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Abstract

We analyze the welfare impact of entrepreneur mobility in a two-country over-
lapping generations model. Increasing returns in production yield multiple equilib-
ria that are stable under adaptive learning. Governments compete for the mobile
resource by setting income taxes. We show that large welfare gains can arise from
noncooperative taxation. If expectational barriers prevent the realization of high
output equilibria, tax competition can sufficiently perturb expectations so that
high steady states become attainable. Once in a high production regime, gov-
ernments may institute cooperative tax increases or reductions so as to bring the
economy to the global joint optimum without disturbing the regime.
Key words: competition for mobile factors, overlapping generations, multiple

equilibria, bifurcations.
JEL codes: H2, F2, D83.

1 Introduction
International tax competition has attracted much interest in recent literature. At issue
is the allocation of mobile tax bases, the location of which may be affected by strategic
policy choices (in particular, tax reductions) of governments eager to attract them. The
fear is that such unilateral and aggressive tax policies could prove harmful since public
services might have to be cut as tax revenues dwindle.
Previous theoretical work has largely supported the above viewpoint. The Nash

equilibrium of the tax competition game has been shown to be inferior to the hypothetical
joint optimum attained from tax cooperation, and international tax coordination is

∗An earlier version was presented in the 2002 European Meeting of the Econometric Society. We
thank the referee and the Associate Editor for very useful comments. This research was in part funded
by grants to Research Unit on Economic Structures and Growth, University of Helsinki, Finland and
UK ESRC Grant RES-000-23-1152.

1



usually suggested as the remedy for the potential welfare loss from tax competition.
The voluminous literature that supports this view is surveyed in Wilson (1999).
There are, however, forces that can counterbalance the standard inefficiency argu-

ment against tax competition. Persson and Tabellini (1992) have shown, for example,
that societies can find ways of adapting their internal political systems so as to prevent
the slide toward unacceptably low levels of public spending. Edwards and Keen (1996)
have observed that public decision makers may be self-serving and that, in such cases, tax
competition may provide a useful constraint against unproductive public expenditures.
Wooders, Zissimos and Dhillon (2001) assume that public goods increase the productiv-
ity of capital in private firms and show that the Nash equilibrium may be efficient or
involve either over- or underprovision of public goods relative to the efficient outcome.
Wilson and Wildasin (2004) survey other approaches toward modeling potential benefits
from tax competition.
In this paper, we suggest that there are still additional circumstances in which in-

ternational tax competition can be positively helpful. Our argument centers on the role
that increasing returns, expectations, and learning dynamics play in determining the
outcome of the tax competition game. While the study of nonconvexities, multiple equi-
libria, and learning have received much attention in recent macroeconomic literature, the
implications of these phenomena in microeconomic policy models remain less known.
Our goal here is to demonstrate the effects of evolutionary expectations and learning

in an overlapping generations model of tax competition that possesses multiple equilib-
ria (some with high and some with low levels of output and well-being). Consideration
of the time-adjustment of the economy following a policy change allows us to identify
new positive effects that arise from international tax competition. First, when there are
multiple equilibria, we show that tax competition can yield large (discrete) jumps in
well-being, thus overturning the standard argument against noncooperative tax setting.
In particular, tax competition can be much better than tax coordination if the effect
of such coordination is to maintain a low productivity steady state. Second, tax com-
petition can serve as a means of breaking a low-expectations trap that prevents a high
output - high welfare equilibrium from being realized. And finally, once a high output
production regime has been established (perhaps through tax competition), carefully
chosen cooperative tax changes may be instituted so as to bring the economy from a
Nash equilibrium to the global joint optimum without disturbing the newly attained
high output regime. Thus, while expectational dynamics may cause stagnation at a low
equilibrium trap, they can also support cooperative taxation of mobile factors.
What is also interesting is that depending on the importance of increasing returns,

the cooperative tax reforms under the high output regime may include tax increases (as
in the standard tax competition argument) or tax reductions. In other words, the Nash
equilibrium in taxes, while always worse in welfare terms than the joint optimum, may
involve taxes that are lower or higher than at the cooperative welfare maximum. The
case in which unilaterally optimal taxes are higher than jointly optimal occurs when
increasing returns are sufficiently strong.
We employ a symmetric two-country version of the overlapping generations model
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of social increasing returns due to Evans and Honkapohja (1995, 2001) to derive our
results.1 Overlapping generations models are natural vehicles for studying learning be-
cause they provide a clean example of one-step forward looking behavior. In this type of
models, individuals pursue their interests given a forecast future reflected in expectations
and expectations are adjusted based on observed history of the economy, thus leading to
a dynamic process in which individuals alter their behaviors as they learn more about
the economy. A rational expectations equilibrium is eventually attained as the outcome
of the learning process.2 The Evans and Honkapohja model is particularly attractive
in that it yields a tractable example of an overlapping generations model with multiple
equilibria. The learning dynamics in this model can be represented in terms of a single
state variable and the effects of policy can be illustrated by simple diagrams. The model
also builds a microeconomic foundation for the increasing returns in employment that
can lead to multiple equilibria.
In our two-country extension of the Evans and Honkapohja model, all individuals

are taken to be potentially mobile in their first period of life. During this time period
individuals work and save so as to finance retirement in the second period. Income
earned in either country is taxed according to the source principle, and the tax revenues
are spent to supply publicly provided goods and services for the retired. We deviate from
the standard tax competition models by treating the mobile individuals as household-
producers (or entrepreneurs) whose labor is by nature mental, entrepreneurial, effort
rather than physical work. These individuals do not exchange labor for a market wage
but can, instead, set up shop and offer their services in either country depending on the
available return. Skilled professionals (IT services, consulting, entertainment, design,
arts, etc.) perhaps serve as a reasonable example. Thus, contrary to the standard
tax competition model in which aggregate capital is mobile and in fixed supply, our
framework contains several mobile ”human capital” factors, each in endogenous supply
by entrepreneurs who respond to return opportunities in two markets. Just as mobile
capital in the standard tax competition model is allocated so as to equalize returns
between markets, the entrepreneurs in the present model respond to tax incentives and
adjust the allocation of entrepreneurial services in the two locations. Optimal allocation
of individual effort is characterized by equality of the real returns to it.3

Tax competition that results in lower taxation combined with international mobility
of entrepreneurs can yield strong incentives to expand output. In our model, this effect
is magnified by increasing social returns in a certain range of aggregate entrepreneurial
effort. In particular, we assume that while effort by each individual (firm) is subject
to decreasing returns in each location, external gains in productivity are reaped if the
aggregate activity in a location exceeds a minimum threshold level. It is the interaction

1An overlapping-generations model of tax competition was also used by Wildasin and Wilson (1996)
who analyzed land-value maximizing taxation under imperfect resident mobility across jurisdictions.

2For an comprehensive discussion of adaptive learning, see Evans and Honkapohja (2001).
3Devereux, Lockwood and Redoano (DLR) (2002) have analyzed location decisions of mobile firms

when countries compete in corporate taxation and financial capital is internationally mobile. The
individual producers of our model are analogous to the mobile entrepreneurs of DLR, a difference being
that we allow individuals to operate in both locations if doing so is profitable.
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of these positive productivity externalities and the decreasing returns to individual ef-
fort that gives raise to multiple potential equilibria. Given this multiplicity, endogenous
movements from one steady state to another can take place, and we are particularly
interested in showing that tax competition can be a source of strongly favorable bifur-
cations in equilibria.4

Learning dynamics allow us to classify potential equilibria into those that are stable
under adaptive learning and those that are unstable. Stable equilibria are approached
via an expectational adjustment process along which individual entrepreneurs observe
the economy, adjust their forecasts for the future, and learn about the equilibrium values
of the model variables. Since unstable equilibria cannot be approached by such small,
gradual, steps, an unstable steady state that separates a high output equilibrium from
a low steady state forms an expectational barrier that cannot be easily overcome. Only
discrete changes in policy or other exogenous disturbances of sufficient size can perturb
the prevailing expectations so as to cause an upward jump in the performance of the
economy. We show that tax competition can serve in this welfare improving role.

2 Model
In this section, we expand the Evans and Honkapohja (1995, 2001) overlapping genera-
tions model to include two symmetric countries, H(ome) and F (oreign).

