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Abstract

Standard Gaussian term structure models have often been criticized for not ruling

out negative nominal interest rates, but this flaw has been especially conspicuous with

interest rates near zero in many countries. We provide a tractable means to estimate an

alternative Gaussian shadow-rate dynamic term structure model that enforces the zero

lower bound on bond yields. We illustrate this model by estimating one-, two-, and three-

factor shadow-rate models on a sample of positive and near-zero Japanese bond yields. We

find that the level of the shadow rate is sensitive to model fit and specification, including

the number of factors employed.
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1 Introduction

Nominal yields on government debt in several countries have fallen very near their zero lower

bound (ZLB). Notably, yields on Japanese government bonds of various maturities have been

near zero since 1996. Similarly, many U.S. Treasury rates edged down quite close to zero in

the years following the financial crisis in late 2008. Accordingly, understanding how to model

the term structure of interest rates when some of those interest rates are near the ZLB is an

issue that commands attention both for bond portfolio pricing and risk management and for

macroeconomic and monetary policy analysis. Unfortunately, the workhorse representation

in finance for bond pricing—the affine Gaussian dynamic term structure model—ignores the

ZLB and routinely places positive probabilities on the occurrence of future negative interest

rates. This counterfactual feature results from ignoring the existence of a readily available

currency for transactions. In the real world, an investor always has the option of holding

cash, and the zero nominal yield of cash will dominate any security with a negative yield.1

To recognize the option value of currency in bond pricing, Black (1995) introduced the

notion of a “shadow short rate,” which is driven by fundamentals and can be positive or

negative. The observed short rate equals the shadow short rate except that the former is

bounded below by zero. While Black’s (1995) use of a shadow short rate to account for

the presence of currency holds much intuitive appeal, it has rarely been used. In part, this

infrequency reflects the fact that interest rates in many countries have long been some distance

above zero, so the Gaussian positive probabilities on negative interest rates are negligible and

unlikely to be an important determinant in bond pricing. In recent years, with yields around

the world at historic lows, this rationale has evaporated. However, a second factor limiting

the adoption of the shadow-rate structure has been the difficulty in estimating these models

using the requisite computationally intensive numerical methods. For example, among the

handful of shadow-rate studies, Kim and Singleton (2012), henceforth KS, estimate a shadow-

rate dynamic term structure model using a sample of near-zero Japanese government bond

yields. Unfortunately, the KS analysis is limited to a model with only two pricing factors

because the numerical methods required for shadow-rate models with more than two factors

are computationally prohibitive. This practical shortcoming is potentially quite serious given

the prevalence of higher-dimensional bond pricing models in research and industry.2

To overcome the practical computational constraints imposed by shadow-rate modeling,

1Actually, the ZLB can be a somewhat soft floor. The nonnegligible costs of transacting in and holding
large amounts of currency have allowed government bond yields to push slightly below zero in a few countries,
notably in Denmark recently. To account for institutional currency frictions in our analysis, we could replace
the zero lower bound on yields with some appropriate, possibly time-varying, negative epsilon.

2Indeed, KS suggest that the shadow-rate model results of Ueno, Baba, and Sakurai (2006) are influenced
by their use of a one-factor shadow-rate model that may not be flexible enough to fit their sample of Japanese
data. Similarly, the KS results with two-factor models may not generalize to higher-order models.
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Krippner (2012) presents a shadow-rate framework that allows for tractable estimation of

dynamic term structure shadow-rate models with more than two factors. In this paper,

we implement this new framework. Specifically, we combine the Krippner (2012) shadow-

rate framework with the Gaussian arbitrage-free Nelson-Siegel (AFNS) models introduced

in Christensen, Diebold, and Rudebusch (2011), henceforth CDR. The AFNS model class

provides a flexible, robust structure for dynamic term structure modeling that has performed

well on a variety of yield samples by providing good fit with tractable estimation. Further-

more, as we show in this paper, even when combined with the Krippner framework, the AFNS

specification of the pricing factor dynamics leads to analytical formulas for the instantaneous

shadow forward rates. This new analytical result demonstrates that empirical implementation

of higher-order shadow-rate models can be straightforward.

To demonstrate the application of the new shadow-rate AFNS model and assess its em-

pirical performance, we apply it to Japanese term structure data, which are of special interest

because they include a long period of near-zero yields. In particular, we estimate one-, two-,

and three-factor versions of our shadow-rate AFNS model on two samples of Japanese term

structure data. First, we estimate the models on the exact same data set analyzed in KS,

which is a weekly sample from January 1995 through March 2008. We use this sample to

answer two questions: Does the two-factor shadow-rate AFNS model provide empirical results

similar to the KS two-factor shadow-rate model when both are estimated on the same data

set? We find in terms of in-sample fit and the shadow-rate process that the two models look

quite close. Next, are the KS two-factor model results robust to the number of factors used

in estimation? With our tractable shadow-rate estimation, we can easily examine whether

the use of one, two, or three factors affects the shadow rate results. In this regard, we find

that, during periods when the Japanese shadow short rate is mainly negative (the years from

2001 to 2005), there is notable disagreement about the value of shadow rates across models

with different numbers of factors. This sensitivity to model specification suggests that care

must be taken when using the level of the negative shadow rate as a measure of the stance of

monetary policy when yields are near the zero boundary, as noted by Krippner (2013). Im-

portantly, though, the shadow-rate paths are highly correlated across models. Thus, in terms

of qualitative statements about the general direction of the shadow rate from one period to

another, the models would tend to agree and such directional inference could be made with

some robustness.

Unfortunately, the KS data sample ends in early 2008, before the recent global financial

crisis, when interest rates across a wide range of maturities in Japan and in other countries

fell to near zero. To provide up-to-date results on this important period, we also estimate

the shadow-rate models on a second, longer sample of Japanese yields that extends the KS

sample through November 2012. Here again, we see some variation across the estimated one-,
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two-, and three-factor shadow-rate AFNS models; however, in all cases, the shadow rates are

not as negative from 2009 to 2012 as during the 2001-2005 episode.

The rest of the paper is structured as follows. Section 2 introduces the shadow-rate

framework used in KS and Krippner (2012), while Section 3 details our shadow-rate AFNS

model. Section 4 describes the Japanese yield data used by KS and our extension thereof.

Section 5 presents our empirical findings for one-, two-, and three-factor shadow-rate models

for the KS data, and Section 6 contains our findings for the extended sample. Finally, Section

7 concludes. Two appendices provide technical details on option pricing and model estimation.

