemployment in the model of policymaker learning developed in Sargent (1999).
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Figure 5: A Decrease in Asset Supply: A = 0.4 → A = 0.2.
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4.2 Implications of Changes in Collateral Demand

An imbalance in the demand for assets can arise from a shortage of safe assets,
as in the previous subsection, or from a greater demand for the use of assets as
collateral in over-the-counter markets. Recently, policymakers such as the IMF, and
other market observers, have identified several structural and policy changes that
have the potential to increase the global demand for safe assets.16 Among these
changes, are new financial regulations that require an increasing number of over-
the-counter transactions to be cleared through central clearinghouses. Additionally,
many central banks of use safe assets as collateral in repurchase agreements. This
subsection investigates the potential impact of increased demand for collateral in
over-the-counter transactions.

The model itself, of course, consists of bilateral trade and does not readily feature
a third party clearing house. Incorporating a tri-party market is beyond the scope
of the present study. However, the model lends itself to the following interpreta-
tion: as the probability α of a match between buyer and seller increases, buyers will

16See Iorgova, Al-Hassan, Chikada, Fandl, Morsy, Pihlman, Schmieder, Severo, and Sun (2012).
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Figure 6: An Increase in the Demand for Collateral: α = 0.01 → α = 0.2.
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find themselves inmore frequent need of collateral to secure trade in over-the-counter
transactions. Hence, an increase in α can be interpreted as a structural increase in
the demand for collateral.

Essentially, a higher probability α makes the asset more liquid as it becomes easier
with the lower search friction to exchange the asset for goods and services. This
subsection considers the following experiment. The model parameters are chosen as
before, except initially α = 0.01, signifying an illiquid market with a low probability
of over-the-counter trade. The model, and agents’ beliefs, are initialized at their
stationary equilibrium values. Then α is increased to α = 0.2. Figure 6 illustrates
the results. As the asset becomes more liquid, there is an upward drift in prices.
Agents’ econometric model of the price quickly picks that drift up as a greater serial
correlation in the price process. A positive feedback loop results where agents’ believe
that asset price innovations are serially correlated and so recent price increases will
persist, leading to higher price dynamics, and higher estimated degrees of persistence.
Eventually, agents come to believe that the asset price is a random-walk.
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4.3 Real-time Asset Price Dynamics

Figures 5 and 6 demonstrate that changes in the demand imbalance for the asset can
result in asset price dynamics that overshoot their stationary values. These bubble like
dynamics arise because agents come to believe that asset prices follow a random-walk
and, as argued before, these beliefs are nearly self-confirming. Random-walk beliefs
can only persist for a finite period of time before, as the mean dynamics predict
the learning process brings the economy back near its stationary equilibrium. These
results suggest that real-time learning dynamics might exhibit recurrent bubbles and
crashes. This is the topic of the present subsection.

This subsection uses stochastic simulations of the real-time learning dynamics to
demonstrate that bubbles and crashes – i.e., substantial deviations from the station-
ary equilibrium values – can arise as an endogenous response to the fundamental asset
supply shocks.17 For example, Figure 7 plots a real-time simulation of price dynamics.
As before, the figure is computed with the parameter values in Table 1 except with
A = 0.15 and a constant gain of γ = 0.10. To generate this figure the model is initial-
ized at the stationary rational expectations equilibrium, expectations are generated
according to (8) with parameters updated via constant gain least-squares, and price
is determined by (3). The left panels plot the asset price and the quantity traded in
the decentralized market. The right panels plot the estimated coefficients (ct, bt).

Under constant gain learning, the economy hovers near its stationary rational
expectations equilibrium price most of the time with small iid deviations. Since these
learning dynamics are near the noisy rational expectations equilibrium, the figure
illustrates that, on average, beliefs are close to their rational expectations values.
At about period 200, there is an abrupt qualitative change in the dynamics with a
bubble in the asset price. This bubble features a price that increases over 3 times
above its fundamental value. The bubble persists only for a finite length of time
before returning to a neighborhood of the stationary equilibrium. The pattern of
beliefs correspond with what was observed in Figure 3 and in Proposition 6, in that
for finite stretches of time agents believe that inflation follows a random walk. In
simulations, these large deviations from rational expectations are recurrent.

Figure 7 provides an intuitive story for the existence of asset price bubbles. Be-
cause of imperfect knowledge about the economy, individuals learn about the price
process via an econometric forecasting rule that remains robust to structural change
and model misspecification by weighting recent data more heavily than past data.