2.1 Production Technology

At any point in time, both countries H and F are the birthplace of a fixed number
(K) individuals (entrepreneurs) who live for two time periods. Because of the assumed
symmetry of the two economies, we discuss the model from the point of view of a
representative individual born in country H in the beginning of time period t. Unless
otherwise noted, all definitions and equations possess analogous counterparts that apply
in country F .
In their first period of life, entrepreneurs invest in effort and produce a private con-

sumption commodity which is sold to the currently retired. Given an entrepreneur-
specific fixed factor (”firm”), the output of each individual is equal to

f(nj, Nj) = nαjΨ(Nj), j = H,F , (1)

in the two locations. Here nj refers to individual effort invested in either location (H or
F ), while Nj denotes the total supply of entrepreneurship in either country. We assume
that α < 1 so that decreasing returns to effort prevail given a fixed value of Ψ(.). For

4The benefits from tax competition that we highlight arise from an expansion in aggregate entrepre-
neurial effort and are different from agglomeration effects in core-periphery models (see Baldwin and
Krugman (2004)).
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simplicity, the production function is assumed to be the same in each location, i.e., f
does not depend directly on j.5

Increasing external returns to entrepreneurship are represented by the function Ψ
in (1). This function is taken to be increasing in Nj; thus, the larger the total supply
of entrepreneurial effort in country j, the higher the productivity of each firm in that
country. A particular functional form for social returns has been suggested by Evans
and Honkapohja (1995). According to this specification,

Ψ(Nj) = max
hbI, Ijiβ , bI > 0, β ≥ 1, (2)

Ij ≡ λNj

1 + aλNj
, λ ∈ (0, 1) , a > 0, (3)

where j = H,F . By (2) and (3), an indicator of total entrepreneurial activity in a
location, Ij, must exceed an exogenous threshold value, bI, before external productivity
gains can be felt. If Ij is larger than bI then, according to (2), Ψ(Nj) = Iβj in all
production functions (1). Otherwise, there are no social returns and the production
functions (1) just include the multiplying constant bIβ.
The measure of entrepreneurial activity, Ij, reflects the sharing of experiences and

ideas that naturally takes place when firms operate in proximity to each other. We
assume that new ideas are created and broadcast at a uniform rate and that, for each
particular firm, the fraction λ of all ideas is suitable to be applied. If it takes a time
units to absorb a suitable new idea, then the total time required to receive and apply
an idea equals a+(λNj)

−1. Per unit of time, therefore, the total number of usable ideas
that any firm receives is Ij, as specified in (3). This quantity of usable ideas enters the
firm-specific production functions as specified in (1) and (2). Because Ij is increasing
in the total entrepreneurial activity at a location, external productivity gains increase
with aggregate effort. There is, however, an upper bound for these gains: by (3), Ij
approaches 1/a as Nj becomes very large.

2.2 Overlapping Generations

Individuals derive well-being from private consumption and from access to public ser-
vices. The utility function of a representative individual born in country H at the
beginning of time period t is taken to be

WH = U(cH,t+1)− V (nHt + nFt) + μU(GH,t+1). (4)

In (4), cH,t+1 denotes private consumption in retirement and μ reflects the importance
of publicly provided benefits, GH,t+1. Disutility of effort is represented by the function

5We assume that all entrepreneurs can produce in both locations without additional (firm-specific
or common) costs. Such costs could be included in the model without material changes in the results.
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V . The utility functions U and U are assumed to be increasing and concave, while V is
taken to be increasing and convex.6

National governments finance public consumption by appropriating a fraction τ j of
output in the country in each period. Accordingly, we have

τ jYjt = Gjt, j = H,F, (5)

where Yjt equals the total (per capita) output in country j in period t and τ j defines
the national tax rate on entrepreneurial returns.7 The subsequent (anticipated) budget
constraints that apply to all individuals born in H at the beginning of time period t are

(1− τH)ptf(nHt, NHt) + (1− τF )ptf(nFt, NFt) = mt, (6)

pet+1cH,t+1 = mt. (7)

In (6) and (7), pt and pet+1 stand for the current and anticipated future world price
of private consumption (in money), respectively. Equation (6) defines the after-taxes
income, mt, measured in money that each entrepreneur plans to spend in retirement
in time period (t+ 1) subject to the budget constraint (7). For simplicity, we assume
that all (identical) individuals have identical price forecasts pet+1. Money is taken to be
the only means of transferring purchasing power from one time period to the next, and
the two countries are assumed to have a common currency. The world stock of money
remains always constant.
Entrepreneurs choose the quantity of effort in time period t in each location by

maximizing (4) subject to the budget constraints (6) and (7). In this choice, Njt and
Gj,t+1 are treated as given, whereby first-order conditions for an interior optimum take
the form8

V 0(nHt + nFt)

U 0(cH,t+1)
= (1− τ j)f

0
1(njt, Njt)

pt
pet+1

, j = H,F. (8)

Accordingly, the optimal nHt and nFt are such that an entrepreneur’s marginal rate of
substitution between effort and future consumption (on the left-hand side of (8)) is equal
to the expected real return (in consumption) to such effort in both locations. In other
words, entrepreneurial activity is allocated so that the anticipated real returns to effort
in H and F are equalized.
An important feature of the entrepreneurs’ optimum is that the amount of effort

supplied by the young individuals depends, ceteris paribus, on the expected price of
consumption in old age. These price expectations matter because effort exerts disutility
on the young consumers (function V (.) appears on the left-hand side of (8)) whereby

6The specification (4) implies that only public services provided by one’s home country can be used
when retired. This precludes the motivation to migrate so as to attain access to public benefits in the
other country.

7In country H, YHt = f(nHt, NHt) + f(n∗Ht, NHt) and NHt = K(nHt + n∗Ht), where n
∗
Ht equals the

entrepreneurial effort invested by Foreign entrepreneurs in H in time period t. Analogous definitions
apply in country F .

8Notation: f 01 denotes the partial derivative of the function f with respect to its first argument.
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they may choose to work less in time period t if pet+1 should rise. We also emphasize
that we treat the supply of the public commodities, Gj,t+1, as exogenous from the young
entrepreneurs’ point of view. This assumption seems natural here because, according
to (5), public goods and services in any time period are financed by taxing the output
produced in that time period.9

The world market for private consumption clears in every time period so that the
world (per capita) consumption, CW

t = cHt + cFt, is equal to the world (per capita)
output, i.e.,

CW
t = (1− τH)YHt + (1− τF )YFt ≡ Yt, ∀t. (9)

Market clearing further requires that the nominal savings of the young generation equal
the world stock of money. If we set the constant world money stock equal to M , then
CW
t =M/pt for all t and therefore

pt
pet+1

=
(1− τH)Y

e
H,t+1 + (1− τF )Y

e
F,t+1

(1− τH)YHt + (1− τF )YFt
=

Y e
t+1

Yt
. (10)

Substituting the price ratio (10) into the first order conditions (8) and the corresponding
equations for individuals born in country F we obtain four effort curve equations that
express the allocation of entrepreneurial effort in time period t, nt, as a function of
the anticipated future effort, net+1.

10 For the entrepreneurs born in H, these equations
require

V 0(nHt + nFt)

U 0(ceH,t+1)
= (1− τ j)f

0
1(njt,Njt)

Y e
t+1

Yt
, j = H,F, (11)

where

ceH,t+1 =
[(1− τH)f(nHt, NHt) + (1− τF )f(nFt, NFt)]Y

e
t+1

Yt
. (12)

Equations (11)-(12) together with the corresponding effort curves of individuals born in
F determine the evolution of entrepreneurial effort in both countries over time.
The rational expectations (perfect foresight) equilibria are identified by the additional

condition that expectations are correct, i.e., net+1 = nt+1. In the following section we
adopt specific functional forms for the utility functions U, U and V , and illustrate the
typical configurations of perfect foresight equilibria within the present model.

9This specification means that individuals do not have an incentive to work harder when young so
as to increase their retirement benefits. In a more complex model, one could assume that individuals
forecast the public good supply as well as the price of future consumption. This would endow our
entrepreneurs with more structural knowledge of the economy than is usually assumed in learning
models.
10In what follows, we simplify the analysis by formulating expectations and learning using the level

of effort rather than expected prices. Individuals are assumed to know that, by (1), Y e
t+1 in (10) is

a function of net+1. For brevity, all agents are assumed to hold the same expectation net+1. If price
expectations were used, these assumptions could be relaxed without altering our results.
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2.3 Symmetric Equilibria

We only consider symmetric equilibria at which τH = τF = τ . Furthermore, for the
purpose of illustrations, we set

U(c) =
c1−σ

1− σ
, V (n) = n, U(G) = G1−σ

1− σ
, 0 < σ < 1. (13)

Substituting these utility functions into (11) and taking into account that, due to sym-
metry, each entrepreneur devotes equal amounts of effort to both locations (whereby
Yjt = 2f(njt, Njt) and Njt = 2Knjt, j = H,F ) we obtain a single effort curve equation

nt = 2
−σα(1− τ)1−σ(net+1)

α(1−σ)max
∙bI, λNt+1

1 + aλNt+1

¸β(1−σ)
≡ F (τ , net+1). (14)

Conditional on τ and net+1, this effort curve determines the amount of entrepreneurial
effort that all individuals invest in each country and subscript references to H and F
have accordingly been dropped.

