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ABSTRACT

I study optimal monetary policy in an expectational Phillips Curve environment in which

private agents optimally choose their amount of information pertinent to predicting policy.

ARCH shocks produce interesting information acquisition (IA) dynamics. Under discretion,

IA dynamics cause time-varying effectiveness of policy because of the expectational Phillips

Curve; policy may be rendered completely ineffective. Greater economic volatility can induce

fewer agents to be informed, though only in unstable equilibria. For an agent to become

informed increases economic volatility; informed agents therefore impose a negative exter-

nality on others. Under commitment policy’s effectiveness is again time-varying, but policy

is never completely ineffective.
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1 Introduction

This paper presents optimal monetary policy for a model in which private agents can choose

whether to acquire information that helps them predict policy actions. Private sector (PS)

information acquisition is important in the model because a monetary policy action has

real effects only to the extent that it surprises the PS. This means that as the PS’s infor-

mation acquisition changes over time, the effectiveness of monetary policy also changes, a

phenomenon that would appear to an econometrician as an output-inflation tradeoff with a

time-varying slope. This topic is important for monetary policy in empirical economies; to

the extent that policy neutralization occurs in such economies when private agents become

informed, their information acquisition affects the results produced by monetary policy.1

In the model, interesting dynamics of information acquisition are produced by output

shocks that have autoregressive variance–autoregressive conditional heteroskedasticity, or

ARCH. The monetary authority’s offsetting of ARCH shocks causes inflation to also exhibit

ARCH; furthermore, inflation is the variable the PS might become informed about, but its

ARCH behavior implies that becoming informed is worth the cost only in some periods.

This paper advances the literature on this topic in several ways. One way is that PS agents

are allowed to have different costs of acquiring information, which seems to be unique in the

“information” strand of the monetary policy literature. Another way is the incorporation of

ARCH shocks. The third way is the inclusion of both private agents who optimally choose

1Since Lucas (1972, 1973) formalized the view that only surprise changes in the money supply have real

effects, some work has disputed that view. Woodford (2002) rescues this “surprise” strand of the transmission

literature from the principal objections which have been raised against it. Those objections were (1) the

theoretical objection that monetary aggregates were almost immediately and freely available, so that private

agents could not plausibly be assumed to be surprised, and (2) the empirically-based objection that the

time profile of output’s response to a monetary shock was much more spread out than the very short lag

with which monetary data were published. Woodford models agents as not observing monetary data in real

time with perfect precision because of finite bandwidth in the information-theoretic sense. For reasonable

parameterizations his model implies a time profile of output’s response to a monetary shock that agrees well

with the data.
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their information and a monetary authority (MA) that optimally conducts monetary policy.

The only other paper with both optimal information acquisition (IA) and an optimizing

MA is that of Branch et al (2005) (discussed below); the rest of the literature has only one

of these features. There is of course a vast literature on optimal monetary policy under

exogenous PS information sets. Regarding optimal IA, Evans and Ramey (1992) study a

model in which private agents endogenously (optimally in some cases) acquire information

under ad hoc monetary policy. Hahm (1987) studies the PS’s optimal IA but does not

describe optimal monetary policy response to output shocks. Neither does Hahm consider

private agents with differential costs of becoming informed, ARCH shocks, or the differences

between discretionary and committed policy, which I do below. Branch et al (2005) study

optimal monetary policy in a model with endogenous IA but assume all PS agents have the

same cost of IA. They also assume the shocks to which the MA responds are homoskedastic,

so that the IA problem is not intrinsically time-varying.

I study a representative agent PS and a many-agent PS. Results for a representative

agent are as follows: Under discretionary policy, time-varying PS information acquisition

causes periods of effective policy to alternate with periods of completely ineffective policy.

Under policy with commitment the PS never acquires information in equilibrium; the MA

commits to a policy that induces the PS to remain ignorant, in order to preserve policy’s

ability to affect the real economy.

With many PS agents, results are as follows: First, under discretion, changing IA causes

policy’s effectiveness to change over time; unlike the case of the representative agent, pol-

icy’s effectiveness is more general than either completely effective or completely ineffective,

because the fraction of the PS that is informed can be between zero and one. This pro-

vides a possible explanation for time-varying output-inflation tradeoffs, e.g., the weakening

of the tradeoff in the US in the 1970s, when the economy became more volatile. In empirical

economies there is a similar relationship across countries; price level shocks have less effect

on output in countries with higher variances of the price level; see e.g., Lucas’s classic (1973)

paper, Apergis and Miller (2004). Second, an increased variance of the shock can induce
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fewer private agents to become informed and can raise welfare, but such counterintuitive

results occur only in equilibria which are implausible on stability grounds. Third, the higher

is the fraction of agents who are informed, the higher is inflation’s equilibrium volatility;

informed agents therefore impose a negative externality on uninformed ones.2 Fourth, under

commitment, in contrast to the representative agent case, some private agents may acquire

information in equilibrium, though again the MA never chooses policy that would induce all

private agents to be informed.

A result that emerges for both the representative agent PS and the many-agent PS is

that policy tends to be rendered ineffective precisely when it would be most useful: The

PS becomes informed when output volatility, which the MA would like to offset, is high.

With discretion this IA behavior tends to neutralize policy in high-variance periods, and

can completely neutralize policy, even with the many-agent PS. With commitment policy

retains some effectiveness in high-variance periods, but this is because the MA is forced to

be less responsive to shocks to limit the PS’s IA. For this reason policy is of limited help

in high-volatility periods, not because the policy action has a weak effect on output, but

because the policy action itself is limited.

2 Benchmark results

2.1 Uninformed private sector

Before studying endogenous IA I review some benchmark results from the extant literature

with exogenous information and iid shocks. The basic model is similar to ones used in much

of the time inconsistency literature; it is based on the model in Blanchard and Fischer (1992,

2This result is fairly novel. It is more usual for IA to have positive external effects on the uninformed,

because of the information-revealing behavior of the informed, cf. the free rider problem in financial markets.

The only other paper I know of in which a negative externality from information processing can arise is Evans

and Ramey (1992). In that paper, though, the reason is different; it is not caused by the MA’s optimal

response to the fraction of informed agents, which is what drives the effect here.
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chapter 11), which is based on Barro and Gordon (1983) and Canzoneri (1985). Time is

discrete and infinite. In period t the MA chooses inflation to minimize the loss function

lt = aπ
2
t + (yt − ky)2 (1)

where a > 0, k ≥ 1, πt is the rate of inflation at time t, yt is output at time t, and y is
the natural level of output. If k > 1, given the aggregate supply curve below, the standard

positive inflation bias arises. The MA minimizes this loss subject to the constraint imposed

by the aggregate supply curve

yt = y + b(πt −E[πt|It]) + ut (2)

where the output shock ut is an iid random variable with mean zero, variance σ2, and pdf

f(ut), which the MA observes contemporaneously and before setting inflation. E[πt|It] is the
rational expectation of date t inflation conditional on the PS’s start-of-date-t information

set It, the set of all variables dated t − 1 or earlier. One rationale for the MA’s superior
information is that it has first access to economic data. Another is that the MA generates

a private forecast of output that is superior to the PS’s forecast, as in Canzoneri (1985),

Walsh (1995), and Romer and Romer (2000), although in this interpretation the MA would

base policy not on ut but on its forecast of ut. Aggregate supply curves of the above form

can be derived from microfoundations in many models, e.g., nominal wage contracts models

as in Fischer (1977) and separated markets models as in Lucas (1973).

