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1 Introduction

While modeling with representative agents will be a dominant paradigm in macroeconomics for some time,

this approach involves very strong assumptions. In some models, fixed portions of a population have different

strategies or information available to them, but such methods do not permit agents to change their mind or

use new sources of data. There are a number of papers that do allow for dynamic switching of strategies,

though many of the particular dynamics are open to criticism.

The cobweb model with rational and naive expectations is one area where the modeling of heterogeneous

forecasting strategies has been studied in detail1 . In particular, chaotic behavior is apparent in this model for

certain parameter values under different dynamics describing the evolution of agents’ choices of forecasting

strategies. The present paper introduces the dynamic of Brown, von Neumann and Nash (1950) to the

literature on macroeconomic dynamics within the context of the cobweb model. In comparison to some

alternative approaches, this dynamic has appealing properties such as positive correlation (Sandholm 2006a),

a weak monotonicity condition implying poor performing strategies tend to lose adherents, and inventiveness

(Weibull 1994), which means agents can adopt good performing strategies that are new to the population.

A closely related feature of the dynamic is Nash stationarity that implies the Nash equilibria of a static game

are steady states under the learning dynamic. Under Brown, von Neumann and Nash (1950) updating of

the choice of forecasting strategies, the cobweb model shows chaotic behavior for parameter ranges similar

to those in previous studies, though there are qualitative differences in the nature of the dynamical system.

Brock and Hommes (1997) study chaos in the cobweb model with a multinomial logit model of heteroge-

neous forecasts. In their model there are bifurcations in both the ratio of supply and demand elasticities and

the search intensity parameter, which determines how aggressively agents switch to better performing strate-

gies. Branch and McGough (2005) analyze the cobweb model using a modification of a replicator dynamic

similar to that of Sethi and Franke (1995), who first demonstrated the existence of persistent heterogeneity

of forecasting strategies in this model with rational and naive expectations. The model of Branch and

McGough (2005) shows bifurcations for parameters analogous to those in Brock and Hommes (1997). Both

approaches also demonstrate the existence of strange attractors, where the possible paths of the dynamical

system form irregular dense sets.

In the cobweb model where the Brown, von Neumann and Nash (1950) dynamic describes the switching

between rational and naive forecasts, there is chaotic behavior given that the ratio of supply and demand

elasticities is sufficiently large, as in Brock and Hommes (1997) and Branch and McGough (2005). There

are multiple bifurcations between periodic orbits and strange attractors in both this ratio and the parameter

1There are multiple studies, surveyed in Hommes (2006), of chaotic behavior in asset pricing models, Brock and Hommes
(1998) being an early example.
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determining how quickly agents switch strategies, again as in the previous studies.

There are qualitative differences in the dynamics of the model with the Brown, von Neumann and Nash

(1950) dynamic, however. This model has steady states where one strategy dominates, which are not feasible

in the multinomial logit approach of Brock and Hommes (1997). When there is no difference between the

costs of the predictors, there is no reason to use the less accurate naive forecast, and there is a stable steady

state where all agents use the rational forecast under the Brown, von Neumann and Nash (1950) dynamic.

Furthermore, if there is a cost to using the rational forecast and the market is stable, firms have no incentive

to incur the extra cost and there is a stable steady state where all agents use the naive forecast. While both

models have chaotic behavior associated with unstable period two cycles, the nature of the bifurcations is

different2 .

One can naturally extend the selection dynamic of Brown, von Neumann and Nash (1950) to include

varying degrees of switching intensity analogous to varying the search intensity parameter in the multinomial

logit dynamic. As in Brock and Hommes (1997), there are multiple bifurcations in the switching intensity

parameter, but the behavior for large values of these parameters is different for the two dynamics. Under

logit dynamics, the steady state becomes a repeller for large values of the search intensity parameter. In

contrast, for sufficiently high switching intensity under the extended Brown, von Neumann and Nash (1950)

dynamic, the price shows little deviation from a steady state value.

The paper is organized as follows. Section 2 gives a detailed comparison of the prominent selection

dynamics in the literature. Sections 3 and 4 describe the cobweb model and the forecasting strategies.

Sections 5 and 6 derive the steady states and study their stability properties for various parameter values,

while section 7 demonstrates the chaotic behavior of the model. Section 8 extends the analysis of the

dynamic to one with varying switching intensity, and section 9 concludes.

2 Selection Dynamics

The Brown, von Neumann and Nash (1950) dynamic and related excess payoff dynamics satisfy the properties

of positive correlation and inventiveness while neither of the leading alternative approaches to modeling the

evolution of strategy choice meet both criteria, which represent mild conditions for an intuitively appealing,

dynamic model of the choice of heterogenous strategies. Positive correlation is a monotonicity condition

implying the strategies with higher payoffs tend to gain adherents, and inventiveness means that a strategy

with no followers can gain some if it’s payoff is higher than the population average. The replicator dynamic

2There seem to be some similarities in the dynamics of Branch and McGough (2005) and the present approach, though their
model has a discontinuity at the steady state, making analytic results difficult to obtain.
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and related imitative dynamics do not satisfy inventiveness, while logit dynamics do not meet the positive

correlation condition.

Let qk,t be the fraction of followers and πk,t be the payoff of strategy k in time t. A general dynamic

Φk describes the evolution of qk,t within the simplex q̄ =

{
(q1,t, ....., qH,t) |

H∑
h=1

qh,t = 1

}
according to the

vector of payoffs πt = (π1,t, ....., πH,t) such that qk,t+1 = Φk (qt, πt) where qt ∈ q̄. The population average

payoff π̄t =
H∑

h=1

qh,tπh,t determines the excess payoff π̂k,t = πk,t − π̄t for strategy k in time t. The

discrete time formulation of positive correlation relates the excess payoffs and the change in population

shares ∆qk,t = qk,t+1 − qk,t.

Definition 1 The dynamic Φk satisfies positive correlation iff
H∑

h=1

∆qh,tπ̂h,t > 0 unless πh,t = 0,

for all h.

Positive correlation requires that the change of the fractions of the population using different strategies

is correlated with their payoffs, so strategies with higher payoffs gain adherents on average, ensuring out-of-

equilibrium dynamic paths reflect strategic incentives. Note that this is a relatively weak condition, since

it is possible that individual strategies with positive excess payoff could lose followers while the aggregate

condition in Definition 1 is met.

Definition 2 The dynamic Φk satisfies inventiveness if strategies with positive excess payoff in time t

have a positive fraction of followers in time t+ 1.

Inventiveness guarantees that successful strategies can be introduced into the population, and that ex-

tinction of a strategy need not be permanent. We can now study the dynamics from the literature in light

of these minimal desiderata.

Discrete time excess payoff dynamics take the form

qk,t+1 =
qk,t + σ (π̂k,t)

1 +
H∑

h=1

σ (π̂h,t)

(1)

where the choice function σ (·) is continuous and σ (π̂k,t) = 0 for π̂k,t ≤ 0 and σ (π̂k,t) > 0 for π̂k,t > 0. The

simplest choice function with these characteristics is

σ (π̂k,t) = [π̂k,t]+ , (2)

which, along with (1), yields the Brown, von Neumann and Nash dynamic3 (BNN). The behavioral founda-

3The notation [π]
+

is equivalent to max (0, π). The conditions on the choice function σ (·) are the most general specification
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tions for the BNN dynamic have an intuitive description. Agents pick a strategy at random and compare its

payoff to the population average. If the payoff of the chosen strategy is above average, they switch strategies

with probability proportional to the excess payoff.

Proposition 3 The excess payoff dynamic (1) satisfies positive correlation and inventiveness.

That the excess payoff dynamic (1) displays inventiveness is evident by inspection. Any positive excess

payoff π̂k,t > 0 implies that σ (π̂k,t) > 0 and qk,t+1 > 0. The proof of Proposition 3 for positive correlation

is in Appendix A.

