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1 Introduction

This paper studies a representative-agent asset-pricing model of an endowment economy in

which the agent has incomplete knowledge about exogenous stochastic endowment process

and has incentive to learn about the process with adaptive learning rules. There is the

well documented fact that when underlying economic environment is known and is com-

mon knowledge to investors, asset-pricing models under rational expectations with complete

knowledge about model structure cannot account for such basic features of the data in the

U.S. asset market as relative volatility between equity premium and risk-free rate, highly

persistent excess return, and long-horizon predictability of asset returns. Although much

effort to understand those aspects of asset-return dynamics have been done by relaxing

underlying assumptions in Mehra and Prescott (1985) economy, for example more sophisti-

cated forms of preference (Epstein and Zin, 1990, 1991; Weil, 1989; Kandel and Stambaugh,

1991; Abel, 1990; Constantinides, 1990; Heaton, 1995; Campbell and Cochrane, 1999), trad-

ing costs (Aiyagari and Gertler, 1991), and incomplete asset market (Weil, 1992), empirical

performance has not been very successful.1 Recently, one growing line of research takes

an alternative approach that allows for departures from the assumption of common knowl-

edge and fully rational agents. For example, Cecchetti, Lam, and Mark (2000) examine a

representative agent who has distorted beliefs about transition probabilities in a two-state
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Markov endowment process and show their model can generate the first and second mo-

ments of asset returns, persistence and predictability of equity premium that match the

data. However, in their distorted beliefs model, the investor is not allowed to learn true

economic environment over time. There have been extensive works that study implications

of asset-pricing models when investors are capable of learning unknown economic structure.

Timmermann (1996) and Brennan and Xia (2001) consider agents who have limited infor-

mation about underlying exogenous stochastic dividend process learn parameter values of

the process in the context of a present value model and a general equilibrium model, respec-

tively.2 Many alternative learning rules have been also investigated. Instead of learning an

exogenous stochastic endowment process, Bullard and Duffy (2001) and Carceles-Poveda

and Giannitsarou (2006) study the effect of self-referential learning model where agents fit

a model to prices instead of a univariate endowment process.

In this paper, we consider some important alternative empirical specifications of the

endowment process and investors’ knowledge about the process so that we can investigate

which parts of asset-return dynamics incomplete knowledge about the economic environ-

ment and learning can and cannot explain. First, we study whether specifications of en-

dowment process play important role in explaining asset-return dynamics. We compare

model-implications under the learning when the endowment process follows a two-state

Markov switching process to those generated under the learning with a stationary autore-

gressive process which has been a standard model for the endowment process. Second, we

ask whether the process of per capita consumption growth is stable in our sample period,

1890-2004. Investors, who set asset prices that become our data, do not know unanticipated

structural changes until they observe them. We model unannounced structural changes in

the endowment process so that investors who learn the structure of the economy contend

with them. There have been many studies adopting constant gain learning rules, for ex-

ample Orphanides and Williams (2005) and Branch and Evans (2006), among others, when

investors are concerned about structural changes. In this paper, however, we do not employ

constant learning rules since per capita consumption growth which is the endowment process

in the asset-pricing model is usually believed to be quite stable even over long periods and

2Brock and Hommes (1998) also study the dynamics in a present value model with heterogenous beliefs.
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thus frequent regime shifts with constant learning rules is unlikely to help understanding

asset-return dynamics.3 Therefore, instead of frequent changes in the process, we study

a special case where agents learn the endowment process with least squares learning to-

gether with the possibility of unexpected infrequent large shocks to endowment process.

Once investors know that there has been a structural break, they discard past observations

which are no longer useful and start learning new endowment process with accumulated

data points after the break. By doing so, we restrict our attention to least squares learning

to focus on the effect of a structural change on matching statistics found in the data.

The remainder of the paper is organized as follows. The next section reports stylized

facts about the excess return and the risk-free rate, and their dynamic relations that we

seek to explain. Section 3 introduces a representative agent endowment economy and spec-

ifications of the exogenous stochastic endowment process. The asset return solutions under

rational expectations and under least squares learning are presented in Section 4. A pos-

sible regime shift in the endowment process is also discussed. In Section 5, we compare

the predictions of the model under adaptive learning to those generated under rational ex-

pectations in terms of its ability to account for the stylized facts in the U.S. asset market.

Concluding remarks are contained in Section 6.

2 Stylized Facts

The list of features of the data in the U.S. asset market is presented in Table 1 through

Table 2. The data are annual observations of equity and short-term returns, dividend, and

per capita consumption used in Shiller (2003) and are obtained from his web site.

The first column of Table 1 reports our estimates of a mean level of the equity premium

5.4 percent, and the mean level of the risk-free rate somewhat below 3 percent. Estimates

for the volatility of the equity premium and the risk-free rate, and the correlation between

these returns are also presented. The sample standard deviations of the equity premium,

which is over 18 percent per year, is excessively larger than the sample standard deviation of

the risk-free rate, which is only 7 percent per year. We also report variance ratio statistics

3Carceles-Poveda and Giannitsarou (2006) show constant gain learning produces more volatile asset
returns than recursive least squares learning, but constant gain rules do not contribute much to understand
asset-return dynamics.
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that provide a measure of the serial correlation properties of the data.4 The variance ratio

statistics for equity premium presented in panel B of Table 1 are greater than 1 over short

horizon, but less than 1 and fall with the return horizon over long horizon. This suggests

that the excess equity returns are negatively serially correlated over long horizon and thus

exhibit mean reverting behavior because a positive change today is expected to be reversed

in the future.

Finally, we present the predictability of the excess returns in Table 2. This can be

examined by running regressions of k-period-ahead return on the log of dividend-price ratio

as described in Campbell and Shiller (1988) and Fama and French (1988) or on the log

of consumption-price ratio. Since high prices must be associated high expected future

dividends, low expected future returns, or some combination of the two, the dividend-price

ratio which is the most popular forecasting variable especially for long-horizon returns is

positively associated with future returns. Panel A of Table 2 shows a typical pattern that

slope coefficient, t-statistic and R
2 increase with the return horizon.