Under discretionary policy with a myopic MA3 the game between the PS and the MA

has a unique rational expectations equilibrium (REE) level of inflation,

πt =
b

a
(k − 1)y − b

a+ b2
ut (3)

and REE output is

yt = y +
a

a+ b2
ut. (4)

3In an interemporal context the MA will not necessarily play the one-period discretionary outcome unless

it is myopic, because of the possibility of reputation-building. I do not study reputation-building in this

paper.
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The MA partially offsets shocks’ effect on output; monetary policy cannot be used to sys-

tematically raise output. Inflation’s variance is [b/(a+ b2)]2σ2; this is also the PS’s expected

squared inflation forecast error.

With commitment the MA commits to a policy π(ut) to minimize the expected loss in a

given period (since there are no connections between periods the one-period optimum is also

the dynamic optimum) subject to the constraint that E[πt|It] is the rational expectation of
π(ut). The optimal committed policy is

π(ut) = − b

a+ b2
ut (5)

and output is

yt = y +
a

a+ b2
ut, (6)

the same as output in the discretionary case. Under commitment the MA responds to shocks

just as strongly as under discretion but average inflation is zero instead of positive.

2.2 Informed private sector

In this section I derive results that are useful with endogenous IA. For the PS to acquire

information means it observes ut contemporaneously and, since it knows the MA’s prefer-

ences, it can then predict period t inflation. Under discretion REE inflation, which is also

the PS’s inflation expectation, is

πt =
b

a
(k − 1)y − b

a
ut, (7)

and output is yt = y + ut. REE inflation is more responsive to shocks when the PS is

contemporaneously informed about the shock. Since actual inflation equals expected inflation

monetary policy has no effect on output and so the output shock is felt fully on output.

In the canonical time inconsistency model inflation is positive on average without raising

average output; here inflation also varies without stabilizing output. The optimal committed

monetary policy with an always-informed PS is simply πt = 0 and output is again yt = y+ut.

If the PS is informed monetary policy cannot affect output, so the best policy is simply to

commit to zero inflation.
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3 Information acquisition with ARCH shocks

3.1 Discretionary policy

This section introduces autoregressive variance of the output shock and endogenous PS choice

of whether to observe the shock contemporaneously. Some recent empirical studies finding

autoregressivity in output shocks’ variances are Altissimo and Violante (2001), Ho and Tsui

(2002), and Sims and Zha (2006). ARCH output shocks generate nontrivial IA dynamics

because they cause the MA’s optimal inflation to also be ARCH, so the PS’s optimal choice

of whether to become informed varies over time.

Let z ≥ 0 denote the time, effort and resource cost necessary to become informed, i.e.,
to observe ut or to infer it from other data. Let it ∈ {0, 1} denote the PS’s date t IA choice,
it = 0 meaning the PS is uninformed and it = 1 meaning the PS is informed. The PS’s date

t loss is

lPSt = itz + (E[πt|Ωt]− πt)
2 . (8)

The second term is the squared inflation forecast error, a standard form for such losses; see,

e.g., Evans and Ramey (1992), Branch et al (2005). Ωt is the endogenous date-t information

set; it is It if the PS remains ignorant and It∪ut if the PS becomes informed. In a given period
one of the terms in (8) is zero; if the PS remains ignorant the first term is zero and if it engages

in IA its forecast error is zero. The PS minimizes the expectation of (8) conditional on its

default information set It. This entails comparing the loss if it were to acquire information, z,

with its expected loss if it were to remain ignorant, E[π2t |It]−{E[πt|It]}2, the mean-centered
variance of πt conditional on It. Note this variance changes over time due to the ARCH

behavior of the output shock.

For the shock’s autoregressive variance I assume ut has pdf ft(ut) ∈ {flow(·), fhigh(·)}
where ft(·) has mean zero and variance σ2t ∈ {σ2low,σ2high}, σ2low being the variance of the pdf
flow(·) and σ2high (> σ2low) being the variance of the pdf fhigh(·). Because the variance is the
object of interest for the PS, I express the following assumptions in terms of the variance:

For some constant x > 0, if u2t−1 ∈ [0, x] then σ2t = σ2low and if u
2
t−1 > x then σ2t = σ2high. I
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assume flow(·) and fhigh(·) are such that 0 < Pr[u2t > x|σ2t = σ2low] < Pr[u
2
t > x|σ2t = σ2high]

and 0 < Pr[u2t ≤ x|σ2t = σ2high] < Pr[u
2
t ≤ x|σ2t = σ2low]. The variance is a two-state Markov

process since–given flow(·) and fhigh(·)–σ2t implies the probability of u
2
t ≤ x, and so implies

the probabilities of σ2t+1 = σ2low and σ2t+1 = σ2high. This specification is quite general. It is

not necessary to assume, for example, that flow(·) and fhigh(·) are continuous or symmetric
around zero or that they come from the same family of functions parameterized by σ2t .

Having observed ut−1 at the start of period t, the PS knows σ2t and it has the opportunity

to pay the cost z and observe ut. I assume that if the cost of observing the shock equals

the expected benefit the PS remains ignorant. Then the MA, which always observes ut

contemporaneously, sets inflation and then output is produced. With an uninformed PS

inflation’s variance conditional on the start-of-date information set is [b/(a + b2)]2σ2t . Let

var lowπ denote that variance for σ2t = σ2low and var
high
π denote that variance for σ2t = σ2high.

Under discretion the MA’s optimal policy is (3) when the PS is uninformed and (7) when

it’s informed, so the PS’s expected loss is [b/(a+ b2)]2σ2t if it were not to observe the current

shock and z if it were to observe it. Therefore we have the following proposition.

Proposition 1 If z < var lowπ the PS becomes informed, and so monetary policy fails to affect

output, every period. If z ≥ var highπ the PS never becomes informed, and so monetary policy

can always affect output. If var lowπ ≤ z < var highπ then the PS is ignorant and monetary

policy is effective in a positive fraction of periods, and the PS is informed and monetary

policy is ineffective in a positive fraction of periods.

High-volatility periods, in which stabilization policy would be most useful, are precisely

those in which it is rendered ineffective. In data sets of such an economy one observed

relationship would be that, on average, inflation has a greater effect on output in periods

when inflation’s variance is low, and is less able to affect output in periods when inflation’s

variance is high. An empirical episode that comes to mind is the 1970s in the US, when

inflation’s variance rose and it lost its ability to affect real variables in desired ways.

The PS’s IA choice does not only respond to inflation’s variance; it also affects it. Given
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an informed PS, inflation’s variance is [b/a]2σ2t , which is larger than the variance given that

the PS is uninformed.

3.2 Welfare

For low values of the shock’s variance, the PS’s expected loss is increasing in the variance.

For values of the variance that induce IA, variances greater than z[(a+b2)/b]2, the PS’s loss is

simply z. The higher is the shock’s variance, the higher is the MA’s expected loss. The direct

effect of a higher shock variance of course is to destabilize the economy, but there also may

be the indirect effect on the PS’s information acquisition. If the PS acquires information, the

MA loses any ability to stabilize output, and inflation’s equilibrium variance rises. Higher

IA cost z is worse for the PS but better for the MA.