The most common alternative dynamic in macroeconomics is the multinomial logit model, see Hommes

(2006) for a survey. Using the notation above, the dynamic is given by

qk,t+1 =
exp (βπk,t)
H∑
h=1

exp (βπh,t)

(3)

where β is the search intensity parameter, representing how quickly agents adjust to better strategies. Logit

dynamics satisfy inventiveness, in fact, every available strategy has a positive fraction of followers regardless

of its payoff, unless the search intensity parameter or payoffs are infinite4 . However, the logit model does

not satisfy positive correlation. A simple counterexample is the case of two strategies where one strategy

always has a superior payoff to the other. There exists a fraction of agents using the superior strategy

sufficiently large so that, according to (3), some agents adopt the inferior strategy in the next period, for a

finite β. Hence, there is a positive change in the fraction using the strategy with a negative excess payoff

and a negative ∆qk,t for the strategy with a positive excess payoff, so the condition for positive correlation

in Definition 1 is violated.

There are further difficulties with the implementation and interpretation of the logit dynamic. As

the search intensity parameter β approaches infinity, the logit dynamic approximates best reply behavior,

ameliorating some of the concerns above. However, this observation shows that this single parameter governs

both the speed of adjustment and the minimum fraction of agents using a strategy, for bounded payoffs,

making the choice of the correct β problematic for a given application. Furthermore, consider the situation

when all payoffs are equal. Under the logit dynamic (3), all strategies would then have an equal share

of followers, regardless of the population state in the previous period. How agents coordinate on such an

outcome is difficult to interpret.

The most studied dynamic in the evolutionary game theory literature is the replicator, so named for its

found in Sandholm (2006b) who provides a detailed development of excess payoff dynamics and positive correlation in continuous
time.

4This point is made by Branch and Evans (2007) and Parke and Waters (2006), among others.
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roots in biology, though it also has social/behavioral foundations, see Weibull (1997), Schlag (1998) and

Binmore and Samuelson (1999). The replicator is a special case of imitative dynamics, which can take the

form in discrete time

qk,t+1 = qk,t
ω (πk,t)

H∑
h=1

qh,tω (πh,t)

. (4)

The presence of qk,t on the right hand side shows the role of imitation, as popular strategies tend to remain

popular in the next period. The weighting function ω (π) must be positive and increasing. If it is linear

then the dynamic (4) corresponds to the replicator, while a convex ω (π) yields convex monotonic dynamics,

studied in Hofbauer and Weibull (1996) and Samuelson and Zhang (1992).

Imitative dynamics satisfy positive correlation (Fudenberg and Levine 1998) but not inventiveness. In

equation (4), if qk,t = 0 then qk,t+1 = 0, and strategy k has no followers in all future periods. Hence, all the

edges of the simplex q̄ are steady states for imitative dynamics. Strategies with no followers cannot enter

the population, regardless of their payoff performance.

There are alternative, perturbed versions of imitative dynamics that recover inventiveness. Such methods

include the introduction of minimum fractions of followers of strategies (Parke andWaters 2006), the inclusion

of drift where small fractions of agents using different strategies are continually introduced5 (Binmore and

Samuelson 1999) and combining an imitative dynamic with an excess payoff dynamic (Sandholm 2005). All

of these approaches are viable if ad hoc, though their superiority over simpler excess payoff dynamics is

questionable. Sandholm (2006a) also advocates for pairwise comparison dynamics that satisfy a scarcity of

data condition meaning agents are not required to know all the payoffs as in the dynamics above, but, for

macroeconomic applications, this condition is not crucial.

Inventiveness is related to the additional criterion of Nash stationarity, which implies that steady states of

a dynamic correspond to the Nash equilibria of a game. Though this criterion is defined within static game

theory, and the interpretation in macroeconomic dynamics depends on the specific model, the behavior

of dynamics in a simple environment has important information about their characteristics. All Nash

equilibria are steady states of imitative dynamics, but the converse need not be true, since all the edges of the

simplex are steady states. In continuous time, steady states of imitative dynamics satisfying the additional

requirement of Lyapunov stability correspond to the Nash equilibria, see Weibull (1997). Nachbar (1990)

shows an analogous result for discrete time. For logit dynamics with finite search intensity, no point on the

edge and therefore no pure strategy equilibrium can be a steady state, and Nash stationarity is not satisfied.

Excess payoff dynamics (1) do satisfy Nash stationarity (Sandholm 2006a), in fact, the discrete time version

5Droste, Hommes and Tuinstra (2002) use such an approach with the replicator in their study of a Cournot duopoly and
demonstrate the existence of chaotic dynamics. They refer to the continual introduction of small fractions using each strategy
as mutational noise.
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of the BNN dynamic first appears in Nash’s (1951) proof of the existence of equilibria. In a continuous time

framework, Hofbauer (2000) shows that evolutionarily stable Nash equilibria are steady states of the BNN

dynamic.

The BNN dynamic offers a parsimonious model of the evolution of strategy choice with appealing prop-

erties not found in other approaches. Inventiveness guarantees that strategies that perform well can enter,

while positive correlation ensures that poor performing strategies lose support. However, the dynamic is

not above criticism. While the fractions following different strategies is continuous in the payoffs, it may

not be globally continuously differentiable due to the construction that eliminates negative excess payoffs.

Consequently, application of results from the theory of non-linear dynamical systems could be problematic.

For the present model, however, we are able to provide a thorough description of the dynamics.

3 The Cobweb Model with Heterogeneous Forecasts

Firms have heterogeneous forecasts of future prices. Before specifying the different forecasts, realized profits

and resulting dynamics, we must describe the firm production decision and the aggregated market. Firm

expectations of future prices determine the quantity they produce. Equating the aggregate supply of the

firms with demand gives the realized price.

At time t, a firm using strategy k uses forecast of prices pek,t+1 to generate the profit maximizing quantity

Q to produce. The quantity supplied S
(
pek,t+1

)
is given by

S
(
pek,t+1

)
= argmax

Q

{
pek,t+1Q− c (Q)

}

where c (Q) is the cost of production. Maximizing yields

S
(
pek,t+1

)
= (c′)

−1 (
pek,t+1

)
(5)

assuming an invertible marginal cost function. To allow for heterogeneous forecasts, let qk,t be the fraction of

firms using forecasting strategy k. The equilibrium price pt+1 is given by equating market demand D (pt+1)

to market supply as follows.

D (pt+1) =
H∑

h=1

qh,tS
(
peh,t+1

)
(6)

Firms update their forecasting strategies, switching to those that have performed well in the past, ac-

cording to the BNN dynamic (1, 2). Payoffs to a strategy are the associated profits adjusted for the cost

of using a particular forecasting strategy. Different forecasting strategies k may have different costs Ck,
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reflecting the idea that some forecasts are more computationally intensive, as discussed in Ben-Sasson, Kalai

and Kalai (2006), or require hiring consultants external to the firm. Therefore, the payoff to strategy k is

πk,t = pt+1S
(
pek,t+1

)
− c
(
S
(
pek,t+1

))
−Ck (7)

where the realized price pt+1 is determined by (6). Changes in the fractions of followers qk,t depend on the

strategies’ excess payoffs π̂k,t, the difference between the payoffs and the population average π̄t, the expected

payoff of a randomly chosen firm. Branch and McGough (2005) and Sethi and Franke (1995) use a simple

mean, but the present approach follows the evolutionary game theory literature weighting profits according

to popularity to compute the population average.

4 Rational vs. Naive Forecasts

This section specifies a particular version of the model, also studied by Brock and Hommes (1997) and Branch

and McGough (2005), specifying two forecasting strategies, rational and naive. In the present non-stochastic

environment the rational forecast peR,t+1 is equivalent to perfect foresight, meaning peR,t+1 = pt+1. Let qt

be the fraction using the rational forecast. The alternative naive forecast peN,t+1 simply uses the previous

periods price pt as the forecast so peN,t+1 = pt. Market demand is linear such that

D (pt+1) = A−Bpt+1.

Assuming quadratic cost c (Q) =
Q2

2b
, an individual firm supplies S

(
pek,t+1

)
= bpek,t+1, according to (5), so

equating market demand and market supply as in (6) yields

A−Bpt+1 = qtbpt+1 + (1− qt) bpt.

As in Brock and Hommes (1997), without loss of generalization assume A = 0 so that pt is now the deviation

from the zero steady state. Further, let the parameter b̂ be the ratio of supply and demand elasticities such

that b̂ = b/B, so the equation of motion is

pt+1 = −

[
b̂ (1− qt)

b̂qt + 1

]
pt. (8)

Since qt ∈ [0, 1], if b̂ < 1 then [·] < 1, the mapping (8) is a contraction, and pt = 0 is the unique steady state

of the price deviation. However, for b̂ > 1 there is the possibility of a non-zero 2-cycle with oscillating price
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deviations.