3 The Economy

We begin with the Lucas (1978) endowment economy where a representative agent chooses

consumption at each point in time so as to maximizes her lifetime utility. The instantaneous

utility function which gives the agent’s utility at a given period takes the form of constant-

relative-risk-aversion (CRRA) utility defined over time-t consumption, u(Ct) = C1−γ
t

1−γ , where

γ > 0 is the coefficient of relative risk aversion. Let P be the price of the equity and assume

that endowment is consumed in equilibrium, then the Euler equation is given by

Pt = β Ẽt[(Ct+1/Ct)−γ(Pt+1 + Ct+1)], (1)

4Variance ratio statistics are widely used to measure the relative size of random walk component in a
time-series. The variance ratio statistic for a time-series, st at horizon k is the variance of the k-period change

of the variable divided by k times the one-period change, VR(k) =
Var(st−st−k)

k·Var(∆st)
=

Var(∆st+···+∆st−k+1)

k·Var(∆st)
. It is

also represented by a linear combination of the first j − 1 autocorrelation coefficients of {∆st} with linearly
declining weights, VR(k) = 1 + 2

Pk−1
j=1 (1 − j

k
)ρ(j), where ρ(j) is the jth order autocorrelation coefficient

of {∆st}. VR(k) exceeds one if ∆st is positively serially correlated, and thus variances grow faster than
linearly. Similarly, if ∆st is negatively serially correlated, VR(k) is less than one and variances grow slower
than linearly. Under the null hypothesis of random walk, the population value of variance ratio statistic
VR(k) is one for all k since ρ(j) = 0 for all j ≥ 1.
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where β is the subjective discount factor and Ẽt is the agent’s subjective expectation con-

ditioned on available information at time t. As we discussed earlier, in our benchmark

case, rational expectations, this subjective expectations formed at time t is the mathemat-

ical expectation conditional on observables at time t. That is, Ẽt = Et. If the agent is

assumed to have incomplete knowledge about the economic structure, the expectation op-

erator takes an alternative form which is in general nonrational expectations. Let ω be the

price-consumption ratio, then equation (1) becomes the stochastic difference equation,

ωt = β Ẽt[e(1−γ)ξt+1(ωt+1 + 1)], (2)

where ξ is the first difference of log of per capita consumption.

Equation (2), specification of expectations, together with the specification of functional

form of the consumption growth rate completely determine solution and properties of the

economy. Here we consider the standard practice of modelling empirical specification of ξt.

3.1 Case I: Markov Switching Process

We follow Cecchetti, Lam, and Mark (1990, 2000) who assume that consumption growth

follows a Markov switching process with two-point Markov state variables

ξt = α(St) + εt, (3)

where ε is independently and identically distributed as N(0, σ2
ε). The process governing

the state vector S is a two-point Markov chain with stationary probabilities. Each element

of the state vector is allowed to be in either the good state of high-consumption growth

(S = 1) or the bad state of low-consumption growth (S = 0). There exist four transition

probabilities

P(St+1 = 1 | St = 1) = p, P(St+1 = 0 | St = 1) = 1− p, (4)

P(St+1 = 0 | St = 0) = q, P(St+1 = 1 | St = 0) = 1− q.

We estimate the transition probabilities and state-contingent mean of consumption

growth. Maximum-likelihood estimates of this endowment process using per capita con-

sumption growth rate as a percentage from 1890 to 2004 are reported Table 3. These

estimates are not significantly different from the estimation results in Cecchetti, Lam, and
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Mark (2000) who use the data from 1890 to 1994, but we find that the bad states are slightly

less persistent and mean per capita consumption growth in the bad state is a bit lower as

we extend the data.

3.2 Case II: Stationary AR(1) Process

Most attempting specification one may consider in this environment is a standard linear

time-series model with Gaussian innovations. However, this specification may not be plau-

sible due to its inability to account for higher moments properties of the data. Furthermore,

if an autoregressive model does not contain substantial persistence, we do not expect very

slow learning, so it is unlikely to help in understanding asset-returns dynamics. However,

since the endowment process is subject to unanticipated changes in model structure that

prevent the representative agent from learning the true economic structure, it is worth

examining this specification in the presence of regime shifts. Therefore, we also adopt a

conventional autoregressive model with normal error term.

We assume that ξ evolves according to the following AR(1) process:

ξt = α + ρ ξt−1 + υt, (5)

where ρ < 1 and υ is independently and identically distributed as N(0, σ2
υ). Table 4 reports

the OLS estimates of this process.

4 Asset Returns and Expectations

4.1 Asset Returns under Rational Expectations

In a rational expectations model, the agent is assumed to have complete knowledge about

the fundamental process, the functional form of the stochastic process as well as parameter

values. That is, the subjective expectations of the investor Ẽt coincide with the mathe-

matical expectations Et, taken with respect to the truth. Since model solutions depend on

the specification of functional form of the consumption growth rate given the agent’s ex-

pectations, we present asset returns under rational expectations for each case of exogenous

endowment process.
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4.1.1 Case I: Markov Switching Process

We now use the stochastic difference equation for the price-consumption ratio

ω(St) = βE([1 + ω(St+1)] · e(1−γ)(α(St+1)+εt+1) | St). (6)

to solve for equilibrium asset returns.5 Since a random variable X that follows conditionally

lognormal distribution implies lnEt(X) = Et(lnX) + 1
2Vart(lnX), the difference equation

for state-contingent price-consumption ratio is now given by

ω(St) = βe(1−γ)2(σ2/2)E(e(1−γ)α(St+1)[1 + ω(St+1)] | St). (7)

Since each element of the state vector is allowed to be in either the good state of high-

consumption growth (S = 1) or the bad state of low-consumption growth (S = 0), equation

(7) can be written as a system of two linear equations in ω(0) and ω(1). Let β̂(S) be

βe(1−γ)2(σ2/2)+(1−γ)α(S) and solving the system of equations yields

ω(0) = [qβ̂(0) + (1− q)β̂(1)− (p + q − 1)β̂(0)β̂(1)]/Λ, (8)

ω(1) = [pβ̂(1) + (1− p)β̂(0)− (p + q − 1)β̂(0)β̂(1)]/Λ (9)

where Λ = 1− qβ̂(0)− pβ̂(1) + (1− p− q)β̂(0)β̂(1).