3.3 Committed policy

Suppose the MA can commit to a policy in which each period’s inflation is a function of the

history of shocks and the PS’s IA choice that period. The PS, knowing the committed policy,

chooses in each period whether to observe the current shock, then the MA, having observed

the shock and the PS’s choice, sets inflation according to the committed policy. At date

0, before observing u0, the MA chooses its committed policy to minimize the intertemporal

loss function
t=∞X
t=0

βtE[aπ2t + (yt − ky)2|I0] (9)

where β ∈ (0, 1) is the MA’s discount factor, though as will be seen, the intertemporal
element to the MA’s problem is trivial. The PS’s IA strategy is a function it = i(σ2t ,π(·))
where π(·) is the MA’s committed policy. The MA’s policy is a function π(σ2t , ut, i(·)) that
specifies an inflation rate for every combination of σ2t , ut, and private sector IA strategy. I

restrict attention to functions π(σ2t , ut, i(·)) that are twice differentiable in ut.4
4For both players I restrict attention to strategies that are pure and time-invariant.
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Definition 1 A Nash equilibrium is a pair of strategies π(σ2t , ut, i(·)) and i(σ2t ,π(·)) such that
π(σ2t , ut, i(·)) minimizes (9) if the private sector plays i(σ2t ,π(·)) and i(σ2t ,π(·)) minimizes
the expectation of (8) conditional on It if the MA has committed to π(σ2t , ut, i(·)).

The PS part of the equilibrium is simple; its optimal strategy is simply to become in-

formed if next period’s inflation variance, given the committed policy, is sufficiently high

and to remain ignorant if it is sufficiently low. The MA’s part is more involved. Before

proceeding to a proposition about this game’s equilibria it is helpful to have some termi-

nology. Let “fully responsive inflation” refer to the inflation in (5). Let “fully responsive

policy” mean a committed policy which has fully responsive inflation in periods in which the

PS is uninformed, and zero inflation in periods in which the PS is informed. Let “bounded

inflation” denote inflation smaller in absolute value than fully responsive inflation in a par-

ticular period, and “bounded policy” denote a committed policy in which inflation’s variance

conditional on It is always bounded to prevent IA, E[(πt − bπ)2|It] ≤ z for all t, where bπ is
inflation’s unconditional mean under a given policy.

In the following proposition I assume [b/(a+b2)]2σ2low ≤ z < [b/(a+b2)]2σ2high, so the MA’s
choice of a committed policy is non-trivial. The other two possibilities, z < [b/(a+ b2)]2σ2low

and [b/(a+ b2)]2σ2high ≤ z, are simple and I address them below.

Proposition 2 There exists exactly one Nash equilibrium. In the equilibrium the private

sector never observes the current shock, and if σ2t = σ2low then πt = [−b/(a+ b2)]ut, and if
σ2t = σ2high then πt = −

q
z/σ2highut.

Proof: Suppose the MA’s inflation conditional on PS ignorance is such that the PS’s

optimal choice at date t is to be informed. Optimal committed policy has zero inflation in

periods in which the PS is informed, which entails a loss of (ut − (k− 1)y)2. So committing
to bounded inflation, for periods in which fully responsive inflation would induce IA, is

optimal if the expected loss with bounded inflation is less than E[(ut − (k − 1)y)2], where
the expectation is conditional on σ2t = σ2high. The optimal bounded policy (its optimality is

proven in the Appendix) is: (1) If the PS is informed this period, πt = 0. (2) If the PS is
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uninformed this period: (a) If σ2t = σ2low then πt = [−b/(a+ b2)]ut, so inflation’s variance
is [b/(a + b2)]2σ2low ≤ z. (b) If σ2t = σ2high then πt = −

q
z/σ2highut, so inflation’s variance is

z. The MA prefers the policy described by (1) and (2) to the policy that induces IA, as can

be seen by comparing the policies under the same pair {σ2t , ut}. If σ2t = σ2low the bounded

policy and the fully responsive policy produce the same inflation and the PS remains ignorant

under both policies, so the loss is the same. If σ2t = σ2high the PS remains ignorant under the

bounded policy and πt = −
q
z/σ2highut, and under fully responsive policy the PS acquires

information, so the MA sets πt = 0. The expected loss with πt = 0 is

σ2high + (k − 1)2y2 (10)

and the expected loss under the bounded policy is

(a+ b2)z − 2b√z
q

σ2high + σ2high + (k − 1)2y2. (11)

(11) is smaller than (10) if

z < 4

∙
b

a+ b2

¸2
σ2high, (12)

and the assumption z < [b/(a+ b2)]2σ2high implies (12). ¥
Notice the proof solves the MA’s intertemporal problem (9) by considering only a generic

single period; this is appropriate because there are no intertemporal tradeoffs.

Proposition 2 tells us that if [b/(a + b2)]2σ2low ≤ z < [b/(a + b2)]2σ2high the MA commits
to (absolutely) low inflation to prevent IA when σ2t = σ2high; this preserves some of its ability

to smooth output. If [b/(a + b2)]2σ2low > z the PS would always acquire information under

the fully responsive policy, so the MA would commit to bounded inflation in every period. If

[b/(a+ b2)]2σ2high ≤ z the PS would never acquire information under fully responsive policy
so the MA would commit to fully responsive inflation in every period. In this case committed

policy entails the same responsiveness of inflation to output shocks as under discretion, but

mean inflation is zero instead of b(k − 1)y/a.
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3.4 Welfare

Suppose σ2t is small enough that the no-IA constraint in the MA’s problem is not binding.

Then, as with discretion, a small increase (in the comparative statics sense) in σ2t makes both

the PS and the MA worse off ex ante. However, if the constraint is binding, a small increase

in σ2t does not affect the PS’s ex ante welfare because the MA limits inflation’s variance to

z. It makes the MA worse off ex ante because inflation’s variance is constrained to be the

same and output’s variance is higher.

As with discretion, higher z is worse for the PS, but better for the MA.

4 Many PS agents with different costs of IA

Suppose there is a continuum [0, 1] of PS agents and they differ in their IA costs, with agent

n having IA cost zn = γ + δn with γ ≥ 0, δ ≥ 0.5 Now it denotes the fraction of agents
who are informed in period t. I assume all PS agents affect aggregate outcomes equally and

that all agents know the current value of it as they form their inflation forecasts,6 so the AS

curve is

yt = y + bπt − b {itE[πt|It ∪ it ∪ ut] + (1− it)E[πt|It ∪ it]}+ ut. (13)

4.1 Discretionary policy

In this section I first describe the Nash equilibria of discretionary policy. Intra-period timing

is as follows: First each PS agent decides whether to become informed, then the shock is

realized, then the MA optimizes myopically, taking ut and it as given. In REE, E[πt|It∪ it∪
5In what follows I assume δ > 0; the case of δ = 0 is taken up in a separate section below.
6This is similar to the Walrasian auctioneer; it is as if all PS agents are together and each one submits

a tentative IA choice. Agents change their tentative choices in response to each other’s choices, until they

coordinate on an equilibrium value of it. Equilibrium is non-trivial because, as will become apparent below,

an agent’s expected payoff of becoming informed depends on the proportion of other agents who are informed.
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ut] = πt, so

πt =
b

a
y(k − 1)− b

a+ (1− it)b2ut (14)

and

yt = y +
a

a+ (1− it)b2ut. (15)

Inflation’s variance conditional on It ∪ it is

var
π
(it,σ

2
t ) =

∙
b

a+ (1− it)b2
¸2

σ2t . (16)

With many PS agents a new welfare issue arises: Because inflation’s variance is an increasing

function of it, informed agents impose a negative externality on uninformed ones. I return

to this point in the section on welfare below.