The naive forecast is assumed to be costless, but the rational forecast has cost C ≥ 0 as it has higher

informational and computational requirements. Given the realization of the price pt+1, the payoffs to the

rational and naive forecasts, πR,t and πN,t respectively, are

πR,t = bp2t+1 −
b

2
p2t+1 −C (9)

πN,t = bpt+1pt −
b

2
p2t . (10)

Note that these time t payoffs can be expressed in terms of time t variables using the price dynamics equation

(8). For a two strategy game, the excess payoffs of the strategies take a particularly simple form.

π̂R,t = (1− qt) (πR,t − πN,t) (11)

π̂N,t = qt (πN,t − πR,t) . (12)

The difference in payoffs between the two strategies is clearly a key expression so we define the following.

Definition 4 The payoff difference function γ (pt, qt) is such that γ (pt, qt) = πR,t − πN,t.

This function can be calculated using the expressions for the payoffs (9) and (10) and the excess payoffs

(11) and (12).

γ (pt, qt) = p
2
t



Bb̂
(
b̂+ 1

)2

2
(
b̂qt + 1

)2


−C (13)

The motion of (pt, qt) is determined by the payoff difference function, the price dynamics and the BNN

learning dynamic. The analysis of the system is complicated by the non-negativity restriction within the

BNN dynamic (1, 2), so to clarify the analysis we describe the motion of qt in the form below using the

excess payoffs (11, 12) and the payoff difference function in Definition 4.

qt+1 =





qt
1− qtγ (pt, qt)

for γ (pt, qt) ≤ 0

1−
1− qt

1 + (1− qt) γ (pt, qt)
for γ (pt, qt) > 0





(14)

Whether qt rises of falls depends on whether γ (·) is positive or negative.
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The definition for the function F describing the motion of (pt, qt) follows.

Definition 5 The evolution function F where (pt+1, qt+1) = F (pt, qt) is determined by the price dynamics

(8),and the evolution of qt (14) along with the payoff difference function γ (pt, qt) in (13).

5 Steady States

The steady states depend on the ratio of supply and demand elasticities b̂ and the cost of using the rational

forecast C. Clearly, the origin in the (p, q) plane is a steady state of the model for any parameter values, but

there is also the possibility of a two period cycle for a sufficiently large ratio of supply and demand elasticities

where the price (deviation) oscillates around zero. The case with zero cost to the rational forecast has special

characteristics.

Proposition 6 Let the parameters b,B > 0.

i) The point (p, q) = (0, 0) is a steady state of F from Definition 5 for C > 0.

ii) If C = 0, the set of points where p = 0 for any q ∈ [0, 1] are steady states.

iii) For C > 0 and b̂ > 1, there is a 2-cycle of F given by

(±p∗, q∗) =

(
±

√
C

2b
,
b̂− 1

2b̂

)
.

iv) For C > 0 and b̂ = 1, the set of points such that q = 0 and |p| ≤

√
C

2b
are 2-cycles.

Proof. i) The value p = 0 is a steady state for the price dynamics equation (8). If p = 0 then equation

(13) shows that γ (0, q) ≤ 0 for C ≥ 0, which implies that q = 0 is a steady state value for equation (14) for

the evolution of qt. Hence, (p, q) = (0, 0) is a steady state.

ii) If C = 0 and p = 0 then γ (0, q) = 0 which implies that any value of q is a steady state of (14).

iii) The computation of (p∗, q∗) when b̂ ≥ 1 is straightforward. The bracketed term in (8) must be one,

determining q∗, and the payoff difference must be zero so γ (p∗, q∗) = 0, which determines p∗.

iv) At b̂ = 1 and qt = 0, the bracketed term [·] in the price dynamics equation (8) is one, so pt can take

any value in a 2-cycle. If |pt| ≤

√
C

2b
, then γ (pt, 0) ≤ 0 and qt = 0 is a steady state for any such pt.

Figure 1 identifies the steady state at the origin and 2-cycle in (p, q) space for b̂ > 1 and C > 0. The

2-cycle is the two intersections of the curve where γ (p, q) = 0 and the horizontal line q = q∗ derived from

(8) in the proof above.

Note that the origin would be a steady state and (±p∗, q∗) would be a 2-cycle under imitative dynamics

as well, but the point (0, 1) where qt achieves its maximum would also be a steady state for any parameter
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values. Imitative dynamics lack inventiveness so if there are no agents using the naive forecasting strategy,

none can enter. The price dynamics (8) show that all agents using the rational forecast leads to p = 0, this

implies that the payoff difference γ (p, q) = −C is negative meaning the naive forecast has a higher payoff

the the rational forecast. Hence, a steady state where q = 1 and all agent use the rational forecast is hard

to justify for C > 0, pointing up the desirability of inventiveness.

One difficulty with using the BNN dynamics (1, 2) is the potential lack of a continuous derivative where

the excess payoff of a strategy is zero. The following proposition shows that this is an issue for the present

model.

Proposition 7 The evolution function F from Definition 5 is not continuously differentiable at any point

(p̄, q̄) such that γ (p̄, q̄) = 0 unless p̄ = 0 or q = 1
2 .

For any b̂ > 1, F is not continuously differentiable at (p∗, q∗) or (−p∗, q∗) from iii) of Proposition 6.

Proof. See appendix B

For analysis of games with a fixed payoff matrix, differentiability is not an issue since the payoffs do

not depend on the endogenous variables, but for many applications in macroeconomic dynamics, this will

not be true. A primary analytic contribution of this paper is to characterize the stability of the 2-cycle

(±p∗, q∗). The usual method would involve studying the eigenvalues of the Jacobian of the second iterate of

the evolution function F , but there are two technical hurdles to overcome in the present model. First, F is

piecewise smooth, and the matrix of partial derivatives is different for a neighborhood of (p∗, q∗) to the right

and left of the curve γ (pt, qt) = 0 (Figure 1). Furthermore, the 2-cycle is unstable for reasonable parameter

values so it is necessary to show the stability of an inverse. The following function exploits the symmetry

of F around p = 0 to aid the analysis.

Definition 8 The evolution function F̂ where (pt+1, qt+1) = F̂ (pt, qt) is determined by the price dynamics

equation

pt+1 =

[
b̂ (1− qt)

b̂qt + 1

]
pt, (15)

and the evolution of qt (14) along with the payoff difference function γ (pt, qt) in (13).

The function F̂ is identical to F , except that negative price deviations are reflected to positive values,

assuming a positive starting value p0 > 0. Since pt enters as a squared term in the equations shared by F

and F̂ , the evolution of (pt, qt) is otherwise identical. Furthermore, the 2-cycle (±p∗, q∗) under F from iii)

of Propostion 6 becomes a steady state (p∗, q∗) under F̂ , and the dynamics of the second iterates of both

functions are identical. The dynamics of F̂ are represented in Figure 1, restricting attention to positive or

negative p, depending on the starting value p0. The equations in the above definition determine the motion
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shown in the figure. For example, for the case of (pt, qt) such that qt > q
∗ and γ (pt, qt) > 0, the bracket

term in the price dynamics equation for F̂ (15) is less than one so pt+1 < pt, and the second equation for

the evolution of qt (14) shows that qt+1 > qt. Similar arguments can be made for the other four cases

determining the counter-clockwise rotation around (p∗, q∗).

6 Stability

As with other studies of the cobweb model, the ratio of supply and demand elasticities b̂ is a key parameter

determining the stability of the steady state at the origin and the 2-cycle (±p∗, q∗) identified in Proposition

6. Assuming C > 0, for b̂ < 1, the origin is the unique steady state, and it is stable, but if b̂ > 1, the

origin and the 2-cycle are both unstable. First, we formally define the appropriate stability concepts, see

Lakshmikantham and Trigiante (2002) among others.

Definition 9 For evolution function F , a steady state x∗ ∈ Rn where F (x∗) = x∗ is stable if for any ε > 0

there exists a δ > 0 such that, if x is such that ‖x− x∗‖ < δ, then ‖Fm (x)− x∗‖ < ε for any positive integer

m, where ‖·‖ is the Euclidian norm. A steady state x∗ is unstable if it is not stable.