We use the state-contingent price-consumption ratios to derive the solution for state

contingent one-period asset returns. First, state-contingent gross equity return Re is

Re(St+1, St) =
ω(St+1) + 1

ω(St)
· Ct

Ct+1
=

ω(St+1) + 1
ω(St)

· eα(St+1)+εt+1 . (10)

Next, state-contingent gross risk-free rate Rf is given by,

Rf (St) =
1

P f (St)
, (11)

where P f is the price of a one-period risk-free asset which equals the expected intertemporal

marginal rate of substitution (IMRS), P f (St) = βeγ2(σ2/2)E(e−γα(St+1) | St).

5Note that Ẽt is now replaced by Et.
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4.1.2 Case II: Stationary AR(1) Process

When the endowment process is assumed to be a stationary AR(1) model, the stochastic

difference equation for the price-consumption ratio is given by

ωt = β Et[e(1−γ)ξt+1(ωt+1 + 1)]. (12)

Solving forward equation (12) yields

ωt =
∞∑

j=1

βjDt+j , (13)

and the series of Dt+j can be obtained from recursive formula with Dt+1 = eθ+(1−γ)(α+ρξt),

Dt+j+1 = Dt+j eθ(δj)2+(1−γ)αδj+(1−γ)ρj+1ξt , (14)

where θ = (1− γ)2(σ2/2) and δj = 1−ρj+1

1−ρ . Next, gross equity return Re is given by

Re
t+1 =

ωt+1 + 1
ωt

· eξt+1 =
ωt+1 + 1

ωt
· eα+ρξt+υt+1 (15)

and gross risk-free rate Rf is,

Rf
t =

1

P f
t

=
1

β · eγ2(σ2/2)−γ(α+ρξt)
, (16)

where P f is the price of a one-period risk-free asset implied by the model.

4.2 Asset Returns under Adaptive Learning

We have considered an important benchmark case, rational expectations, in which investors

use all available information optimally to forecast the future values of price-consumption

ratio. Next, we study a more plausible case where the investors initially face some limitations

on knowledge about the underlying endowment process but they learn the true process over

time using available information optimally at each period in time. A sensible strategy would

be that investors act like applied econometricians when they forecast. Specifically, in our

learning environment agents are assumed to believe that growth rate of consumption follows

a stationary AR(1) process so that we can focus on the ability of least squares learning in

explaining asset-return dynamics. On the other hand, the truth of the endowment process

is either a Markov switching process or an AR(1) process. For case I, since agents’ belief
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about the functional form of endowment process is assumed to be an AR(1) process while

the truth is that consumption growth rate, ξt, follows a Markov switching process, they try

to estimate and update parameter values over time as if they live in a linear environment.6

Similarly, for case II, agents know that ξ follows a stationary AR(1) process, but not the

parameter values, θ = (α ρ)′ in equation (5). In both cases, agents try to infer from new

observations the parameter values and periodically update their estimates by employing

least squares learning.

When investors know that true functional form of the growth rate of consumption is

an AR(1) process and assess parameter values by least squares learning, they forecast fu-

ture values of price-consumption ratio as if the economy were in an rational expectations

equilibrium, except that they use time-t estimates of parameters which might be different

from true values. Therefore, the functional form of time-t asset-return solutions under least-

square learning is the same as that of the rational expectations case as shown in equations

(15) and (16), but here parameter values are replaced with time-t least square estimates

which evolve over time. On the other hand, for the Markov switching process case, since

agents take the AR(1) process as the true endowment process and try to estimate parameter

values θ = (α ρ)′ each period in time by employing recursive least squares, asset returns

are set according to the functional form of equations (15) and (16) which is identical to the

previous case. However, now agents use realizations of consumption growth generated by

a Markov switching process, not by an AR(1) process, and thus parameter estimates that

they assess at each period are not the same as those in the AR(1) case.

We follow Timmermann (1996) who suggests a recursive estimator when agents know

the form of the endowment process but not the the value of parameters. Let zt = (1 ξt−1)′,

ξt = (ξt ξt−1 · · · ξ1)′, and Zt = (ξt ξt−1 · · · ξ1)′, then the recursive estimator is given by

θt = θt−1 + Θ(ξt − z′tθt−1), (17)

St = St−1 − St−1ztz
′
tSt−1

1 + z′tSt−1zt
, (18)

6There may be a situation where investors do know the functional form of the endowment process is is a
Markov switching process, but they do not have statistical device that estimate parameter values optimally
because of the lack of computational ability. This is not this paper tries to look at. One may consider a
non-optimal or a method that one can simply adopt such as the event-counting method to infer transition
probabilities.
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where Θ = St−1zt

1+z′tSt−1zt
and St = (Z′tZt)−1.7 The formula (17) shows that the updated

estimator θt is equal to the estimator used in the previous learning period θt−1 plus an

adjustment factor which is proportional to the forecast error or innovation under least

squares learning. Let θA
t = (αA

t ρA
t )′ and θM

t = (αM
t ρM

t )′ denote time-t estimates of

parameter vector under this present-value learning when the data generating process is the

AR(1) process and the Markov switching process, respectively.

Gross equity return implied by the model under least squares learning when the true

endowment process is assumed to be the AR(1) process, Re,A is given by

Re,A
t+1 =

ωA
t+1 + 1
ωA

t

· eξA
t+1 , (19)

where ξA
t is time-t consumption growth rate which is exogenously generated by the AR(1)

process and ωA
t is the price-consumption ratio under least squares learning at time t when

agents use θA
t to determine price and consumption as described in equation (13) and (14).