FIGURE 1: Effort Curves and Steady States.

Some typical effort curves derived from (14) are depicted in Figure 1. The concave
segments on each curve obtain when, in comparison to individual decreasing returns,
externality gains in the production technology (1) are sufficiently small; in contrast,
effort curves can have convex curvature when externalities dominate. Accordingly, for
low values of net+1 and to the left of the sharp kink on each curve, the effort curves in
Figure 1 are concave. In these regions, there are no externalities at all (in these regions,
Ij < bI in (2); the sharp kink occurs when Ij = bI). Above the kink that corresponds
to the critical value nI at which externalities become operative (i.e., Ij(nI) = bI) and
are strong, a convex segment appears on each effort curve. At still higher levels of
employment effort curves eventually turn concave because the positive externality effect
is bounded from above.11

Perfect foresight steady states are found in Figure 1 as the intersections of the effort
curves with the 45-degree line (at these equilibria, net+1 = nt+1 = nt).12 As shown in the
figure, three alternatives exist as to the interior steady states. (In addition, the autarky
equilibrium nt = 0 always exists.) First, there may be a unique interior steady state to
the left of the sharp kink (such as equilibrium nLow on the effort curve F ). At such an
equilibrium, young generations work relatively little, and output and consumption are
low. Second, a unique steady state may occur to the right of the kink (e.g., nNE

High on
FNE
High). At n

NE
High, positive externalities are present and output and consumption are high.

The third possibility is that there are multiple interior steady states as illustrated by the
equilibria n0Low, nU , and n0High along F

0. At n0Low, the realized output and consumption

11Appendix C gives a detailed discussion of the concave and convex segments of the effort curves.
12For simplicity, we do not consider other ”non-fundamental” rational expectations equilibria that

can exist in this model (e.g., sunspot equilibria).
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are much lower than at the high equilibrium n0High. It is easy to see that welfare is
predictably affected: for any given level of taxation, welfare is an increasing function of
n across steady states so that all individuals are better off at n0High than at n

0
Low.

2.4 Learning Dynamics

We introduce dynamic adjustment paths toward rational expectations steady states
using the adaptive learning approach. The basic idea is to begin with a particular
forecast value of future effort, net+1. Given n

e
t+1, individuals choose their preferred level of

current effort, nt, as described above. The resulting nt defines the temporary equilibrium
that corresponds to the initial expectations, net+1. If the realized temporary equilibrium
in time period t differs from what was previously forecast for this time period (i.e., a
rational expectations equilibrium was not attained), then individuals are assumed to
revise their expectations. Such a revision yields the subsequent, improved, forecast,
net+2, which in turn defines a new temporary equilibrium in time period t + 1. If the
observed expectational errors diminish over time as forecasts are updated and behavior
adjusts, a rational expectations steady state is eventually attained. Such an equilibrium
is called stable under adaptive learning. Equilibria that are unstable under adaptive
learning cannot be approached along these sorts of adaptive learning paths.
The temporary equilibrium that corresponds to a given net+1 can be read off the

appropriate effort curve (14) (as illustrated in Figure 1), i.e.,

nt = F (τ , net+1). (15)

We combine equation (15) with a simple description of expectational adjustments:

net+1 = net +
κ

t
([F (τ , net)]− net), κ > 0. (16)

According to this learning rule, individuals revise their expectations by an amount that
is proportional to the previously observed forecast error. The proportionality factor
κ/t is known as the gain parameter, and it determines the extent to which forecast
errors are taken into account. If we set κ = 1 and select appropriate initial conditions,
the forecast net+1 is equal to the average of past values of nt; in this case, individuals
estimate the future supply of entrepreneurial effort by updating the sample mean of
previous observations.13 Equation (16) makes it clear that expectations depend on tax
policy: the amount by which expectations are updated is a function of τ and thus any
change in τ will have an impact on expectational dynamics.
Equations (15) and (16) define the dynamic adjustment paths toward rational ex-

pectations steady states. Proposition 1 of Evans and Honkapohja (1995, p. 225) can be
extended so as to identify the stability properties of these types of equilibria. In particu-
lar, the interior steady states at which an effort curve cuts the 45◦-line from above (e.g.,
n0Low and n0High along the effort curve F

0) are stable under learning, whereas equilibria

13This formulation for learning about steady states is common in the recent literature. See Chapter
11 of Evans and Honkapohja (2001).
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at which the 45◦-line cuts the effort curve from below are unstable (e.g., nU on F 0). This
means that for all initial expectations that fall between zero and nU , learning dynamics
converge to the low equilibrium at n0Low, whereas for all n

e
t+1 larger than nU , the stable

final equilibrium is n0High. All unique interior steady states (such as nLow and nNE
High)

are necessarily stable. It is clear from Figure 1 that, excluding unusual circumstances,
unstable steady states, when they exist, will be located between two steady states that
are stable under adaptive learning.

3 Gains from Tax Competition
In this section we analyze the effects of cooperative and noncooperative tax policies
on the steady state equilibria. We place particular emphasis on the role of multiple
equilibria and expectations as these are the source of our sometimes counterintuitive
results. To establish a connection to previous tax competition models we first discuss
tax policy under the low productivity regime where externalities are not operative.

3.1 Standard Results in the Low Regime

Suppose that a steady state occurs at nLow on effort curve F in Figure 1. Let the
common tax rate at nLow be τ

opt
Low and suppose this tax rate is locally jointly optimal.

By this we mean that τ optLow maximizes the joint welfare of the two countries, H and F ,
given that the level of entrepreneurial effort is too low for productive externalities to
appear. One way a low equilibrium such as nLow can arise is because of coordination
failure in policy making, i.e., the two governments have cooperatively coordinated on
high taxes, which implies that the level of economic activity is low.14

Individual well-being as a function of the common tax rate near nLow is depicted by
the curve labeled WLow in Figure 2A.

FIGURE 2A: Taxes and Welfare, Equilibrium in the Low Regime

Curve WLow has an inverted U-shape if public services have a positive weight in prefer-
ences, i.e., μ > 0 in (4). This condition guarantees that individuals prefer some positive
tax rate and public benefits to zero taxation with no public benefits (Appendix D gives
formal arguments).
Let W j(τH , τF ), j = H,F , denote steady state welfare for given tax rates (τH , τF ).

Then, at the joint optimum nLow both countries perceive an unilateral incentive to reduce
taxation if per capita welfare is decreasing in the domestic tax rate (∂W j(τH , τF )/∂τ

j <
0, j = H,F, when τH = τF = τ optLow). This is typically the case as we show in Appendix
E. If each country follows its unilateralist impulse at nLow and lowers its tax rate, the

14A low steady state could also occur if the two countries are acting in autarky. Then, the smallness
of each country’s economy could rule out any gains from increasing returns, while allowing for factor
mobility and tax competition could expand each economy enough for external productivity gains to
appear. We will not discuss this case further.
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symmetric steady state moves left from nLow alongWLow.15 That the final Nash equilib-
rium at nNE

Low is worse in welfare terms than the joint optimum at nLow is the standard
argument against international tax competition. Furthermore, the relative location of
nNE
Low and nLow on WLow yields the standard policy recommendation: the two countries
should cooperate and move toward higher taxation until the local joint optimum at nLow
is re-established.
A particular numerical example of the usual tax competition argument is obtained

by choosing the parameter values α = 0.9, σ = 0.6, bI = 0.5, β = 2.5, and μ = 1 in (2),
(3) and (13). The jointly optimal tax rate, the Nash tax rate, and the corresponding
levels of well-being are given in Table 1.16

TABLE 1: Standard Tax Competition in the Low Regime
Parameters: α = 0.9, σ = 0.6, bI = 0.5, β = 2.5, μ = 1.