A steady state x∗ ∈ Rn is asymptotically stable (unstable) if Fk (xt)→ x∗ as k →∞ (k →−∞) .

These definitions apply to a cycle of period m with periodic point y∗ where Fm (y∗) = y∗ if the conditions

are satisfied for the evolution function Fm.

Consider the role of the cost to the rational forecast C. If C = 0, there is no reason to use the naive

forecast since the rational forecast is more accurate and there is no difference in costs. For a positive cost,

however, the situation may change in favor of the naive forecast. The analysis of the stability of the steady

states formalizes these notions.

Let C = 0, so any point where pt = 0 is a steady state according to case ii) of Proposition 6, since

γ (pt, qt) = 0, but only the point (pt, qt) = (0, 1) is stable. For any pt > 0, the payoff difference γ (pt, qt) is

positive so qt will rise. Hence, any point such that pt = 0 is not stable unless qt is at its maximum so the

only stable point is where all agents adopt the rational forecast.

If C > 0, however, the situation is quite different since pt = 0 means that γ (pt, qt) is negative, leading

agents to adopt the naive forecast, so the origin is a steady state, as noted in

Proposition 6. The stability of these steady states is summarized below.

Proposition 10 i) If C = 0, the evolution function F has a unique stable steady state at (pt, qt) = (0, 1) .

ii) If C > 0, the steady state at (pt, qt) = (0, 0) is stable iff b̂ ≤ 1.
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Proof. i) For C = 0, see discussion above6 .

ii) For C > 0, the Jacobian around (0, 0) can be computed using the price dynamics equation (8) and

the γ (pt, qt) < 0 case in (14) to find J(0,0) =



−b̂ 0

0 1


. Hence, the steady state is non-hyperbolic7 with

eigenvalues −b̂ and 1, so (0, 0) is a stable steady state for b̂ ≤ 1 and unstable for b̂ > 1.

The stable steady state at (pt, qt) = (0, 1) when C = 0 is sensible, though it is at odds with the

multinomial logit treatments of the model. If there is no cost to the rational forecast, there is no reason to

use the less accurate naive forecast, but in Brock and Hommes (1997), there is a stable steady state where

the population splits evenly between the two forecasting strategies when C = 0. Under the multinomial

logit dynamic, the naive forecast is not driven out even though it is inferior in this case, an example of the

dynamic’s failure to satisfy positive correlation.

With a positive cost to the rational forecast, the stability of the origin depends on the ratio of supply

and demand elasticities b̂. Since the origin is non-hyperbolic when b̂ ≤ 1 and C > 0, case ii) of Proposition

6, it is stable but not asymptotically stable in the sense of Definition 9.

Again, the stability of the origin is an intuitive outcome that differs from that of the multinomial logit

approach in Brock and Hommes (1997). In a stable market
(
b̂ < 1

)
, firms have no incentive to incur the

cost of using the rational forecast, so that strategy is driven from the population under the BNN dynamic,

but there is no steady state where q = 0 under multinomial logit for finite search intensity8 .

If b̂ > 1, unless pt = 0, the dynamic F takes the system away from the origin. As b̂ rises above one, the

2-cycle (±p∗, q∗) of F (steady state of F̂ ) appears, and this case is the primary focus of the discussion of the

dynamics in the next section. The stability analysis is complicated by the lack of differentiability of F and

F̂ along the curve defined by γ (pt, qt) = 0, but the Jacobians can be computed for the sets to the left and

right of the curve.

Proposition 11 Let ĴL and ĴR be the Jacobians of F̂ around its steady state (p∗, q∗) for γ (pt, qt) < 0 and

γ (pt, qt) > 0, respectively. For any b̂ > 1 and 0 < C < 4, the eigenvalues of ĴL and ĴR are complex with

modulus greater than one.

Proof. See Appendix C.

The condition on C in the above propositions is not particularly restrictive considering the parameteri-

zations in the literature and could be relaxed for larger values of b̂. The proof gives more refined conditions

involving both b̂ and C.

6This case can be analyzed algebraically. The steady state (0, 1) is non-hyperbolic and the Jacobian has eigenvalues 1 and
-1. The discussion preceding the proposition gives more insight about the cases where qt < 1.

7A non-hyperbolic point has a Jacobian with at least one eigenvalue with unit magnitude, see Kuznetzov (2004).
8There is such a steady state for infinite search intensity, though it is not locally stable.
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Surprisingly, the condition on the eigenvalues does not ensure that the steady state is unstable. Intu-

itively, the Jacobians might interact in a perverse way, allowing a dynamic path that converges to the steady

state. Lakshmikantham and Trigiante (2002, section 4.5) provide a counterexample involving a difference

equation that periodically switches between two linear functions. In spite of this complication, a contin-

uous, piecewise quadratic Lyapunov function can be constructed showing that the steady state (p∗, q∗) is

asymptotically unstable under the parameter conditions in the above proposition.

Proposition 12 For any b̂ > 1 and 0 < C < 4, the point (p∗, q∗) is an asymptotically unstable steady state

of F̂ , and so the pair (±p∗, q∗) is an asymptotically unstable 2-cycle of F .

Proof. See Appendix D.

Locally, the evolution function F leads dynamic paths away from (±p∗, q∗) , but the phase plot in Figure

1 shows that the price deviations remain bounded. For example, as the price deviation become positive and

large, γ (pt, qt) becomes positive and qt increases, but that in turn leads to a pt lower in magnitude.

In the non-generic case iv) of Proposition 6 when b̂ = 1, there is a set of stable points while the steady

state on the curve γ (pt, qt) = 0 is neither stable nor unstable.

Proposition 13 For b̂ = 1 and C > 0, the set of points such that q = 0 and |p| <

√
C

2b
are stable 2-cycles

of F . The 2-cylce (±p∗, q∗) =

(
±

√
C

2b
, 0

)
is neither stable nor unstable.

Proof. See Appendix E.

Dynamic paths starting from a neighborhood of (p∗, q∗) =

(√
C

2b
, 0

)
could have increasing |pt| and qt

for a number of periods while γ (pt, qt) > 0, but qt eventually approaches zero when b̂ = 1.

7 Chaos

Chaos exists for this model given parameter restrictions similar to previous studies, though there are impor-

tant differences in the resulting dynamics. For a positive cost to the rational forecast C > 0 and a ratio of

the demand and supply elasticities greater than one b̂ > 1, the system shows chaotic behavior with orbits

around the asymptotically unstable 2-cycle. There are multiple bifurcations in b̂ and the orbits can be cycles

of various periods or aperiodic strange attractors for different values of b̂.

The analytic results given in the propositions and proofs so far are suggestive of chaotic dynamics for

varying b̂. At b̂ = 1 the Jacobian JL
F̂

of F̂ for γ (pt, qt) < 0 has two real eigenvalues equal to one, but as

b̂ rises above one, the eigenvalues become complex conjugates with modulus greater than one. Hence, the

same is true of JL2
F̂
, which is relevant for the dynamics of F 2, yielding the following observations.

14



• The 2-cycle is non-hyperbolic at b̂ = 1, but hyperbolic for b̂ > 1, suggesting the presence of a bifurcation.

• As b̂ exceeds one, the eigenvalues of JL
F̂
are complex and rise above one in modulus, as with a Hopf

bifurcation (Devaney 1986).

• The eigenvalues of JL
F̂

pass through a double root of one, corresponding to a fold bifurcation in the

plane (Kuznetsov 2004).

The above statements are not rigorous, since the eigenvalues the Jacobian JR
F̂
of F̂ for γ (pt, qt) < 0 are

complex conjugates with modulus greater than one for any b̂ > 0 and C < 4 (see Appendix C). However,

piecewise smooth dynamical systems9 often behave similarly to related smooth systems, and the simulation

results do not contradict any of these observations.

