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Abstract

This paper analyzes how agents coordinate their forecasts on a Ra-
tional Expectations Equilibrium under asymmetric information about
fundamentals. We consider the class of linear one-dimensional models
where the price is determined by price expectations. We �nd that REE
stability is favored by a small sensitivity of the economy to forecasts,
and, more surprinsingly, by a small proportion of informed agents.
Still, price informational e¢ ciency is favored by a small sensitivity of
the economy to forecasts but also by a large proportion of informed
agents, suggesting a con�ict between the two issues of stabilizing �uc-
tuations and transmitting information to the market.
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Informational Asymmetries, Rational Expectations Equilibrium.
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1 Introduction

We address a problem of expectations coordination in a one step forward
looking model with asymmetric information about the fundamentals. In this
context, the usual solution concept is the Rational Expectations Equilibrium
(REE hereafter). We study stability of this REE under �eductive�learning
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à la Guesnerie (1992).1 The REE concept assumes full coordination of ex-
pectations of agents, i.e. REE assumes that all the agents have succeeded
to form correct (self-ful�lling) beliefs. Still, forming a rational expectation is
not a priori correct, it is the right expectation of the economic outcome only
when all the agents have rational expectations as well. In game theoretical
words, adopting rational expectations is not a dominant strategy, but rather
a Nash strategy. Thus, assuming REE behavior amounts to assume that
every agent a priori knows that others adopt REE behavior. Why should it
be the case? The �eductive�story o¤ers a possible theoretical answer to this
question. The �eductive�story does not a priori assume that agents know
each other expectations and instead examines when this can be justi�ed. It
goes as follows. Relax the assumption that every agent expects the REE
prices into a weaker assumption that every agent expects the prices to be in
a neighborhood of the REE prices. Still, assume that the rationality of all
the agents is Common Knowledge (CK hereafter) and the structure of the
economy is CK as well. Then, consider that every agent enters into an in-
dividual strategic reasoning triggered by the CK assumptions. This process
of forecasting others� forecast leads each agent to predict a set of possible
outcomes. It can be completely successful, i.e. it can lead each agent to
predict that the REE is the only possible outcome. In this case, we conclude
that the REE is robust to relaxing the assumption that every agent a priori
expects the REE, and we say that the REE is stable under �eductive�learn-
ing. Alternatively, the eductive process can fail to predict a unique outcome.
In this case, a set of prices is possible: a non REE price can be observed.
The eductive method does not aim at making a precise prediction of what
should happen when the REE is unstable. The only conclusion that is drawn
from this instability result is that out-of-equilibrium �uctuations are likely to
happen. In game theoretical words, the �eductive�method amounts to say
that the REE-Nash equilibrium of a certain market game is stable whenever
it is the only rationalizable solution of this game.

In this paper, we apply the eductive method to a reduced form linear
economy where the fundamentals are uncertain. We �rst check that, as long
as information of agents is symmetric, the initial story of Guesnerie (1992) is
straightforwardly transposed. This corresponds to a �rst result: the stability
of the REE obtains when the economy is not very sensitive to expectations,
independently of the volatility of the fundamentals.

1Guesnerie (2002) gives a synthetical assessment of the eductive methodology.
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Then, we introduce an asymmetry of information among agents: some
agents only observes the state of nature, while the others have no private
information. The introduction of informational asymmetries about funda-
mentals a¤ects the above story in two ways.
Firstly, a striking result is that the conditions of stability are negatively

a¤ected by the proportion of informed agents. This is due to the fact that
an agent�s decisions (and then the actual price) are more sensitive to his
expectations when he is informed. A noticeable corollary of this result is
that, in the limit case where the degree of sensitivity of the economy to price
forecasts is CK (the real parameter � in the model is constant), the conditions
of stability are not a¤ected by informational asymmetries, as represented by
the proportion of informed agents.
Secondly, informational asymmetries raise the question of informational

e¢ ciency of the price: is it the case that the price will be fully revealing?
i.e. is an agent able to infer the state of nature from observing the price
only, without having a priori private information about this state of nature?
This question is di¤erent from the preceding one. Indeed, it can be the case
that the eductive process restricts the sets of admissible prices in a given
state of nature although it does not predict a unique price in a given state
of nature. If the restrictions imposed by the eductive process on these sets
of admissible prices are stringent enough, then it can be the case that no
price is compatible with two (or more) states of nature. In such a case, the
price reveal the underlying state of nature with certainty, although this price
may not be a REE price. We �nd that informational e¢ ciency is favored by
a large proportion of informed agents. Lastly, we investigate this question
in the case where the prior beliefs about the fundamentals of non informed
agents are not CK, but private information. We �nd that the latter result is
robust to this higher order uncertainty about fundamentals.
Summing up, the proportion of informed agents plays an ambiguous role:

on the one hand, increasing the proportion of informed agents makes more
di¢ cult the coordination of expectations on the REE, and on the other hand,
it favors informational e¢ ciency (i.e. actual prices reveal faster the under-
lying state).

The related literature includes two trends: the �rst one describes macro-
economic dynamics when agents make forecasts errors and revise their beliefs
(this is macroeconomics dynamics with learning à la Evans and Honkapohja
(2001) and Grandmont (1998)) and the second trend examines the justi�-
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cations of REE (à la Guesnerie (2002)). Precisely, the �rst trend gives an
account of macroeconomic volatility through learning considerations. We aim
at contributing to these issues by introducing informational asymmetries (as
recently done in the literature about REE justi�cations). Our results ex-
tend existing results concerning eductive stability and con�rm the intuitions
sustained in those papers.
- Informational asymmetries a¤ect the stability of the learning dynamics.
- The results of Guesnerie (1992) concerning elasticities are robust to the

kind of asymmetric information considered in this paper.
- This completes Desgranges and Guesnerie (2000) and Desgranges, Ge-

o¤ard and Guesnerie (2003) concerning the role played by asymmetric infor-
mation. The main di¤erence with those papers is that, in the present paper,
the uninformed agents cannot extract information from the price, simply be-
cause they make their decisions before they observe the price (still, the price
conveys ex post information about the fundamentals, this is why we are in
a position to consider informational e¢ ciency of the price). Our main result
of a destabilizing e¤ect of a large proportion of informed agents is reminis-
cent from results in these papers. Still, the intuition sustaining the results in
these papers is totally di¤erent. In our model, an informed agent can make a
forecast error, which is not the case in the others papers, and this is central
to our stability results (as explained above). Namely, in our model, increas-
ing the proportion of informed agents makes the price less predictible, which
favors REE instability, whereas, in the other papers, increasing the propor-
tion of informed agents makes the price more revealing. This triggers a high
sensitivity of uninformed agents�beliefs on the informational content of the
price, which in turn triggers REE instability.
- Heinemann (2002) has some basic results in a simple framework similar

to the present one.

The paper is organized as follows. Section 2 presents the model and the
�eductive�story when there is no informational asymmetries. Section 3 con-
siders eductive stability of the REE under asymmetric information. Section
4 considers price informational e¢ ciency. Section 5 investigates robustness
issues (individual heterogeneity, non linear framework, higher order uncer-
tainty on the fundamentals). Section 6 concludes.
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2 Learning under symmetric information

2.1 The general framework

We consider the class of self-referential linear univariate models where the
state of the economic system in any given period is described by a real number
p. The value of p in the state of the world ! (! = 1; : : : ;
) is denoted p (!).
It is determined by the temporary equilibrium relation

p(!) = � (!)

Z 1

0

peidi+ � (!) . (1)

This mapping should be thought of as a situation where there is a continuum
of in�nitesimal traders i 2 [0; 1] with individual forecasts pei about the actual
state of the economy. These forecasts are formed in the previous period and
they in�uence the system through the aggregate forecast

P e �
Z 1

0

peidi. (2)

In (1), the underlying fundamentals are summarized by a pair (� (!) ; � (!))
in the state of the world !. The parameter � (!) represents the sensitivy
of the economy to traders� forecasts, while the parameter � (!) is a mere
scale factor. From now onwards, we restrict attention to the case where all
the forecast weights �(!) have the same sign, whatever ! is. Below are two
examples where this hypothesis is satis�ed.

Example 1. The cobweb model with aggregate demand uncertainty.
A continuum of in�nitesimal and homogenous �rms i 2 [0; 1] make their
individual supply decisions qi one period before their product is sold. Each
�rm i has a cost function C(qi) = q2i =2c. Price taking behavior leads �rm i
to maximize pro�t peiqi � q2i =2c when its price forecast is pei . Thus, qi = cpei
for i 2 [0; 1]. The demand side of the economy is described by an aggregate
demand function �(!)��(!)p, where p represents the actual price, and both
�(!) and �(!) are positive parameters. A temporary equilibrium is de�ned
by a price p(!) such that aggregate supply equals aggregate demand, that isZ 1

0

cpeidi = �(!)� �(!)p(!). (3)

Let � (!) � �c=�(!) and � (!) � �(!)=�(!). Then (3) rewrites as (1).
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Example 2. The Lucas aggregate supply model.
Consider a continuum of in�nitesimal and homogenous �rms i 2 [0; 1]. Each
�rm is assumed to increase individual supply qi = �(pi�pei ) only in response
to perceived relative price (pi � pei ), where pi stands for the price of its
own product and pei represents its forecast of the aggregate price level. A
temporary equilibrium in state ! is an aggregate price level

p(!) �
Z 1

0

pi(!)di;

such that aggregate supply equals aggregate demand, �(!)��(!)p(!). Thus,Z 1

0

�(pi(!)� pei (!))di = �(!)� �(!)p(!). (4)

Let � (!) � �=(�+�(!)) and � (!) � �(!)=(�+�(!)). Then (4) rewrites as
(1).