A Nash equilibrium for date t has two components.7 One is the PS agents, who move first,

coordinating on an equilibrium value of it. The second part is the MA’s optimal behavior

given it, equation (14). So describing the set of Nash equilibria requires first describing the

PS’s optimization problem.

Private agent n’s loss is

lnt = Zn,t + (E[πt|Ωn,t]− πt)
2 (17)

where Zn,t ∈ {0, zn} is the cost n pays for IA, Zn,t = 0 meaning n remains ignorant at t,

and Ωn,t is n’s date-t information set. Note that while their IA costs differ, the expected

costs of remaining ignorant (given some value of it) are the same for all private agents.

Agent n minimizes its expectation of (17) conditional on It∪ it, acquiring information iff the
associated loss, zn, is less than the expected loss under ignorance, varπ(it,σ2t ).

Definition 2 A Nash equilibrium for date t consists of MA policy (14) and an IA choice

for each private agent n such that

n is informed iff zn < var
π
(it,σ

2
t ) (18)

7There is also an infinity of overall Nash equilibria in the full intertemporal game since the PS could

coordinate on switching between date t equilibria as a function of t (if there are multiple date t equilibria).

I assume they do not switch unless a change between σ2low and σ2high compels it.
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where it is the implied fraction of the PS that is informed.

The number and nature of date t Nash equilibria vary with parameters and whether

σ2t = σ2low or σ
2
t = σ2high and I now turn to describing the various cases.

4.1.1 Nash Equilibrium values of it

Plainly an equilibrium it has all agents n < it being informed (e.g., if it = 0.75 then it is

agents 0 to 0.75 who are informed, not some other set of agents with measure 0.75). If in

period t there is one it ∈ (0, 1) such that zit = varπ(it,σ
2
t ) I denote it by i

∗
t ; if there are

two such it’s I denote them by i∗t,1 and i
∗
t,2 with i

∗
t,1 < i

∗
t,2. Then the set of Nash equilibrium

values of it has a simple description: If there is one such intersection i∗t it is an equilibrium

value of it, and if there are two intersections then both, i∗t,1 and i
∗
t,2, are equilibrium values of

it. Also, if varπ(0,σ2t ) ≤ z0 then it = 0 is an equilibrium and if varπ(1,σ2t ) ≥ z1 then it = 1
is an equilibrium. The positive measure cases8 and their equilibria are:

1. varπ(it,σ2t ) may lie above zit for all it (see Figure 1). In this case the equilibrium has

it = 1.

2. varπ(it,σ2t ) may lie below zit for all it ∈ [0, 1]. In this case it = 0.

3. There may be one intersection i∗t , with varπ(it,σ
2
t ) lying above zit for it ∈ [0, i∗t ) and

below zit for it ∈ (i∗t , 1]. In this case it = i∗t .

4. There may be one intersection at i∗t , with varπ(it,σ
2
t ) lying below zit for it ∈ [0, i∗t ) and

above zit for it > i
∗
t . In this case the equilibrium values of it are 0, i∗t , and 1.

5. There may be two intersections, so that varπ(it,σ2t ) lies above zit for it ∈ [0, i∗t,1), below
zit for it ∈ (i∗t,1, i∗t,2), and above zit for it > i∗t,2. The equilibrium values of it are i∗t,1,

i∗t,2, and 1.

8I ignore knife-edge cases, e.g., varπ(it,σ2t ) being tangent to the line γ + δit.
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Figure 1 illustrates some possible cases.

FIGURE 1 ABOUT HERE.

Given the “Walrasian auctioneer” approach to determining it, the intra-period dynamics

are simple; from the starting value of it they move to the right wherever varπ(it,σ2t ) lies above

zit and move to the left wherever varπ(it,σ
2
t ) lies below zit. If the intra-period dynamics move

toward an equilibrium from nearby points that equilibrium is stable and if the dynamics move

away it is unstable. One might wish to use stability as an equilibrium selection criterion; in

case 4, i∗t is unstable and in case 5, i
∗
t,2 is unstable.

4.1.2 Comparative Statics

For the topic of information acquisition the main parameters of interest are σ2t , γ and δ. The

way σ2t affects endogenous variables is more complicated than with a representative agent

because it is not confined to the set {0, 1}. Equilibrium it in the interior of [0, 1] are given

by solutions to ∙
b

a+ (1− it)b2
¸2

σ2t = γ + δit. (19)

To derive the comparative statics effects of σ2low or σ
2
high, given that the equilibrium remains

an interior one, first find the effect on the equilibrium fraction of informed agents.9 Totally

differentiating (19) gives
∂it
∂σ2t

=
b2[a+ (1− it)b2]

δ [a+ (1− it)b2]3 − 2b4σ2t
. (20)

This can be signed for any particular interior equilibrium using the equilibrium’s stability

or instability. For stable interior equilibria, varπ(·) intersects z(·) from above and it can be

shown that this implies ∂it/∂σ2t is positive. In this kind of equilibrium, then, the intrinsic

noisiness of the economy, σ2t , affects IA in an intuitively sensible way; the worse the noise,

9The comparative statics ∂ω
∂σ2low

and ∂ω
∂σ2high

for some endogenous variable ω are also the effects on ω of

a real-time switch between σ2low and σ2high. This is due to the assumption that PS agents do not switch

between equilibria if it is avoidable.
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the greater the fraction of agents who acquire information. Also, that ∂it/∂σ2t is positive

implies
∂ varπ(it,σ

2
t )

∂σ2t
= δ

∂it
∂σ2t

(21)

is positive. In such cases, e.g., case 3, inflation’s variance is increasing in σ2t for two reasons.

One is the direct effect, due to the fact that the MA sets inflation to offset the shock; the

other reason is the indirect effect due to the effect of σ2t on the equilibrium it. Both of these

effects can be seen by inspection of (14). Making a similar argument for unstable equilibria,

and applying similar arguments to vary(it,σ2t ), output’s variance conditional on It ∪ it, we
have the next proposition.

Proposition 3 For stable interior equilibria ∂it
∂σ2t

> 0, ∂ varπ(it,σ2t )

∂σ2t
> 0, and ∂ vary(it,σ2t )

∂σ2t
> 0.

For unstable interior equilibria ∂it
∂σ2t

< 0, ∂ varπ(it,σ2t )

∂σ2t
< 0, and ∂ vary(it,σ2t )

∂σ2t
< 0.

Proposition 3 says the shock’s variance can affect inflation’s and output’s variances in a

counterintuitive way, but only in equilibria which are implausible on stability grounds. In

stable equilibria, the higher is the shock’s variance, the higher is the equilibrium measure of

informed agents, and thus the smaller is monetary policy’s effect on output. Because of this,

the MA sets a higher responsiveness of inflation to the output shock, so inflation’s variance

is higher. Output’s variance is also higher though, because the higher it reduces policy’s

effectiveness. In unstable equilibria, in contrast, an increase in σ2t lowers the measure of

informed agents, making policy more effective and thus enabling the MA to simultaneously

reduce inflation’s variance and output’s variance.