There is chaotic behavior in the case of the 2-cycle in the model of Brock and Hommes (1997) though the

dynamics are qualitatively different from the model in the present work and depend on the search intensity

in their model with multinomial logit. For low search intensity, the 2-cycle is stable but at higher values it is

an unstable saddle with eigenvalues both greater and less than one in modulus, which never arises under the

BNN dynamic. There is a secondary bifurcation for high search intensity with two eigenvalues at negative

one. So for high search intensity, the 2-cycle is asymptotically unstable as with (±p∗, q∗) from Proposition 6,

though the eigenvalues of JL2
F̂
for the bifurcation at b̂ = 1 are both positive one, demonstrating a qualitative

difference in the dynamics of the two models.

Simulations of the system given by the evolution function F in Definition 5 confirm the existence of a

bifurcation at b̂ = 1 and cycling behavior for b̂ > 1. There are further bifurcations in b̂ between cycles of

different periods and aperiodic behavior as well. In the aperiodic cases, the orbits form irregular dense sets

that are typical of strange attractors.

Figures 2a and 2b show the observed values10 of qt and pt, respectively, for b̂ ∈ (0.9, 3.25) and demonstrate

the bifurcation at b̂ = 1 and chaotic behavior for b̂ > 1. The other parameters B and C are all set to unity11

so the condition on C in Propositions 11 and 12 is satisfied. For b̂ < 1, the steady state at qt = 0 is stable,

but for b̂ > 1 it is asymptotically unstable, and qt achieves a wide range of values. The bifurcation at b̂ = 1

is even more dramatic for pt shown in Figure 2b. For b̂ < 1, the price deviation remains at zero, but as b̂

rises above unity, the price deviation varies across a range from -0.5 to 0.5. Further bifurcations appear for

higher values of b̂. In Figures 2a and 2b, for some values of b̂, the possible values of qt and pt are sparse

9There is a literature on border-collision bifurcations (see di Bernardo, Budd, Champneys and Kowalczyk 2008) that studies
dynamics at the interestion of the set where the evolution function is not smooth and the set of fixed points for some varying
parameter, but in the present model these sets coincide. To my knowledge, this case has not been analyzed in detail.

10 In all of the simulation results presented here, the system is allowed to run for 2000 periods before values are recorded.
None of the results presented here are sensitive to changes in the initial conditions unless noted. The phase plots and and
bifurcation diagrams, Figures 2-5, 8 and 10, come from simulations of length 100,000.

11The parameters B and C remain one throughout the simultations, which implies b̂ = b.
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and the orbits are periodic. There are cases of typical period doubling bifurcations as b̂ increases. For some

values, the orbits appear to be aperiodic and the values of (pt, qt) that the system achieves form a dense set

in the plane. For orbits for a number of values of b̂, there were no cycles of periods less than 106, so for any

potential application they would be considered aperiodic.

Figures 3-5 show phase plots in the (p, q) plane for particular values of b̂. The phase plot in Figure 3 for

b̂ = 1.56 shows period 30 cycles, while Figure 4 for the slightly higher b̂ = 1.573 shows cycles of period 60,

demonstrating a period doubling bifurcation12 .

The plot in Figure 5 makes a case for the existence of strange attractors. This phase plot for b̂ = 1.7

forms an irregular shape surrounding the repelling steady state. Close inspection reveals multiple curves

folding back on the themselves typical of strange attractors, for example see Gluckenheimer and Holmes’

(1983) discussion of Duffing’s equation.

The plots of the largest Lyapunov exponents13 for varying b̂ in Figure 6 confirm that these dense sets are

strange attractors. The largest Lyapunov exponent measures the growth rate of small deviations from an

orbit, and values above zero are evidence of strange attractors. Comparing the bifurcation graph in Figure

2 and the largest Lyapunov exponent graph in Figure 6 shows that values of b̂ leading to periodic orbits

correspond to negative exponents, while values of b̂ that lead to dense sets correspond to a largest Lyapunov

exponent greater than zero, solidifying the case for the presence of strange attractors.

The plots in Figure 7 show typical paths for the price deviations and the fraction of agents using the

rational forecast. They show sample time series for pt and qt in the case of b̂ = 1.56, corresponding to

the periodic phase plot in Figure 3. Time series graphs for other values of b̂ are quite similar, even for the

cases with strange attractors, and visual inspection reveals very little qualitative difference. The strange

attractors appear to have cycles of similar periods, and only close examination of the data shows slightly

larger fluctuations and deviations from periodic behavior. A paper by de Vilder (1996) argues that only

strange attractors can explain the variation seen in economic data. The analysis here suggests that the

existence of strange attractor may not explain fully such variation either. Of course, this observation does

not rule out chaotic behavior as an explanatory factor for economic variation, but that chaos may be only a

partial explanation and other sources of variability such as exogenous shocks are also required. Preliminary

simulations show that the model with exogenous shocks with parameters near bifurcations can produce

interesting time series data. Another possible explanation of more complicated behavior is the switching

between coexisting attractors as studied in Brock and Hommes (1997) and is possible in the present model.

Naturally, these ideas need to be tested in more sophisticated economic models.

12There are different coexisting attractors of the same period for different starting values.
13Graphs of largest Lyupanov exponents were made using E&F Chaos software package. See Diks, Hommes, Panchenko and

van der Weide (2007) for details.
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8 Bifurcations with varying switching intensity

The BNN learning rule can be naturally extended to study dynamics under varying speeds of adjustment,

similar to other dynamics. Logit rules can have different search intensity parameters as in Brock and

Hommes (1997). Many of their results require the search intensity to be above a certain level for chaotic

behavior to occur. Imitative dynamics such as the replicator can be similarly extended as in Hofbauer

and Weibull (1997), who develop a particular example of convex monotonic dynamics with an exponential

weighting function ω (π̂k,t) = exp (δπ̂k,t) in (4), where δ parameterizes switching intensity. Parke and Waters

(2007) use a version of this approach to study heterogeneous expectations with applications to asset pricing.

The analogous extension of the model in this work shows multiple bifurcations in the switching intensity

parameter, like the model of Brock and Hommes (1997), but the behavior for high values of the adjustment

parameter varies considerably between the two approaches.

The α−BNN dynamics with switching intensity parameter α > 0 are defined setting the choice function

to be σ (π̂k,t) =
(
[π̂k,t]+

)α
in the dynamic (1) to get

qj,t+1 =
qj,t +

(
[πj,t − π]+

)α

1 +
H∑
h=1

(
[πh,t − π]+

)α , (16)

which was introduced by Weibull14 (1994) and is discussed by Hofbauer (2000) and Sandholm (2006c). The

α-BNN dynamic retains the appealing features of excess payoff dynamics including positive correlation and

inventiveness (Proposition 3). For static games, the asymptotic behavior of (16) is identical to the original

BNN dynamic (1 and 2) in that it retains Nash stationarity. However, for higher α, agents are switching

more aggressively to strategies with superior payoffs15 .

Simulation results for the above cobweb model with α−BNN dynamics, given by equations (8), (11), (12)

and (16), show multiple bifurcations in α between periodic and strange attractors for a wide range of α > 0.

However, for sufficiently large α, the variation in the price deviation virtually disappears. Figures 8a and 8b

show the values of pt and qt achieved in the simulations for different levels of α with b̂ = 1.5. The graph of

the price deviation in Figure 8a has a sufficiently small scale to show the alternation between solid sections

corresponding to strange attractors, similar to the behavior represented in the phaseplot in Figure 5, and

sparse sections corresponding to periodic behavior similar to the phase plot in Figure 3. The graph of the

largest Lyapunov exponents in Figure 9 again show positive values for settings of α corresponding to dense

14Part of this paper is in the Nobel seminar 1994.
15An alternative approach would introduce a scaling parameter multiplicatively with the excess payoff terms. The analytic

results for the model with α−BNN dynamics involve a number of subtleties and are beyond the scope of the present work.
Note, however, that the derivative with respect to the payoffs is continuous for α ≥ 1.
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sets (strange attractors) in Figure 8a and negative values for settings corresponding to periodic dynamics.

Figure 10 shows a magnified phase plot for parameters settings α = 1.15 and b̂ = 1.5 demonstrating a clear

example of a strange attractor.

As α increases the range of values for qt initially decreases, and for values of α ≥ 5.17, pt remains very

close to zero in the bifurcation diagram in Figure 8a. Figure 8b has a larger scale to show the variation in qt

at values of alpha where pt is fixed. As α increases further, the variation in qt decreases and it converges to

one half. For very large α, the cost of the rational forecast C becomes relatively insignificant to the payoffs

and the choice of forecast makes little difference. The value that qt approaches as α becomes large depends

on the initial conditions and the cost parameter C.