Similarly, let ξM
t denote time-t consumption growth rate generated by the Markov switching

process and ωA
t denote time-t price-consumption ratio under least squares learning with

θM
t , then the implied gross equity return under the learning with the Markov switching

endowment process is defined as

Re,M
t+1 =

ωM
t+1 + 1
ωM

t

· eξM
t+1 . (20)

Next, since model-implied gross risk-free rates under least squares learning also depends on

the exogenous process of consumption growth, the model solution for risk-free rates takes

the same form as (16). For the AR(1) process, the price of one-period risk-free asset at time

t, P f,A
t is given by

P f,A
t = β · eγ2((σA)2/2)−γ(αA

t +ρA
t ξA

t ), (21)

where σA is the standard deviation of innovations of consumption growth rate for this

case.8 Time-t price of one-period risk-free asset under the learning with Markov switching

7Note that we use a general notation of recursive estimator when investors estimate the endowment
process by recursive least squares. For the AR(1) case, zA

t = (1 ξA
t−1)

′, ξA
t = (ξA

t ξA
t−1 · · · ξA

1 )′, and
ZA

t = (ξA
t ξA

t−1 · · · ξA1)
′. Analogous destinations hold for the Markov switching case.

8Note that agents are assumed to know true distribution of unobservable innovations of ξ, so they use
standard deviation of unobservable component of consumption growth rate when they set asset prices.
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endowment process, P f,M
t , which is the inverse of gross risk risk-free rate is also defined in

the same way.

4.3 Structural Changes in the Endowment Process

When investors set asset prices, their forecasts are based on the assumption of a stable

process of endowment. However, this assumption becomes less plausible in the presence

of structural changes in the process. The exogenous endowment process, like many other

economic variables, are always subject to change for unexpected large shocks to the economy

such as the Great Depressions, wars, and oil shocks. Therefore, the agents must contend

with unannounced structural changes.

In order to model possible regime shifts, we investigate whether there has been a struc-

tural break in the endowment process using multiple structural changes model by Bai and

Perron (2003). Of interest is the presence of structural changes in the mean of the con-

sumption growth rate for the Markov switching process and constant (α) and ρ which is

interpreted as measuring the persistence of the rate of consumption growth for a stationary

AR(1) process as described in equation (5).9 Both UD max test and WD max test indicate

the presence of at least one break. Since overall performance of the sequential procedure

is known to be better than information criteria, we used the sequential application of the

supFT (l + 1|l) test using the sequential estimates of the breaks and found one break esti-

mate. The break date is estimated at 1933 when constant is subject to change and at 1929

when both constant and persistence parameter are used as regressors and both estimated

dates are associated with the Great Depression.10 Figures 1 and 2 plot actual per capita

consumption growth rate and fitted values and we can clearly see that post-break consump-

tion growth rates display higher mean value, less volatile, and more persistence than the

rates of consumption growth before the Great Depression.

Tables 3 and 4 report parameter estimates of the endowment process for both one-regime

and two-regime case. First, for the Markov switching process, we estimate the transition

9We allowed up to 5 breaks and used a trimming of ε = 0.10 so that each segment has at least 11
observations.

10We also applied the Quandt test for detecting a single unknown break point and the break date is
estimated at 1930 which is also around the Great Depression for both cases. Note that our simulation
results are not sensitive to the choice of a break date.
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probabilities and state-contingent mean of consumption growth. Maximum-likelihood es-

timates of the endowment process for each regime suggest that state-contingent mean of

consumption growth is relatively high in regime 2 and both the good and the bad states

in regime 1 are much less persistent than regime 2. Next, Table 4 presents OLS estimates

of the AR(1) process. We found that there is a change in the sign of the persistence para-

meter and the growth rate of consumption in regime 2 is more persistent than regime one,

which ties in with the estimates of transition probabilities of the Markov switching process.

Finally, for both endowment processes, that regime 1 has higher volatility of innovations in

the fundamentals than regime 2 suggests the economic environment has been more stable.

Now we consider a very simple case that agents are assumed to know whether a break

had in fact occurred right after the break. Once the agents know that there has been

a break, they face uncertainty about new process unless they can instantly observe new

functional form of the process and parameter values. We assume that agents discard past

observations which are no longer useful and set asset prices using observations after the

break. Specifically, before the break occurs, agents set prices according to their forecast

rules and information availability as if they were in one-regime world. When they realized

that there has been a regime shift, under rational expectations, they replace old parameters

with new ones. On the other hand, if they were not able to obtain new parameters, which

appears to be more realistic situation, they have to learn the new endowment process using

post-break observations.

Introducing a structural break is likely to help to explain some important aspects of the

data. First, the volatility of asset returns implied by the Lucas model would be higher. Even

in the rational expectations monetary model, a one-time jump in the process generates more

volatile returns.11 On the other hand, under adaptive learning, since market participants

struggle with small sample problems around the structural break point, the implied returns

are expected to be highly volatile in comparison to the rational expectations case. Second,

under adaptive learning, it is likely to help in explaining highly persistent excess returns

over short horizons since an unanticipated regime shift or changes in parameter values of

11However, since we allow investors to access parameter values of new endowment process under rational
expectations, it is unlikely to help generating other dimensions of the data.
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the endowment process prevent investors from learning parameters in a new regime quickly

that may result in very gradual adjustment of estimates assessed by the investors to the

true values.

5 Simulation Results

In this section we compare predictions of the Lucas under adaptive learning to those gener-

ated under standard rational expectations. We examine how the simulated data are capable

of replicating some important features of data in the U.S. asset market as described in sec-

tion 2.

5.1 The Parameter Choices

We choose a set of reasonable model parameter values. First, we take Maximum-likelihood

estimates of equation (3) for the Markov switching process in Table 3 and OLS estimates

of equation (5) for the AR(1) process in Table 4 as the parameter values of data generating

process for consumption growth rate. In the presence of a structural break in the endowment

process, parameter values for both regimes are also presented in those tables. Second, since

many features of asset-returns data can be explained by choosing both a large value of γ

and a value of β in excess of one, we attempt to use values of β between 0 and 1,12 and

positive values of γ below 5, which predict a mean risk-free rate of 2.88 percent.

5.2 Statistics from Simulated Data

We simulate 2,000 of artificial data and calculate median values of model-implied statistics.