2 The Shadow-Rate Modeling Framework

In this section, we briefly summarize shadow-rate Gaussian term structure models that take

into account the zero lower bound on yields. We first describe the approach of Black (1995)

and its implementation by KS. We then consider the shadow-rate framework introduced in

Krippner (2012).

2.1 The Black Shadow-Rate Model

The concept of a shadow interest rate as a modeling tool to account for the ZLB can be

attributed to Black (1995). He noted that the observed nominal short rate will be nonnegative

because currency is a readily available asset to investors that carries a nominal interest rate

of zero. Therefore, the existence of currency sets a zero lower bound on yields.

To account for this ZLB, Black postulated as a modeling tool using a shadow short rate,

st, that is unconstrained by the ZLB. The usual observed instantaneous risk-free rate, rt,

which is used for discounting cash flows when valuing securities, is then given by the greater

of the shadow rate or zero:

rt = max{0, st}.

Accordingly, as st falls below zero, the observed rt simply remains at the zero bound.

While Black (1995) described circumstances under which the zero bound on nominal yields

might be relevant, he did not provide specifics for implementation. Gorovoi and Linetsky

(2004) derive bond price formulas for the case of one-factor Gaussian and square-root shadow-

rate models.3 Unfortunately, their results do not extend to multidimensional models. Instead,

the small set of previous research on shadow-rate models has relied on numerical methods for

pricing.4 However, in light of the computational burden of these methods, there have been

3Ueno et al. (2006) use these formulas when calibrating a one-factor Gaussian model to a sample of Japanese
government bond yields.

4Both KS and Bomfim (2003) use finite-difference methods to calculate bond prices, while Ichiue and Ueno
(2007) employ interest rate lattices.
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only two previous estimations of multifactor shadow-rate models: Ichiue and Ueno (2007) and

KS. Both of these studies undertake a full maximum likelihood estimation of their two-factor

Gaussian shadow-rate models on Japanese bond yield data using the extended Kalman filter

and numerical optimization.

Relative to Ichiue and Ueno (2007), KS use more flexible models and a longer sample;

therefore, we use KS as a benchmark for comparison with our results. Here we provide details

of their model. Specifically, the KS two-factor shadow-rate affine Gaussian model, denoted

as the B-AG2 model (for Black, affine Gaussian), has a shadow-rate process defined as

st(Xt) = ρ+X1
t +X2

t .

The dynamics of the state variables Xt = (X1
t ,X

2
t ) under the objective probability P -measure

are assumed to have the following structure:

(
dX1

t

dX2
t

)
=

(
κP11 0

κP21 κP22

)[(
0

0

)
−
(

X1
t

X2
t

)]
dt+

(
σ11 0

0 σ22

)(
dW

1,P
t

dW
2,P
t

)
.

The market prices of risk are flexible extended affine, as per Cheridito, Filipović, and

Kimmel (2007),

λ(Xt) = λa + ΛbXt.

As a consequence, the dynamics of the state variables used for pricing under the risk-neutral

Q-measure have the following structure:

(
dX1

t

dX2
t

)
=

(
κ
Q
11 κ

Q
12

κ
Q
21 κ

Q
22

)[(
θ
Q
1

θ
Q
2

)
−
(

X1
t

X2
t

)]
dt+

(
σ11 0

0 σ22

)(
dW

1,Q
t

dX
2,Q
t

)
.

KS derive the partial differential equation (PDE) that bond prices must satisfy under the

restriction that the risk-free rate used for discounting is the greater of the shadow rate or

zero,

∂P

∂τ
− 1

2
tr
( ∂2P

∂x∂x
ΣΣ′

)
− ∂P

∂x
KQ(θQ − x) + max{0, s(x)}P = 0, P (0, x) = 1.

KS solve this PDE using a finite-difference method. Unfortunately, for more than two

factors, such numerical methods render it impractical if not impossible to solve the associated

higher-dimensional PDE systems within a reasonable time. This is a severe limitation to

estimating shadow-rate models since the bond pricing literature has focused on models with

at least three factors driving bond yields.
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2.2 The Krippner Shadow-Rate Framework

To overcome the curse of dimensionality that limits implementation of the Black shadow-

rate framework, Krippner (2012) suggested an alternative shadow-rate approach that, in the

case of Gaussian factor dynamics, holds the possibility of being as easy to estimate as the

corresponding non-shadow-rate model. In particular, shadow-rate modeling with more than

two state variables would seem to be tractable. In the rest of this subsection, we outline

Krippner’s general framework.5

First, assume the existence of shadow zero-coupon bonds that are priced such that their

expected return under the risk-neutral pricing measure always equals st, which is the instan-

taneous risk-free shadow rate that can go negative. Let the price of such a bond at time t

that matures at time T be denoted by P (t, T ). Furthermore, assume there exists an alter-

native set of zero-coupon bond prices, P (t, T ), with nonnegative yields that will actually be

observed.6 Finally, assume there is currency in circulation with no transaction costs and a

constant nominal value.

Consider the shadow bond at time t with the shortest (say, overnight) maturity available,

δ. Investors can either choose to buy the zero-coupon bond at price P (t, t + δ) and receive

one unit of currency the following day or just hold the currency. As a consequence, the price

of the observed overnight claim must be capped at 1:

P (t, t+ δ) = min{1, P (t, t + δ)}

= P (t, t+ δ)−max{P (t, t+ δ)− 1, 0}.

That is, the availability of currency implies that the overnight claim has a value equal to the

zero-coupon shadow bond price minus the value of a call option on the zero-coupon shadow

bond with a strike price of 1. Based on this, Krippner argues that a regular zero-coupon bond

with maturity at T + δ is equivalent to the corresponding shadow bond minus the value of a

European call option written on the shadow bond with maturity at T and a strike price of 1.

As a consequence, he introduces the following auxiliary bond price equation

Pa(t, T + δ) = P (t, T + δ) − C(t, T, T + δ; 1), (1)

where C(t, T, T + δ; 1) is the value of a European call option at time t with maturity T and

5As described in Krippner (2012), there is a small, subtle difference between his framework and the Black
framework. The Black framework enforces the nonnegativity of the short rate at each point in time, while the
Krippner framework enforces a nonnegative forward rate curve at each point in time.