In the temporary equilibrium relation (1), individual price forecasts rely
on information about the actual state of the world that is available to traders.
If, for instance, some trader i already knows the underlying fundamentals of
the economy when submitting his price forecast, then pei should be made
conditionnally to ! (which has been done in the above examples). In this
section, we focus on two polar con�gurations with symmetric information.
Firslty, all the traders are perfectly informed of ! when they form their price
forecasts. Secondly, traders are no longer aware of ! at that moment.

2.2 The perfect information case

Let the state of the world ! and the values (� (!) ; � (!)) be common knowl-
edge (CK hereafter). The rational expectations equilibrium (REE hereafter)
is (as usual) de�ned as a price vector (p�(1); :::; p�(
)) where pei (!) = p(!)
for any i 2 [0; 1] in (1). The price p�(!) is accordingly such that

p�(!) = � (!) p�(!) + � (!) . (5)

If � (!) 6= 1, there exists a unique price p�(!) solution to (5), and there is then
a widespread agreement in the literature to assume that every trader expects
such a price to arise. In order to assess the relevance of this hypothesis, we
interpret the REE p�(!) as a Nash equilibrium of a strategic game played
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by traders i 2 [0; 1]. In this game, pure strategies are price forecasts pei (!),
and the payo¤ of any player i is �(p(!)� pei (!))2, where p(!) is determined
by (1): it is inversely related to its own forecast error. The structure of this
game is CK.

In Examples 1 and 2 above, �rms maximize pro�t, they do not minimize
forecast errors. However, it is quite intuitive that both goals are equivalent.
To show this point formally, consider for instance the cobweb model.

Example 1 (continued). Strategy and payo¤ in the cobweb model.
Recall that a �rm i produces qi = cpei (!) whenever it expects p

e
i (!) in state

!. Once the actual price p(!) is realized, its ex post pro�t is p(!)cpei (!) �
[cpei (!)]

2 =2c. Notice that the value pei (!) minimizing the forecast error
(p(!)� pei (!))

2 is exactly the value maximizing the quantity p(!)cpei (!) �
[cpei (!)]

2 =2c (this value is simply p(!)). Hence, choosing a correct forecast is
equivalent to maximizing pro�t for a rational trader, i.e. for a trader whose
production and forecast satisfy qi = cpei (!).

More generally, in the game associated with the temporary equilibrium
relation (1), the REE de�ned above coincides with the Nash equilbrium of
the game. Indeed, in state !, the optimal forecast Ei [p(!)] of a trader i is

Ei [p(!)] = � (!)Ei

�Z 1

0

pen (!) dn

�
+ � (!) , (6)

where Ei
hR 1
0
pen (!) dn

i
is the aggregate forecast, as expected by i. Hence, it

is straightforward that a Nash equilibrium is characterized by Equation (5)
de�ning the REE. Indeed, in state !, the best reply of trader i to every other
trader expecting p�(!) is exactly p�(!) from Equation (6).

This interpretation highlights the coordination issue faced by the traders:
the optimality of a forecast depends on others�forecasts. In particular, only
those traders expecting the aggregate forecast P e(!) to be p�(!) do expect
the REE price p�(!). Introducing higher order beliefs leads to the property
that expecting p�(!) follows from expecting that all the traders2 expect the
aggregate price forecast to be p�(!). This kind of mental justi�cation of
the forecast p�(!) can be iterated ad in�nitum. We then have the following
characterization of a REE: in state !, the REE price p�(!) is the only price
p that is compatible with CK of every trader expecting p.

2but a set of zero measure.
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A possible way to appreciate the robustness of the price p�(!) (as the
�fair�price) consists to relax the above CK assumption supporting the REE.
That is, we relax the assumption of CK that every trader expects exactly
the REE price into the weaker assumption of that every individual forecast
of the price in state ! belongs to a given interval P 0(!). P 0(!) contains
the REE price p�(!), but it does not necessarily reduce to this price. Under
this weaker assumption, we address the issue of expectations coordination:
are agents still able to correctly guess the actual price? Or, equivalently, are
they able to coordinate their forecasts on the price p�(!)? If yes, agents have
perfect foresight and coordination is successful. Otherwise, some traders do
make forecast errors, and coordination fails.
The process through which agents coordinate their forecasts is based on

some concept of iterated elimination of dominated strategies, as in Bernheim
(1984), Pearce (1984) or Guesnerie (1992). It starts with an anchorage hy-
pothesis ensuring CK that the aggregate forecast P e(!) in state ! belongs to
some interval P 0(!). We denote P 0(!) =

�
P 0inf(!); P

0
sup(!)

�
and we assume

p�(!) 2 P 0(!). Formally, in the game under consideration, this process
amounts to de�ne the set of rationalizable strategies under the restriction
that the �action�pei (!) of agent i in state ! lies in P

0(!).
We set �(!) > 0 for every !.3 Under this hypothesis, the anchorage

assumption allows traders to start an iterative learning process based on
CK of individual rationality and CK of the model. Indeed, the anchorage
Assumption implies that P e(!) 2 P 0(!). Then, by (6), individual rationality
implies that any trader i forms a price forecast in a new interval P 1(!) =�
P 1inf(!); P

1
sup(!)

�
, where

P 1inf(!) = �(!)P 0inf(!) + �(!), (7)

and P 1sup(!) = �(!)P 0sup(!) + �(!). (8)

Since individual rationality is CK, it is CK that pei (!) 2 P 1(!) for every
i 2 [0; 1]. Thus, it is CK that the aggregate price forecast P e(!) also belongs
to P 1(!). Iterating this argument implies that, if it is CK that P e(!) 2 P � (!)
at the outset of some step � � 0, then it is CK that P e(!) 2 P �+1(!) at the
outset of the next step, where the sequence of intervals P � (!) is de�ned by
the recurrence equation:

P �+1(!) = �(!)P � (!) + �(!).
3All the results go through if we assume instead that �(!) < 0 for every !. This latter

assumtpion corresponds for example to the Cobweb.
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We say that expectations coordination is successful if and only if the sequence
(P � (!); � � 0) converges toward a single price in every state !. It is obvious
that this limit is necessarily the REE price p�(!) (this is the only �xed
point of the learning process). As Guesnerie (1992) shows, coordination is
successful if and only if � (!) < 1 for every !, i.e. the economic system is
not too sensitive to forecasts in the actual state of the world, or equivalently
traders�forecasts are not too sensitive to others�forecasts in (6).

2.3 The hidden state case

Suppose now that uncertainty about the underlying economic fundamentals
is not resolved when agents try to coordinate their price forecasts. There
are then two di¤erent types of uncertainty; a �rst uncertainty bears on the
aggregate price forecast (no trader observes the forecasts of other traders),
and a second uncertainty is due to the imperfect knowledge of the state of
the world. We assume that all the agents assign the probability �(!) to state
!, and that this fact is CK. Hence, if a trader i expects the price pei (!) to
arise in state !, his price forecast writes

�pei =

X
w=1

�(w)pei (w). (9)

Under the rational expectations hypothesis, all the agents a priori believe
that a price p�(!) arises in state !, and this belief is self-ful�lling:4

p�(!) = � (!)

X
w=1

�(w)p�(w) + �(!) (10)

whatever ! = 1; : : : ;
 is. That is, a REE is a
-dimensional vector (p�(1); : : : ; p�(
))
such that (10) holds for any !.5

As in the perfect information case, this equilibrium is the Nash equilib-
rium of a strategic game where every trader minimzes the expected forecast

4For the consistence of notation, we still denote p� (!) the REE price in state ! although
it is not the same price as the REE price p� (!) in the preceding section.

5Note that individual price forecasts can not be made conditionnally to the actual price.
Indeed traders can not extract information about the actual state of the world from the
actual price when they form their forecasts: this price is determined by (1) one period
after they form their forecasts.
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error
P


w=1 �(w) (p(w)� pei (w))
2. Indeed, in this game, whenever the aggre-

gate forecasts �played�by traders is some �P e =
P


w=1 �(w)P
e (w), the best

response of any player i is the price forecast

�pei =

X
w=1

�(w)
�
� (w) �P e + �(w)

�
� �� �P e + ��, (11)

where �� =
P


w=1 �(w)� (w) and �� =
P


w=1 �(w)�(w). A REE can conse-
quently be thought of as a situation where it is CK that, according to (9),
all the traders expect the average REE price:

�p� =

X
w=1

�(w)p�(w). (12)

We now consider the same coordination process as the one de�ned in
the complete information case. First, we maintain the Anchorage Assump-
tion. Notice however that a valid (slightly di¤erent) anchorage Assumption
is that it is CK that the aggregate forecast �P e belongs to some interval
P 0 =

�
P 0inf ; P

0
sup

�
(with �p� 2 P ). Individual rationality then implies that

�pei 2 P 1 =
�
P 1inf ; P

1
sup

�
for any i 2 [0; 1], where

P 1inf = ��P 0inf + ��, (13)

and P 1sup = ��P 0sup + ��. (14)

If all the traders know that all the traders are rational, then all the traders
know that P e 2 P 1. More generally, CK of individual rationality and model
implies that it is CK that P e 2 P � for any � � 0, where the sequence
(P � ; � � 0) is de�ned recursively as in (13) and (14). The rest point of this
dynamical system is the REE price (12). It is asymptotically stable if and
only if �� < 1. Then, agents succeed to coordinate their beliefs on the REE
i¤ �� < 1. Again, this stability condition �� < 1 can be (loosely) interpreted
as follows: correctly forecasting the actual price does not require to precisely
�gure out what the others believe.

3 Learning under asymmetric information

We now assume that there are � (0 < � < 1) traders who observe the actual
state of the world ! before they form their forecasts; the (1� �) remaining

10



agents have no knowledge of ! at the time of making their decision (they will
observe ! later only). Hence, informed agents only can choose their forecast
conditionnally to !. The uninformed agents �play�an average price forecast,
as described below.
We extend the analysis of expectations coordination to this setting with

asymmetric information. We shall show that a low proportion of informed
traders is required for this process of mutual introspections to allow agents to
coordinate their beliefs on rational expectations. Namely, stability obtains
only if the actual state of the world is concealed from many traders.