The dramatic decrease in the variation in the price deviation for sufficiently large α is worthy of further

investigation. This behavior is in direct contrast to the cobweb model with multinomial logit dynamics

in Brock and Hommes (1997) where instability and chaos only appear for a minimum value of the search

intensity parameter β and bifurcations between periodic and chaotic behavior continue as β increases16 .

One interpretation is that chaotic behavior is not an automatic feature of the cobweb model with these two

predictors but depends on the learning dynamic. Alternatively, the behavior of the α−BNN dynamic for

very large α appears to be perverse, so the choice of α for applications must be made with care.

9 Conclusion

The learning dynamic of Brown, von Neumann and Nash (1950) has appealing properties that give it great

promise for applications in macroeconomic dynamics. Besides tractability, the dynamic is continuous in

the payoffs, and has the properties of positive correlation, inventiveness and Nash stationarity, avoiding the

problematic behavior near the edges of the simplex for the commonly used multinomial logit or replicator

dynamics. Under BNN dynamics, poor performing strategies will have monotonically decreasing fractions of

followers, and good performing strategies with no followers can gain some. The lack of a globally continuous

derivative will often present a challenge for the analysis of models of macroeconomic dynamics, but the

present work shows that it needn’t be insurmountable.

The cobweb model presented here shows chaotic dynamics as in Brock and Hommes (1997) and Branch

and McGough (2005). In all these papers there are bifurcations between periodic orbits and strange at-

tractors in the ratio of supply and demand elasticities and a switching intensity parameter. In contrast,

the model with the BNN dynamic has steady states where one strategy dominates that have a natural

interpretation in terms of the cost of the rational forecast. Furthermore, there are qualitative difference

16Branch and McGough (2005) also show increased ranges for price and population fractions for larger values of the speed of
adjustment parameter in their model.
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in the resulting dynamics of the different approaches, so the choice of model of heterogeneous forecasts is

non-trivial.

Models showing chaos are serious candidates for explaining economic fluctuations. Modeling switching

between heterogenous strategies is a field that offers rich possibilities for future work. The learning dynamic

of Brown, von Neumann and Nash (1950) promises to make contributions in both areas.

Appendix A

This appendix presents the proof of Proposition 3.

Proof. Using the specification of the excess payoff dynamic (1) to compute ∆qk,t the condition for positive

correlation in Definition 1 becomes

K∑

k=1

πk,t




σ (π̂k,t)− qk,t
H∑
h=1

σ (π̂h,t)

1 +
H∑
h=1

σ (π̂h,t)


 > 0,

which is equivalent to

(
1 +

H∑

h=1

σ (π̂h,t)

)−1
K∑

k=1

[
(πk,t)σ (π̂k,t)− π̄t

H∑

h=1

σ (π̂h,t)

]
> 0,

where π̄t is the population average payoff. The second term in [·] does not depend in k so using a change

of index and the specification of the excess payoff π̂k,t = πk,t − π̄t yields the following.

(
1 +

H∑

h=1

σ (π̂h,t)

)−1
K∑

k=1

π̂k,tσ (π̂k,t) > 0

Since the choice function σ (π̂k,t) is positive for π̂k,t > 0 and zero otherwise, the above condition is true

unless π̂k,t = 0 for all k.

Appendix B

This appendix presents the proof of Proposition 7..

Proof. The dynamic F from Definition 5 is continuously differentiable at (p̄, q̄) such that γ (p̄, q̄) = 0 if the

partial derivatives are the same for the γ (pt, qt) ≤ 0 and the γ (pt, qt) > 0 cases in the specification for the

evolution of qt (14). The terms
dpt+1
dpt

and
dpt+1
dqt

will be the same since only the price dynamics equation

(8) is involved. Differentiation of the γ (pt, qt) < 0 case of (14) with respect to pt yields the following.

dqt+1
dpt

= (1− qtγ (pt, qt))
−2

(
q2t
d

dpt
γ (pt, qt)

)
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At (p̄, q̄) such that γ (p̄, q̄) = 0, so we have

dqt+1
dpt

= q̄2
d

dpt
γ (p̄, q̄) for γ (pt, qt) ≤ 0.

By similar reasoning, we have

dqt+1
dpt

= (1− q̄)2
d

dpt
γ (p̄, q̄) for γ (pt, qt) > 0.

Differentiating the two cases of (14) with respect to qt yields these two relations.

dqt+1
dqt

= 1 + q̄2
d

dqt
γ (p̄, q̄) for γ (pt, qt) ≤ 0

dqt+1
dqt

= 1 + (1− q̄)2
d

dqt
γ (p̄, q̄) for γ (pt, qt) > 0

For
dqt+1
dpt

to be the same for positive and negative γ (pt, qt) requires either p̄ = 0, which is necessary for

d

dpt
γ (p̄, q̄) = 0, or q̄ =

1

2
. There is an analogous statement for

dqt+1
dqt

.

From iii) in Proposition 6, note that p∗ > 0. Furthermore, q∗ is strictly increasing in b̂ and as b̂→∞,

q∗ →
1

2
so for a finite b̂, q∗ <

1

2
. Therefore, F cannot be continuously differentiable at (p∗, q∗) or (−p∗, q∗).

Appendix C

This appendix proves Proposition 11.

The Jacobians ĴL and ĴR of F̂ for γ (pt, qt) < 0 and γ (pt, qt) > 0, respectively, can be calculated directly

using Definition 8 or from the definition of F in Definition 5, multiplying the result by the reflection matrix

T =



−1 0

0 1


, as in the proof of Theorem 3.3 in Brock and Hommes (1997).

ĴL =




1 −

√
2C

b

(
2b̂

b̂+ 1

)

√
bC

2

(
b̂− 1

b̂
.

)2
1−

C
(
b̂− 1

)2

b̂
(
b̂+ 1

)
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Similarly, the Jacobian of F̂ at (p∗, q∗) for γ (pt, qt) > 0 is as follows.

ĴR =




1 −

√
2C

b

(
2b̂

b̂+ 1

)

√
bC

2

(
b̂+ 1

b̂

)2
1−

C
(
b̂+ 1

)

b̂




The proof of Proposition 11 follows.

Proof. Let λ be an eigenvalue of ĴL and λ̂ = 1− λ. The characteristic polynomial P (λ) of ĴL is

P
(
1− λ̂

)
= λ̂

2
− λ̂C

(
b̂− 1

)2

b̂
(
b̂+ 1

) + 2C

(
b̂− 1

)2

b̂
(
b̂+ 1

) .

The discriminant for P
(
1− λ̂

)
= 0 is


C

(
b̂− 1

)2

b̂
(
b̂+ 1

)




2

− 8C

(
b̂− 1

)2

b̂
(
b̂+ 1

) ,

which is negative if C <
8b̂
(
b̂+ 1

)

(
b̂− 1

)2 , so the condition C < 4 guarantees complex eigenvalues for any b̂ > 1.

For complex roots of P (λ) = 0, the eigenvalues λ, λ̄ are conjugates that have modulus greater than one

if λλ̄ > 1. Computation yields

λλ̄ =


1−C

(
b̂− 1

)2

2b̂
(
b̂+ 1

)




2

+
1

4


8C

(
b̂− 1

)2

b̂
(
b̂+ 1

) −


C

(
b̂− 1

)2

b̂
(
b̂+ 1

)




2

 ,

and so λλ̄ > 1 iff C




(
b̂− 1

)2

b̂
(
b̂+ 1

)


 > 0, which holds if b̂ > 1 and C > 0.

Similiarly, let λ be an eigenvalue of ĴR and λ̂ = 1− λ. The characteristic polynomial P (λ) of ĴR is

P
(
1− λ̂

)
= λ̂

2
− λ̂C

(
b̂+ 1

b̂

)
+ 2C

(
b̂+ 1

b̂

)
.

The discriminant here is

C2

(
b̂+ 1

b̂

)2
− 8C

(
b̂+ 1

b̂

)
,
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which is negative if C <
8b̂

b̂+ 1
which holds for C < 4 and b̂ > 1.