6The modeling approach with unobserved, or “shadow,” components has an analogy in the corporate credit
literature. There, it is frequently assumed that the asset value process of a firm exists but is unobserved.
Instead, prices of the firm’s equity and corporate debt, which can be interpreted as derivatives written on the
firm’s assets (see Merton 1974), are used to draw inferences about the asset value process.
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strike price 1 written on the shadow discount bond maturing at T + δ. Importantly, it should

be noted that Pa(t, T + δ) is not identical to the bond price P (t, T ) whose yield observes the

zero lower bound.

The key insight of Krippner (2012) is that the last incremental forward rate of any bond

will be nonnegative due to the future availability of currency in the immediate time prior to

its maturity. By letting δ → 0, he takes this idea to its continuous limit, which identifies the

corresponding nonnegative instantaneous forward rate:

f(t, T ) = lim
δ→0

[
− d

dδ
Pa(t, T + δ)

]
. (2)

Now, the discount bond prices whose yields observe the zero lower bound are defined as

P (t, T ) = e−
∫ T

t
f(t,s)ds. (3)

Since the observed discount bond prices defined in this way differ from the auxiliary bond

price Pa(t, T ) defined in equation (1) and used in the construction of the nonnegative for-

ward rate in equation (2), the Krippner framework could be viewed as not fully internally

consistent. However, as we will see in the following, the auxiliary bond price drops out of

the calculations, and we are left with formulas for the nonnegative forward rate, f(t, T ), that

are solely determined by the properties of the shadow rate process st. Specifically, Krippner

(2012) shows that

f(t, T ) = f(t, T ) + z(t, T ),

where f(t, T ) is the instantaneous forward rate on the shadow bond, which may go negative,

while z(t, T ) is given by

z(t, T ) = lim
δ→0

[
d

dδ

{C(t, T, T + δ; 1)

P (t, T + δ)

}]
.

In addition, it holds that the observed instantaneous risk-free rate is

rt = max{0, st}

as in the Black (1995) model.
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Finally, yield-to-maturity is defined the usual way as

y(t, T ) =
1

T − t

∫ T

t

f(t, s)ds

=
1

T − t

∫ T

t

f(t, s)ds+
1

T − t

∫ T

t

lim
δ→0

[ ∂

∂δ

C(t, s, s+ δ; 1)

P (t, s)

]
ds

= y(t, T ) +
1

T − t

∫ T

t

lim
δ→0

[ ∂

∂δ

C(t, s, s+ δ; 1)

P (t, s)

]
ds.

It follows that bond yields constrained at the ZLB can be viewed as the sum of the yield

on the unconstrained shadow bond, denoted y(t, T ), which is modeled using standard tools,

and an add-on correction term derived from the price formula for the option written on the

shadow bond that provides an upward push to deliver the higher nonnegative yields actually

observed. Importantly, the result above is general and applies to any assumptions made about

the dynamics of the shadow-rate process. In the next section, we consider a Gaussian model

that leads to tractable formulas for bond yields in the Krippner shadow-rate framework.

3 The Shadow-Rate AFNS Model

In this section, we show how the Krippner modeling framework can be implemented. To

model the risk-free shadow rate, we employ the affine arbitrage-free class of Nelson-Siegel

term structure models derived in CDR. This class of models is very tractable to estimate

and has good in-sample fit and out-of-sample forecast accuracy.7 Here, we extend the AFNS

model to incorporate a nonnegativity constraint on observed yields.

3.1 The Standard AFNS(3) Model

We first briefly describe the standard three-factor AFNS(3) model, which ignores the ZLB

on yields. In this class of models, the risk-free rate, which we take to be the potentially

unobserved shadow rate, is given by

st = X1
t +X2

t ,

7See, for example, the discussion and references in Diebold and Rudebusch (2013).
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while the dynamics of the state variables (X1
t ,X

2
t ,X

3
t ) used for pricing under the Q-measure

have the following structure:8




dX1
t

dX2
t

dX3
t


 = −




0 0 0

0 λ −λ

0 0 λ







X1
t

X2
t

X3
t


 dt+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







dW
1,Q
t

dX
2,Q
t

dX
3,Q
t


 . (4)

The AFNS model dynamics under the Q-measure may appear restrictive, but CDR show

this structure coupled with general risk pricing provides a very flexible modeling structure.

Indeed, CDR demonstrate that this specification implies zero-coupon bond yields that have

the popular Nelson and Siegel (1987) factor loading structure,

y(t, T ) = X1
t +

(1− e−λ(T−t)

λ(T − t)

)
X2

t +
(1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3

t − A(t, T )

T − t
.

The yield function also contains a yield-adjustment term, A(t,T )
T−t

, that is time invariant and

depends only on the maturity of the bond. CDR provide an analytical formula for this term,

which under our identification scheme is entirely determined by the volatility matrix.

The corresponding instantaneous forward rates are given by

f(t, T ) = − ∂

∂T
lnP (t, T ) = X1

t + e−λ(T−t)X2
t + λ(T − t)e−λ(T−t)X3

t +Af (t, T ), (5)

where the yield-adjustment term in the instantaneous forward rate function is given by

Af (t, T ) = −∂A(t, T )

∂T

= −1

2
σ2
11(T − t)2 − 1

2
(σ2

21 + σ2
22)
(1− e−λ(T−t)

λ

)2

−1

2
(σ2

31 + σ2
32 + σ2

33)
[ 1

λ2
− 2

λ2
e−λ(T−t) − 2

λ
(T − t)e−λ(T−t)

+
1

λ2
e−2λ(T−t) +

2

λ
(T − t)e−2λ(T−t) + (T − t)2e−2λ(T−t)

]

−σ11σ21(T − t)
1− e−λ(T−t)

λ

−σ11σ31

[ 1
λ
(T − t)− 1

λ
(T − t)e−λ(T−t) − (T − t)2e−λ(T−t)

]

−(σ21σ31 + σ22σ32)
[ 1

λ2
− 2

λ2
e−λ(T−t) − 1

λ
(T − t)e−λ(T−t) +

1

λ2
e−2λ(T−t)

+
1

λ
(T − t)e−2λ(T−t)

]
.

8We have fixed the mean under the Q-measure at zero and assumed a lower triangular structure for the
volatility matrix, which comes at no loss of generality, as described by CDR.
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3.2 Bond Option Prices

To apply the Krippner framework, we need the analytical formula for the price of the call

option written on the shadow bond described above.