One can consider the effects of a discrete difference in σ2low or in σ2high, as well as the

infinitesimal differences of derivatives. This allows the analysis of the comparative statics

associated with a change in the cases. In particular, it may not be in an interior equilibrium

for two different values of σ2low (or σ
2
high), e.g., if for a small value of σ

2
low case 2 pertains and

so it = 0, while for a high value of σ2low case 1 pertains and so it = 1. Then (19) and (21) do

not apply, but it is still possible to show the following, the proof of which is deferred to the

Appendix:
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Proposition 4 If it is not in an interior equilibrium for both of two distinct values of σ2low

(or two distinct values of σ2high), then
∆it
∆σ2t
≥ 0, ∆ varπ(it,σ2t )

∆σ2t
> 0, and ∆ vary(it,σ2t )

∆σ2t
> 0.

The first inequality is weak because of the possibility that it = 0 or it = 1 for both values

of σ2t . In this case, there is still the direct effect of σ
2
t on varπ(·) and vary(·).

The results thus far can be summarized as follows: it changes weakly, and varπ(it,σ2t ), and

vary(it,σ
2
t ) change strictly, in the same direction as σ

2
t unless the PS agents play an unstable

interior equilibrium for both considered values of σ2t , in which case the relationships are

reversed.

I turn next to comparative statics for the IA cost parameters γ and δ.

Proposition 5 For stable interior equilibria ∂it
∂γ
< 0 and ∂it

∂δ
< 0. It follows that ∂ varπ(it,σ2t )

∂γ
,

∂ vary(it,σ2t )

∂γ
, ∂ varπ(it,σ2t )

∂δ
, and ∂ vary(it,σ2t )

∂δ
are negative. For unstable interior equilibria all six

derivatives are positive. For it = 0 or it = 1, all six derivatives are zero.

“Sensible” comparative statics–higher IA costs leading to fewer agents being informed–

obtain only in stable interior equilibria.

Finally, there is the possibility δ = 0, i.e., all agents have the same IA cost. This does not

reproduce the representative agent version of the model because in that version, perforce,

either the entire PS acquires information or none does. The set of equilibrium it is simple;

there are only three positive-measure cases. One case has varπ(it,σ2t ) lying above γ, in which

case everyone will be informed, another has varπ(it,σ2t ) lying below γ, in which case no one

will be informed, and there is a case in which varπ(it,σ2t ) intersects zn once, from below.

This case has three equilibria, it equal to 0, i∗t , or 1; only the corner equilibria are stable.

One interesting aspect of this case is immediate from (21):

Proposition 6 If δ = 0, then in the interior equilibrium ∂ varπ(it,σ2t )

∂σ2t
= 0.

Proposition 6 holds because a change in σ2t induces a change in it that exactly offsets it.

It also implies that a change in σ2t induces no change in the PS’s expected losses. Using (19)

with δ = 0, one can show the following:
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Proposition 7 If δ = 0, then in the interior equilibrium ∂it
∂γ
> 0, ∂ varπ(it,σ2t )

∂γ
> 0, and

∂ vary(it,σ2t )

∂γ
> 0.

Again the counterintuitive result–a rise in IA costs causing more agents to be informed–

can occur, but only in an unstable equilibrium.

4.1.3 The effectiveness of monetary policy

The effectiveness of monetary policy, ∂y/∂π, is given by

∂y

∂π
= b(1− it),

which varies between 0 and b. Higher σ2t can lead to lower it and therefore more effective

policy, but only in unstable interior equilibria; in stable interior equilibria higher σ2t induces

higher it and therefore less effective policy. The effect of σ2t on policy’s effectiveness is discrete

if a change in σ2low or σ
2
high leads to a change between an interior equilibrium and a corner

equilibrium. For example, a small value of σ2low may imply case 5 with it = i∗t,1, while a

larger value of σ2low may imply case 1 with it = 1, so the value of σ
2
low makes the difference

between policy being somewhat effective and completely ineffective. The dynamic analog of

this example would be that a switch from σ2low to σ2high makes policy suddenly change from

somewhat effective to completely ineffective. I next turn to the econometric implications of

such switching.

An econometrician estimating a 1960s-era tradeoff of the form yt = α + bbπt + eut would
seem to detect regime changes in the value of bb; these would be especially noticeable when a
change in σ2t induced a jump between corner equilibria or between a corner equilibrium and

an interior equilibrium. Also, the variance of the residuals would not be not constant but

autoregressive, and would be positively correlated with the estimated value of bb in unstable
interior equilibria (due to private agents’ IA behavior). Outside of such equilibria, the

variance of the residuals would be negatively correlated with the estimated bb.
An econometrician incorporating survey data on expectations, estimating yt = α +bb (πt − πet) + eut where πet is the PS’s average expectation, would generate a bb that would
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be an unbiased estimate of b. However, the econometrician would observe the following:

(1) the variance of the residuals would not be constant but autoregressive,

(2) the expectations data would sometimes be highly correlated with the residuals (i.e.,

in sequences of periods in which it was high) and sometimes not,

(3) the degree of correlation would itself be positively correlated with the residuals’

variance if the PS were playing a stable equilibrium, and negatively correlated if the PS were

playing an unstable equilibrium,

(4) there would be a perfect multicolinearity problem between expectations and inflation

in sequences of periods in which it = 1.

4.1.4 Welfare

The welfare measure of interest is agents’ welfare during their entire lives, not just from

living in any particular variance regime. For this reason, it is not necessary to study the

expected losses conditional on σ2t ; the welfare analysis uses the unconditional expectations

of the losses.10 I first take up the effect of σ2t .

Proposition 8 Suppose δ = 0. In interior equilibria ∂E(lt)
∂σ2t

= 0 and in corner equilibria
∂E(lt)
∂σ2t

> 0. If it = 0 then
∂E(lnt )

∂σ2t
> 0 for all n. If it > 0 then

∂E(lnt )

∂σ2t
= 0 for all n.

Proof. See the Appendix. ¥

Proposition 9 If δ > 0, higher σ2t is Pareto superior to lower σ2t within a given unstable

interior equilibrium. Otherwise, higher σ2t is Pareto inferior to lower σ
2
t .

Proof. See the Appendix. ¥
For stable interior equilibria in Proposition 9, an increase in σ2t hurts the MA because

it induces an increase in the equilibrium variances of inflation and output. For the PS, an

agent n who was informed at the lower value of it is not affected by the change; n’s loss

10This distinction is of little consequence anyway, because for a given σ2high (respectively, σ
2
low), a change

in σ2low (respectively, σ
2
high) affects the conditional and unconditional expected losses in the same direction.
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is still zn. Agents who are uninformed in both situations are ex ante worse off, since their

expected forecast error is higher with a higher σ2t . Note the deterioration in their expected

welfare is not only due to the direct effect of higher shock’s variance on inflation’s variance,

but also due to the indirect effect, the externality caused by other agents’ IA behavior. PS

agents who were uninformed before and are now informed have a change from an expected

loss of varπ(it,σ2t ) to an expected loss of zn. Plainly they’re worse off; the fact that n was

uninformed previously means n’s expected loss under ignorance was less than zn and now it

is zn. Similar intuitions apply to unstable interior equilibria.