The product of the eigenvalues is

λλ̄ =

(
1 +C

(
b̂+ 1

2b̂

))2
+
1

4


8C

(
b̂+ 1

b̂

)
−

(
C

(
b̂+ 1

b̂

))2
 ,

and so λλ̄ > 1 if C
(
b̂+1

b̂

)
> 0, which is true if b̂, C > 0.

Appendix D

Assume the parameter restrictions in Proposition 11 hold throughout this appendix. The first step in

the proof of Proposition 12 is to make the following coordinate transformation.

Definition 14 Define the space (p̄t, q̄t) such that (p̄t, q̄t) = h (pt, qt) = (pt − g (qt) , qt − q∗) where g (qt) is

such that γ (g (qt) , qt) = 0. The evolution function F̂ (p̄t, q̄t) = (p̄t+1, q̄t+1) is determined by F̂ (p̄t, q̄t) =

h
(
F̂
(
h−1 (p̄t, q̄t)

))
, where F̂ is given by Definition 8.

Since pt and qt are taken to be non-negative, h (pt, qt) is a homeomorphism. The origin is the steady

state of F̂ associated with the steady state (p∗, q∗) of F̂ , and the local dynamics for both are equivalent17 .

Furthermore, the conditions γ (pt, qt) ≶ 0 are equivalent to p̄t ≶ 0. Studying the stability of the origin

requires computing the following Jacobians ĴL and ĴL of F̂ around the origin for p̄t < 0 and p̄t > 0,

respectively. The requirement γ (g (qt) , qt) = 0 implies that the function g (qt) has the following form

g (qt) =

√
2C

b

(
b̂qt + 1

b̂+ 1

)
. The new evolution function F̂ can be written explicitly using the equations

from Definition 8, substituting qt with q̄t + q∗, qt+1 with q̄t+1 + q∗, pt with p̄t + g (q̄t + q∗) , pt+1 with

17See the discussion of topological conjugacy in di Bernardo, Budd, Champneys and Kowalczyk (2007) for details. This also

guarantees that the eigenvalues of the Jacobians are the same for F̂ and F̂ , which is verified below.
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p̄t+1 + g (q̄t+1 + q
∗) . The following Jacobians can now be computed18 .

ĴL =




1−
C
(
b̂− 1

)2

b̂
(
b̂+ 1

) −

√
2C

b

(
2b̂

b̂+ 1

)

√
bC

2

(
b̂− 1

b̂
.

)2
1




(17)

ĴR =




1−
C
(
b̂+ 1

)

b̂

−

√
2C

b

(
2b̂

b̂+ 1

)

√
bC

2

(
b̂+ 1

b̂

)2
1




The only change in the Jacobians after the coordinate transformation is the switch between the (1, 1)

and (2, 2) elements of the matrices, so the eigenvalue condition from Proposition 11 still holds for ĴL and

ĴR.

Lemma 15 For any b̂ > 1 and 0 < C < 4, the eigenvalues of ĴL and ĴR are complex with modulus greater

than one.

Proof. The characteristic equations for ĴL and ĴR are identical to those for ĴL and ĴR in Appendix C so

proof is identical to that for Proposition 11.

Before postulating a Lyapunov function for F̂ , first note that for a general difference equation yt+1 = Ayt,

where yt ∈ R
n and A is an nxn matrix with eigenvalues of modulus less then one, the origin is asymptotically

stable and there is a Lyapunov function V (y) = yTBy for some symmetric, positive definite B, such that

B − ATBA is positive definite. The key attributes for a Lyapunov function are V (0) = 0, V (y) > 0 for

y = 0, and V (yt+1) < V (yt), which is guaranteed by the condition on the matrices. See Lashmikantham

and Trigiante (2002, section 4.9) for details.

Since the eigenvalues of ĴL have modulus greater than one, the eigenvalues of ĴL
−1

have modulus less

than one, and there exists a symmetric, positive definite BL =



bl11 bl12

bl12 bl22


 such that

BL −

(
ĴL

−1
)T
BL

(
ĴL

−1
)

is positive definite. Multiplying on the left by ĴL
T

and on the right by ĴL

shows that an equivalent condition is for ĴL
T

BLĴL−BL to be positive definite.

Now, for studying the behavior of F̂ around the origin, let the candidate Lyapunov function be defined

18Some care is required since p̄t+1 and q̄t+1 appear simultaneously in the price evolution equation.
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as follows.

V (p̄t, q̄t) =




(p̄t, q̄t)BL (p̄t, q̄t)

T for p̄t ≤ 0

(p̄t, q̄t)BR (p̄t, q̄t)
T for p̄t > 0





(18)

For V (p̄t, q̄t) to be continuous along p̄t = 0, it must be the case that (0, q̄t)BL (0, q̄t)
T = (0, q̄t)BR (0, q̄t)

T ,

which requires19 that bl22 = br22, where BR =



br11 br12

br12 br22


. The next task is to show the existence

of a BR with the attributes of BL described above for an arbitrary br22 > 0. Note that for a symmetric

2x2 matrix B, positive definiteness is equivalent to b11 > 0 and the determinant |B| > 0. For both of those

conditions to hold it must also be true that b22 > 0.

Lemma 16 Given the parameter restrictions in Proposition 11, for an arbitrary br22 > 0, there exists a

symmetric, positive definite BR such that D = ĴR
T

BRĴR−BR is positive definite.

Proof. Using the specifications for D in the lemma and ĴR from above (17), computation yields

|D| = −
8C

b

(
b̂

b̂+ 1

)2
br211 −

bC

2

(
b̂+ 1

b̂

)4
br222 −


C2

(
b̂+ 1

b̂

)2
+ 8C

(
b̂+ 1

b̂

)
 br212

+4C

√
2C

b
bR11b

R
12 + 4C

(
b̂+ 1

b̂

)
br11br22 + 2C

(
b̂+ 1

b̂

)3
br12br22

Let br∗11 be the value of br11 that maximizes |D|, given br12 and br22. Solving the first order condition

d |D|

dbr11
= 0 gives

br∗11 =
b

4

(
b̂+ 1

b̂

)2 [√
2C

b
br12 +

(
b̂+ 1

b̂

)
br22

]
.

So br∗11 > 0 for any br12, br22 > 0.

Furthermore, |B| = br11br22− br
2
12 so given any br11, br22 > 0, there exists ε

∗ > 0 such that for br12 > 0,

if br12 < ε
∗, then |B| > 0.

The upper left element of D, d11 can be computed using ĴR in (17).

d11 =


C2

(
b̂+ 1

b̂

)2
− 2C

(
b̂+ 1

b̂

)
 br11 +2

√
bC

2

(
b̂+ 1

b̂

)2(
1−C

(
b̂+ 1

b̂

))
br12 +

bC

2

(
b̂+ 1

b̂

)4
br22

Evaluating d11 at br11 = br
∗

11 yields

d11|br11=br∗11 =
1

2

√
bC

2

(
b̂+ 1

b̂

)2
C2

(
b̂+ 1

b̂

)2
− 6C

(
b̂+ 1

b̂

)
+ 4


 br12 +

bC2

4

(
b̂+ 1

b̂

)5
br22.

19The coordinate transformation makes possible this simple requirement for continuity.
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Since the coefficient on br22 is positive, there exists ε∗∗ > 0 such that for br12 > 0, if br12 < ε∗∗, then

d11|br11=br∗11 > 0.

Evaluating |D| at br11 = br
∗

11 yields

|D| |br11=br∗11 = −8C

(
b̂+ 1

b̂

)
(br12)

2
+ 2C

(
b̂+ 1

b̂

)3(
1 +

√
bC

2

)
br12br22.

The coefficient on br12br22 is positive so, there exists ε∗∗∗ > 0 such that for br12 > 0, if br12 < ε
∗∗∗, then

|D| |br11=br∗11 > 0.

Therefore, for any br22 > 0, taking br11 = br
∗

11, there exists a br12 > 0 such that br12 < min{ε
∗, ε∗∗, ε∗∗∗}

that guarantees |B| , d11, |D| > 0 so both BR and D are positive definite, as required.