From standard asset pricing theory it follows that the value of a European call option

with maturity T and strike price K written on the zero-coupon bond maturing at T + δ is

given by

C(t, T, T + δ;K) = E
Q
t

[
e−

∫ T

t
sudu max{P (T, T + δ)−K, 0}

]
.

Calculations provided in Appendix A show that the value of the European call option within

the AFNS(3) model is given by9

C(t, T, T + δ;K) = P (t, T + δ)Φ(d1)−KP (t, T )Φ(d2),

where

d1 =
ln
(
P (t,T+δ)
P (t,T )K

)
+ 1

2v(t, T, T + δ)
√

v(t, T, T + δ)
and d2 = d1 −

√
v(t, T, T + δ)

with

9For European options, the put-call parity applies. As a consequence, the value of European put options
written on P (t, T + δ) can be similarly calculated; see Chen (1992) for details.
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v(t, T, T + δ) = σ
2
11δ

2(T − t) + (σ2
21 + σ

2
22)
(1− e−λδ

λ

)2 1− e−2λ(T−t)

2λ

+(σ2
31 + σ

2
32 + σ

2
33)

[(1− e−λδ

λ

)2 1− e−2λ(T−t)

2λ

+e−2λδ
[δ2 − (T + δ − t)2e−2λ(T−t)

2λ
+
δ − (T + δ − t)e−2λ(T−t)

2λ2
+

1− e−2λ(T−t)

4λ3

]

− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ3

− (1− e−λδ)e−λδ

λ2

[
δ − (T + δ − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

+
1− e−λδ

λ2

[1− e−2λ(T−t)

2λ
− (T − t)e−2λ(T−t)

]

+
1

λ
δe

−λδ
[
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ

]

+
1

λ
e
−λδ
[
(T − t)2e−2λ(T−t) +

1

λ
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ2

]]

+2σ11σ21δ(1− e
−λδ)

1− e−λ(T−t)

λ2

+2σ11σ31δ
[
− 1

λ
(T − t)e−λ(T−t) − 1

λ
e
−λδ
(
δ − (T + δ − t)e−λ(T−t)

)
+ 2(1− e

−λδ)
1− e−λ(T−t)

λ2

]

+(σ21σ31 + σ22σ32)

[(1− e−λδ

λ

)2 1− e−2λ(T−t)

λ

+
1

λ2
e
−2λδ

[
δ − (T + δ − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

+
1

λ2

[
− (T − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

− 1

λ2
e
−λδ
[
δ − (2T + δ − 2t)e−2λ(T−t) +

1− e−2λ(T−t)

λ

]]
.

3.3 The Shadow-Rate B-AFNS Model

We refer to the complete three-factor shadow-rate model as the B-AFNS(3) model.10 Given

the above AFNS(3) shadow-rate process and the price of a shadow bond option, we are now

ready to price bonds that observe the nonnegativity constraint in a B-AFNS(3) model.

Krippner (2012) provides a formula for the ZLB instantaneous forward rate, f(t, T ), that

applies to any Gaussian model

f(t, T ) = f(t, T )Φ
(f(t, T )
ω(t, T )

)
+ ω(t, T )

1√
2π

exp
(
− 1

2

[f(t, T )
ω(t, T )

]2)
,

where Φ(·) is the cumulative probability function for the standard normal distribution, f(t, T )

is the shadow forward rate, and ω(t, T ) is related to the conditional variance appearing in the

10Following KS, the prefix “B-” refers to a shadow-rate model in the spirit of Black (1995), while the number
shows the number of state variables. Krippner (2012, 2013) adopts the prefix CAB for “currency-adjusted
bond.”

10



shadow bond option price formula as follows:

ω(t, T )2 =
1

2
lim
δ→0

∂2v(t, T, T + δ)

∂δ2
.

Within the B-AFNS(3) model, the formula for the shadow forward rate, f(t, T ), is provided

in equation (5), while after some tedious calculus, ω(t, T ) takes the following form:11

ω(t, T )2 = σ2
11(T − t) + (σ2

21 + σ2
22)

1− e−2λ(T−t)

2λ

+(σ2
31 + σ2

32 + σ2
33)
[1− e−2λ(T−t)

4λ
− 1

2
(T − t)e−2λ(T−t) − 1

2
λ(T − t)2e−2λ(T−t)

]

+2σ11σ21
1− e−λ(T−t)

λ
+ 2σ11σ31

[
− (T − t)e−λ(T−t) +

1− e−λ(T−t)

λ

]

+(σ21σ31 + σ22σ32)
[
− (T − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]
.

Now, the zero-coupon bond yields that observe the ZLB, denoted y(t, T ), are easily calculated

as

y(t, T ) =
1

T − t

∫ T

t

[
f(t, s)Φ

(f(t, s)
ω(t, s)

)
+ ω(t, s)

1√
2π

exp
(
− 1

2

[f(t, s)
ω(t, s)

]2)
]
ds. (6)

As highlighted by Krippner (2012), with Gaussian shadow-rate dynamics, the calculation of

zero-coupon bond yields involves only a single integral independent of the factor dimension

of the model, which greatly facilitates empirical implementation.

3.4 Market Prices of Risk

So far, the description of the B-AFNS(3) model has relied solely on the dynamics of the

state variables under the Q-measure used for pricing. However, to complete the description

of the model and to implement it empirically, we will need to specify the risk premiums

that connect the factor dynamics under the Q-measure to the dynamics under the real-

world (or historical) P -measure. It is important to note that there are no restrictions on the

dynamic drift components under the empirical P -measure beyond the requirement of constant

volatility. To facilitate empirical implementation, we use the extended affine risk premium

developed by Cheridito et al. (2007). In the Gaussian framework, this specification implies

that the risk premiums Γt depend on the state variables; that is,

Γt = γ0 + γ1Xt,

11These calculations are available from the authors upon request.
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where γ0 ∈ R3 and γ1 ∈ R3×3 contain unrestricted parameters.12 The relationship between

real-world yield curve dynamics under the P -measure and risk-neutral dynamics under the

Q-measure is given by

dW
Q
t = dWP

t + Γtdt.

Thus, the P -dynamics of the state variables are

dXt = KP (θP −Xt)dt+ΣdWP
t , (7)

where both KP and θP are allowed to vary freely relative to their counterparts under the

Q-measure.

Finally, we note that the model estimation is based on the Kalman filter and described in

Appendix B.