I turn next to the welfare effects of γ and δ. For it = 0 a small increase in γ or δ does

not affect either the MA’s or the PS’s expected loss. For it = 1 an increase in γ or δ does

not affect the MA’s expected loss, but it does affect the PS’s loss since the cost of becoming

informed rises for all agents.11

For stable interior equilibria, recall that ∂it/∂γ < 0 and ∂it/∂δ < 0. It follows that the

MA’s expected loss is decreasing in δ and in γ since

∂E(lt)

∂γ
=
2ab2 [a+ b2]σ2t
[a+ (1− it)b2]3

∂it
∂γ
, (22)

∂E(lt)

∂δ
=
2ab2 [a+ b2]σ2t
[a+ (1− it)b2]3

∂it
∂δ
. (23)

That is, higher IA costs induce fewer informed agents, which improves the MA’s ability to

stabilize the economy. For unstable interior equilibria the results are reversed.

For the PS welfare results are more complicated. In stable interior equilibria ∂it/∂γ and

∂it/∂δ are negative. Those who are uninformed for both values of the changing parameter,

and those who switch from informed to uninformed, have lower expected losses, because

inflation’s variance is lower for lower it. However, those who are informed for both values of

the parameter pay higher IA costs. Therefore the effect of the change on the PS cannot be

judged by the Pareto standard.

In unstable equilibria an increase in IA costs is a Pareto deterioration. Agents who are

informed for both values of the parameter pay higher IA costs, agents who are uninformed

11Except that a change in δ leaves agent 0’s loss unchanged.
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for both values of the parameter have higher expected forecast errors, and agents who switch

from uninformed to informed also have higher losses.

4.2 Committed policy

This section contains results on optimal policy with commitment. I assume the MA can ob-

serve only the aggregate measure of agents who are informed, and cannot observe individual

agents. Therefore an agent will defect from any value of it the MA tries to induce if, in that

period, the expected loss of remaining ignorant is greater than that agent’s IA cost. This is

because each agent, having measure zero, knows his behavior will not affect the aggregate

behavior the MA observes.

With commitment the MA faces a tradeoff; making inflation more responsive to shocks

stabilizes output more through the effect on uninformed agents, but also may induce fewer

uninformed agents. This tradeoff makes it necessary for the MA to consider how its inflation

rule affects the equilibrium it.12

This implies a three-step procedure for solving the MA’s problem. The first step is to

check whether the constraint imposed by the PS’s possible IA binds. This involves checking,

for each value of σ2t , whether the discretionary variance of inflation for it = 0 is small enough

to prevent IA, [b/(a+ b2)]2 σ2t ≤ γ. If this inequality holds for a given value of σ2t the MA

is done; it commits, for periods with that value of σ2t , to (14) with it = 0, but with mean

inflation equal to zero.

If [b/(a+ b2)]2 σ2t > γ for one or both values of σ2t the MA proceeds to the second step. For

this step note the MA can induce any it ∈ [0, 1] as an equilibrium by committing to a policy
with appropriate variance (unless δ = 0, a possibility taken up below). If the MA desires

it = i it simply commits to a policy rule π(it,σ2t , ut) such that var [π(it,σ
2
t , ut)|It] = γ + δi,

no matter what it the PS coordinates on at t.13 That commitment in fact induces the PS

12This tradeoff also occurs under discretionary policy, but the MA doesn’t consider the tradeoff because

it optimizes each period taking that period’s it as given.
13In this section var

£
π(it,σ

2
t , ut)|It

¤
is used to denote the conditional variance of inflation; this new

notation emphasizes that under commitment the variance is not necessarily varπ(it,σ2t ), the variance under
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to coordinate on it = i. Therefore, the MA’s second step is to find, for each i ∈ [0, 1],
the loss-minimizing policy rule such that var [π(it,σ2t , ut)|It] = γ + δi. The third step is to

compare the implied expected losses for all i; the i implying the lowest expected loss is the

optimum.

It can be shown by arguments similar to those for the representative agent case that the

solution to the second-step problem is the policy function14

π(it,σ
2
t , ut) = −

s
γ + δi

σ2t
ut. (24)

(It is instructive to compare this with the corresponding policy for the representative agent

PS, π(ut) = −
q
z/σ2highut.) In the third step the MA substitutes (24) into its expected loss

function and minimizes over i subject to 0 ≤ i ≤ 1. Suppressing the term σ2t + (1− k)2y2,
maximizing the negative of the loss gives an optimization problem that has at least one

solution, since the objective function is a continuous function of the choice variable and is

defined over a compact feasible set of that choice variable. The Lagrangian is

max
i
L = 2b

p
σ2t (1− i)

q
γ + δi− £a+ b2(1− i)2¤ [γ + δi] + μ1i− μ2i (25)

where μ1 and μ2 are the Lagrangian multipliers on the constraints i ≥ 0 and i ≤ 1 respec-
tively. It is easy to show i = 1 is not a solution, so the relevant necessary conditions for a

solution are

0 ≤ i < 1 (26)

μ1i = 0

∂L

∂i
= 0 = bδ(1− i)

p
σ2t

[γ + δi]1/2
+ 2b2(1− i)[γ + δi] (27)

−2b
p

σ2t

q
γ + δi− δb2(1− i)2 − δa+ μ1.

discretionary policy.
14Note that if i = 0 this policy implies an inflation variance of γ, which also the variance implied by the

inequality
h

b
a+b2

i2
σ2t ≤ γ when it holds with equality. That is, the MA’s two subproblems overlap where

PS agent 0 is just indifferent about becoming informed.
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It is evident from (27) that the second-order condition for a global optimum will not be

satisfied. Furthermore, (27) is not analytically solvable because it is isomorphic to a quintic

equation in the variable
p

γ + δi.

However, we can draw the following conclusions. The MA never allows all PS agents to

be informed; this is intuitively sensible because in that case monetary policy cannot stabilize

output at all. In some regions of the parameter space the MA will conduct policy in a way

consistent with some PS agents engaging in IA. In other regions the MA will conduct policy

such that there is no IA. In particular, if γ > 0 and σ2t is small enough, the MA can set

inflation as in (5), π(·) = [−b/(a+ b2)]ut, without triggering any IA.

4.3 Special case: γ = 0

Suppose γ = 0, so that agent n = 0 incurs no cost of becoming informed and agents n ≈ 0
incur arbitrarily small costs. For example, these agents may be at the heart of the financial

system and so have easy access to economic data. In this case the MA could induce complete

ignorance only by having inflation be completely unresponsive to shocks; it is easy to show

then that complete ignorance is not optimal.

Proposition 10 If γ = 0 and δ > 0 the MA’s optimum has i ∈ (0, 1) in every period.