We also consider both one-regime and two-regime endowment processes. Although statis-

tical tests suggest that there is at least one structural change in the exogenous process, we

study one-regime case to examine a possibility that agents do not believe there has been a

regime shift in the process. More importantly, one-regime environment allows us to sepa-

rate the ability of least squares learning in explaining the stylized facts from the presence of

12Note that we allowed a small violation of the value of discount factor that is a bit greater than one to
examine whether equity premium implied by the Lucas model increases with the value of discount factor in
both rational expectations as in Kocherlakota (1996) and adaptive learning.
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structural beaks. First, we simulate the Lucas asset pricing model under rational expecta-

tions, where investors know parameter values of the data generating process that generates

consumption growth rates and asset returns are determined according to equations (10)

and (11) for the Markov switching endowment process and equations (15) and (16) for the

AR(1) endowment process. Next, we introduce least squares learning to the Lucas model

where investors believe that the growth rate of consumption follows a stationary autore-

gressive process, which may or may not be true as we describe in section 3, but not the

parameter values, and asset returns are determined as if investors live in a fully rational

economy, except the important ingredient that they use time-t estimates of parameters, not

true parameter values.

We compare predictions of the Lucas asset-pricing model under least squares learning

with those generated under standard rational expectations in its ability to account for the

following aspects of the data shown in Tables 1 and 2: (1) the mean level of equity premium

of 5.4 percent,13 (2) the standard deviation of the equity premium that is around 18 percent,

which is excessively volatile compared to the standard deviation of the risk-free rate which

is 6.68 percent per year, (3) variance ratio statistics that decline from above one over short

horizon to below one over long horizons, and (4) slope coefficients, t-statistics, and R
2’s of

long horizon excess return regressions on the log of consumption-price ratio that increase

with return horizon. We present results for our two models, labelled RE and AE, in Table

5 through Table 12.

5.2.1 Model Implications under Rational Expectations

The implied behaviors of asset returns when investors have rational expectations are seen

to perform poorly. The model-implied equity premium for both specifications of the endow-

ment process is less than one percent per year for all plausible sets of γ and β and even for

β > 1. The volatilities of equity premium and risk-free return are far below their sample

values and excess returns do not display highly persistent behavior over the short horizon

for both specifications of endowment process. However, asset returns with the Markov

13Note that we choose a set of γ and β that produces a mean risk-free rate of 2.88 percent. We found that
sets of preference parameters, γ and β, that match the mean level of risk-free rate are not very sensitive to
the choice of the endowment process.
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switching process tend to exhibit higher variability than the autoregressive model by more

than one percent for most cases. Long-horizon return regressions on current consumption-

price ratio at horizons of 1, 2, 3, 5, and 8 years are also reported. The statistics obtained

from the historical data show that slope coefficients β̂k have all positive signs and increase

linearly with horizon, and t-statistics and R
2s start low but then rise to impressive values.

The model under rational expectations does not yield the systematic pattern. Moreover,

for some preference parameters choices, the consumption-price ratio predicts asset returns a

wrong sign.14 This anomalous simulation results may be due to the fact that, under rational

expectations, the volatility of equity premium can be less than the volatility of consumption

which is not true in the data.

As we mentioned earlier, the presence of structural break in the endowment process

is unlikely help much to understand asset-return dynamics under rational expectations

since investors are allowed to access parameter values of new endowment process. Tables

9 and 10 report model implications under rational expectations with a structural break

for each endowment process. After introducing a regime shift in the endowment process,

the generated volatility of returns under rational expectations is a bit higher than one-

regime case, but still much lower than its sample value. Furthermore, the model under

rational expectations with complete knowledge fails to produce highly persistent excess

returns and generates the consumption-price ratio that predicts equity premium with a

wrong direction for some cases. Therefore, we found that the model implications under

rational expectations are not influenced by specifications of exogenous endowment process or

presence of structural changes in the process and it is hard to save rational expectations asset

pricing model without increasing model complexity or introducing other market frictions

such as incomplete market and transaction costs.

5.2.2 Model Implications under Adaptive Learning

We now examine predictions of the Lucas model under adaptive learning and simulation

results are presented in Tables 7 and 8. We found that the model under adaptive learning

dominates the standard rational expectations with complete knowledge in its ability to

14Although the medium values of slope coefficients of excess return regressions are negative, the distribu-
tion of slope coefficients includes positive values.
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account for some stylized facts in the U.S. asset market, although least squares learning

in the Lucas asset pricing model does not contribute much to understand equity premium

above 5 percent per year. First, model-implied volatilities of excess returns and risk-free

returns are much higher than those generated under rational expectations. However, for

reasonable sets of preference parameters, standard deviations of risk-free rates, especially

in the autoregressive endowment process case, are less than one percent per year which is

much smaller than its sample value. Note that the volatility of equity premium is higher as

the values of preference parameters become larger for both endowment processes, and the

volatility of risk-free rates exhibits the same pattern for the Markov switching case. Second,

we also found that investors’ incomplete knowledge about the fundamental process and

their adaptive learning behavior are not enough to help to account for equity premium that

display substantial persistence over the short horizon. Table 7 and Table 8 show that excess

returns implied by the model under least squares learning are negatively serially correlated

even over short horizons for the autoregressive process with all sets of preference parameters

and for the Markov switching process with γ < 1. Third, the model under adaptive learning

is now capable of accounting for why current consumption-price ratio predict excess asset

returns over long horizon but not over short horizon. For both endowment processes, the

model-implied slope coefficients and t–statistics are consistently positive and increase with

return horizons, and the R
2s start low but then rise to impressive values. This suggests that

incomplete information about the endowment process causes the consumption-price ratio

to deviate from its mean value over short horizon, but predicted returns tend to increase as

the consumption-price ratio returns to its mean value.

Next, we study how implications of the Lucas asset-pricing model under least squares

model change when we introduce a structural break in the growth rate of per capita con-

sumption. First, we found that model-implied variance ratios that measure the serial cor-

relation properties of the simulated data are dramatically changed in the presence of a

structural break with learning. For both specifications of endowment process, the model

under adaptive learning generates variance ratio statistics that are greater than 1 over short

horizon, but less than 1 and fall with the return horizon over long horizon as found in the
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historical data.15 Next, volatilities of asset returns with a regime shift are even higher now

and nearly match for some sets of preference parameters while maintaining the predictabil-

ity of asset returns that the predicted returns by the consumption-price ratio increase in the

horizon. However, since the generated equity premium is still much less than 5 percent per

year, the introduction of possible regime shifts in the endowment process is unlikely help

much in explaining why stocks are not sufficiently riskier than risk-free asset to explain the

spread in their returns.