4 Data

In this section, we describe our two samples of Japanese government bond yields. The first

sample is the data set examined by KS.13 This data set contains six maturities: six-month

yields and one-, two-, four-, seven-, and ten-year yields. All yields are continuously com-

pounded and measured weekly (Fridays) from January 6, 1995, to March 7, 2008. This “KS

sample” data set is useful to study for two reasons. First, it allows a direct comparison

of our two-factor B-AFNS(2) estimates with the two-factor KS estimates for an identical

data sample—that is, a relatively clean “apples to apples” comparison of model results. In

addition—assuming the two-factor results are comparable—we can then explore whether the

KS empirical results generalize to the models with more or fewer factors. However, the KS

sample ends before the recent global financial crisis episode, which was marked by extremely

low bond yields in Japan and in many other countries. This recent episode is extremely in-

teresting from a variety of economic and finance perspectives. Therefore, we also consider a

second “extended KS sample” that augments the original KS sample with Japanese govern-

ment zero-coupon yields downloaded from Bloomberg through November 16, 2012.14

Figure 1 shows the variation over time in four of the six yields. During 2001 through

2005 and 2009 through 2012, six-month and one-year yields are pegged near zero. These

episodes are obvious candidates for possible negative shadow rates. As stressed by KS, these

periods also display reduced volatility of short- and medium-term yields due to the zero bound

constraint.

12For Gaussian models, this specification is equivalent to the essentially affine risk premium specification
introduced in Duffee (2002).

13We thank Don Kim for sharing these data.
14During 2007 and 2008, the two spliced data series match almost exactly.
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Figure 1: Japanese Government Bond Yields. We show time-series plots of Japanese government

bond yields at weekly frequency, at maturities of 6 months, 1 year, 4 years, and 10 years. The original KS data

cover the period from January 6, 1995, to March 7, 2008, and its end date is shown with a vertical dashed

black line, while the extended KS sample ends on November 16, 2012.

Researchers have typically found that three factors are sufficient to model the time-

variation in cross sections of bond yields (e.g., Litterman and Scheinkman, 1991). Indeed,

for the KS sample, 99.86 percent of the total variation is accounted for by three factors. As

Table 1 reports, the first principal component accounts for 93.7 percent of the variation in

Japanese bond yields, and its loading across maturities (the associated eigenvector) is uni-

formly negative. Thus, like a level factor, a shock to this component changes all yields in

the same direction irrespective of maturity. The second principal component accounts for

5.6 percent of the variation in these data, and like a slope factor, a shock to this component

steepens or flattens the yield curve. Finally, the third component, which accounts for 0.5

percent of the variation, has a U-shaped factor loading as a function of maturity, which is

naturally interpreted as a curvature factor. This pattern of level, slope, and curvature (which

is also found in the extended sample) motivates our use of the Nelson-Siegel level, slope, and

curvature factors for modeling Japanese bond yields, even though we emphasize that our

estimated state variables are not identical to the principal components.
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Maturity Loading on
(months) First P.C. Second P.C. Third P.C.

6 -0.23 -0.50 0.53
12 -0.25 -0.48 0.27
24 -0.32 -0.42 -0.35
48 -0.44 -0.14 -0.58
84 -0.56 0.33 -0.08
120 -0.52 0.46 0.42

% explained 93.74 5.60 0.53

Table 1: Factor Loadings for Japanese Government Bond Yields. The first six rows show

how bond yields at various maturities load on the first three principal components. The bottom row shows the

proportion of all bond yield variability explained by each principal component. The data are weekly Japanese

zero-coupon government bond yields from January 6, 1995, to March 7, 2008.

5 Results for KS Sample

In this section, we assess whether our B-AFNS implementation of Krippner’s shadow-rate

framework provides good fit to the data. In particular, we assess whether a two-factor version

of the B-AFNS model can closely approximate the KS B-AG2 model when estimated on the

same sample of Japanese data. Furthermore, since our modeling framework can be tractably

estimated with three factors, we also examine the sensitivity of the shadow rate to the number

of factors in the model.

5.1 One-Factor Model Estimates

We begin the analysis by considering the simplest possible case for the shadow-rate dynamics,

namely the one-factor Gaussian model of Vasiček (1977). In this one-factor case, the factor

dynamics of the shadow rate st used for pricing under the risk-neutral Q-measure are

dst = κQ(θQ − st)dt+ σdW
Q
t .

The instantaneous forward rate is given by

f(t, T ) = e−κQ(T−t)st + θQ(1− e−κQ(T−t))− 1

2
σ2
(1− e−κQ(T−t)

κQ

)2
,

while

ω(t, T )2 = σ2 1− e−2κQ(T−t)

2κQ
.

Allowing for time-varying risk premiums, the dynamics under the objective P -measure are

fully flexible,

dst = κP (θP − st)dt+ σdWP
t .
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Parameter V(1) B-V(1)
κP 0.0058 0.0403

(0.0232) (0.1375)
θP 0.0118 0.0107

(0.0103) (0.0169)
σ 0.0011 0.0046

(0.0000) (0.0001)
κQ 0.0068 0.0011

(0.0066) (0.0024)
θQ 0.9717 3.7127

(0.9407) (7.9375)
Max logL 18,982.87 21,320.90

Table 2: Parameter Estimates of One-Factor Models. The estimated parameters are shown

for the V(1) and B-V(1) models. The numbers in parentheses are estimated parameter standard deviations.

Errors of fitted yields

Maturity V(1) B-V(1)
(months) Mean RMSE Mean RMSE

6 8.7 10.7 2.0 4.2
12 -1.1 4.5 -0.1 0.3
24 -11.3 16.9 0.6 9.8
48 -11.9 33.5 7.3 27.7
84 10.9 53.5 10.8 48.9
120 42.5 66.2 -9.8 48.9

All yields 6.3 38.3 1.8 30.7

Table 3: Summary Statistics of Fitted Errors in One-Factor Models. The table presents

the mean and root mean-squared error (RMSE) of the fitted bond yields from one-factor models estimated on

the weekly Japanese government bond yield data over the period from January 6, 1995, to March 7, 2008. All

numbers are measured in basis points.

We refer to this representation inspired by Black (1995) as the B-V(1) model. We also estimate

the standard Vasiček (1977) model without the shadow-rate interpretation, denoted as the

V(1) model.

Table 2 reports the estimated parameters for both one-factor models. In terms of the

Q-dynamics, the very low values of κQ imply that the state variable is a level factor. This is

also reflected in its very high persistence under the P -dynamics. The estimated mean values

θP , which are the average levels of the state variable, are about the same in each model.