Proof. For γ = 0 the step 1 inequality will obviously not be satisfied and the constraint

for achieving i = 0 is var [π(it,σ2t , ut)|It] ≤ 0, which is identical to var [π(it,σ2t , ut)|It] = γ+δi,

the constraint that is used in step two above. Therefore the appropriate first-order condition

is (27) with γ = 0:

∂L

∂i
= bσt

√
δ

∙
1

i
1/2
− 3i1/2

¸
+ δb2

h
4i− 3i2

i
− δa− δb2 + μ1.

limi↓0
∂L
∂i
=∞, so i = 0 is not a solution. As noted above, i = 1 is not a solution, and there

is at least one solution. It follows that the solution is interior. ¥
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4.4 Special case: δ = 0

If δ = 0, that is, all PS agents have the same cost γ of acquiring information, the MA has

two options. By committing to set inflation’s variance equal to or less than γ, it can induce

i = 0. If inflation’s variance is greater than γ, the equilibrium value of i is one. Plainly

the MA would never choose to induce i = 1, so it chooses the optimal policy that induces

var [π(it,σ
2
t , ut)|It] ≤ γ. Therefore the MA commits to (5) if the variance associated with

that policy is no greater than γ, i.e., [b/(a+ b2)]2 σ2t ≤ γ. Otherwise the MA must restrain

inflation’s response to the shocks so that its variance is γ, using (24) with δ = 0,

π(i,σ2t , ut) = −
r

γ

σ2t
ut. (28)

That this induces i = 0 is implied by the assumption that an agent indifferent about becoming

informed does not do so. If δ = γ = 0, all PS agents will be informed unless inflation’s

variance is zero. In this case the MA can never achieve any stabilization effects, so it simply

commits to setting inflation to zero in all periods.

4.5 Welfare

I consider the effects of σ2t , δ, and γ. While the comparative statics can be counterintuitive

with discretion, that happens only in unstable equilibria, which the MA can rule out with

commitment. Plainly if the constraint imposed by the PS’s possible IA binds, higher γ makes

every PS agent worse off and makes the MA better off, because higher γ allows the MA to

increase inflation’s variance. For δ the same analysis applies. Higher σ2t makes everyone, PS

and MA, worse off, whether or not the constraint binds. This is because even if it does not

bind, there is still the direct effect of the shock’s variance on economic volatility, which all

players dislike. If γ is large enough that the constraint does not bind, a small change in γ

or δ do not affect either MA’s or the PS’s expected losses. A small increase in σ2t increases

both the MA’s and the PS’s expected losses. For δ = 0, if the constraint binds an increase

in σ2t does not affect the PS’s loss, because the MA is compelled to keep inflation’s variance

equal to γ (see (28)).
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5 Conclusion

This paper has presented results for optimal information acquisition in a setting in which

information acquisition affects the effectiveness of monetary policy. Under discretionary

policy, the endogenous IA causes a time-varying inflation-output tradeoff, and in fact it tends

to weaken monetary policy exactly when monetary policy would be most useful, in high-

volatility periods. An increased variance of the shock can cause less IA and can be a Pareto

improvement, though such counterintuitive results occur only in unstable equilibria. Under

commitment the MA can “manage” policy’s effectiveness by committing to low-variance

policy rules that limit the PS’s incentive to become informed. However, the required restraint

also limits the MA’s ability to stabilize the economy. Finally, the model also brings out a

novel externality: informed agents, by increasing the MA’s optimal inflation variance, impose

a negative externality on uninformed ones.
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FIGURE 1. Some possible cases with many agents and discretionary policy. The hori-

zontal axis is n ∈ [0, 1]. The dashed line is the IA cost function. The three convex curves
are three possible MA best-response functions, giving inflation’s variance as a function of

n = it.

7 Appendix

7.1 Proof of Proposition 2

The MA can solve the intertemporal problem by independently solving each period’s problem

because there are no state variables in one period that are affected by the MA’s actions in

previous periods. Because the MA can usefully condition date t inflation on ut−1 (the PS

knows ut−1 at the start of date t), the generic problem it solves is minE[lt|It]. Substituting
the AS equation and the policy function πt = π(ut) into the MA loss function gives

lt = aπ(ut)
2 + {bπ(ut)− bE[π(ut)|It] + ut + (1− k)y}2 (29)

and taking expectations from before ut is known–since this is a committed policy–gives

the expected loss the MA minimizes:

E[lt|It] = σ2t + (1− k)2y2 + (a+ b2)E[π2(ut)|It] + 2bE[utπ(ut)|It]− b2[E[π(ut)|It]]2. (30)

The problem, suppressing the term σ2t + (1− k)2y2 and the time subscript on ut, is

min
π(u)∈C2

E[lt] = (a+ b2)

Z ∞

−∞
π(u)2ft(u)du+ 2b

Z ∞

−∞
uπ(u)ft(u)du (31)

27



−b2
∙Z ∞

−∞
π(u)ft(u)du

¸2
.

The constraint that the private sector not acquire information, in slack variable form, isZ ∞

−∞
π(u)2ft(u)du−

∙Z ∞

−∞
π(u)ft(u)du

¸2
+ s2 = z (32)

where s is the complementary slackness variable. The MA chooses a C2 function π(u) to

minimize (31) subject to (32). The Lagrangian is

L = (a+ b2)

Z ∞

−∞
π(u)2ft(u)du+ 2b

Z ∞

−∞
uπ(u)ft(u)du (33)

−b2
∙Z ∞

−∞
π(u)ft(u)du

¸2
− λ

"Z ∞

−∞
π(u)2ft(u)du−

∙Z ∞

−∞
π(u)ft(u)du

¸2#
.

Following the argument of Pike (1984, Chapter 8), define π(u) ≡ π(u)+αn(u) where π(u) is

the optimal function, α is an arbitrary parameter and n(u) is an arbitrary C2 function with

n(−∞) = n(∞) = 0. Define

Φ(α) = (a+ b2 − λ)

Z ∞

−∞
[π(u)]2ft(u)du+ 2b

Z ∞

−∞
uπ(u)ft(u)du (34)

+(λ− b2)
∙Z ∞

−∞
π(u)ft(u)du

¸2
.

The derivative with respect to α is

∂Φ(α)

∂α
= 2(a+ b2 − λ)

Z ∞

−∞
π(u)n(u)ft(u)du (35)

+2b

Z ∞

−∞
un(u)ft(u)du+ 2(λ− b2)

Z ∞

−∞
π(u)ft(u)du

Z ∞

−∞
n(u)ft(u)du.

Candidate optima are identified by setting ∂Φ(α)
∂α

equal to zero; also, since by the definition

of π(u) as the optimal function, ∂Φ(α)
∂α

= 0 must be satisfied with α = 0,Z ∞

−∞

½
2(a+ b2 − λ)π(u) + 2bu+ 2(λ− b2)

∙Z ∞

−∞
π(u)ft(u)du

¸¾
n(u)ft(u)du = 0. (36)

The fundamental lemma of the calculus of variations implies the term in braces is zero, so

π(u) =
b2 − λ

a+ b2 − λ

Z ∞

−∞
π(u)ft(u)du− b

a+ b2 − λ
u. (37)
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Multiplying both sides of (37) by ft(u) and then integrating both sides yields
R∞
−∞ π(u)ft(u)du =

0. Putting this back into (37) yields a general solution π(u) = − b
a+b2−λu, and one particular

solution has λ = 0, which gives the solution when the constraint doesn’t bind, π(u) = − b
a+b2

u.