Therefore, since BR, specified in the lemma above, can be constructed for any br22 = bl22 > 0, there exists

a continuous V (p̄t, q̄t) where both ĴL
T

BLĴL−BL and ĴR
T

BRĴR−BR are positive definite. Intuitively,

the above lemma shows that V (p̄t, q̄t) is increasing over time when the linearization of F̂ (p̄t, q̄t) determines

the dynamics. The following lemma formally extends this idea to F̂ (p̄t, q̄t) within a neighborhood of the

origin.

Lemma 17 There exist BL and BR such that the function V (pt, qt) given by (18) has the property that

V
(
F̂ (p̄t, q̄t)

)
− V (p̄t, q̄t) > 0 for (p̄t, q̄t) sufficiently close to the origin.

Proof. Since ĴR
T

BRĴR−BR is positive definite, from lemma 16, there exists an ε > 0 such that

(p̄t, q̄t)

(
ĴR

T

BRĴR−BR

)
(p̄t, q̄t)

T

‖(p̄t, q̄t)‖
> ε,

for all (p̄t, q̄t) = (0, 0). Refering to the specification for V (p̄t, q̄t) in (18), this condition implies

V
(
ĴR (p̄t, q̄t)

T
)
− V (p̄t, q̄t)

‖(p̄t, q̄t)‖
> ε, (19)

for (p̄t, q̄t) such that p̄t > 0.

Using the definition of the derivative to examine deviations from the origin, again for p̄t > 0, given ε
′ > 0,

there exists a δ > 0 such that for (p̄t, q̄t) where ‖(p̄t, q̄t)‖ < δ,

∥∥∥F̂ (p̄t, q̄t)− ĴR (p̄t, q̄t)T
∥∥∥

‖(p̄t, q̄t)‖
< ε′. (20)

Further, V (p̄t, q̄t) is continuous and bounded on any compact set, so it is Lipschitz continuous, and there
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exists a K > 0 such that

∣∣∣V
(
F̂ (p̄t, q̄t)

)
− V

(
ĴR (p̄t, q̄t)

T
)∣∣∣ < K

∥∥∥F̂ (p̄t, q̄t)− ĴR (p̄t, q̄t)T
∥∥∥ . (21)

Reasoning by contradiction, assume that V
(
F̂ (p̄t, q̄t)

)
≤ V (p̄t, q̄t). This condition implies

V
(
F̂ (p̄t, q̄t)

)
− V

(
ĴR (p̄t, q̄t)

T
)

‖(p̄t, q̄t)‖
+
V
(
ĴR (p̄t, q̄t)

T
)
− V (p̄t, q̄t)

‖(p̄t, q̄t)‖
≤ 0.

Applying the condition (19) derived from the positive definiteness of ĴR
T

BRĴR − BR to the inequality

above implies that

V
(
F̂ (p̄t, q̄t)

)
− V

(
ĴR (p̄t, q̄t)

T
)

‖(p̄t, q̄t)‖
< −ε

and so
∣∣∣V
(
F̂ (p̄t, q̄t)

)
− V

(
JR

F̂
(p̄t, q̄t)

T
)∣∣∣ > ε ‖(p̄t, q̄t)‖ . (22)

However, the Lipschitz continuity condition (21) with the derivative condition (20) implies

∣∣∣V
(
F̂ (p̄t, q̄t)

)
− V

(
JR

F̂
(p̄t, q̄t)

T
)∣∣∣ < Kε′ ‖(p̄t, q̄t)‖

for ‖(p̄t, q̄t)‖ sufficiently small. Choose ε′ > 0 so that ε′ < ε/K, so there exists a δ > 0 such that for

‖(p̄t, q̄t)‖ < δ, ∣∣∣V
(
F̂ (p̄t, q̄t)

)
− V

(
JR

F̂
(p̄t, q̄t)

T
)∣∣∣ < ε ‖(p̄t, q̄t)‖ ,

which contradicts (22). Therefore, for ‖(p̄t, q̄t)‖ sufficiently small, the assumption above is false, and it must

be true that V
(
F̂ (p̄t, q̄t)

)
− V (p̄t, q̄t) > 0.

So far, the proof applies only to point to the right of the axis p̄t = 0. However, exactly the same

argument can be made for (p̄t, q̄t) such that p̄t < 0 using JL
F̂
. Furthermore, since V and F̂ are continuous,

the condition in the lemma is true for points where p̄t = 0 as well.

To show asymptotic instability, it is necessary to examine the inverse function F̂
−1

. The following results

show that the inverse is well-defined and continuous.

Clarke (1976) defines the generalized gradient for a piecewise differentiable function as the convex hull of

the Jacobian matrices that exist. For the purposes of this paper, the following is sufficient.

Definition 18 The generalized gradient J of F̂ is the set of matrices τĴL+ (1− τ) ĴR where τ ∈ [0, 1].

His central result follows.
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Proposition 19 (F. H. Clarke 1976) If a function is Lipschitz continuous on a neighborhood of x0 ∈ R
n and

its generalized gradient around x0 has maximal rank, then the function has a Lipschitz continuous inverse

in a neighborhood around x0.

The function F̂ is continuous and bounded on any compact set so it must be Lipschitz continuous.

Proposition 19 thereby applies when J is non-singular for all τ ∈ [0, 1].

Lemma 20 For b̂, C > 0, J is non-singular and has full rank for all τ ∈ [0, 1].

Proof. Computation of the determinant of J given by Definition 18 yields using (17) the following.

|J | = 1 +C


τ

(
b̂− 1

)2

b̂
(
b̂+ 1

) + (1− τ)
(
b̂+ 1

b̂

)


Hence, |J | > 0 and is non-singular for any b̂, C > 0.

Now, we can proceed to the proof of Proposition 12

Proof. Lemma 17 guarantees that there exists a V (·) such that V
(
F̂ (p̄t, q̄t)

)
− V (p̄t, q̄t) > 0 in a neigh-

borhood of the origin, and Proposition 19 and Lemma 20 show that F̂ has a continuous inverse. Therefore,

it is also true that V

(
F̂
−1

(p̄t, q̄t)

)
− V (p̄t, q̄t) < 0. Clearly, V (0, 0) = 0 and V (p̄t, q̄t) = 0 for (p̄t, q̄t) = 0.

Therefore, there exists a specification of V (p̄t, q̄t) given in (18) with BL and BR chosen according to Lemma

16, that is a continuous Lyapunov function. So the origin is an asymptotically stable steady state of F̂
−1

,

by Theorem 4.9.1 of Lashmikantham and Trigiante (2002), and therefore an asymptotically unstable steady

state of F̂ .

Further, this means that the point (p∗, q∗) is an asymptotically unstable steady state of F̂ and the pair

(±p∗, q∗) is an asymptotically unstable 2-cycle of F .

Appendix E

The proof of Proposition 12 follows.

Proof. The Jacobian of F̂ around any (p, q) where q = 0 and 0 < p <

√
C

2b
is a lower triangular matrix

with ones on the diagonal given by ĴL where b̂ = 1, so these points are stable. Hence, the associated 2-cycle

under F is also stable.

The steady state of F̂ , (p∗, q∗) =

(√
C

2b
, 0

)
lies on the curve γ (pt, qt) = 0 so both ĴL and ĴR (Appendix

C) where b̂ = 1 are relevant. The eigenvalues of ĴL are 1 and -1 but the eigenvalues for ĴR are both greater

the one in magnitude, see Appendix C, so this point is neither stable nor unstable.
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Figure 1
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Phasespace for b̂ = 1.56. The intersections for γ (pt, qt) = 0 and qt = q
∗ show the unstable 2-cycle.
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Figure 2a
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Figure 2b
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Figure 3
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Phaseplot for b̂ = 1.56.
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Figure 4
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Phaseplot for b̂ = 1.573.
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Figure 5
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Phaseplot for b̂ = 1.7.
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Figure 6
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Largest Lyapunov exponent plot.
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Figure 7
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Sample time series for b̂ = 1.56.
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Figure 8a

Bifurcation diagram for b̂ = 1.5.
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Figure 8b

Bifurcation diagram for b̂ = 1.5.
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Figure 9
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Largest Lyapunov exponent plot for b̂ = 1.5.
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Figure 10

Magnified view of the phaseplot for α = 1.15 and b̂ = 1.5.
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