The largest difference between the models is that the B-V(1) model has an estimated factor

volatility about four times larger than in the V(1) model.

Table 3 reports the summary statistics of the fitted errors for the V(1) and B-V(1) models.

The better fit of the B-V(1) model across all yield maturities is notable, with an average root

mean-squared error (RMSE) improvement of 7.6 basis points. This better fit can also be seen

in the higher likelihood value of the B-V(1) model.
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KP KP
·,1 KP

·,2 θP Σ Σ·,1 Σ·,2

KP
1,· -0.3555 -0.3919 0.0555 Σ1,· 0.0306 0

(2.5725) (2.6886) (0.2343) (0.0041)
KP

2,· 0.6184 0.5679 -0.0362 Σ2,· -0.0311 0.0032

(2.6747) (2.7882) (0.3584) (0.0042) (0.0001)

Table 4: Parameter Estimates of the AFNS(2) Model. The estimated parameters of the

KP matrix, the θP vector, and the Σ matrix are shown for the AFNS(2) model. The associated estimated

λ is 0.0401 (0.0059) with maturity measured in years. The numbers in parentheses are estimated parameter

standard deviations. The maximum log likelihood value is 22,973.19.

KP KP
·,1 KP

·,2 θP Σ Σ·,1 Σ·,2

KP
1,· 0.4688 0.6331 0.1029 Σ1,· 0.0081 0

(0.2516) (0.2783) (0.0388) (0.0003)
KP

2,· -0.2517 -0.3230 -0.0951 Σ2,· -0.0072 0.0057

(0.2605) (0.3130) (0.0311) (0.0003) (0.0002)

Table 5: Parameter Estimates of the B-AFNS(2) Model. The estimated parameters of the

KP matrix, the θP vector, and the Σ matrix are shown for the B-AFNS(2) model. The associated estimated

λ is 0.1448 (0.0040) with maturity measured in years. The numbers in parentheses are estimated parameter

standard deviations. The maximum log likelihood value is 23,786.44.

5.2 Two-Factor Model Estimates

To most closely approximate the KS B-AG2 model, we estimate a two-factor version of the

B-AFNS model that has level and slope factors but no curvature factor. This model is

characterized by a shadow rate given by

st = X1
t +X2

t .

Its dynamics of the state variables (X1
t ,X

2
t ) used for pricing under the risk-neutral Q-measure

have the following structure:

(
dX1

t

dX2
t

)
= −

(
0 0

0 λ

)(
X1

t

X2
t

)
dt+

(
σ11 0

σ21 σ22

)(
dW

1,Q
t

dX
2,Q
t

)
.

As for the P -dynamics, we focus on the most flexible specification with full KP matrix

(
dX1

t

dX2
t

)
=

(
κP11 κP12

κP21 κP22

)[(
θP1

θP2

)
−
(

X1
t

X2
t

)]
dt+

(
σ11 0

σ21 σ22

)(
dW

1,P
t

dW
2,P
t

)
.

This model has a total of ten parameters, two less than the canonical B-AG2 model used by

KS.

We estimate both the regular version of the model above without any constraints related to
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KP KP
·,1 KP

·,2 θP KQ K
Q
·,1 K

Q
·,2 θQ Σ

KP
1,· 0.0204 0 0 K

Q
1,· 0.1669 -0.5275 -0.0191 Σ1,1 0.0035

(0.0198) (0.0394) (0.0641) (0.0115) (0.0001)

KP
2,· -0.1617 0.2664 0 K

Q
2,· 0.1771 -0.2320 -0.0163 Σ2,2 0.0026

(0.1724) (0.2765) (0.1654) (0.2795) (0.0077) (0.0001)

Table 6: Parameter Estimates of the B-AG2 Model in KS. The estimated parameters of the

KP and KQ matrices, the θP and θQ vectors, and the Σ matrix are shown for the B-AG2 model as reported

by KS. The constant ρ in the specification of st is 0.0381 (0.0008). The numbers in parentheses are estimated

parameter standard deviations.

Errors of fitted yields

Maturity AFNS(2) B-AFNS(2) B-AG2
(months) Mean RMSE Mean RMSE σ̂ε(τ)

6 4.8 6.0 5.0 6.7 5
12 0.0 0.0 -0.1 0.4 0
24 -2.6 9.3 -4.3 8.1 7
48 2.2 17.2 -2.8 11.1 8
84 9.8 21.9 4.5 15.0 2
120 0.0 0.0 -0.1 3.1 12

All yields 2.4 12.2 0.4 8.8 n.a.

Table 7: Summary Statistics of Fitted Errors in Two-Factor Models. The table presents

the mean and root mean-squared error of the fitted bond yields from two-factor models estimated on the weekly

Japanese government bond yield data over the period from January 6, 1995, to March 7, 2008. Also shown are

the estimated error standard deviations reported by KS for their B-AG2 model. All numbers are measured in

basis points.

the ZLB, denoted as the AFNS(2) model, and the corresponding shadow-rate model, denoted

as the B-AFNS(2) model. Tables 4 and 5 report the estimated parameters for the AFNS(2)

and B-AFNS(2) models, respectively. For comparison, Table 6 also shows the parameters of

the B-AG2 model as estimated by KS, although it is difficult to directly compare the B-AFNS

and B-AG2 model parameters due to the latent nature of the yield factors and differences in

their econometric identification.

In the AFNS(2) and B-AFNS(2) models, the estimated λ values are relatively close. Be-

yond that, the estimated mean-reversion matrix, mean vector, and volatility matrix share

only a few broad similarities such as positive θP1 , negative θP2 , and negative σ21 parameters,

but in terms of magnitudes the differences are sizeable. Notably, relative to the B-AG2 model,

the factors of the AFNS(2) and B-AFNS(2) models are more volatile and less persistent.

Table 7 reports summary statistics for the fit of the two-factor models. The AFNS(2)

model performs reasonably well, but the B-AFNS(2) model has smaller yield RMSEs. The

fit of the B-AFNS(2) model is comparable to the B-AG2 model estimated in KS even though
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Errors of fitted yields

Maturity AFNS(3) B-AFNS(3)
(months) Mean RMSE Mean RMSE

6 0.0 0.0 -0.1 0.6
12 0.0 2.0 -0.1 0.3
24 0.0 0.3 0.5 3.5
48 -0.9 4.0 -0.6 4.5
84 0.0 0.0 -0.1 0.9
120 -3.0 21.8 -3.2 16.1

All yields -0.7 9.1 -0.6 7.0

Table 8: Summary Statistics of Fitted Errors in Three-Factor Models. The table

presents the mean and root mean-squared error of the fitted bond yields from three-factor models estimated

on the weekly Japanese government bond yield data over the period from January 6, 1995, to March 7, 2008.