In each period, the timing of the events is as follows:

1. The informed agents i 2 [0; �] observe the state of the world !.

2. All the agents form simultaneously their price forecasts conditionnally
to their information about the state of the world. Let pei (!) be the
price expected by agent i to arise in state ! and

�pei =

X
w=1

�(w)pei (w): (15)

Thus, in state !, the informed agent i expects pei (!), while the unin-
formed agent i�s forecast is the average price �pei . It follows that the
aggregate forecast in state ! is

P e(!) =

Z �

0

pei (!) di+

Z 1

�

�peidi. (16)

3. The actual price is determined by (1).

Example 1 (continued). The Muth Model with demand uncertainty.
An informed �rm i 2 [0; �] produces qi = cpei (!) in state !. An uninformed
�rm i 2 [�; 1] produces qi = c�pei that solves the problem

max
q


X
w=1

�(w)

�
pei (w)q �

1

2c
q2
�
,

and the aggregate supply in state ! is consequently equal to cP e(!). The
temporary equilibrium price in state ! is such that aggregate supply equals
aggregate demand. It is then determined by (16) and (1).
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3.1 The rational expectations equilibrium

A REE is now a 
-dimensional vector p� whose !-th component is such that

p� (!) = � (!) [�p� (!) + (1� �) �p�] + � (!) , (17)

where �p� =
P


w=1 �(w)p
�(w). It is straightforward that, generically, there is

a unique REE.
Furthermore, this unique REE coincides with the Nash equilibrium of

a Bayesian game that is analogous to the ones described in the preceding
section. Precisely, in this game, the strategy of an informed agent consists in
a vector of price forecast (pei (1); :::; p

e
i (
)), and the strategy of an uninformed

agent is an average forecast �pei . Every agent minimizes the expected forecast
error. Therefore, when the aggregate forecast in state ! is P e(!), the best
reply of an informed agent i 2 [0; �] is to play

pei (!) = � (!)P
e(!) + � (!) � R! (P e(!)) ; (18)

in every state !, whereas the best reply of an uninformed agent is

�pei =

X
w=1

�(w)Rw (P
e(w)) . (19)

It is then straightforward that the Nash equilibrium of this game consists in
every informed �playing�p� and every uninformed �playing� �p�.

3.2 The learning dynamics

Rational expectations can be interpreted as a situation where, provided that
everyone is expected to play Nash, there is no individual incentives to deviate
from Nash behavior, i.e. from forming forecasts according to the rational
expectations hypothesis. Thus, in such an equilibrium, it is CK that the
aggregate price forecast is equal to

�p� (!) + (1� �)

X
w=1

�(w)p�(w) (20)

if the actual state of the world is !, whatever ! = 1; : : : ;
 is.

Let us now relax this assumption. Assume instead that it is CK that
the aggregate price forecast P e(!) in state ! (! = 1; : : : ;
) belongs to some

12



interval P 0(!) = [P 0inf(!); P
0
sup(!)] which includes the aggregate forecast (20),

but does not necessarily reduces to it. Since EiP e(!) 2 P � (!) for any player
i 2 [0; 1], a rational informed trader i 2 [0; �] plays a price forecast pei (!)
that is a best response to EiP e(!) through the reaction function R!(�), and
so

pei (!) 2
�
R!(P

0
inf(!)); R!(P

0
sup(!))

�
. (21)

On the other hand, a rational uninformed trader i 2 [�; 1] plays a price
forecast

pei 2
"


X
w=1

�(w)Rw(P
0
inf(w));


X
w=1

�(w)Rw(P
0
sup(w))

#
. (22)

It follows that the aggregate price forecast P e(!) belongs to a new interval
P 1(!) =

�
P 1inf(!); P

1
sup(!)

�
whose bounds are such that

P 1inf(!) = �R!(P
0
inf(!)) + (1� �)


X
w=1

�(w)Rw(P
0
inf(w)), (23)

and P 1sup(!) = �R!(P
0
sup(!)) + (1� �)


X
w=1

�(w)Rw(P
0
sup(w)). (24)

Now, if all the agents know that all the agents are rational, then they all
know that P e(!) belongs to P 1(!) in state ! (! = 1; : : : ;
). More generally,
CK of rationality implies that all the agents know that P e(!) belongs to
P � (!) in state ! (! = 1; : : : ;
) at outset of step � (� � 0).
The only �xed point of the in�nite sequence of intervals (P � (!); � � 0)

de�ned recursively as in (23) and (24) is such that boundary prices P �inf(!)
and P �sup(!) equal the aggregate price forecast (20) ensuring rational expec-
tations. The next Proposition gives the condition of stability under learning,
i.e for the 
 sequences

�
P �inf(!); P

�
sup(!)

�
to converge toward the aggregate

price forecast (20) when � tends toward in�nity.

Proposition 1 Assume that � (!) > 0 for any ! = 1; : : : ;
. If �� (!) >
1 for some !, then the rational expectations equilibrium is unstable in the
dynamics with eductive learning. If �� (!) < 1 for every !, then the rational
expectations equilibrium is stable in the dynamics with eductive learning if
and only if


X
w=1

� (w)
(1� �)� (w)
1� �� (w) < 1. (25)
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Proof. The 
 equations (23) de�ne the 
 lowest prices (P �+1inf (!)) in each
state ! (! = 1; : : : ;
) at step � +1 (� � 0) as a sole function of the 
 prices
(P �inf(!)) at step � . Moreover the �xed point (Pinf(1); : : : ; Pinf(
)) of (23)
is stable under learning if and only if the �xed point (Psup(1); : : : ; Psup(
))
is stable in the 
-dimensional system (24). This allows us to restrict our
attention to the 
-dimensional system (23). Given (18), the 
 equations
(23) rewrite in matrix form p�+1inf =Mp

�
inf +�, where p

�
inf is the 
� 1 vector

(P �inf (1) ; : : : ; P
�
inf (
)), � is the 
 � 1 vector (� (1) ; :::; � (
)) and M is the


 � 
 matrix �� + (1� �)�� (with � the diagonal 
 � 
 matrix whose
!!-th entry is �(!), and � the 
�
 stochastic matrix whose !!0-th entry
is �(!0)). The REE is the only �xed point of the dynamics with learning.
It is stable in this dynamics i¤ the spectral radius �(M) of M has modulus
less than 1.6 The proof then hinges on the fact that for any 
 � 
 matrix
M = (mij), with every mij � 0, and any 
 � 1 vector x = (x!) with every
x! > 0, we have

min
!

(Mx)!
x!

� �(M) � max
!

(Mx)!
x!

,

where (Mx)! stands for the !-th component of the 
-dimensional vector
Mx. See Lemma 3.1.2. in Bapat and Raghavan (1997) for instance. Let

Q (x; !) =
(Mx)!
x!

= � (!)

"
�+ (1� �) 1

x!


X
w=1

� (w)xw

#
,

for any !. Assume �rst that �� (!) > 1 for some !, e.g. �� (
) > 1. Then,
consider the vector x = ("; : : : ; "; 1)0 where " > 0. When " tends toward 0,
Q (x; !) tends to +1 for every ! < 
, and Q (x;
) � �� (
) > 1. Hence,
for " small enough, min!Q (x; !) > 1 and thus �(M) > 1. This shows that
the REE is unstable if �� (!) > 1 for some !. Assume now that �� (!) < 1
for any !. Let

E =


X
w=1

� (w)
(1� �)� (w)
1� �� (w) .

Consider the 
� 1 positive vector x whose !-th component is

x! =
1

E

(1� �)� (!)
1� �� (!) > 0.

6We do not consider the case where M has an eigenvalue equal to 1.
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If E � 1, then Q (x; !) > 1 for any !, so that min!Q (x; !) � 1, and the
equilibrium is unstable. If, on the contrary, E < 1, then Q (x; !) < 1 for any
!, so that max!Q (x; !) < 1, and the equilibrium is stable. This shows the
result.
Although some traders are perfectly informed about the actual state of the

world, stability properties of the learning dynamics depend on the whole set
of possible states. Indeed, uninformed traders have to predict price forecasts
of informed traders in any possible state, which urges informed agents to take
care about all the states of the world through the restrictions they draw on
the behavior of uninformed agents. As a result, expectations coordination
may fail in a state ! where � (!) < 1. Namely, if the equilibrium is unstable
under learning, then there is necessarily one unstable price p�(!), and so the
average equilibrium price


X
w=1

� (w) p� (w)

is also unstable. Since uninformed agents can not guess this average price,
informed agents can not predict the actual price, whatever the actual state is.
From this fact, one could believe that the presence of uninformed traders has
a destabilizing e¤ect in the learning process. Nevertheless, an increase in the
proportion of informed traders tends to increase ��(!) in all states, which
also favors instability. Therefore, the consequences of the interaction between
the underlying economic fundamentals and the information structure onto
the learning process are ambiguous. The purpose of the following corollary
of Proposition 1 is to disentangle these two dimensions.

Corollary 2 Assume that � (!) > 0 for any ! = 1; : : : ;
.
If � (!) < 1 for any ! = 1; : : : ;
, then the rational expectations equilib-

rium is stable in the dynamics with learning given by (23) and (24).
If inf! � (!) < 1 < sup! � (!), then provided that �� < 1, there exists a

threshold proportion ��, 0 < �� < 1, of informed traders such that stability of
the equilibrium obtains if and only if � < ��. The threshold �� is a decreasing
function of each � (!). If �� � 1, then stability under learning never obtains.
If � (!) > 1 for any ! = 1; : : : ;
, then the equilibrium is unstable under

learning.