Nash Equilibrium Joint Optimum
τ 0.147 0.352
W 0.856 0.904

3.2 Switching Production Regimes

The example in Table 1 is special in that neither competitive nor cooperative changes
in taxes alter the prevailing production regime. That is, both at the joint optimum
at nLow and at the Nash equilibrium at nNE

Low, social returns play no role in individual
production functions. In Figure 2A, this constancy of the production regime means that
both the initial and the new steady states lie on the same welfare curve, namely WLow.
In Figure 1, this means that both nLow and nNE

Low occur on effort curves (such as F and
FNE
Low, respectively) that intersect the 45-degree line along the first concave segment of
each respective curve. The effort curve that yields the Nash equilibrium, FNE

Low say, lies
above F because, given any positive net+1, all individuals invest more effort in production
when taxes are lower (see equation (14)).
Outcomes that are significantly different can occur when parameter values vary. If

the positive response to reduced taxation is sufficiently large, the effort curve that yields
the Nash equilibrium can reach a position such as depicted by curve FNE

High in Figure 1.
In such a case, following a period of adjustment during which expectations consistently
point toward expansion and all individuals continuously increase production, a steady
state is attained at nNE

High on FNE
High. The switch from a low joint optimum at nLow on

15For simplicity, we assume that individual learning is fast compared to the pace at which tax re-
ductions take place. This guarantees that the temporary equilibria that are observed as the economies
adjust toward a new symmetric steady state occur near the WLow curve so that we can use this curve
as a reasonable approximation to true adjustment paths.
16The Mathematica programs for the numerical examples are available from the authors upon request.

Note that, as long as we remain in the low production regime where externalities are not observed (as
in Table 1), it is not necessary to specify the values of the parameters a, λ, and K that define the
externality function Ψ(.).
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effort curve F to a Nash equilibrium at nNE
High on F

NE
High is not a smooth local perturbation

near an initial steady state (such as in Table 1) but involves a move from one production
regime to another (a bifurcation): on FNE

High the low productivity steady state near nlow
no longer exists, and a high output production regime near nNE

High, along the second
concave segment of the effort curve, has appeared.17

FIGURE 2B:Taxes and Welfare,Equilibrium in the High Regime

The discrete improvement in individual well-being that accompanies the movement
from nLow to nNE

High is shown in Figure 2B. The Nash equilibrium now occurs on curve
WHigh which, depending on the magnitude of the external productivity gains, can be
located much above WLow. This means that, irrespective of the standard arguments
against tax competition, there are cases in which tax competition can play a positive
role. In particular, when external returns make the supply of a mobile resource highly
responsive to tax reductions, tax competition can push the competing economies well
beyond their customary levels of performance. Thus, tax competition need not always
be a ”race to the bottom”; outcomes that are worse can persist if coordinated policy of
higher taxation ends up maintaining a low productivity regime.18

Table 2 gives a numerical example that illustrates the switch in the production
regime. (We postpone the discussion regarding the systematic differences between the
parameter values in Tables 1 and 2 to Section 4 below.)

TABLE 2: Switching Production Regimes

Parameters:
α = 0.5, β = 2.5, a = 0.2, λ = 0.02,bI = 0.97, K = 300, σ = 0.26, μ = 2.5.

Low
Joint Optimum

High
Nash Equilibrium

High
Joint Optimum

τ 0.505 0.396 0.440
W 1.713 133.980 191.442

Of course, bifurcation gains from tax competition cannot exist unless there are mul-
tiple production regimes. In the present model, the source of the potential multiplicity
is the externality function Ψ(.) that includes an externality threshold. Depending on
the height of this threshold, the magnitude of external gains once they appear, and the

17For the purposes of this discussion, we are implicitly assuming that there is a unique Nash equi-
librium for any given set of parameter values. While we have not determined conditions under which
this assumption is correct, we found only one Nash equilibrium in the many numerical examples that
we studied.
18Bhagwati (2002) has argued that the race-to-the-bottom nature of tax competition is little supported

by empirical evidence.
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amount of aggregate effort invested by individuals, either a low or a high productivity
regime is attained.19

According to (2) and (3), the externality treshold is more easily met when externali-
ties are attained at relatively low levels of effort (bI is low), a large fraction of productive
ideas can be applied by many producers (λ is high), new ideas can be absorbed fast (a
is low), and the population is large (K is large, thus increasing Nj). The significance
of the externality gains in the production technology depends on the parameter β in
(2): the larger β, the more externalities contribute toward final output. Extrapolating
beyond the present model, these observations suggest that tax competition may yield
large gains in output and consumption when the countries in question have a tradition
of heavy taxation, new technological innovations are general and applicable in many ar-
eas of production (e.g., the IT revolution), populations are large and highly skilled and
so able to quickly adopt new ideas, and the countries’ production sectors specialize in
goods and services in which local knowledge and relationships are important (industry
clusters; see, e.g., Porter (1998)). In contrast, when new innovations are mainly firm- or
sector-specific, populations are small and relatively unskilled, and aggregate production
sectors concentrate on products with little need or scope for local interactions, there is
little chance that unexpected gains from tax competition would materialize.
Even when multiple production regimes are potentially present, there is an additional

consideration that can prevent the favorable regime switch. At issue is the location of the
Nash equilibrium that the economies converge to: whether it exists on the low welfare
curve WLow as in Figure 2A (in which case tax competition yields no bifurcation) or on
curve WHigh as in Figure 2B (a favorable bifurcation exists). If the Nash equilibrium
occurs near the low joint optimum as in Figure 2A, there cannot be a regime switch
because noncooperative tax reductions are not large enough to cause a jump from curve
WLow to WHigh. The high productivity steady state simply does not exist sufficiently
near nLow (in Figure 1, the effort curve pivots up from F but the Nash equilibrium still
occurs on the first concave segment of the effort curve; see, e.g., curve FNE

Low). If, on the
other hand, noncooperative tax reductions are deep, the low productivity steady state
may cease to exist. This happens in Figure 2B as the common tax rate falls below the
cut-off value τ cut (in Figure 1, the low steady state disappears as the effort curve pivots
up and approaches a position such as illustrated by curve FNE

High). Below τ cut, further
competitive tax reductions and the associated adaptive learning process converge to the
high productivity Nash equilibrium nNE

High on WHigh; a discrete jump in well-being then
necessarily follows (as in Table 2).
The cut-off tax, τ cut, is the lowest common tax rate at which the low productivity

equilibrium exists. By (2) and (3) and given all parameter values, τ cut can be solved

19Technological complementarities can also create multiple production regimes. See Honkapohja and
Turunen-Red (2002).
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from the equation20 bI = 2λKn(τ)

1 + 2aλKn(τ)
, (17)

where n(τ ) is the steady state solution for effort in the low productivity regime as
obtained from the effort curve equation (14), i.e.,

τ cut = 1− 1

21−α(λK)
z

1−σ (1− abI) z
1−σα

1
1−σ bIβ− z

1−σ
; z ≡ 1− α(1− σ). (18)

For the parameter values in Table 2 for which a regime switch does exist, the cut-off
tax equals τ cut = 0.504 and there is no Nash equilibrium to the right of this cut-off
value.21 To illustrate the alternative possibility, we can augment the parameter set in
Table 1 by the following: a = 0.2, λ = 0.02 and K = 100. Then, τ cut = 0.115 which
is smaller than the Nash tax τNE

Low = 0.147. Thus, for these parameter values, the tax
competition process that begins from the low joint optimum at τ optLow = 0.352 yields only
a local reduction in welfare.
While sufficient conditions characterizing the relative location of the Nash equilib-

rium and the cut-off tax are not available, it is helpful if the cut-off tax is high. Equation
(18) indicates that this is the case when ideas are adopted quickly (a small), many ideas
are suitable for others to use (λ high), the population is large (K large), and the ex-
ternality is substantial (β high). Above we pointed out that these same conditions also
make the externality treshold easier to meet. The effect of the externality threshold pa-
rameter bI in (18) depends on the sign of its power and this can be positive or negative.
Thus, while a low bI makes attaining external gains easier, the effect on the cut-off tax
may be to lower it. Thus, a reduction in bI may make a favorable bifurcation more or
less likely.22 The effect of the technology parameter α in (18) is ambiguous as well.
One conclusion is clear nevertheless. When the externality threshold is high and/or

the Nash equilibrium is located near the low productivity joint optimum so that the
high output regime cannot be reached via competitive tax reductions, there is a new
role for cooperative policy. In this case and in contrast to the standard tax coordination
recommendation, the optimal coordinated policy is to reduce taxes, starting from the low
joint optimum, until the high regime optimum at τ optHigh is reached. Figure 2B illustrates.