17To prevent explosive dynamics, we impose the following restrictions on the learning dynamics:
(1.) agents only update their estimates of b provided that it lies below 1/β; (2.) agents forecast a
non-negative return on the asset, i.e. Êtpt+1 + y ≥ 0.
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Figure 7: Bubble.
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Occasional economic shocks can give the asset price process an upward drift that is
captured by agents’ econometric model as serial correlation. Eventually this serial
correlation becomes self-fulfilling and, for a finite stretch of time, agents come to
believe that asset prices follow a random-walk. With random-walk beliefs, buyers
will interpret recent price deviations as permanent shifts in the price process and
will demand more of the asset. Eventually, though, as the asset price becomes suf-
ficiently high, the liquidity premium vanishes and the learning dynamics return to a
neighborhood of the rational expectations equilibrium. Importantly, Figure 7 shows
that the collapse in the bubble can be costly as there is a sharp decline in qt, the
quantity traded in the decentralized market. So, although a bubble can lead to a
greater amount of decentralized trade, when bubbles eventually collapse there is an
abrupt economic contraction. This figure is a key result of this paper.

It is worth briefly remarking on the qualitative nature of the bubble and crash in
Figure 7. The bubble features an abrupt upward spike followed by a more gradual
adjustment to the fundamental price. Many bubble episodes, in practice, feature
more gradual run-ups in price that are followed by an abrupt crash. The model is
capable of producing bubbles and crashes whose qualitative properties more closely
match practical experience. However, to generate more empirically realistic bubbles
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Figure 8: Crash.
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requires abandoning the modeling assumptions – such as quasi-linear preferences,
linear production technologies, etc. – that were made for technical convenience and
analytic transparency.

Figure 8 demonstrates that the first deviation away from the equilibrium price
can be a crash. In this case, the logic is symmetric to why bubbles arise. A sequence
of positive asset supply shocks place a downward drift on price leading agents’ econo-
metric model to pick up this trend with higher estimated values of bt and lower values
of at. In turn, asset price expectations decrease which leads to a lower demand for
the asset and a smaller quantity of over-the-counter trade. A downward price spiral
arises as there is a further downward drift in price, higher estimated values of bt until
the coefficients arrive at a random walk model which, as argued above, is nearly self-
confirming. These beliefs only persist for a finite period of time and eventually the
stability of the stationary equilibrium takes over and price dynamics return to their
stationary equilibrium value.

Unlike Figure 5, the deviations away from the rational expectations equilibrium in
Figure 7 are an endogenous response to fundamentals rather than to a change in the
long-run asset share supply. It is possible, using the techniques in Cho, Williams, and
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Sargent (2002), to examine which of the “escape paths” are most likely to drive the
economy away from the stationary equilibrium and lead to random-walk beliefs by
identifying the “most likely unlikely” sequence of shocks that move asset price a given
distance away from the stationary equilibrium value. In principle, one can compute
these escape paths analytically in special cases, but more typically it is necessary to
resort to simulations. However, as explained above, it is intuitive that random walk
beliefs arise for the right sequence of shocks.

5 Discussion

The results presented here demonstrate that bubbles and crashes can arise in response
to changes in the supply of assets, changes in the over-the-counter liquidity of the
asset, and as an endogenous response to transitory, economic shocks. There were
two key features to the analysis: first, because of search frictions in over-the-counter
market, and a shortage of assets that can serve as collateral, the financial asset’s
price includes a liquidity premium; second, imperfect knowledge about the future
asset price leads individuals to formulate, and estimate in real-time, an econometric
forecasting model. The adaptive learning process of revising the estimates of the
econometric model can lead individuals to temporarily believe that price follows a
random walk without drift, which can be nearly self-confirming. Random walk beliefs
lead asset prices to deviate from their fundamentals price as agents interpret recent
price innovations as permanent, leading to a positive feedback loop that results in
rapid price appreciation and increased trade in over-the-counter markets. As that
liquidity premium vanishes, the learning dynamics return price to its fundamental
value, however, the route back to equilibrium features a crash in asset prices and an
abrupt decline in over-the-counter trade.

The results presented were in a simple, stylized search-based model. It is nat-
ural to wonder whether the results are sensitive to a number of assumptions that
were made for technical convenience. First, all trade takes place in the decentralized
market through “buyer-takes-all” bargaining. Since the buyer decides on the asset
holdings based on the expected return of the asset as well as its liquidity value, the
fact that the buyer captures all of the surplus evidently increases the expectational
feedback by making the liquidity premium higher. As an alternative, one could relax
this assumption by imposing a proportional bargaining game between buyers and sell-
ers. Although, this would alter the quantitative results of the model, the qualitative
finding of bubbles that arise from random-walk beliefs would not be affected. The
quasi-linearity assumption implies that the store-of-value role of the asset economizes
on labor in the competitive market. Nor does the asset carry a risk premium. A
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careful quantitative analysis with the goal of matching key empirical moments would
need to relax this assumption along the lines of Lagos (2010).