Proof. Assume �rst that � (!) < 1 for any ! = 1; : : : ;
. For every!,
�� (!) < 1 and (1� �)� (!) = (1� �� (!)) < 1. Proposition 1 then implies
that the REE is stable.
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Assume now that inf! � (!) < 1 < sup! � (!). If � > 1= sup! � (!),
then it directly follows from Proposition that the REE is unstable. If � �
1= sup! � (!), then �� (!) < 1 for every!, and, from Proposition 1 again, the
condition for stability is (25). Let

F (�) =


X
w=1

� (w)
� (w)

1� �� (w) �
1

(1� �) (26)

F (�) is a continuous and increasing function of � on the interval [0; 1= sup! � (!)]
(F 0(�) > 0 whatever � is). Hence, there is at most one value � such that
F (�) = 0 on this interval. Finally, F (0) = ���1, and F (�) tends to+1 when
� tends to 1= sup! � (!) from below. Thus, one distinguishes between two
cases. Firstly, if �� � 1, then F (�) � F (0) > 0 for any � 2 [0; 1= sup! � (!)],
and the stability condition (25) is never satis�ed. Secondly, if �� < 1, then
there exists a unique solution �� (�� > 0) to F (�) = 0 in the interval
[0; 1= sup! � (!)]. F (�) < 0, i.e. the stability condition (25) is satis�ed, i¤
� < ��. Furthermore, F (��) = 0 implicitly de�nes �� as a function of the
collection (�(1); : : : ; �(
)). It is straighforward to verify that F (�) increases
in every � (!). Thus, �� decreases in every � (!).
Assume �nally that � (!) > 1 for any !. Then, �� > 1, and we have

already seen that F (�) > 0 for any � 2 [0; 1= sup! � (!)]. As a result, the
stability condition (25) is never satis�ed. The point follows.
The intuition for this result again hinges on the sensitivity of individual

price forecasts to the perceived behavior of other agents that is summarized
in our framework by the aggregate price forecast. Assume indeed that an
agent i 2 [0; 1] expects the aggregate price forecast to undergo a marginal
change dP e (!) in some state ! (! = 1; : : : ;
). If such an agent is informed,
then he reacts (or he is expected to react) to this change by adjusting his own
price forecast for an amount dpei (!) equal to � (!) dP

e (!) in the state of the
world is !. If, on the contrary, such an agent uninformed, then he modi�es his
own price forecast for an amount � (!)� (!) dP e (!) which is clearly less than
� (!) dP e (!) as soon as this agent does not hold for sure that the actual state
of the world is !. Thus, the forecasting behavior of an uninformed agent is
less sensitive to others�price forecasts than an informed agent. His behavior
is accordingly easier to predict, which favors the coordination of expectations.
Of course, since the inertia that is due to the presence of agents who are not
aware of the actual state of the world transmits to the price, stability under
learning of the REE obtains whenever the in�uence of traders�beliefs onto
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the economy is low enough, as in the main strand of the literature. However,
the inertia channel is to be found not in the direct e¤ect of price forecasts, as
measured by the forecast weight, but instead at some upstream level where
the in�uence of traders beliefs about the aggregate behavior of others onto
price forecasts is low enough.

3.3 Sunspot equilibria as a coordination device

It is often argued that sunspots could be used as a coordination device to
which agents could refer when they form their price forecasts. The purpose
of this section is to examine whether sunspots may favor coordination of
expectations on rational expectations equilibria. It will be shown that this
is not the case. Indeed, on the one hand, sunspots matter if and only if the
REE de�ned in (17) is unstable in the dynamics with learning; in this sense,
sunspots disturb the expectations coordination process under the conditions
exhibited in Proposition 1. On the other hand, any equilibrium where the
actual price depends not only on the state of the underlying fundamentals
but also on extraneous sunspot uncertainty is unstable under learning.

In order to de�ne a sunspot equilibrium, we consider a stochastic sunspot
variable that can take � di¤erent values (S = 1; : : : ;�) and that is not
correlated with the underlying fundamentals. Although its actual value is not
perfectly known when agents choose their expectations, every agent i 2 [0; 1]
observes a private signal si = 1; : : : ;� imperfectly correlated with S. Private
signals are assumed to be independently and identically distributed accross
traders (conditionnally to S), whatever S is. In sunspot event S, every agent
observes the signal si with a probability Pr(si j S) that is independent on i.
Thus, in sunspot event S, there are Pr(s j S) agents who observe the signal
s (for every s = 1; : : : ;�). Pr(S j s) stands for the probability that sunspot
event is S when private signal is s. (Pr(S j s) and Pr(s j S) are linked by
Bayes�law.)

Suppose that all the agents expect the price pe(!; S) to arise if the state
of fundamentals is ! and the sunspot state is S. In this event, there are
�Pr(s j S) informed agents whose price forecast is

�X
S0=1

Pr(S 0 j s)pe(!; S 0); for s = 1; : : : ;�.
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There are also (1� �) Pr(s j S) uninformed agents who expect
�X

S0=1

Pr(S 0 j s)

X
w=1

� (w) pe (w; S 0) , for s = 1; : : : ;�.

As a result, the aggregate price forecast P e(!; S) in this state of the world
writes

�X
S0=1

�X
s=1

Pr(s j S) Pr(S 0 j s)
"
�pe(!; S 0) + (1� �)


X
w=1

� (w) pe (w; S 0)

#
.

Let

�(S 0jS) =
�X
s=1

Pr(s j S) Pr(S 0 j s)

be the average probability (across agents) of sunspot state S 0 if the actual
sunspot is S. Then, in the event (!; S), the actual price p(!; S) determined
by (1) is

p(!; S) = � (!)

�X
S0=1

�(S 0jS)
"
�pe (!; S 0) + (1� �)


X
w=1

� (w) pe (w; S 0)

#
+� (!) .

(27)
By de�nition, a REE is a price vector p�(!; S) such that pe (!; S) = p (!; S) =
p�(!; S) for every (!; S) in (27). The fundamental solution is the (generically)
unique REE such that p�(!; S) is independent on S. We say that sunspots
matter in equilibrium when there are REE satisfying p�(!; S) 6= p�(!; S 0) for
some ! and S 6= S 0. The following result shows that existence of sunspot
equilibria is closely linked with the stability properties of the fundamental
solution in the dynamics with learning.

Proposition 3 There exist sunspot equilibria i¤ the REE is unstable.

Proof. Let us rewrite conditions (27) in matrix form. To this aim, let
p(S) be the 
-dimensional vector whose !-th component is p(!; S). Let p
be the 
�-dimensional vector (p(1); : : : ;p(�)), and pe the corresponding

�-dimensional vector of expected prices. Let S be the � � � stochastic
matrix whose SS 0-th entry is �(S 0; S). Recall that � is the 
-dimensional
vector (�(1); : : : ; �(
))0. Then, withM de�ned in Proposition 1, we have

p = (S
M)pe + 1� 
 �. (28)
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A REE is a price vector satisfying p = pe in (28). The fundamental solution
is a REE p� such that p�(!; S) = p�(!; S 0) for any !; S; S 0. Let e(S), S =
1; : : : ;�, be the � eigenvalues of the stochastic matrix S. e(S) 2 [�1; 1] and
there is a unique S with e(S) = 1. Let �(!) be the !-th eigenvalue of M.
Then, the 
� eigenvalues of S
M are e(S)�(!) for any pair (!; S). Recall
that �(M) = sup! j�(!)j. If �(M) < 1, then all the eigenvalues of S
M
have modulus less than 1, and so S
M � I2
 is invertible and there is a
unique REE. If �(M) � 1, then there exist stochastic matrices such that
e(S) = 1=�(M) for some S. In this case, the matrix S
M has an eigenvalue
equal to 1, and so there are in�nitely many solutions p to (28), i.e. in�nitely
many sunspot equilibria and the fundamental solution p�.

As shown in Proposition 1, stability under learning requires a low pro-
portion of informed traders. Thus, a large proportion of informed agents is
needed for sunspot equilibria to exist. The intuition is clear, in view of the
fact that the behavior of uninformed agents does not vary according to the
state of the world (see Evans, Honkapohja and Sargent, 1993, for a similar
view).

A further issue is whether sunspots may allow traders to coordinate their
forecasts when the fundamental equilibrium p� is unstable under learning.
We turn attention to this point and we de�ne the learning dynamics on a
SSE.

Consider that an agent i expects the price pei (!; s) in the state of the
world (!; S). De�ne � (sjS) =

Pn=s
n=1 Pr(n j S) for every s = 1; :::;� and

� (0jS) = 0. Then, in a given state (!; S), the aggregate price forecast
P e(!; S) is (with the suitable labelling of private signals and agents)7:

�X
s=1

Z ��(sjS)

��(s�1jS)
pei (!; s)di+

�X
s=1

Z �+(1��)�(sjS)

�+(1��)�(s�1jS)

"
w=
X
w=1

pei (w)

#
di.

As a result, if it is initially CK that P e(!; S) 2 P 0(!; S) =
�
P 0inf(!; S); P

0
sup(!; S)

�
for any pair (!; S), then it is CK that P e(!; S) 2 P 1(!; S) =

�
P 1inf(!; S); P

1
sup(!; S)

�
,

7Label private signals such that all the informed traders i 2 [0; �Pr(1 j S)] receive
signal s = 1, while all the informed traders i 2 [�Pr(s� 1 j S); �Pr(s j S)] receive signal
s (s = 2; : : : ;�). Label uninformed traders such that an agent i of this type receives
signal s = 1 if i 2 [�Pr(� j S); �Pr(� j S) + (1� �) Pr(1 j S)], and he receives signal s
(s = 2; : : : ;�) if i 2 [�Pr(� j S) + (1� �) Pr(s� 1 j S); �Pr(� j S) + (1� �) Pr(s j S)].
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with P 1inf(!; S) and P
1
sup(!; S) respectively given by

�(!)

�X
S0=1

�(S 0; S)

"
�P 0inf(!; S

0) + (1� �)

X
w=1

� (w)P 0inf(w; S
0)

#
+ � (!) ,

and �(!)
�X

S0=1

�(S 0; S)

"
�P 0sup(!; S

0) + (1� �)

X
w=1

� (w)P 0sup(w; S
0)

#
+ � (!) .

Iterating this argument de�nes a coordination process on a SSE analogously
to the process de�ned inthe preceding sections.