6 Conclusion

We study a representative agent endowment economy where the agent, who has incomplete

knowledge about the true structure of the economy, learns about the endowment process

by employing adaptive learning rules. We compare the predictions of the model under

least squares learning to those generated under standard rational expectations. We model

unanticipated regime shifts in the endowment process that the agent must contend with.

We also consider alternative empirical specifications of the endowment process to examine

how the choice of the exogenous process change the model implications.

Although the Lucas asset pricing model in an endowment economy under least squares

learning does not produce completely realistic description about how asset returns behave,

our simulation results suggest that the model under the learning dominates standard ratio-

nal expectations. Investors’ adaptive learning behavior plays a key role in explaining why

the consumption-price ratio predict excess returns over long horizons, for generating equity

premium that is excessively volatile than risk-free rates. We also found that a Markov

switching process for the endowment process generates more volatile asset returns than an

autoregressive model which has been popular in learning literature. However, any of new in-

gredients we consider is unlikely aid in resolving the equity premium puzzle and the volatility

puzzle. Finally, we found a apparent structural break in the U.S. per capita consumption

growth rate which has been considered as one of stable time series. The introduction of a

structural break in the exogenous endowment process produces much more volatile excess

returns as well as positively serially correlated equity premium over short horizons, and this

15Note that excess returns are relatively more persistent in the case of the Markov process.
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result provide another empirical support for constant or perpetual learning.

Our simulation results suggest some useful directions for future research. Some assump-

tions about our learning environment can be relaxed in more constructive ways. We consider

investors who are allowed to detect a break when it occurs which is the first avenue we want

to pursue. One may model a world in which investors are unsure of when the change has

occurred. One reasonable way to model this is that at each point in time, investors do a

test if a break has occurred. Once they have figured out that a break has occurred, they set

the break point as marking the new regime and start learning new true parameter values

with adaptive learning rules. Second, we introduce one statistically implied structural break

point that represents a major economic event. One may model a world in which changes in

regime due to relatively small events happen frequently. In this case, constant gain learn-

ing even with relatively small gain combined with structural changes in data generating

processes is worth pursuing.
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A. First and Second B. Persistence (ep)

Moments Horizon V R

µep 5.38 1 1.0000
µrf 2.88 2 1.0765
σep 18.11 3 0.9609
σrf 6.68 5 0.9091

Note: The data are annual observations from 1871-2004. µep and µrf refer mean equity premium and mean

risk-free rate, respectively. σep and σrf are standard deviations. Variance ratio, V R(k), is the variance of

the k-year equity premium divided by k times the variance of the one-year equity premium for k=1,2,3, and

5.

Table 1: Stylized Facts of Asset Returns I: First and Second Moments and Persistence

A. Log Dividend-Price Ratio (1871-2004)

Horizon Slope t-value R
2

1 0.039 1.007 0.000
2 0.116 1.955 0.021
3 0.163 2.293 0.031
5 0.340 3.845 0.085
8 0.471 3.879 0.093

B. Log Consumption-Price Ratio (1890-2004)

Horizon Slope t-value R
2

1 0.131 3.792 0.071
2 0.274 5.545 0.158
3 0.375 6.223 0.222
5 0.586 8.554 0.345
8 0.761 8.948 0.444

Note: The regression slope, t-statistics, and R
2

are for regressions of the k-year (k=1,2,3,5, and 8) ahead

equity premium on the current log dividend-price ratio (panel A) and on the current log consumption-

price ratio (panel B). Regressions are estimated by OLS with HAC standard errors using the automatic lag

selection method of Newey and West (1994)

Table 2: Stylized Facts of Asset Returns II: Predictability
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Table 3: Estimated Parameter Values: Markov Switching Process

p q α(S = 1) α(S = 0) σε

A. One-Regime Case

0.976 0.509 2.250 -5.866 3.071
(0.021) (0.254) (0.316) (-1.737) (1.191)

B. Two-Regime Case

Regime 1

0.237 0.198 3.603 -1.057 7.461
(0.179) (0.152) (0.626) (-0.601) (1.516)

Regime 2

0.983 0.836 2.090 -0.847 5.377
(0.022) (0.359) (0.255) (-0.573) (0.759)

Note: Table entries are maximum-likelihood estimates of the Markov switching process,
ξt = α(St) + εt, and standard errors are in parenthesis.

Table 4: Estimated Parameter Values: AR(1) Process

A. One-Regime Case B. Two-Regime Case

α ρ συ α1 ρ1 συ1 α2 ρ2 συ2

2.249 -0.076 3.541 2.758 -0.437 4.149 1.527 0.326 2.704
(0.385) (-0.094) (0.731) (-0.152) (0.384) (0.104)

Note: Table entries are OLS estimates of the AR(1) Process, ξt = α + ρ ξt−1 + υt, and
standard errors are in parenthesis.
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.29 1 1.0000 -0.0485 -0.0404 -0.0044
µrf 2.88 2 0.9828 0.1155 0.0654 -0.0047

0.0 0.9716 σep 3.53 3 0.9617 0.0792 0.0361 -0.0045
σrf 0.00 5 0.9227 0.0524 0.0184 -0.0045

8 0.8647 0.1689 0.0537 -0.0051
µep 0.33 1 1.0000 -1.2435 -0.5009 -0.0030
µrf 2.88 2 0.9816 -0.8931 -0.2642 -0.0042

0.5 0.9817 σep 3.52 3 0.9604 -0.8978 -0.2109 -0.0043
σrf 0.13 5 0.9205 -1.0405 -0.1820 -0.0046

8 0.8679 -0.8465 -0.1248 -0.0047
µep 0.47 1 1.0000 2.3125 1.8612 0.0185
µrf 2.88 2 0.9494 2.0577 1.2102 0.0037