20This computation assumes that the right-hand derivative ∂F (τ, n)/∂n of the effort curve (14) (on
the side of increasing returns) satisfies the inequality ∂F (τ , n)/∂n > 1 at the n(τ) that solves equation
(17). This is to make sure that a high steady state exists for larger values of net+1 on the right-hand
side of the kink in Figure 1. All of our numerical examples, including the ones not reported here, did
satisfy this constraint.
21This can be shown by finding the Nash equilibrium that would be observed in an economy that

only produces in the low productivity regime (on WLow). For the paramater values in Table 2, this
Nash equilibrium on WLow occurs at τNE

Low = 0.502 < τ cut = 0.504.
22For example, the value of bI is lower in Table 1 than in Table 2 and yet the parameter set of Table

2 yields a bifurcation whereas the augmented parameter set of Table 1 does not. See Section 4 below
for a complete discussion.
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3.3 Breaking Expectational Barriers

A further result can be obtained using Figures 1, 2A and 2B, and this brings forth the
role of expectational dynamics.
Assume, as earlier, that the initial equilibrium is located at nLow on effort curve F in

Figure 1 and let the common tax rate be τ optLow. Now suppose that in an effort to guide
the economy toward the higher productivity regime, the two countries coordinate a joint
tax reduction. As a result, the effort curve pivots up; let it reach the position F 0.23

The shift from effort curve F to F 0 yields another sort of bifurcation; this time the
set of equilibria expands. Along F 0, the low output steady state at n0Low still remains
but two additional steady states at nU and n0High also appear. Of these three equilibria,
the high steady state n0High is clearly most desirable as welfare there is highest. But can
this high equilibrium be actually reached, if initial expectations support the low state
at nLow? As it turns out, this is impossible.
The problem centers directly on expectational dynamics. While entrepreneurs do

respond positively and expectations are adjusted upwards as taxes are reduced below
τ optLow, these positive dynamics come to a halt once the steady state at n

0
Low is reached.

This happens because n0Low is a stable equilibrium under adaptive learning. Accordingly,
for low values of net+1to the left of n

0
Low, expectations and behavior are adjusted toward

n0Low, but an analogous adjustment process also operates to the right of n
0
Low and this

adjustment process lowers expectations should they become overly optimistic. The un-
stable steady state at nU acts as a barrier that guarantees that the high equilibrium
n0High cannot be attained.
There is a remedy for this expectational impasse that supports the low productivity

steady state: taxes must be cut more decisively so that the hold of low expectations
is broken. This means that, in Figure 1, effort curve F 0 must pivot up sufficiently
far so that both the low steady state near n0Low and the unstable equilibrium at nU
are eliminated. But, according to our previous discussion and assuming that the Nash
equilibrium occurs on curve WHigh as in Figure 2B, tax competition can be a means of
reaching this precise outcome (compare effort curves F 0 and FNE

High in Figure 1).
24

While it is true that in a situation such as depicted in Figure 1 governments have an
incentive to cooperate and by doing so they may be able to attain a high output state
(near noptHigh in Figures 2A and 2B), our point here is that even if such policy cooperation
were feasible and sufficiently effective, it may not yield very significant further welfare
gains. Seemingly noncooperative policies can yield an outcome (nNE

High on curveWHigh in
Figure 2B) that is significantly better than the initial (perhaps cooperative) equilibrium
and nearly as good as the global joint optimum. Regarded this way, tax competition may
at times be a reasonable substitute for tax cooperation when such coordinated action is
not feasible.
23In Figures 2A and 2B, this tax reduction corresponds to a leftward movement along curve WLow

to the region where τcut < τ < τucut.
24If the Nash equilibrium occurs on curve WLow as in Figure 2A, tax competition must be sup-

plemented by further cooperative tax reductions. Both cases can happen, depending on parameter
values.
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4 Nash Equilibrium and Policy in the High Regime
Thus far, we have emphasized the role of tax competition in reaching the high pro-
ductivity regime when external social gains potentially exist. When tax reductions are
uncoordinated, one may worry about the relative inefficiency of the final Nash equi-
librium and whether it is possible to aim for the global joint social optimum without
simultaneously destroying the positive incentives and expectations that support the high
output regime.
Fortunately, at this point, we may appeal to the same expectational inertia that, in

the previous section, created the low equilibrium trap. In the case here, once the high
productivity regime near the Nash equilibrium (at nNE

High on WHigh in Figure 2B) has
been established, a coordinated tax reform toward the global optimum (at noptHigh) can be
undertaken without causing a plunge back to the low productivity state. This is because
expectational inertia maintains the high steady state near nNE

High once this equilibrium has
been realized. Only a very large increase in taxation that severely impacts expectations
could possibly re-establish the low productivity steady state. In Figure 2B, this sort of
a tax increase would have to raise the common tax above the rate τucut that marks the
upper limit of taxation at which both the high steady state and the unstable equilibrium
near nU cease to exist. Correspondingly, in Figure 1, effort curve FNE

High would have to
pivot down to a position near curve F . A shift from FNE

High to F
0 would not suffice because

the unstable steady state, if it exists, serves as an expectational barrier that supports
the high productivity regime.
These observations suggests an interesting contrast between coordinated tax policy

in the high productivity regime and the possible coordination failure near the low output
equilibrium. Coordinated tax increases aiming toward the global social optimum in the
high productivity regime should be cautious as sudden large increases may be excessive
(raise taxes beyond τucut); in contrast, when attempting to break out of a low steady state,
tax cuts ought to be decisive (corrective tax increases may be undertaken once the high
productivity regime has been established).
There is a further issue that has to do with the direction of the optimal coordinated

policy in the high regime. Above, and in Figures 2A and 2B as well, we have maintained
the usual intuition whereby taxes at the Nash equilibrium are necessarily lower than
optimal. In this case, the optimal intervention at the Nash equilibrium is a coordinated
tax increase. But, as it turns out, the situation is not always this straightforward.
When productive externalities are strong, it is quite possible that the Nash equilibrium
occurs to the right of the joint optimum (on curve WHigh in Figure 2B). Then, the
noncooperative taxes are actually higher than what is socially optimal and the optimal
coordinated policy should aim toward reducing them further. Table 3 gives a numerical
example.25

25For the parameter values of Table 3, τ cut = 0.309 > τNE
High = 0.308, so that tax competition that

starts from the low joint optimum does cause a shift to the high productivity regime. There is no Nash
equilibrium to the right of τ cut because τNE

Low = 0.170 < τ cut.

16



TABLE 3: Nash Equilibrium and Social Optimum

Parameters:
α = 0.88, β = 2.5, a = 0.2, λ = 0.02,bI = 0.75, K = 100, σ = 0.6, μ = 1.

Low
Joint Optimum

High
Nash Equilibrium

High
Joint Optimum

τ 0.356 0.308 0.143
W 1.725 15.455 17.472

Comparison of Tables 2 and 3 raises a question about the relative location of the
high Nash equilibrium and the global joint optimum. In particular, what is the role
of the various model parameters in ensuring that the usual intuition about the Nash
equilibrium is correct (as in Table 2) and when do paradoxical looking cases (as in Table
3) occur? Some light can be shed on these issues with the help of Figure 3 and Tables
4A and 4B below.

FIGURE 3: Effort Regions in the High Regime

Whether the Nash equilibrium involves taxes that are lower or higher than what
is jointly optimal depends on the sign of the unilateral welfare derivative at the joint
optimum. If ∂WH(τH , τF )/∂τH < 0 when τH = τF = τ optLow, country H will compete
with country F by lowering its tax rate and the Nash equilibrium then occurs to the left
of the joint optimum. In the opposite case, when ∂WH(τH , τF )/∂τH > 0 at the joint
optimum, each country will raise its domestic tax whereby the Nash equilibrium must
lie to the right of the optimum.
The sign of the welfare derivative ∂WH(τH , τF )/∂τH , in turn, crucially depends

on the direction and size of the reactions in (steady state) entrepreneurial effort when
taxes are changed. Of particular importance are the derivatives ∂nH(τH , τF )/∂τH and
(∂nH(.)/∂τH + ∂nF (.)/∂τH) that indicate the changes in the domestic supply of effort
and the total (domestic and exported) supply of effort in each country (see equation (74)
in Appendix E). Expressions for these derivatives are obtained in Appendices A and B
below, and Appendix B also determines the boundary values for the regions in which
the signs of the derivatives ∂nH/∂τH and ∂nF/∂τH vary. These regions are indicated by
the signs of the derivatives in Figure 3 and the boundary values are denoted by nÎ , n4,
n3 and n1.26 In Appendix B, the various regions are discussed as Cases (i) - (v) which
are also shown in Figure 3.
If there are no productive externalities at all, ∂nH/∂τH < 0 and ∂nF/∂τH > 0 as

intuition would suggest. In Figure 3, this no externality region occurs to the left of nI
which is the level of individual effort that, when aggregated across all entrepreneurs,
yields a total supply of effort precisely equal to the externality threshold. Thus, to the