As the following result shows, sunspots can not be used as a coordination
device.

Proposition 4 Any sunspot equilibrium is unstable under learning.

Proof. The dynamics with learning is governed by the 
��
� matrix
S
 [��+(1� �)��] = S
M. Since S is a stochastic matrix, the spectral
radius of S
M is equal to � (M). A sunspot equilibrium is stable in the
dynamics with learning if and only if � (M) < 1, but then there does not
exist sunspot equilibria. This shows the result.

4 Informational E¢ ciency

The question is to know whether the uninformed agents learn the state !
from the price, once it is made public. If the REE is stable, then the answer
is obvious: any agent is able to deduce the state ! from the observed price.
Indeed, the observed price is a REE price p� (!). As all these prices are
di¤erent, the price always reveals the underlying state. Analogously, in the
case where the REE is not stable, any price is compatible with any state !
so that nothing can be to deduced from the observed price. Thus, the price
transmits information about the state whenever the equilibrium is stable
under learning.
Beyond this fact, one may wonder whether agents can discover ! from the

price when they go through a �nite number of steps of the eductive reasoning
only. In other words, the issue is whether the full CK assumptions are needed
for the price to reveal the state. We now investigate this question. Formally,
we know from the preceding section that, after � steps of the eductive process,

20



it is CK that the actual price in state ! belongs to P � (!). Hence, the price
will reveal ! with certainty after � steps whenever P � (!) does not intersect
any other set P � (!0) (even if the sets P � (!) and P � (!0) do not reduce to
a unique price). Notice that if P � (!) \ P � (!0) is not empty, it can either
be the case that the actual price do not reveal the state to the uninformed
agents (if the price belongs to P � (!) \ P � (!0)) or it can be the case that
the price reveals the state to the uninformed agents (if the price belongs to
P � (!)� P � (!0) or to P � (!0)� P � (!)).
Thus, we consider that the number of steps that are necessary for the sets

P � (!) to be disjoint measures the degree of ex-post revelation of the state !
by the price that is allowed by the learning process: the smaller this number
of steps, the more e¢ cient the learning process.
For analytical simplicity, we restrict attention to the case where � does

not depend on ! (� only depends on !). The following proposition gives
the explicit condition under which the price can reveal the state ! when
the eductive process is converging. In particular, � has a positive impact on
learning.

Remark 1. In the case where the forecast weight is the same in every state
of the world, i.e. � (!) = � for any ! = 1; : : : ;
, so that uncertainty about
economic fundamentals only bears on the scale factor, i.e. � (!) 6= � (!0) for
! 6= !0 (!0 = 1; : : : ;
), Proposition 1 implies that the equilibrium is stable
under learning if and only if � < 1. In this case, stability properties are
not a¤ected by informational asymmetries, as shown by Heinemann (2002).
However, the speed of convergence toward the equilibrium is then inversely
related to ��, so that an increase in the proportion � of informed agents
slows down learning.

Proposition 5 Assume that the REE is stable (i.e., � < 1). Consider that
the price reveals the underlying state ! after � steps of learning i¤ the sets
P n (!) do not intersect. De�ne N as the smallest integer n satisfying:

p0sup � p0inf <
�

�n
1� (��)n

1� �� inf
!;!0

j� (!0)� � (!)j : (29)

Then, the price reveals the underlying state ! after n steps of learning if and
only if n � N . Furthermore, N decreases with �.

If � < 1, then, for any proportion of informed agents, there exists a
threshold N above which uninformed agents are able to deduce the current
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state ! from the price observed at the end of period, whatever this price is.
The current state will be revealed with certainty to uninformed agents even
when agents have proceeded to N step only of �eductive� learning.
This happens when (i) the di¤erence inf!;!0 j� (!0)� � (!)j is large (which

corresponds to a large di¤erence jp� (!0)� p� (!)j), (ii) the anchorage as-
sumption is informative, i.e. p0sup � p0inf is small enough, and (iii) the eco-
nomic system is not very sensitive to price forecasts, i.e. the e¤ect � of price
forecasts onto equilibrium prices is small enough.
Proof. Recall from Equations 23 and 24 that

p�+1inf (!) = � [�p�inf(!) + � (!)] + (1� �) [��p�inf + ��] ;
p�+1sup (!) = �

�
�p�sup(!) + � (!)

�
+ (1� �)

�
��p�sup + ��

�
.

It follows that

�p�+1inf = ��p�inf + �� = �
�+1�p0inf +

1� ��+1

1� � ��;

�p�+1sup = ��p�sup + �� = �
�+1�p0sup +

1� ��+1

1� � ��.

Hence, combining these four equations, we have

p�+1sup (!
0)�p�+1inf (!) = ��

�
p�sup(!

0)� p�inf(!)
�
+� [� (!0)� � (!)]+(1� �)��+1

�
�p0sup � �p0inf

�
;

Hence, denoting dp�+1 = p�+1sup (!
0)� p�+1inf (!), we have

dp�+1 = ��dp� + � [� (!0)� � (!)] + (1� �)
�
�p0sup � �p0inf

�
��+1;

= (��)�+1 dp0 + � [� (!0)� � (!)] 1� (��)
�+1

1� �� + (1� �)
�
�p0sup � �p0inf

�
��+1

1� ��+1
1� � :

The sets P � (!) do not intersect as soon as dp� < 0 whenever � (!0) < � (!).
This is equivalent to:

�p0sup � �p0inf <
�

��
1� (��)�

1� �� inf
!;!0

j� (!0)� � (!)j :

As the LHS does not depends on � and the RHS isincreasing in � , the thresh-
old value N stated in the proposition is the smallest integer satisfying the
above inequality. This shows the �rst part of the proposition.

22



To show the second part of the proposition, it is enough to show that
�
��

1�(��)�
1��� increases with �. This follows from:

d

d�

"
�

��
X

0�k���1

(��)k
#
=
1

��
X

0�k���1

(��)k +
�

��
X

0�k���1

k�k�1�k > 0:

This ends the proof.
Bayesian learning. Another way of studying informational e¢ ciency in

this economy would be to consider repeated plays of the economy. A precise
model woud be along the following lines: at date 0, ! is observed (once for
all) by informed agents. Then, at dates 1, 2,..., agents �play�the economy
described by a modi�ed version of Equation (??), namely:

pt (!) = � (!)

�Z �

0

pei;t (!) di+

Z 1

�

�pei;tdi

�
+ � (!) + "t; (30)

where "t is an i.i.d. white noise.8 In this setting, the observation of the
sequence of prices allows the uninformed agents to progressively learn the
state !. Then, a well known result is that, in a Bayesian equilibrium of this
game, under mild assumptions on "t, the price converges in the long run to
its full information value �(!)= (1� � (!)) with probability 1, and the speed
of convergence increases with �.9

5 Extensions

5.1 Higher order uncertainty on the fundamentals

So far it has been assumed not only that uninformed agents use the objective
distribution of the states of the world, but also that this fact is CK. In fact,
the careful reader will have noticed that our analysis also applies to the case
where the subjective probability �i(!) that some uninformed trader i assigns
to the state of the world ! is private information, but the average probability

�(!)
def
=

1

(1� �)

Z 1

�

�i(!)di (31)

8Without the additional white noise "t, uninformed agents would learn s exactly at the
end of period 1 at a Bayesian equilibrium.

9Computing the equilibrium is routine. See, among others, Desgranges, Geo¤ard and
Guesnerie (2003) for the derivation of a similar equilibrium.
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is CK. It may appear di¢ cult, however, to justify such an assumption in a
decentralized framework which otherwise stipulates a high level of ignorance.
Thus, in this section, we relax this hypothesis to focus attention on the
case where each agent is uncertain about others�beliefs about states of the
world, i.e. we examine the case of so-called higher order uncertainty on the
fundamentals. Then, an informed agent still knows the actual state of the
world when he forms his price forecast, and an uninformed agent is still
not aware of the actual state, but the probability distribution he uses for
forecasting purpose is no longer CK.
For analytical simplicity, we assume that the forecast weight does not vary

in accordance with the state of the world, i.e. �(!) is equal to a constant �
(�(!) only depends on ! = 1; : : : ;
).

As in Section 3.2, the learning algorithm proceeds from some anchorage
assumption ensuring CK that the state !-price forecasts belong to some
interval P 0(!). This assumption, together with the other assumptions of CK
of individual rationality and model, trigger an in�nite sequence of steps.
Every step � (� � 0) is as follows. At the outset of step � , it is CK that

every price forecast pei (!) is in a well de�ned set P
� (!) =

�
P �inf(!); P

�
sup(!)

�
.

It follows that, in state !, the aggregate forecast is derived from the col-
lection of forecasts pei (!) 2 P � (!) of informed agents and the collection of
�average� price forecasts

Pw=

w=1 �i (w) p

e
i (w) formed by uninformed agents.

The aggregate forecast is then

P e (!) =

Z �

0

pei (!) +

Z 1

�

w=
X
w=1

�i (w) p
e
i (w)di:

It follows that P e (!) lies in P̂ � (!) =
h
P̂ �inf(!); P̂

�
sup(!)

i
, where P̂ �inf(!) and

P̂ �sup(!) are respectively the minimal and maximum aggregate forecast for a
given aggregate distribution �(!), namely:

P̂ �inf(!) = �P �inf(!) + (1� �)
w=
X
w=1

� (w)P �inf(w)

P̂ �sup(!) = �P �sup(!) + (1� �)
w=
X
w=1

� (w)P �sup(w)

with �(!) the aggregate probability de�ned in (31). But, contrarily to what
happened in the preceding section, no agent is aware of the values � (!).
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Precisely, we assume that agents have no information at all about the dis-
tribution from which the aggregate prior distribution � is drawn. The more
stringent property about the aggregate price forecast P e (!) that is known
with certainty by an agent is then that P e (!) belongs to [�P̂ n (!) where �
is the set of probability distributions (�(1); : : : ; �(
)) in the 
-simplex. This
set is actually:

P̂ � (!) =

�
�P �inf(!) + (1� �) inf

w
P �inf(w); �P

�
sup(!) + (1� �) sup

w
P �sup(w)

�
:

Therefore, taking into account this restriction, every agent understands that
the price in state ! lies in the intervalR!

h
P̂ � (!)

i
(given the reaction function

18). We de�ne P �+1(!) = R!

h
P̂ � (!)

i
. Thus, at the end of step � , it

is CK that the state-! price forecast belongs to the interval P �+1(!) =�
P �+1inf (!); P

�+1
sup (!)