All numbers are measured in basis points.

the B-AFNS(2) model has fewer parameters under the Q-dynamics used for pricing.15

5.3 Three-Factor Model Estimates

In this section, we extend the analysis to assess whether the KS results generalize to three-

factor models. We compare the B-AFNS(3) model to the unconstrained AFNS(3) model when

both are estimated on the KS sample of Japanese data.

In the AFNS(3) model, the risk-neutral Q-dynamics used for pricing are as detailed in

Section 3, while we assume fully flexible factor dynamics under the P -measure as in the

previous section:




dX1

t

dX2

t

dX3

t


 =




κP
11

κP
12

κP
13

κP
21

κP
22

κP
23

κP
31

κP
32

κP
33










θP
1

θP
2

θP
3


−




X1

t

X2

t

X3

t





 dt+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

Table 8 reports the summary statistics of the fitted errors of the regular AFNS(3) model

as well as its shadow-rate version. Similar to what we observed for the two-factor models, the

shadow-rate model clearly outperforms its standard counterpart when it comes to model fit.

However, in comparing model fit across the two- and three-factor models, we note that the

AFNS(3) model outperforms the B-AFNS(2) model, while the B-AFNS(3) model outperforms

both of them.

Tables 9 and 10 contain the estimated parameters for the AFNS(3) and B-AFNS(3) mod-

els. With the exception of the estimated λ values and Σ volatility matrices, there are large

differences in both signs and magnitudes for most parameters across the two models. Fur-

15We do not report our estimated error standard deviations, σ̂ε(τi), as they are typically very close to the
RMSEs. By implication, the RMSEs shown in Table 7 are comparable to the σ̂ε(τi) reported by KS.
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KP KP
·,1 KP

·,2 KP
·,3 θP Σ Σ·,1 Σ·,2 Σ·,3

KP
1,· 2.3098 2.9063 -0.8699 0.0523 Σ1,· 0.0136 0 0

(1.3248) (1.5991) (0.4927) (0.0952) (0.0006)
KP

2,· -1.1272 -1.3481 0.3993 -0.0458 Σ2,· -0.0132 0.0027 0

(1.2990) (1.5670) (0.4842) (0.0731) (0.0006) (0.0001)
KP

3,· 1.4331 2.0048 0.4314 -0.0310 Σ3,· -0.0183 -0.0001 0.0153

(1.7396) (2.1814) (0.7018) (0.0088) (0.0012) (0.0006) (0.0004)

Table 9: Parameter Estimates of the AFNS(3) Model. The estimated parameters of the

KP matrix, the θP vector, and the Σ matrix are shown for the AFNS(3) model. The associated estimated

λ is 0.4157 (0.0043) with maturity measured in years. The numbers in parentheses are estimated parameter

standard deviations. The maximum log likelihood value is 25,547.96.

KP KP
·,1 KP

·,2 KP
·,3 θP Σ Σ·,1 Σ·,2 Σ·,3

KP
1,· 0.3283 0.6803 -0.2379 0.0034 Σ1,· 0.0142 0 0

(0.5718) (0.6158) (0.2234) (0.0829) (0.0006)
KP

2,· 0.7081 0.9228 -0.1726 0.0269 Σ2,· -0.0131 0.0048 0

(0.5359) (0.5954) (0.2202) (0.1813) (0.0005) (0.0002)
KP

3,· 1.5256 1.5075 -0.2517 0.1194 Σ3,· -0.0133 0.0057 0.0127

(0.7108) (0.7812) (0.2390) (0.5139) (0.0010) (0.0009) (0.0005)

Table 10: Parameter Estimates of the B-AFNS(3) Model. The estimated parameters of the

KP matrix, the θP vector, and the Σ matrix are shown for the B-AFNS(3) model. The associated estimated

λ is 0.5101 (0.0035) with maturity measured in years. The numbers in parentheses are estimated parameter

standard deviations. The maximum log likelihood value is 26,334.34.

thermore, the estimated parameters for the level and slope factors in the AFNS(3) models

only vaguely resemble the corresponding parameters in the AFNS(2) models, but this is a

common feature when estimating flexible latent factor models such as ours.16

5.4 Shadow Rate Comparisons Across Models

Figure 2 shows the instantaneous shadow short-rate paths implied by our one-, two-, and

three-factor shadow-rate models. Also, for comparison, we include the shadow-rate path from

the B-AG2 model as estimated by KS. As shown in Table 11, which contains the pairwise

correlations between the estimated shadow-rate paths, the correlations across models range

from 0.887 to 0.993, the latter being the correlation between the results from the B-AFNS(2)

and B-AG2 models that could be expected to be high due to the identical number of state

variables. Thus, the models tend to agree on the general variation in the shadow rate.

However, when the shadow rate is negative, there can be pronounced differences among the

estimated shadow rates of various models. The shadow rate from the B-AFNS(3) model

16This is part of the reason why CDR recommend focusing on parsimonious specifications of the AFNS
models, say, with a diagonal Σ matrix and additional restrictions on KP as in Christensen, Lopez, and
Rudebusch (2010).

19



1996 1998 2000 2002 2004 2006 2008

−
3

−
2

−
1

0
1

2
3

R
at

e 
in

 p
er

ce
nt

B−V(1) model   
B−AFNS(2) model       
B−AFNS(3) model        
B−AG2 model      

Figure 2: Model-Implied Shadow Rates. Illustration of the model-implied shadow rate from the

B-V(1), B-AFNS(2), and B-AFNS(3) models. For comparison, we include the shadow rate from the B-AG2

model estimated by KS.

Correlation B-V(1) B-AFNS(2) B-AFNS(3) B-AG2

B-V(1) 1 0.973 0.936 0.974
B-AFNS(2) 1 0.887 0.993
B-AFNS(3) 1 0.914
B-AG2 1

Table 11: Pairwise Correlations of Shadow-Rate Paths. The table contains the pairwise

correlations between the shadow-rate paths from the B-V(1), B-AFNS(2), B-AFNS(3), and B-AG2 models.