The asset supply process was taken to be exogenous for technical simplicity. But
because of the important role that asset supply shortages make it would be worth-
while to extend the model to endogenize the supply of assets. In particular, one
lesson from the housing bubble and financial crisis was that a shortage of safe assets
led to clever financial engineering that created safe assets (or, at least the illusion of
safe assets). This issue is addressed by Li, Rocheteau, and Weill (2012) who study
an environment where some individuals can choose to create fraudulent assets that
appear as safe assets. An alternative approach is Rocheteau and Wright (2011) where
firms that want to enter the over-the-counter market must pay a fixed entry cost and
that cost could be financed through issuing equity. Holmstrom and Tirole (2011) en-
dogenize asset supply by firms who finance investment and have limited pledgeability
from future income flows. The main purpose of this paper is to explore the asset
pricing implications of asset shortages in an imperfect knowledge environment and so
abstracts from these interesting issues. Similarly, Guerrieri and Shimer (2012) and
Guerrieri, Shimer, and Wright (2010) show that adverse selection in asset markets
can affect the distribution of safe assets and market liquidity.

Of course, in practice investors have an array of assets, with different liquidity,
risk, and return characteristics, to choose from, or accept, in over-the-counter markets.
An interesting extension of the present environment would be to expand the number
of assets and examine the extent to which imperfect knowledge affects the cross-
sectional liquidity characteristics of assets. Similarly, the model presented could easily
be extended to include money and government bonds and used to study the optimal
provision of liquidity and safe assets in an imperfect knowledge environment.

The form of imperfect knowledge assumes that individuals make optimal asset
holdings given their beliefs. Individuals are assumed to be anticipated utility max-
imizers, taking the future evolution of their beliefs given. An alternative approach
would be to assume the agents are fully Bayesian and decide on asset holdings by
taking into account all of the possible future learning paths. It is possible to in-
corporate fully Bayesian decision making into the present environment because the
quasi-linearity, and portfolio adjustment in the competitive market, essentially means
that agents are only making decisions one period in advance. However, in a less styl-
ized environment fully Bayesian decision making would require that individuals form
optimal plans for each of the possible infinitely-long sequences of future beliefs. Thus,
Bayesian decision making would impart unrealistic cognitive abilities onto agents with
imperfect knowledge, and so this approach is not pursued in this paper.18

18Cogley and Sargent (2008) present a framework for comparing anticipated utility and Bayesian
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6 Conclusion

This paper studied asset pricing in an environment where the asset has a dual role as
a store-of-value and in providing liquidity services. The liquidity role is formalized us-
ing search frictions that are familiar in monetary theory. In a stationary equilibrium,
the asset carries a liquidity premium, above its discounted payment flows, whenever
the supply of the asset is not sufficient to support all of the trade in decentralized, or
over-the-counter, transactions. However, the liquidity premium in the model does not
generate the kinds of price dynamics – such as bubbles, crashes and excess volatility –
that are typically observed in practice. This paper proposes a search-based asset pric-
ing model with imperfect knowledge and adaptive learning as a means for generating
bubbles and crashes in asset prices.

The primary results of this paper are as follows. First, although over time beliefs
converge toward rational expectations, and price towards its fundamental value, the
combination of adaptive learning and a shortage of assets can lead individuals in the
economy to temporarily believe that asset prices follow a random walk without drift.
Such beliefs are temporarily (nearly) self-confirming. When agents perceive the price
process to be a random walk they interpret recent price innovations as permanent
shifts in the fundamental price. These random walk beliefs arise for a very intuitive
reason. Imperfect knowledge about the economic environment lead individuals to
estimate, using recent data, an econometric forecasting model for the future price. If
data lead to a slight upward drift in the price, agents’ econometric model will pick up
that drift, leading to higher price expectations that feed back into higher prices. This
process is self-reinforcing and in some cases agents eventually come to believe that
prices follow a random walk. Crucially, we have shown that these beliefs are nearly
self-fulfilling.

A decrease in the supply of safe assets, by raising the liquidity premium, will intro-
duce just the type of price drift that can lead to random walk beliefs. These random
walk beliefs cause a substantial overshooting of the fundamental price. An increase in
the demand for collateral – for example, changes in regulatory and macro-prudential
policies that require more over-the-counter trade to post safe assets as collateral – can
also introduce the type of drift in inflation. Finally, occasional “unlikely” sequences
of shocks to asset supply can also introduce drift to the price process that trigger
random-walk beliefs and large deviations from the fundamental equilibrium. Such
departures from rational expectations can generate significant bubbles and crashes.
These results shed light on the implications of demand imbalances in safe assets can

decision making. They find that anticipated utility provides a good approximation to Bayesian
decision making.
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have for economic stability.
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