�
in state !, where

P �+1inf (!) = �
h
�P �inf(!) + (1� �) inf

w
P �inf(w)

i
+ �(!), (32)

P �+1sup (!) = �

�
�P �sup(!) + (1� �) sup

w
P �sup(w)

�
+ �(!). (33)

The main consequence of introducing higher order uncertainty on the
fundamentals into the modelling is to make the �xed points of (32) and (33)
di¤erent in general, i.e. Pinf(!) 6= Psup(!), with

Pinf(!) = �
h
�Pinf(!) + (1� �) inf

w
Pinf(w)

i
+ �(!),

Psup(!) = �

�
�Psup(!) + (1� �) sup

w
Psup(w)

�
+ �(!).

It follows that stability under learning merely amounts to convergence of
the 
 sequences

�
P �inf(!); P

�
sup(!)

�
toward (Pinf(!); Psup(!)) as � becomes

arbitrarily large.

Proposition 6 The learning dynamics de�ned by (32) and (33) respectively
converge toward Pinf(!) and Psup(!) if and only if � < 1. That is, if � < 1,
agents learn that the price in state ! belongs to an interval [Pinf(!); Psup(!)],
! = 1; : : : ;
. Otherwise, if � > 1, the learning dynamics diverges to in�nity.
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Proof. The 
 equations (32) rewrite as

p�+1inf = � [�I
 + (1� �)1
]p�inf ;

where 1
 stands for the 
 � 
 stochastic matrix whose each entry in the
!-th column is 1, where ! = arg infw Pinf(w), and any remaining entry is 0.
The 
 eigenvalues of the matrix � [�I
 + (1� �)1
] are �, ��, ..., ��. The
same analysis applies to the 
 equations (33), which shows the result.
In presence of higher order uncertainty, agents may fail to learn the actual

state of the world from the price though the learning dynamics is convergent.
This event arises i¤ there are two sets P (!) and P (!0) with a non empty
intersection. Otherwise, the price always reveals the underlying state. The
next result provides the condition for the price to be informationally e¢ cient.

Proposition 7 Let � < 1. Let us rank the scale factors in the order of
increasing value, i.e. �(!) < �(!0) whenever ! < !0 (!; !0 = 1; : : : ;
).
Then, the price reveals the actual state of the world if and only if

� > 1� inf! 6=!
0 j�(!)� �(!0)j
�(
)� �(1)

�
1

�
� 1
�
:

Proof. Let � < 1. infw Pinf(w) = Pinf(1) and supw Psup(w) = Psup(
).

Pinf(1) =
�(1)

1� � , and Pinf(!) =
(1� �)�
1� �

�(1)

1� �� +
�(!)

1� �� for ! > 1,

Psup(
) =
�(
)

1� � , and Psup(!) =
(1� �)�
1� �

�(
)

1� �� +
�(!)

1� �� for ! < 
.

Pinf(!) < Pinf(!
0) and Psup(!) < Psup(!0) for ! < !0. Thus, no two sets P (!)

and P (!0) intersect i¤Psup(!)�Pinf(!0) < 0 whenever ! < !0, or equivalently

� (1� �)
1� �

�(
)� �(1)
1� �� <

�(!0)� �(!)
1� �� ;

for every ! < !0. This inequality rewrites

� (1� �)
1� � <

inf!;!0 j�(!)� �(!0)j
�(
)� �(1) ,

which leads to the condition stated in the Proposition.
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Thus,given that the learning dynamics is convergent (� < 1), observing
the price allows uninformed traders to discover the actual state of the world
if the proportion of informed traders is above a certain threshold. This
threshold increases in the weight forecast � and decreases in the factor

inf!;!0 j�(!)� �(!0)j
�(
)� �(1) :

To understand this point, notice �rst that the size of every interval [Pinf(!); Psup(!)]
decreases in the proportion � of informed traders and increases in �. How-
ever, these intervals P (!) can intersect even if they are quite small. In
particular, this is the case when the REE prices p�(!) (de�ned in Equation
(17)) are close enough to each other because every p�(!) belongs to P (!).
Then, large �uctuations of REE prices (measured by jp�(!0)� p�(!)j) should
favor informational e¢ ciency. Indeed, increasing the factor

inf!;!0 j�(!)� �(!0)j
�(
)� �(1) ;

increases REE prices �uctuations.

5.2 Individual Heterogeneity

So far our analysis has been restricted to the particular case with homoge-
neous agents. Indeed, the actual price depends on individual price forecasts
through the aggregate price forecast only (see the temporary equilibrium re-
lation (??)). Then, the sensitivity �(!) of the actual price depends on the
state of the world !, but not on the identity and type of agents. This sec-
tion provides some insights about the expectations coordination process in
presence of individual heterogeneity. For analytical simplicity, we limit het-
erogeneity to depend on type. An extension to a more general case will not
add any insight.

Example 1 (continued). The Muth model with heterogeneity accross �rms.
Firms di¤er according to their technologies. Each informed �rm i 2 [0; �]
has a cost function CI(qi) = q2i =2c

I ; the cost of an uninformed �rm i 2 [�; 1]
is CU(qi) = q2i =2c

U . Thus, the aggregate production writes

cI
Z �

0

pei (!)di+ c
U

Z 1

�


X
w=1

�(w)pei (w)di.
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With an unchanged aggregate demand �(!)��(!)p(!), the temporary equi-
librium price p(!) in this state is

p(!) = � cI

�(!)

Z �

0

pei (!)di�
cU

�(!)

Z 1

�


X
w=1

�(w)pei (w)di+
�(!)

�(!)
.

More generally, we consider the class of economic models whose reduced
form is

p(!) = �I (!)

Z �

0

pei (!) di+ �U (!)

Z 1

�


X
w=1

�(w)pei (w)di+ � (!) , (34)

where �I (!) and �U (!) are real parameters of the same sign. Without loss
of generality, we set �I (!) > 0 and �U (!) > 0 in every state of the world.
A REE is a 
-dimensional price vector (p� (1) ; :::; p� (
)) such that

p� (!) = �I (!)�p
� (!) + �U (!) (1� �)


X
w=1

�(w)p� (w) + � (!)

for any !. It corresponds to a situation where it is CK among traders that the
price belief of any trader is precisely (p� (1) ; :::; p� (
)). Unlike the previous
sections, individual heterogeneity makes useless the aggregate price forecast.

Again, the coordination process bears on an Anchorage Assumption weak-
ening of the assumption of CK of expectations. Precisely, we assume that it
is CK that any trader expects the price to belong to some interval P 0 (!) =�
p0inf(!); p

0
sup(!)

�
in the state of the world ! (! = 1; : : : ;
). Then, the CK

assumptions of individual rationality and model triggers an iterative process
whose every step � (� � 0) is as follows. The starting assumption of step
� is that it is CK that any trader expects the price to belong to some in-
terval P � (!) =

�
p�inf(!); p

�
sup(!)

�
in the state of the world ! (! = 1; : : : ;
).

This implies that it is CK that the price in state ! belongs to an interval
P � (!) =

�
P �inf(!); P

�
sup(!)

�
, where

P �+1inf (!) = �I (!)�P
�
inf(!) + �U (!) (1� �)


X
w=1

�(w)P �inf (w) + � (!) ,(35)

P �+1sup (!) = �I (!)�P
�
sup(!) + �U (!) (1� �)


X
w=1

�(w)P �sup (w) + � (!) .(36)
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It is then CK that any trader expects the state !-price to be in P �+1 (!).
This ends step � .
The learning dynamics de�ned by the sequence P � (!) =

�
P �inf(!); P

�
sup(!)

�
admits the REE as only �xed point, i.e. P �inf(!) and P

�
sup(!) both converge

to p�(!). The next result provides conditions for successful learning.

Proposition 8 Assume that �I (!) > 0 and �U (!) > 0 for any ! = 1; : : : ;
.
If ��I (!) > 1 for some !, then the rational expectations equilibrium is unsta-
ble in the dynamics with eductive learning. If ��I (!) < 1 for every !, then
the rational expectations equilibrium is stable in the dynamics with eductive
learning if and only if


X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

< 1. (37)

Proof. The proof is similar to the one of Proposition 1. Rewriting the
two systems of 
 equations (35) and (36) in matrix form shows that the
REE is stable i¤ the spectral radius �(M) of the 
 � 
 matrix M =��I +
(1� �)�U� is less than 1.10 Here �I and �U are two 
 � 
 diagonal
matrices whose !!-th entries are �I(!) and �U(!), respectively. We de�ne:

Q (x; !) = ��I (!) + (1� �)�U (!)
1

x!


X
w=1

� (w)xw.

The �rst part of Proposition 8 follows again by appealing to the 
�1 vector
x =("; :::; "; 1), where " > 0 is small enough. The last part follows now by
appealing to the 
� 1 vector x whose !-th component x! is

1

E

(1� �)�U (!)
1� ��I (!)

,

with

E =

X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

.