If the constraint holds with equality, so s = 0 and λ is not (necessarily) zero: Substituting

π(u) = − b
a+b2−λu into the constraint (32) gives

λ = a+ b2 ± b
r

σ2t
z
. (38)

Substituting both possibilities for λ into π(u) = − b
a+b2−λu implies the solution when the

constraint binds is

π(u) = −u
r
z

σ2t
. (39)

Thus the optimal policy is: In periods in which the constraint doesn’t bind,

π(u) = − b

a+ b2
u (40)

and in periods in which the constraint binds,

π(u) = −u
r
z

σ2t
. (41)

The fact that this is the only solution to the first-order necessary conditions implies the

uniqueness of the Nash equilibrium asserted in the Proposition. The second order condition

for minimization is satisfied because the problem is to minimize a quadratic form.

7.2 Proof of Proposition 4

If it does not start and end in the interior of [0, 1], then (19) and (21) do not apply and we

have the more general equations

∆ var
π
(it,σ

2
t ) =

b2

[a+ (1− it)b2]2∆σ2t +
2b4σ2t

[a+ (1− it)b2]3
∆it (42)

∆ var
y
(it,σ

2
t ) =

a2

[a+ (1− it)b2]2∆σ2t +
2a2b2σ2t

[a+ (1− it)b2]3
∆it. (43)
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One possibility is that the equilibrium is a corner, it = 0 or it = 1, which is not affected by

a change in σ2low (or σ
2
high), so that ∆it/∆σ2t = 0. It can be shown that for both it = 0 and

it = 1,
∆ varπ(it,σ2t )

∆σ2t
and ∆ vary(it,σ2t )

∆σ2t
are positive. Another possibility is that it jumps between

an interior equilibrium, i∗, and a corner, so that the change in it is either ±i∗ or ±(1− i∗).
Finally, it might jump back and forth between zero and one. In all of these situations that are

not governed by (20), it can be shown that sign(∆it) = sign(∆σ2t ) (if ∆it 6= 0), so output’s
and inflation’s variances change in the same direction as the shock’s variance. ¥

7.3 Proof of Proposition 5

For interior equilibria, differentiate (19) with respect to γ:

∂it
∂γ

=
[a+ (1− it)b2]3

2b4σ2t − δ [a+ (1− it)b2]3
and with respect to δ:

∂it
∂δ
= it

∂it
∂γ
.

working with these two derivatives, one can easily show Proposition 5.

7.4 Proof of Proposition 7

δ = 0 implies equation (19) is a quadratic in it with only the “minus” solution potentially

in the unit interval. The effect of a change in γ on it is

∂it
∂γ

=
[a+ (1− it)b2]3

2σ2t b
4

> 0.

Therefore, using (16) and (15), ∂ varπ(it,σ2t )

∂γ
> 0 and ∂ vary(it,σ2t )

∂γ
> 0.

7.5 Proof of Proposition 8

First consider the effect on the MA’s expected loss, ∂E(lt)
∂σ2t

. It has been shown that in the

interior equilibrium ∂ varπ(it,σ2t )

∂σ2t
= 0 (Proposition 6). Using (15), we have

∂ vary
∂σ2t

=

∙
a

a+ (1− it)b2
¸2
+

2a2b2σ2t
[a+ (1− it)b2]3

∂it
∂σ2t

. (44)
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In corner equilibria, then,
∂ vary
∂σ2t

=

∙
a

a+ (1− it)b2
¸2

and in interior equilibria, substituting (20) into (44) gives

∂ vary
∂σ2t

= 0.

Therefore ∂E(lt)
∂σ2t

> 0 in corner equilibria and ∂E(lt)
∂σ2t

= 0 in interior equilibria.

For the PS, the result for it = 0 follows from the fact that ∂ varπ(it,σ2t )

∂σ2t
> 0 in that case.

The result for it ∈ (0, 1) follows from Proposition 6, and the result for it = 1 follows because
n’s loss in that case is always zn.

7.6 Proof of Proposition 9

An uninformed agent n’s expected loss is E(lnt ) = varπ(it,σ
2
t ) and the MA’s loss in REE is

lt =

∙
a+ b2

a

¸
y2(k − 1)2 − 2 [a+ b

2] y(k − 1)
a+ (1− it)b2 ut +

a [a+ b2]

[a+ (1− it)b2]2
u2t .

The MA’s unconditional expected loss is

E(lt) =

∙
a+ b2

a

¸
y2(k − 1)2

+a
£
a+ b2

¤½
PlowElow

∙
σ2low

[a+ (1− it)b2]2
¸
+ (1− Plow)Ehigh

∙
σ2high

[a+ (1− it)b2]2
¸¾

where Plow is the unconditional proportion of the time that σ2t = σ2low, Elow denotes expec-

tations conditional on σ2t = σ2low, and Ehigh denotes expectations conditional on σ2t = σ2high.

The expectation operators on the RHS are actually unnecessary, since everything they re-

fer to is known, conditional on knowing the variance (and the it the PS plays for a given

variance). So

∂E(lt)

∂σ2low
= a

£
a+ b2

¤
Plow

(
2b2σ2low

[a+ (1− it(σ2low))b2]3
∂it(σ

2
low)

∂σ2low
+

1

[a+ (1− it(σ2low))b2]2
)

(45)

∂E(lt)

∂σ2high
= a

£
a+ b2

¤
(1−Plow)

(
2b2σ2high£

a+ (1− it(σ2high))b2
¤3 ∂it(σ2high)∂σ2high

+
1£

a+ (1− it(σ2high))b2
¤2
)

(46)
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There are several cases if δ > 0:

(1) If it = 0 initially and a change in σ2t does not affect it, then
∂E(lt)
∂σ2t

> 0, and because
∆ varπ(it,σ2t )

∆σ2t
> 0 (see Proposition 4), it follows that ∂E(lnt )

∂σ2t
> 0 for all n ∈ [0, 1].

(2) If it = 1 initially and a change in σ2t does not affect it, then
∂E(lt)
∂σ2t

> 0 and ∂E(lnt )

∂σ2t
= 0

for all n ∈ [0, 1].
(3) For stable interior equilibrium values of it, recall ∂it

∂σ2t
> 0 (Proposition 3), and this

implies ∂E(lt)
∂σ2low

> 0 and ∂E(lt)
∂σ2high

> 0. For the PS: An agent n who was informed at the lower

value of i is not affected one way or another by the change; n’s loss is still zn. Agents who

are uninformed in both situations are ex ante worse off, since their expected forecast error

is higher with a higher σ2t (Proposition 3). PS agents who were uninformed before and are

now informed have a change from an expected loss of varπ(it,σ2t ) to an expected loss of zn.

They’re worse off; that agent n was uninformed previously means n’s loss under ignorance

was less than zn and now it is zn. A similar analysis applies for situations as in Proposition

4, except that the effect on it is ∆it
∆σ2t
≥ 0 instead of ∂it

∂σ2t
> 0.

(4) For unstable interior equilibria, since ∂it
∂σ2t

< 0, an increase in σ2t benefits the MA

(equation (20), Proposition 3, and equation (46)). PS agents who are informed at both

values of i have losses that are unaffected by σ2t . Agents who are uninformed in both

situations are ex ante better off, since their expected forecast error is lower for higher σ2t .

PS agents who are informed at a lower value of σ2t and are uninformed at a higher value

of σ2t have a change from an expected loss of zn to an expected loss of varπ(it,σ2t ). By an

argument symmetric to that in the previous case, they’re better off.
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