2.0 1.0106 σep 3.66 3 0.9202 2.1218 0.9733 0.0001
σrf 0.54 5 0.8731 2.1765 0.7748 -0.0020

8 0.8177 2.1276 0.6162 -0.0033
µep 0.58 1 1.0000 1.7578 2.6683 0.0446
µrf 2.88 2 0.9056 1.5972 1.7582 0.0158

3.0 1.0287 σep 3.86 3 0.8660 1.6090 1.4491 0.0085
σrf 0.81 5 0.8109 1.6640 1.1754 0.0031

8 0.7529 1.6349 0.9405 -0.0002

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 5: Implications of RE Model: AR(1) Process

23



Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep -0.09 1 1.0000 0.0398 0.1566 0.0028
µrf 2.88 2 0.9805 0.1853 0.5056 0.0056

0.0 0.9716 σep 4.64 3 0.9494 0.2503 0.5447 0.0047
σrf 0.00 5 0.8986 0.2893 0.4728 0.0019

8 0.8369 0.3205 0.4523 0.0007
µep 0.00 1 1.0000 -0.1396 -0.3060 0.0005
µrf 2.88 2 0.9989 -0.0607 -0.0924 0.0011

0.5 0.9815 σep 4.13 3 0.9808 -0.0200 -0.0201 0.0006
σrf 0.43 5 0.9517 -0.0024 0.0000 -0.0003

8 0.8980 -0.0010 0.0000 -0.0008
µep 0.17 1 1.0000 0.5550 2.8704 0.0524
µrf 2.88 2 0.9339 0.8143 2.9642 0.0565

2.0 1.0094 σep 4.12 3 0.8824 0.9341 2.8050 0.0507
σrf 1.75 5 0.8147 0.9982 2.4040 0.0363

8 0.7395 1.0111 1.9930 0.0235
µep 0.17 1 1.0000 0.4473 3.6177 0.0845
µrf 2.88 2 0.8562 0.6991 4.1853 0.1127

3.0 1.0263 σep 5.74 3 0.7535 0.8130 4.1277 0.1106
σrf 2.68 5 0.6323 0.8637 3.6489 0.0884

8 0.5336 0.8945 3.1752 0.0683

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 6: Implications of RE Model: Markov Process
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.32 1 1.0000 0.1198 3.1376 0.0637
µrf 2.88 2 0.8969 0.2065 4.2788 0.1183

0.0 0.9716 σep 8.69 3 0.7967 0.2836 5.0625 0.1614
σrf 0.00 5 0.6722 0.3905 6.2613 0.2327

8 0.5357 0.5128 7.5469 0.3127
µep 0.39 1 1.0000 0.1121 2.4568 0.0373
µrf 2.88 2 0.9281 0.2048 3.3487 0.0734

0.5 0.9816 σep 5.25 3 0.8493 0.2753 3.8222 0.0961
σrf 0.16 5 0.7602 0.3987 4.7181 0.1444

8 0.6713 0.5266 5.4198 0.1874
µep 0.44 1 1.0000 0.1230 3.0831 0.0614
µrf 2.88 2 0.8934 0.1993 4.0430 0.1063

2.0 1.0104 σep 7.86 3 0.7750 0.2653 4.7279 0.1430
σrf 0.62 5 0.6532 0.3942 6.1081 0.2237

8 0.5557 0.5226 7.1384 0.2888
µep 0.51 1 1.0000 0.1200 3.2720 0.0695
µrf 2.88 2 0.8783 0.2072 4.3990 0.1245

3.0 1.0284 σep 14.30 3 0.7676 0.2782 5.2447 0.1716
σrf 0.93 5 0.6161 0.3959 6.9681 0.2740

8 0.4954 0.5034 8.7736 0.3818

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 7: Implications of AL Model: AR(1) Process

25



Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.71 1 1.0000 0.1284 3.3132 0.0713
µrf 2.88 2 1.0482 0.2418 4.1633 0.1124

0.0 0.9716 σep 12.27 3 0.9731 0.3232 4.9031 0.1525
σrf 0.00 5 0.8438 0.4886 6.1611 0.2268

8 0.7192 0.6770 7.4792 0.3088
µep 0.57 1 1.0000 0.1505 3.1778 0.0654
µrf 2.88 2 1.1290 0.2667 3.7860 0.0937

0.5 0.9811 σep 7.16 3 1.0692 0.3668 4.4375 0.1274
σrf 0.71 5 0.9710 0.5553 5.5579 0.1917

8 0.8317 0.7846 6.4103 0.2458
µep 0.18 1 1.0000 0.0821 2.3503 0.0336
µrf 2.88 2 0.6515 0.1518 3.9401 0.1012

2.0 1.0076 σep 9.06 3 0.5368 0.2075 4.8234 0.1482
σrf 2.80 5 0.4388 0.2976 6.5072 0.2471

8 0.3593 0.4086 8.4404 0.3635
µep 0.05 1 1.0000 0.0794 2.2340 0.0298
µrf 2.88 2 0.7824 0.1542 3.7889 0.0938

3.0 1.0261 σep 15.41 3 0.6670 0.2069 4.6253 0.1374
σrf 4.11 5 0.5645 0.3032 5.7136 0.2007

8 0.4585 0.4478 7.7935 0.3269

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 8: Implications of AL Model: Markov Process
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.49 1 1.0000 0.0135 0.4598 -0.0041
µrf 2.88 2 0.9896 0.0278 0.6543 -0.0008

0.0 0.9716 σep 4.16 3 0.9701 0.0426 0.8233 0.0029
σrf 0.00 5 0.9389 0.0670 0.9888 0.0106

8 0.8892 0.1091 1.3113 0.0247
µep 0.43 1 1.0000 -0.0010 -0.0160 -0.0041
µrf 2.88 2 0.9470 0.0156 0.1919 -0.0008

0.5 0.9818 σep 3.69 3 0.9277 0.0293 0.3052 0.0030
σrf 0.75 5 0.8842 0.0612 0.5231 0.0102

8 0.8330 0.1102 0.6889 0.0223
µep 0.38 1 1.0000 0.0509 0.8121 -0.0025
µrf 2.88 2 0.5736 0.0369 0.5375 -0.0026