10Again, we do not consider the case where M has an eigenvalue with modulus 1.
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In particular, Proposition 8 implies that stability obtains when every
(1� �)�U (!) + ��I (!) is less than 1,11 i.e. the aggregate sensitivity pa-
rameter is less than 1. This extends the property that sup! � (!) < 1 is a
su¢ cient condition for stability when agents are homogeneous. Analogously,
stability does not obtain when every (1� �)�U (!)+��I (!) is greater than
1.
Informed traders play a crucial role in the coordination process, as the

learning dynamics is unstable as soon as the aggregate e¤ect of their price
forecasts onto the actual price ��I(!) is greater than 1, independently of the
behavior of the uninformed agents. The following two corollaries analyze the
e¤ect of the presence of these agents on the learning dynamics.

Corollary 9 Assume that �I (!) > 0 and �U (!) > 0 for any ! = 1; : : : ;
.

1. If �I (!) < 1 for any state of the world !, then there exists �
� < 1 such

that stability obtains if and only if � > ��. Furthermore, �� > 0 if and
only if E�U > 1.

2. If, on the contrary, �I (!) > 1 for any state of the world !, then
there exists �� < 1 such that stability obtains if and only if � < ��.
Furthermore, �� > 0 if and only if E�U < 1.

Proof. In the case � sup! �I(!) � 1, the equilibrium is unstable. In the
case � sup! �I(!) < 1, the equilibrium is stable i¤ Condition (37) is met, i.e.

F (�)
def
=


X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

< 1.

F (�) is continuous in � and F (0) = E�U .
12 Straightforward computations

show that, if �I (!) < 1 for any !, then F
0 (�) < 0. It follows that F (�) < 1

i¤ � > ��. Since F (1) = 0, �� < 1. Lastly, E�U > 1 i¤ �
� > 0.

If, on the contrary, �I (!) > 1 for any !, then F 0 (�) > 0. It follows that
F (�) < 1 i¤ � < ��. Since F (1= sup! �I(!)) = +1, �� < 1. Again,
E�U < 1 i¤ �

� > 0. This ends the proof.

11To see this point, rewrite (1� �)�U (!)+��I (!) < 1 as
(1��)�U (w)
1���I(w)

< 1 for ��I (!) <
1.
12E�U

def
=
P


w=1 � (w)�U (w).
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The intuition for this corrollary is clear: small values of the sensitivity
parameters �I (!) and �U (!) favor stability. Namely, many informed agents
favor stability (resp. instability) when the �I (!) are less (resp. greater) than
1. If the �U (!) are small (resp. large) as well (in average), then stability
always obtains (resp. never obtains). In particular, when all the �I (!) and
�U (!) are less (resp. larger) than 1, the REE is stable (resp. unstable).

In the intermediate situation where some weight forecasts �I (!) are less
than 1 while the remaining weights are greater than 1, the role of informed
agents is more intricate, as shown in the last corollary of Proposition 8.

Corollary 10 Let inf! �I (!) < 1 < sup! �I (!).

1. If E�U < E�I�U ,
13 then there exists �� < 1= sup! �I(!) < 1 such that

stability obtains if and only if � < ��. �� > 0 if and only if E�U < 1.

2. If E�U � E�I�U and E�U � 1, then there exists ��, 0 < �� <
1= sup! �I(!) < 1, such that stability obtains if and only if � < �

�.

3. If E�U � E�I�U and E�U > 1, then, (i) either the equilibrium is un-
stable for every �, (ii) or there are two values �� and �+ with 0 <
�� < �+ < 1= sup! �I(!) < 1 such that the equilibrium is stable if and
only if � 2 [��; �+]. Precisely, consider a vector (�I (1) ; :::; �I (
)).
In the space IR
+ of the vectors (�U (1) ; :::; �U (
)), there is a neighbor-
hood of the hyperplane E�U = 1 such that case (i) (resp. (ii)) obtains
when (�U (1) ; :::; �U (
)) is outside (resp. inside) this neighborhood. In
particular, case (i) obtains when E�U > sup! �I(!)= (sup! �I(!)� 1).

Proof. We write F 0 (�) = Q+ �Q� where14

Q+ =
X

!=�I>1

��U
�I � 1

(1� ��I)
2 � 0;

Q� = �
X

!=�I<1

��U
�I � 1

(1� ��I)
2 � 0:

Q+ and Q� are both continuous, increasing and convex.

13E�I�U
def
=
P


w=1 � (w)�I (w)�U (w).
14We drop the index ! for simplicity.
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In the case E�U < E�U�I , (that is F
0 (0) > 0) given that (1� �x)�2 is

increasing in x for every given �, we have:

Q+ �
X
s=�I>1

��U
�I � 1
(1� �)2

;

Q� � �
X
s=�I<1

��U
�I � 1
(1� �)2

:

It follows that F 0 (�) � F 0 (0) = (1� �)2 > 0, F is increasing and F
�

1
max�I

�
=

+1 so that stability obtains i¤� is below a certain threshold ��. Given that
F (0) = E�U , �

� > 0 i¤E�U < 1. This proves the �rst point in the corollary.
In the case E�U > E�U�I , (that is F

0 (0) � 0), at a point where Q+ =
Q�, we have that

dQ+
d�

� 2
X
s=�I>1

��U
1

(1� �)
�I � 1

(1� ��I)
2 =

2Q+
(1� �) ;

dQ�
d�

� �2
X
s=�I<1

��U
1

(1� �)
�I � 1

(1� ��I)
2 =

2Q�
(1� �) ;

so that
dQ�
d�

� 2Q�
(1� �) =

2Q+
(1� �) �

dQ+
d�

;

i.e. Q+ crosses Q� from below at any intersection point. It follows that there
is at most one intersection point. Notice now that

Q+ (0) < Q� (0) and Q�

�
1

sup�I

�
< Q+

�
1

sup�I

�
= +1;

implying that there is exactly one intersection point (denoted �min > 0)
between Q+ and Q�. It follows that F (�) is decreasing i¤ � � �min and
F (�) reaches a minimum at �min . As a result, we have that, in the case
F (�min) < 1, there exists �� and �+ such that stability obtains i¤ � 2
[��; �+], while in the case F (�min) > 1, stability never obtains.
To prove the second point in the corollary, notice that �� = 0 i¤E�U < 1.

To prove the third point, notice �rst that, for � in [0; 1= sup�I ]�
1� 1

sup�I

�
E�U < (1� �)E�U < F (�) .
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Fix a vector (�I (1) ; :::; �I (
)). Consider a given vector�
1
U =

�
�1U (1) ; :::; �

1
U (
)

�
such that E�1U = 1, E�

1
U � E�1U�I . De�ne �U = ��1U with � � 1, and de-

note F� = �F1. The value �min such that F 0� (�min) = 0 does not depend on
�. F1 (�) < 1 in a non empty interval. As F� (�) increases in � and stability
writes F� (�) < 1, there is a value �max

�
�1U
�
such that F� (�) < 1 for some �

i¤ � < �max
�
�1U
�
. Consider now the set I =

n
�U=E�U < �max

�
1

E�U
�U

�o
.

This a neighborhood of the hyperplane E�U = 1 satisfying the third point.

All the results follow from combining two factors: stability is favored by
(i) small forecast weights �U(!) and �I(!) and (ii) a small number � of
informed agents. When the forecast weights �U(!) of the uninformed are
small, either in the absolute sense (E�U < 1) or relatively to the weights of
informed agents (E�U < E�I�U), then the two above factors go in the same
direction and the result is clear: the equilibrium is stable i¤ the proportion
1�� of uninformed traders is large enough. Otherwise, the forecast weights
�I(!) of the informed are small relatively to the �U(!), and the above factor
(i) creates a stabilizing e¤ect of a large proportion of informed agents. Thus,
this stabilizing e¤ect tends to oppose to the destabilizing e¤ect of informed
traders (due to factor (ii)). In particular, if the �U(!) are not too large (point
3 in the corollary), the stabilizing e¤ect of informed traders can overcome
the destabilizing e¤ect: namely, a small � (a large proportion of uninformed
agents) makes REE unstable, while it is stable for intermediate values of �
(� 2 [��; �+]). Still, for large values of �, the destabilizing e¤ect (factor (ii))
always dominates and REE is unstable (but this is not true anylonger when
sup! �I(!) < 1 as shown in the preceding corollary). Lastly, if the �U(!)
are quite large and the �I(!) are not small enough to make the stabilizing
e¤ect of a large � dominant, the REE is never stable (points 1 and 2 when
E�U > 1 and point 3 when E�U is large enough).

5.3 A nonlinear framework

We now analyze how the eductive learning analysis extends to a nonlinear
framework. In such a case, it turns out that the forecast weights of informed
and uninformed agents di¤er in the temporary equilibrium relation. Namely,
we consider the following temporary equilibrium relation determining the
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actual state !-price p(!):

p (!) = F!

�Z �

0

'I(p
e
i (!))di+

Z 1

�

'U((p
e
i (1); : : : ; p

e
i (
)))di

�
: (38)

p (!) depends on the underlying state of economic fundamentals !, and on
an aggregate of individuals decisions 'I (�) and 'U (�). The decision 'I (�) of
an informed agent i depends on the price pei (!) expected in state !, whereas
the decision 'U (�) of an uninformed agent depends on the 
 expected prices
(pei (1); : : : ; p

e
i (
)). This relation (38) assumes that all the informed agents

are identical, and all the uninformed agents are identical, in the sense that
'I (�) and 'U (�) do not depend on the identity of the agent. Thus, this
framework encompasses most usual models with homogeneous agents where
the price is determined by agents�expectations of its value (see the examples
below).

Example 1 (continued). A nonlinear cobweb model.
The cost function of �rm i is c(qi), where c0(�) � 0 and c00(�) > 0. In state
!, an informed �rm expects the price pei (!) to clear the market in the next
period, and so produces qi = (c0)

�1 (pei (!)). An uninformed �rm produces qi
such that

qi = (c
0)
�1

 

X
w=1

�(w)pei (w)

!
.