26In fact, Figure 3 and the Appendices use the more convenient derivatives bnH ≡ (∂nH/∂τH)/nH
and bnF ≡ (∂nF/∂τH)/nF .
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right of nI the positive externality is present. In this region, when entrepreneurs work
sufficiently hard, the impact of the externality is eventually mitigated by the individual
decreasing returns (recall the discussion of the production function (1)). There is a
limit value n1, so that when n > n1 we again have ∂nH/∂τH < 0 and ∂nF/∂τH > 0.
Below n1, where the impact of the externality is stronger, the derivatives ∂nH/∂τH and
∂nF/∂τH can take opposite signs as shown in Figure 3. As an extreme example, in the
region n ∈ (n3, n1) both effort derivatives do so; accordingly, in this region, an increase
in taxation is associated both with an inflow of foreign entrepreneurial effort and an
expansion of domestic activity. Table 4A gives the boundary values of effort for the
parameters in Tables 2 and 3.

TABLE 4A:
Effort Derivative

Regions TABLE 4B:
Effort Value

Range

Table 2
parameters

Table 3
parameters

n1 9.998 24.791
n3 1.123 2.339
n4 0.806 0.678
nI 0.099 0.220

Table 2
parameters

Table 3
parameters

nmax 26.973 3.047
nmin 11.113 2.080
nNE
High 14.347 2.083

noptHigh 13.017 2.621

It is because the signs of the nH and nF derivatives at the joint optimum can vary
that the Nash equilibrium in the high regime can be located on either side of the joint
optimum. The boundary values, nI , ..., n1, for the derivative regions depend on the
technology and preference parameters (α; a, λ, β,K) and σ, and these parameters also
determine the range of the actual values of effort that can be realized at symmetric steady
states, including the joint optimum. The symmetric n-solution n(τ ) can be computed
from the effort curve equation (14), from which we obtain the maximum value of effort,
nmax, as the value n(0), while the the smallest level of effort, nmin, equals n(τ cut).27 Table
4B identifies the range of feasible n-values for Tables 2 and 3. In Figure 3, these ranges
are shown as the two shaded bars, labeled Table 2 and Table 3 respectively.
Recall that the parameters in Table 2 yield a Nash equilibrium in which taxes are

lower than jointly optimal, whereas for the parameters in Table 3 the opposite happens.
Using Figure 3, we can see that the two examples are very different. The parameters
in Table 2 yield a range of feasible values of effort that falls in its entirety within the
area n > n1 where a reduction in τH expands domestic activity at the expense of effort
directed to the foreign market. It is in this example that the Nash taxes are lower than
optimal. For the parameters in Table 3, however, the range of steady state values for
n(τ ) falls to one of the regions (n4, n3) or (n3, n1) where the effect of the externality is
stronger. Here, entrepreneurial effort does not respond to taxation as usually expected
and because of this there is little incentive to reduce taxes. The Nash equilibrium tax

27Note that nmin = n(τ cut) as long as both the joint optimum and the Nash equilibrium in the high
regime occur to the left of τcut in Figure 2.
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rate consequently remains close to the cut-off tax τ cut (= 0.309) and while the modest
tax reduction to τNE

High (= 0.308) yields a bifurcation jump in welfare, a tax rate that is
much lower is globally jointly optimal.
Although changes in parameter values have been minimized in Tables 2 and 3, there

are systematic differences between them. First, while the externality parameters a, λ,
and β are the same in both tables, the number of entrepreneurs is larger in Table 2. The
larger population raises the value of the externality function Ψ(.) and reduces nI , ..., n1,
thus pushing the n-value range to the right in Figure 3. This works toward reducing the
Nash equilibrium tax. An analogous effect is obtained by choosing a lower value of α
(= 0.5) in Table 2 than in Table 3 (α = 0.88). By this change, the impact of diminishing
returns is made larger in Table 2 and this further reduces n1. The preference parameter
σ is higher in Table 3 than in Table 2 and this magnifies the previous changes by reducing
incentive to work in Table 3 (when σ is high, less utility is attained from any given level
of consumption). Finally, the weight of public consumption in preferences, μ, is higher
in Table 2; the added importance of public consumption raises the jointly optimal tax
rate and mitigates the impact of the production externality that tends to lower it.
In sum, the numerical examples in Tables 2 and 3 show that, depending on the

importance of the productive externality which affects the location of the Nash equilib-
rium, the optimal coordinated policy in the high production regime may involve both
tax increases and tax reductions.28

5 Conclusions
We have analyzed entrepreneur mobility and tax competition in a simple two-country
overlapping generations model. A special feature of the model is the multiplicity of
equilibria that reflects the possibility of increasing social returns in production. We ap-
ply learning dynamics so as to identify the steady states that are stable under adaptive
adjustment of expectations. These dynamics can influence the outcome of the tax com-
petition game by determining the production regime that unilateral tax reductions can
attain.
We have shown that there are circumstances in which competitive tax setting can

positively enhance (and not reduce) the gains from factor mobility. In particular, tax
competition can be the source of large bifurcational gains in welfare. In the present
model, such gains are realized when unilateral tax reductions cause a sufficiently large

28Along similar lines, Wooders, Zissimos and Dhillon (WZD) (2001) have shown that when a public
good improves the productivity of capital, tax competition can yield tax rates that are higher or
lower than optimal. In contrast to the present paper, the WZD results were derived using a standard
tax competition model in which the supply of capital is fixed and changes in taxation result in a
reallocation of the given capital stock (if a tax increase improves capital productivity then, against
the usual intuition, an inflow of capital investment may occur). In the present model, the supply of
domestic and foreign entrepreneurial effort is endogenous and affected by external productivity gains
in both countries. Tax changes do not merely cause in- or outflows of effort but can yield cases where,
following a tax increase, effort both flows out and expands domestically (Case (v) in Figure 3).
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shift in the supply of entrepreneurial effort and this change significantly alters individual
expectations. Then, it may be possible for the economy to reach a new high effort, high
output steady state in which external benefits from the high level of activity are realized.
Because expectations have an effect on the current supply of effort, the large gains

that potentially exist may not be reaped if individual expectations remain persistently
low (this happens when the existence of an unstable equilibrium creates a trap that
expectational dynamics cannot overcome). In such circumstances, tax competition may
be helpful because it can significantly perturb the status quo, thus encouraging all in-
dividuals to work much harder. Most significantly, once the existence of a new high
output production regime has been learned by all, this high productivity steady state
can still be sustained even if some cautious cooperative tax increases are undertaken.
In other words, the seemingly radical policy choice of free tax competition combined
with cooperative tax increases at a later stage may sometimes yield better results than
a gradual, cooperative, approach that never shocks expectations out of their present rut
and fails to reach the economy’s highest potential.
Of course, bifurcational gains from tax competition are conditional on the existence

of multiple equilibria that are stable under adaptive learning. In the present paper, in an
effort to make the analysis as transparent as possible, we have used a simple threshold
externality and specific functional forms to create such multiplicity. Elsewhere, we have
shown that bifurcational jumps in economic growth can occur when capital goods are
complementary to each other (Honkapohja and Turunen-Red (2002)). Since technologi-
cal complementarities and external influences on productivity (through sharing of ideas)
appear increasingly important in the most modern high-technology sectors, we believe
research on the effects of economic policy should not ignore the possibility of large gains
in these settings.
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Appendices:
(A) Solving the Model at a Steady State: Equations (8) yield the following:

nH : α(1− τH)n
α−1
H Ψ(NH) = cσH , (19)

nF : α(1− τF )n
α−1
F Ψ(NF ) = cσH , (20)

n∗F : α(1− τF )n
∗(α−1)
F Ψ(NF ) = c∗ σF , (21)

n∗H : α(1− τH)n
∗(α−1)
H Ψ(NH) = c∗ σF . (22)

In (19)-(22),
cH = (1− τH)n

α
HΨ(NH) + (1− τF )n

α
FΨ(NF ), (23)

c∗F = (1− τH)(n
∗
H)

αΨ(NH) + (1− τF )(n
∗
F )