2.0 1.0113 σep 4.14 3 0.5230 0.0465 0.5682 0.0007
σrf 1.51 5 0.4341 0.0462 0.5107 0.0053

8 0.3687 0.0441 0.3927 0.0143
µep 0.32 1 1.0000 0.0466 0.8828 -0.0016
µrf 2.88 2 0.5224 0.0245 0.4549 -0.0036

3.0 1.0299 σep 6.64 3 0.4653 0.0294 0.4551 -0.0020
σrf 3.02 5 0.3692 0.0159 0.2107 0.0024

8 0.3084 0.0059 0.0669 0.0089

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 9: Implications of RE Model with Structural Break: AR(1) Process
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.17 1 1.0000 0.0122 0.6805 -0.0036
µrf 2.88 2 0.9741 0.0253 0.9960 0.0009

0.0 0.9716 σep 4.08 3 0.9606 0.0378 1.2335 0.0053
σrf 0.00 5 0.9232 0.0623 1.5708 0.0144

8 0.8700 0.0994 2.0220 0.0303
µep 0.08 1 1.0000 0.0102 0.3122 -0.0047
µrf 2.88 2 0.8958 0.0233 0.5598 -0.0006

0.5 0.9790 σep 3.33 3 0.8811 0.0351 0.6714 0.0031
σrf 0.55 5 0.8339 0.0625 0.9607 0.0123

8 0.7759 0.1046 1.3120 0.0243
µep -0.06 1 1.0000 0.0370 0.6714 -0.0041
µrf 2.88 2 0.7170 0.0186 0.3277 -0.0044

2.0 1.0003 σep 5.54 3 0.7096 0.0207 0.2921 -0.0028
σrf 2.21 5 0.6469 0.0113 0.1319 0.0014

8 0.5918 -0.0014 -0.0134 0.0071
µep -0.18 1 1.0000 0.0151 0.4795 -0.0053
µrf 2.88 2 0.6143 0.0195 0.5540 -0.0025

3.0 1.0138 σep 8.26 3 0.6104 0.0281 0.6711 0.0002
σrf 3.33 5 0.5361 0.0408 0.7974 0.0071

8 0.4784 0.0621 1.0394 0.0170

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 10: Implications of RE Model with Structural Break: Markov Process
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.28 1 1.0000 0.0708 2.3018 0.0320
µrf 2.88 2 1.0590 0.1525 3.5048 0.0804

0.0 0.9716 σep 10.30 3 0.9736 0.2163 4.2807 0.1192
σrf 0.00 5 0.8420 0.3259 5.4195 0.1838

8 0.7196 0.4382 6.3343 0.2413
µep 0.33 1 1.0000 0.0697 1.9218 0.0203
µrf 2.88 2 1.0414 0.1523 2.9795 0.0576

0.5 0.9815 σep 6.06 3 0.9689 0.2198 3.5795 0.0845
σrf 0.73 5 0.8701 0.3269 4.3617 0.1252

8 0.7587 0.4266 4.9412 0.1599
µep 0.47 1 1.0000 0.0736 2.2819 0.0313
µrf 2.88 2 1.0621 0.1579 3.5159 0.0809

2.0 1.0098 σep 9.89 3 0.9818 0.2184 4.2601 0.1181
σrf 2.92 5 0.8343 0.3147 5.3029 0.1771

8 0.7127 0.4379 6.3787 0.2440
µep 0.63 1 1.0000 0.0762 2.3922 0.0351
µrf 2.88 2 1.0539 0.1666 3.7215 0.0906

3.0 1.0273 σep 18.76 3 0.9539 0.2197 4.4537 0.1283
σrf 4.39 5 0.7738 0.3245 5.5449 0.1910

8 0.6501 0.4377 6.8255 0.2704

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 11: Implications of AL Model with Structural Break: AR(1) Process
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Preferences First and Second Persistence and Predictability

γ β Moments Horizon VR Slope t-value R
2

µep 0.32 1 1.0000 0.0741 2.4410 0.0367
µrf 2.88 2 1.1396 0.1422 3.2178 0.0676

0.0 0.9716 σep 8.87 3 1.1670 0.2091 3.8312 0.0965
σrf 0.00 5 1.0887 0.3183 4.7217 0.1446

8 0.9552 0.4570 5.6946 0.2035
µep 0.28 1 1.0000 0.0777 2.3626 0.0340
µrf 2.88 2 1.1204 0.1523 3.0401 0.0601

0.5 0.9806 σep 4.89 3 1.1224 0.2214 3.5325 0.0823
σrf 0.47 5 1.0312 0.3460 4.2919 0.1215

8 0.8762 0.4845 5.0988 0.1689
µep 0.20 1 1.0000 0.0659 2.0907 0.0253
µrf 2.88 2 1.1204 0.1382 3.1988 0.0668

2.0 1.0070 σep 9.63 3 1.1028 0.1935 4.0758 0.1087
σrf 1.86 5 0.9621 0.2878 5.1640 0.1692

8 0.8066 0.3930 6.4634 0.2490
µep 0.25 1 1.0000 0.0748 2.2698 0.0309
µrf 2.88 2 1.1054 0.1469 3.3869 0.0751

3.0 1.0237 σep 19.42 3 1.0633 0.2170 4.2864 0.1195
σrf 2.80 5 0.8984 0.3221 5.4681 0.1866

8 0.7289 0.4407 6.7543 0.2662

Note: Table entries are the median values of 2,000 replications. µep and µrf refer mean equity premium and

mean risk-free rate, respectively. σep and σrf are standard deviations as a measure for volatility.

Table 12: Implications of AL Model with Structural Break: Markov Process
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Figure 1: Data Generating Process with a Structural Break: Constant
Note: This figure plots actual consumption growth rates (solid line) and fitted values (dotted
line) with a break point when constant (α) is subject to segment.
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Figure 2: Data Generating Process with a Structural Break: Constant and Lagged Con-
sumption Growth
Note: This figure plots actual consumption growth rates (solid line) and fitted values (dotted
line) with a break point when both constant (α) and persistent parameter (ρ) are subject
to segment.
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