Let the aggregate demand function in state ! be D!(p), where D0
!(�) > 0.

The temporary equilibrium price p(!) satis�es

p(!) = D�1
!

 Z �

0

(c0)
�1
(pei (!))di+

Z 1

�

(c0)
�1

 

X
w=1

�(w)pei (w)

!
di

!
, (39)

which �ts (38).

Example 3. A market of a risky asset.
Consider the market of a risky asset with future value v that is normally
distributed with mean E (!) and variance �2 in every state ! (! = 1; : : : ;
).
Each agent i sends a buy order xi to the market before he observes the price
p of the asset (and the future value v). Individual demand xi is assumed to
maximize an Von Neumann Morgenstern expected utility E [u ((v � p)xi)]
of the net gain (v � p)xi (where u satisfy standard assumptions, i.e. u0 >
0 > u00). In state !, an informed agent who observes ! faces some residual
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uncertainty that is inversely related to the precision 1=�2 and he sends a buy
order xi = xI (!; pei (!)), where xI is the solution of the program

maxE [u ((v � pei (!))xi)] :

The order of an uninformed agent i 2 [�; 1] is xi = xU (p
e
i (1) ; :::; p

e
i (
)),

where xU is the solution of the program

max


X
!=1

�(!)E [u ((v � pei (!))xi) j!] :

Let the aggregate supply of the asset be S (!; p) (S 0 > 0) at price p. Hence,
the actual (market clearing) price p(!) in state ! is such that

S (p(!)) =

Z �

0

xI (!; p
e
i (!)) di+

Z 1

�

xU (p
e
i (1) ; :::; p

e
i (
)) di, (40)

which �ts (38).

In this non linear framework, a REE is a 
-dimensional price vector
p� = (p� (1) ; :::; p� (
)) such that

p� (!) = F! [�'I(p
�(s)) + (1� �)'U(p�)] ; (41)

whatever ! = 1; : : : ;
 is. From now on, assume existence of a REE. Let
'�! = �'I(p

�(!)) + (1� �)'U(p�) stand for the REE aggregate decision in
state !. Let dp(!) = p(!)� p�(!), and dpei (!) = pei (!)� p�(!) for i 2 [0; 1]
and ! = 1; : : : ;
. Then, in an arbitrarily small neighborhood of the REE,
the temporary equilibrium relation can be approximated as

dp (!) = F 0! ('
�
!)

d'I
dpei (!)

(p�(!))

Z �

0

dpei (!)di+F
0
! ('

�
!)

Z 1

�


X
w=1

d'U
dpei (w)

(p�)dpei (w)di;

whatever ! is. Since this relation �ts (34), all the results of Section 5.2 apply
locally, in particular the stability result given in Proposition 8, provided that
the suitable sign restrictions are satis�ed.15

15It must be the case that

d'I
dpei (s)

(p�(s))
d'U
dpei (s

0)
(p�) > 0

for any s; s0 = 1; : : : ; S.
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Nevertheless, unlike in the linear framework examined in Section 5.2, the
local forecast weights rely on the equilibrium prices (p� (1) ; :::; p� (
)). Thus,
Proposition 8 and other results in Section 5.2 must be apply carefully. For
instance, these results do not allow us to assert that local stability is favored
by introducing uninformed traders into the economy, as changing the value
of � a¤ects the REE prices and then the values of the parameters involved
in the stability conditions (the �I(!) and the �U(!) in Section 5.2). Still,
there are examples where taking account of the variation of the REE prices
does not a¤ect the spirit of our results. In particular, in the above Example
3 in the case of a mean-variance utility, it is easy to check that stability of
the REE obtains i¤ the proportion � of informed agents is below a certain
threshold (by computing explicitly the temporary equilibrium relation and
the REE).

In the linear framework, the stability of the fundamental REE is necessary
and su¢ cient for the price system to be e¢ cient, i.e. for the actual price to
reveal the underlying state of economic fundamentals. This is no longer
the case in a nonlinear framework. Indeed, as the following example shows,
local instability of the fundamental solution does not prevent e¢ ciency in
the price system. Indeed, there exist then sunspot equilibria locally stable
in the dynamics with learning. Such sunspot equilibria allow full revelation
the underlying economic state of the world to traders; that is, extraneous
uncertainty ensures e¢ ciency in the price system.

Example 1 (continued). Sunspots in the nonlinear cobweb model.
As in Section 3.3 we shall assume that �rm i receives a private signal �i =
1; : : : ; S imperfectly correlated with the actual sunspot event s = 1; : : : ; S and
independent of the underlying state of economic fundamentals ! = 1; : : : ;
.
In the state of the world (!; s), there are �Pr(� j s) informed �rms whose
receive a signal � and thus the the aggregate supply of informed �rms is

�
SX
�=1

Pr(� j s)�
"

SX
�=1

Pr (� j �) pe(!;�)
#

whenever price beliefs are homogeneous accross traders. By the same way
the aggregate supply of uninformed �rms is

(1� �)
SX
�=1

Pr(� j s)�
"


X
w=1

�(w)
SX
�=1

Pr (� j �) pe(w;�)
#
.
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A REE is a set of 
S prices such that, in state (!; s), the aggregate demand

� (p(!; �)) +W (!)

equals the aggregate supply

�

SX
�=1

Pr(� j s)�
"

SX
�=1

Pr (� j �) p(!;�)
#

+(1� �)
SX
�=1

Pr(� j s)�
"


X
w=1

�(w)

SX
�=1

Pr (� j �) p(w;�)
#
,

and price beliefs are self-ful�lling, i.e. pe(!; s) = p(!; s) whatever (!; s) is.
The fundamental solution is such that p(!; s) = p(!; s0) for any ! and any
s; s0 (s 6= s0). In a sunspot equilibrium, p(!; s) 6= p(!; s0) for some ! and
some s; s0 (s 6= s0).

Proposition 11 A sunspot equilibrium exists if (�1)
S det (M(p�) 
 S �
I
S) < 0.

Proof. De�ne

F (p; (!; S)) = ��1 (�(p; (!; S))� �(!))� p(!; S).

Consider the vector �eld F (p) whose (!; S)-th dimension is F (p; (!; S)).
Note that rational expectations equilibria coïncide with zeros of F (�). Since
this vector �eld points inward at the boudaries of IR
S+ , the sum of the indices
of the equilibria is equal to (+1). The index of the fundamental solution is
equal to (�1) if

(�1)
S det (DF(p�)� I
S) < 0,
where DF(p�) is the Jacobian matrix of F (�) at the fundamental solution.
Otherwise the index of this equilibrium equals (+1). It is straighforward to
show that DF(p�) =M(p�)
 S, where

M(p�) = �

0B@ �0 (p(1)) =�(p(1)) 0
. . .

0 �0 (p(
)) =�(p(
))

1CA
+(1� �)

0B@ �(1) � � � �(
)
...

. . .
...

�(1) � � � �(
)

1CA
0B@ �0 (Ewp(w)) =�(p(1)) 0

. . .
0 �0 (Ewp(w)) =�(p(
))

1CA
37



and

S =

0B@ �(1; 1) � � � �(S; 1)
...

...
�(1; S) � � � �(S; S)

1CA .
The result follows.
Suppose now that it is CK that the actual price p(!; s) in state (!; s) be-

longs to some interval P 0(!; s) =
�
p0inf(!; s); p

0
sup(!; s)

�
for any (!; s). Sup-

pose also that individual rationality and the structure of the conomy are
both CK. The anchorage assumption triggers a learning process whose step
� + 1 (� � 0) is as follows. First, each �rm knows that all the other �rms
choose price forecasts in P � (!; s) in state (!; s). Hence, every �rm knows
that the aggregate supply belongs to the interval

�
��inf(!; s);�

�
sup(!; s)

�
in

state (!; S). Since �0(�) > 0,

��inf(!; S) = � ((p�inf ; (!; S)) ,

��sup(!; S) = �
�
(p�sup; (!; S)

�
.

Since �0(�) < 0, every �rm knows that p(!; S) 2 P 1(!; S) for any pair (!; S),
where

p�+1inf (!; S) = ��1
�
��sup(!; S)� � (!)

�
,

p�+1sup (!; S) = ��1 [��inf(!; S)� � (!)] .

The matrix which governs the dynamics with learning in a neighborhood
of the sunspot equilibrium is block diagonal. Stability of the fundamental
solution obtains if and only all the eigenvalues 'j (j = 1; : : : ;
S) of DF(p

�)
have moduli less than 1. Thus, if sunspot equilibria are detected by the
Poincaré-Hopf theorem, then the fundamental solution is locally unstable in
the dynamics with learning. Indeed, local stability requires that 'j > �1, so
that 1� 'j > 0, which implies that

(�1)
S det (DF(p�)� I
S) = (�1)
S

SY
j=1

�
'j � 1

�
=


SY
j=1

�
1� 'j

�
> 0.

Proposition 12 If some sunspot equilibria are to be detected by the index
theorem, then some of them are locally stable in the dynamics with learning.
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Proof. To be proven.
If there are sunspot equilibria, then the fundamental solution is locally

stable under learning. Thus, traders should not succeed to coordinat their
forecasts on this equilibrium. Price do not transmit valuable information.
But still, information revealed though sunspots.

6 Conclusion

We have discussed two questions concerning the REE under asymmetric in-
formation: the coordination of expectations and the informational e¢ ciency
of the price. Our framework encompasses simple versions of some standard
macroeconomic models (in particular aggregate supply/aggregate demand
model). In this latter model, a standard goal of economic policy is to sta-
bilize equilibrium price �uctuations. Our results show that this kind of sta-
bilization policy may be detrimental to alternative stabilizing considerations
(either coordination problem or informational e¢ ciency of the price). Further
work should precisely describe these aspects in a complete macroeconomic
model. It could then contrast these preliminary results with the recent learn-
ing literature considering monetary policy (see Evans Honkapohja (2002) for
an example).
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