αΨ(NF ), (24)

and, in (21)-(22) and (24), n∗H and n∗F denote effort invested by Foreign entrepreneurs
in H and F . Equations (19)-(22) give

nF = nH

∙
Ψ(NF )

Ψ(NH)

(1− τF )

(1− τH)

¸ 1
1−α
≡ nHT

1
1−α , (25)

n∗H = n∗FT
1

α−1 . (26)

Further, using (23) and (25) in (19), we obtain
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nH =
α
1
z (1− τH)

1
1−αΨ

1
1−α
H∙

(1− τH)
1

1−αΨ
1

1−α
H + (1− τF )

1
1−αΨ

1
1−α
F

¸σ
z

, (27)

where z ≡ 1− α(1− σ) and, symmetrically,

n∗F =
α
1
z (1− τF )

1
1−αΨ

1
1−α
F∙

(1− τH)
1

1−αΨ
1

1−α
H + (1− τF )

1
1−αΨ

1
1−α
F

¸σ
z

. (28)

Then, by (27) and (28), nH = n∗FT
1

α−1 which implies, using (26), that

nH = n∗H , nF = n∗F . (29)

Therefore, we can express the model solution in terms of nH and nF . Using (27) and
(28),

nH =
α
1
zx

(x+ y)
σ
z

, nF =
α
1
z y

(x+ y)
σ
z

, (30)

x ≡ (1− τH)
1

1−αΨ
1

1−α
H , y ≡ (1− τF )

1
1−αΨ

1
1−α
F , (31)

Ψj(nj) = max

∙bI, λK(2nj)

1 + aλK(2nj)

¸β
, j = H,F. (32)

(B) Derivatives of Effort: Taking logarithms and differentiating (30) with respect
to τH yields:

AxbnH = Bx − CybnF , AybnF = Dx − CxbnH , (33)

bnH ≡ dnH/dτH
nH

, bnF ≡ dnF/dτH
nF

, (34)

Ai ≡
∙
1− β

1− α

∙
1− σ

z

i

x+ y

¸
(1− aΨ

1
β

H)

¸
, i = x, y, (35)

Bx ≡ − 1

(1− α)(1− τH)

∙
1− σ

z

x

x+ y

¸
, (36)

Ci ≡ σ

z

i

x+ y

β

(1− α)
(1− aΨ

1
β

F ), i = x, y, (37)

Dx ≡ σ

z

x

x+ y

1

(1− α)(1− τH)
. (38)
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At a symmetric equilibrium, Ax = Ay and Cx = Cy and x/(x+ y) = y/(x+ y) = 1/2 in
(35)-(38). Thus, given symmetry, (33) yields

bnH(A2x − C2
x) = AxBx − CxDx, (39)

A2x − C2
x = (Ax − Cx)(Ax + Cx) (40)

=

∙
1− β

1− α
(1− aΨ

1
β

H)

¸ ∙
1− β

1− α
(1− aΨ

1
β

H)
³
1− σ

z

´¸
,

AxBx − CxDx = − 1

(1− α)(1− τH)

∙³
1− σ

2z

´
− β

1− α
(1− aΨ

1
β

H)
³
1− σ

z

´¸
. (41)

Expression (40) is positive if and only if

β

1− α
(1− aΨ

1
β

H) < 1 or
β

1− α
(1− aΨ

1
β

H) >
1

1− σ
z

, (42)

and negative otherwise, while (41) is positive if and only if

β

1− α
(1− aΨ

1
β

H) <
1− σ

2z

1− σ
z

(<
1

1− σ
z

) (43)

and negative otherwise. Thus, we obtain that bnH < 0 if and only if

β

1− α
(1− aΨ

1
β

H) < 1 or
1− σ

2z

1− σ
z

<
β

1− α
(1− aΨ

1
β

H) <
1

1− σ
z

. (44)

Next, we apply (33) and (44) to completely describe the signs of bnH and bnF .
Case (i): Suppose bnH < 0 because β

1−α(1 − aΨ
1
β

H) < 1. Then, by (35), Ax > 0 on
the left-hand side of (33), while the right-hand side is positive and so bnF > 0. Case (i)
occurs when there are no externalities, i.e., β = 0. Then, (33) yields

bnH = Bx

Ax

= − 1

(1− α)(1− τH)

³
1− σ

2z

´
< 0, (45)

bnF = Dx

Ax
=

σ

2z

1

(1− α)(1− τF )
> 0. (46)

Second, Case (i) applies when β > 0 but the equilibrium solution for entrepreneurial
effort is too low for the positive externality appear or, using (32),

λK(2nH)

1 + aλK(2nH)
< bI ⇔ nH < nÎ ≡

1

2λK

" bI
1− abI

#
. (47)
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Third, Case (i) occurs when the solution for nH is sufficiently large so that the local

impact of the externality is small enough for the inequality β(1 − aΨ
1
β

H) < 1− α to be
satisfied. This requires

nH > n1 ≡ 1

2aλK

∙
β

1− α
− 1
¸
. (48)

Case (ii): Suppose bnH > 0 because 1 < β
1−α(1− aΨ

1
β

H) <
1

1− σ
2z
. Then , Ax > 0 as in

Case (i) and from (33),

bnFAx =
σ

2z

1

(1− α)(1− τH)

∙
1 +

a(c− ab)

(1− a)(1− ab)

¸
, a ≡ β

1− α
(1− aΨ

1
β

H), (49)

where the expressions b and c are obviously defined. We can write

1 +
a(c− ab)

(1− a)(1− ab)
=
1− a(1 + b− c)

(1− a)(1− ab)
, (50)

where (1−a) < 0 and (1−ab) > 0 because (1−ab) > 0 (i.e., a < 1
1−σ

z
). Given a < 1

1−σ
z
,

the numerator (1 − a(1 + b − c)) is positive. The right-hand side of (49) is therefore
negative, whereby bnF < 0. Thus in Case (ii), bnH > 0 and bnF < 0. Case (ii) is observed
when the equilibrium effort satisfies the inequality

n2 ≡ 1

2aλK

∙
β

R(1− α)
− 1
¸
< nH < n1, R ≡ 1

1− σ
2z

. (51)

Case (iii): Suppose bnH > 0 because 1
1− σ

2z
< β

1−α(1− aΨ
1
β

H) <
1− σ

2z

1−σ
z
. In this region,

Ax < 0 and expression (50) is positive, whereby bnF < 0. In Case (iii) as well, bnH > 0
and bnF < 0. This region corresponds to the n-values

n3 ≡ 1

2aλK

∙
β

S(1− α)
− 1
¸
< nH <

1

2aλK

∙
β

R(1− α)
− 1
¸
, S ≡ 1−

σ
2z

1− σ
z

(52)

Case (iv): Suppose bnH < 0 because 1− σ
2z

1−σ
z
< β

1−α(1 − aΨ
1
β

H) <
1

1−σ
z
. Then, Ax < 0

and because the right-hand side of the expression for bnF in (33) is positive, we obtainbnF < 0. In Case (iv), bnH < 0 and bnF < 0. The corresponding inequality for nH is

n4 ≡ 1

2aλK

∙
β

T (1− α)
− 1
¸
< nH < n3, T ≡ 1

1− σ
z

.

Case (v): Suppose bnH > 0 because β
1−α(1− aΨ

1
β

H) >
1

1−σ
z
. Then, Ax < 0 and (50)

is negative. In Case (v), bnH > 0 and bnF > 0. This case occurs if nÎ < nH < n4.

By calculations analogous to above and by appealing to symmetry,

bnH = dnF/dτF
nF

,
dnH/dτF

nH
= bnF , (53)
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and dn∗F/dτF = dnH/dτH and dn∗H/dτF = dnF/dτH . Accordingly, the n-derivatives are
completely characterized by the expressions for bnH and bnF .
Finally, we determine the sign of the derivative sum

³
∂nH
∂τH

+ ∂nF
∂τH

´
. At a symmetric

equilibrium, we have
∂nH
∂τH

+
∂nF
∂τH

= nH [bnH + bnF ] , (54)

and so the sign of (54) is determined by the sign of (bnH + bnF ). From (33), we obtain

bnH + bnF = Bx +Dx

Ax + Cx

=
− 1
(1−α)(1−τ)(1− σ

z
)

1− β
1−α(1− aΨ

1
β )(1− σ

z
)
. (55)

The numerator of (55) is negative and the denominator is positive if and only if

β

1− α
(1− aΨ

1
β ) <

1

1− σ
z

. (56)

Thus, bnH + bnF < 0 if and only if Cases (i)-(iv) hold.

(C) The Effort Curves in Figure 1: By (14), effort curves are characterized by
the equations

nt = 2
−σα(1− τ )1−σy1−σt+1 , yt+1 ≡ (net+1)αΨt+1. (57)

Since 0 < α(1 − σ) < 1, nt in (57) is an increasing and concave function of net+1 if
Ψt+1 = bIβ. Thus, for low values of net+1 where Ψt+1 is constant (from net+1 = 0 to
net+1 = nÎ at the sharp kink) the effort curves in Figure 1 are concave. To the right of
the sharp kink the function Ψt+1 is not a constant but takes values determined by (2)
and (3). Then, equation (57) gives

∂nt
∂net+1

= L(1− σ)y1−σ
∙
∂yt+1
∂nt+1

1

yt+1

¸
= L(1− σ)

∙
y1−σt+1

nt+1

¸
�yn > 0, (58)

∂2nt
∂n2t+1

=
L(1− σ)

nt+1

∙
y1−σt+1

nt+1
�yn((1− σ)�yn − 1) + y1−σt+1

∂�yn
∂n

¸
, (59)

where L = 2−σα(1− τ )1−σ and

�yn ≡
(dy/dn)n

y
= α+ β(1− aΨ

1
β ) = α+

β

1 + aλN
(60)

is the elasticity of individual output with respect to effort.
The sign of the derivative (59) determines the curvature of the effort curve. Because

∂�yn
∂n

= − 2aλ

(1 + 2aλn)2
< 0 (61)
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in (59), the effort curve (57) is concave if

(1− σ)�yn − 1 < 0⇔ n > n� ≡ 1

2aλK

∙
(1− σ)(α+ β)

1− (1− σ)α
− 1
¸
. (62)

Observing that
(1− σ)(α+ β)

1− (1− σ)α
− 1 < β

1− α
− 1, (63)

we obtain that condition (62) is satisfied when n > n1, i.e., in Case i) of Appendix B.
Thus, when externalities are operative (net+1 > nI), condition (62) determines a range
of high values of net+1 for which the effort curves are concave. (Concavity holds even for
values of net+1 that are somewhat smaller than n� because ∂�

y
n/∂n < 0 in (59).) Thus, the

second concave segment along the effort curves in Figure 1 exists when nt+1 is sufficiently
large.
The effort curve is convex if �yn > 1/(1 − σ) and such that (59) is positive. Using

(62), it is evident that such convex segments can only appear when net+1 is between the
low value nI at which the externality appears and the high value n� at which the effort
curve already is concave. Thus, the effort curves in Figure 1 conform to the general
description obtained from equation (57).

(D) Welfare as a Function of the Tax Rate in Figures 2A and 2B: The
derivative sum ∂WH/∂τH + ∂WH/∂τF determines the slope of the curves W (τ) at a
symmetric equilibrium. Using (13),

∂WH

∂τH
= U 0

∙
∂cH
∂τH

¸
−
∙
∂nH
∂τH

+
∂nF
∂τH

¸
+ μU 0

∙
τH

∂Y T
H

∂τH
+ Y T

H

¸
, (64)

∂WH

∂τF
= U 0

∙
∂cH
∂τF

¸
−
∙
∂nH
∂τF

+
∂nF
∂τF

¸
+ μU 0

∙
τH

∂Y T
H

∂τF

¸
, (65)

where Y T
H = f(nH , NH) + f(n∗H ,NH) is the total (per capita) output in H.

Furthermore, since cH = (1−τH)f(nHt, NHt)+(1−τF )f(nFt, NFt) at a steady state,

∂cH
∂τH

= −f(nH , NH) + (1− τ)(f 01 + 2f
0
N)

∙
∂nH
∂τH

+
∂nF
∂τH

¸
, (66)

∂cH
∂τF

= −f(nF ,NF ) + (1− τ)(f 01 + 2f
0
N)

∙
∂nH
∂τF

+
∂nF
∂τF

¸
, (67)

∂Y T
H

∂τH
= 2(f 01 + 2f

0
N)

∂nH
∂τH

,
∂Y T

H

∂τF
= 2(f 01 + 2f

0
N)

∂nH
∂τF

. (68)

The derivatives of nH and nF with respect to the tax variables are discussed in Appendix
B above.
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Next, we substitute (66)-(68) into (64)-(65) and apply (11) to obtain

∂WH

∂τH
= −U 0(cH)f(nH ,NH) + μU 0(GH)Y

T
H (69)

+2μτU 0(GH)(f
0
1 + 2f

0
N )

∂nH
∂τH

+ 2U 0(cH)(1− τ )f 0N

∙
∂nH
∂τH

+
∂nF
∂τH

¸
,

∂WH

∂τF
= −U 0(cH)f(nF , NF ) + 2μτU

0(GH)(f
0
1 + 2f

0
N)

∂nH
∂τF

(70)

+2U 0(cH)(1− τ )f 0N

∙
∂nH
∂τF

+
∂nF
∂τF

¸
.

Therefore, by symmetry

∂WH

∂τH
+

∂WH

∂τF
= μU 0(GH)Y

T
H − U 0(cH) [f(nH ,NH) + f(nF , NF )] (71)

+2μτU 0(GH)(f
0
1 + 2f

0
N )

∙
∂nH
∂τH

+
∂nH
∂τF

¸
+4U 0(cH)(1− τ )f 0N

∙
∂nH
∂τH

+
∂nF
∂τH

¸
.

The first term on the right-hand side of (71) is positive and the other terms are negative
as long as condition (56) of Appendix B is satisfied, which corresponds to Cases (i)-(iv).
The sum of the first two terms on the right-hand side of (71) equals

[μU 0(GH)− U 0(cH)]Y T
H = [μτ−σ − (1− τ)−σ](Y T

H )
1−σ. (72)

When τ approaches zero, the term (72) in (71) grows large whereby (71) eventually
must be positive. Thus, when τ is sufficiently small, welfare is increasing in the common
value of τ . However, as τ increases, the other (negative) terms in (71) will eventually
dominate. Then, welfare in decreasing in τ .
When the productive externality effect is very large so that condition (56) is violated

(this is Case (v) of Appendix B), the previously negative third and fourth terms on the
right-hand side of (71) become positive. This means that, given very strong externality,
welfare can be an increasing function of τ for a wider range of τ -values (in Figure 2,
W (τ) curves shift to the right).

(E) Unilateral Incentives to Lower Taxes at a Local Optimum: A locally
jointly optimal (symmetric) tax rate, τ opt, satisfies the first order condition∙

∂W j

∂τH
+

∂W j

∂τF

¸
|τopt= 0, j = H,F, (73)

and the derivative expressions are defined in (71). Clearly, ∂WH/∂τH < 0 if and only if
∂WH/∂τF > 0.
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Using (70) and taking into account (73), we obtain

∂WH

∂τF
| τopt = YH

∙
U 0(cH)
2
− μU 0(GH)

¸
− 2μτU 0(GH)(f

0
1 + 2f

0
N )

∂nH
∂τH

(74)

−2U 0(cH)(1− τ )f 0N

∙
∂nH
∂τH

+
∂nF
∂τH

¸
.

The signs of the n-derivatives in (74) can vary. Three possibilities arise.
First, in Cases (i) and (iv) of Appendix B, the second and third terms of (74) are

positive. The first term positive as well if

MRScG ≡ U 0(cH)
μU 0(GH)

=
1

μ

∙
τ opt

1− τ opt

¸σ
> 2. (75)

This condition is satisfied when μ tends to zero. Thus, for sufficiently low values of μ,
(74) is positive in Cases (i) and (iv) of Appendix B. For higher μ the incentive to lower
the domestic tax is weakened but it can still exist.
Second, in Cases (ii) and (iii) of Appendix B, the second term on the right-hand side

of (74) is negative but the third term is positive. Then ∂WH/∂τH is less negative than
in the previous case, implying that Nash equilibrium occurs at a higher level of taxation.
Third, in Case (v) of Appendix B, both the second and third terms of 74) are negative.
In this case, when the externality is very strong, it is likely that ∂WH/∂τH > 0 unless
the weight of public consumption in preferences is very low. In this case, therefore, the
Nash equilibrium is likely to involve taxes higher than jointly optimal.
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Figure 1: Effort Curves and Steady States
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Figure 2A: Taxes and Welfare, 
Equilibrium in Low Regime 
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Figure 2B: Taxes and Welfare,
Equilibrium in High Regime
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Figure 3: Effort Regions in the High Regime
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