The estimations are based on the KS sample.

is generally the least negative. The shadow rates from the B-V(1) and B-AG2 models are

more negative and often quite close to each other. The B-AFNS(2) model provides the most

negative shadow rates.

These shadow-rate results can be usefully compared to two other studies. Ueno et al.

(2006) use Japanese data for a shorter sample (2003-2006) and a different maturity compo-

sition (ten maturities ranging from six months to twenty years) than we do. In a calibrated

one-factor version of the Black (1995) model, they obtain a shadow rate lower than -5 percent

for most of their sample, with the lowest reading falling below -15 percent in the summer of

2002.17 On the other hand, Ichiue and Ueno (2007), who use the Kalman filter to estimate a

17Krippner (2012) uses a two-factor shadow-rate model applied to U.S. Treasury data and also reports large
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(a) Two-factor models.
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(b) Three-factor models.

Figure 3: Fitted Yield Curves on July 1, 2005. The figure to the left illustrates the fitted yield

curves from the AFNS(2) and B-AFNS(2) models on July 1, 2005. Also shown are the six observed yields on

that date. The figure to the right shows the corresponding results for the AFNS(3) and B-AFNS(3) models.

two-factor shadow-rate model on monthly Japanese government bond yields from July 1996

to March 2006, report shadow-rate values in a range from -1 to -0.5 percent for the 2001-2005

period, with time-series variation very similar to our results. Combined, these results suggest

that it appears to be important to perform a full empirical implementation based on maxi-

mum likelihood that simultaneously accounts for the time-series and cross-sectional variation

in the data.

To further illustrate differences between the standard and shadow-rate models, we examine

the two- and three-factor models’ implications on a specific date, July 1, 2005, when the

shadow rate attains its lowest value according to most models shown in Figure 2. Figure

3(a) illustrates observed yields on this date as well as fitted yield curves from the AFNS(2)

and B-AFNS(2) models, while Figure 3(b) shows the corresponding output for the AFNS(3)

and B-AFNS(3) models. For the two-factor models, we note that the AFNS(2) model has

difficulty matching the kink in the observed yields around the two-year maturity point, which

is very pronounced in the data for this period. On the other hand, for the three-factor models

this distinction between standard and shadow-rate models is much less clear. It appears as

if the plain-vanilla AFNS(3) model has sufficient flexibility to handle the kink even on this

very challenging day in the sample. This also explains the relatively small differences in the

fitted errors across these two models.

Figure 4(a) shows the short rate projections on July 1, 2005, from the AFNS(2) and B-

negative shadow rates that average about -4 percent since August 2010.
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(a) Two-factor models.
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(b) Three-factor models.

Figure 4: Shadow-Rate Projections on July 1, 2005. The figure to the left illustrates the

short rate projections from the AFNS(2) and B-AFNS(2) models along with the shadow-rate projection from

the latter model on July 1, 2005. The figure to the right shows the corresponding results for the AFNS(3) and

B-AFNS(3) models.

AFNS(2) models, while Figure 4(b) shows the corresponding projections from the AFNS(3)

and B-AFNS(3) models. Also shown in the figures are the shadow-rate projections. Note

that the estimated shadow rate in the B-AFNS(2) model is notably more negative than in

the B-AFNS(3) model on this date. Furthermore, with more persistent factor dynamics, the

B-AFNS(2) reversal to steady state is very gradual. Short rates would remain near zero

for another five years according to the B-AFNS(2) model, as opposed to about two years

according to the B-AFNS(3) model. For the period after liftoff, the difference in persistence

leads to an even larger divergence in projections, as the B-AFNS(3) model suggests that the

policy rate would go above 2 percent in just four years, while liftoff is well beyond even a

ten-year forecast horizon according to the two-factor model.

The low persistence of the B-AFNS(3) model is an issue that frequently plagues flexible

models and is tied to the length and nature of the data sample. Because interest rates are

highly persistent, empirical autoregressive models, including dynamic term structure models

like ours, suffer from potentially substantial finite-sample estimation bias. Bauer, Rudebusch,

and Wu (2012) provide a complete discussion of the finite-sample bias in empirical affine

Gaussian term structure models and simulation-based methods to eliminate it. Furthermore,

Christensen and Gillan (2012) present a simplification of their approach that can be used

for latent-factor Kalman filter estimations like the ones in this paper. Alternatively, higher

persistence can be imposed by assuming a unit-root property for the most persistent factor;
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Par. B-V(1)
κP 0.0222

(0.1481)
θP 0.0100

(0.0300)
σ 0.0042

(0.0001)
κQ 0.0003

(0.0001)
θQ 12.73

(5.9381)
Max logL 28,566.74

Table 12: Estimated Parameters of One-Factor Model. The estimated parameters are shown

for the B-V(1) model using the extended KS sample. The numbers in parentheses are estimated parameter

standard deviations.

KP KP
·,1 KP

·,2 θP Σ Σ·,1 Σ·,2

KP
1,· 0.3430 0.4732 0.1026 Σ1,· 0.0076 0

(0.2093) (0.2364) (0.0718) (0.0003)
KP

2,· -0.1381 -0.1756 -0.0927 Σ2,· -0.0070 0.0048

(0.1955) (0.2428) (0.0497) (0.0003) (0.0001)

Table 13: Estimated Parameters of the B-AFNS(2) Model. The estimated parameters

of the KP matrix, the θP vector, and the Σ matrix are shown for the B-AFNS(2) model using the extended

KS sample. The associated estimated λ is 0.1260 (0.0039) with maturity measured in years. The numbers in

parentheses are estimated parameter standard deviations. The maximum log likelihood value is 31,987.75.

KP KP
·,1 KP

·,2 KP
·,3 θP Σ Σ·,1 Σ·,2 Σ·,3

KP
1,· 1.0366 1.4585 -0.4774 0.0031 Σ1,· 0.0208 0 0

(0.9525) (1.3468) (0.3545) (0.1122) (0.0006)
KP

2,· 0.1826 0.3294 -0.0575 0.0346 Σ2,· -0.0190 0.0040 0

(0.9297) (1.2624) (0.3330) (0.2642) (0.0006) (0.0001)
KP

3,· -0.4283 -1.1078 0.4094 0.1207 Σ3,· -0.0288 -0.0010 0.0181

(1.2960) (1.7500) (0.4996) (0.6260) (0.0009) (0.0006) (0.0004)

Table 14: Estimated Parameters of the B-AFNS(3) Model. The estimated parameters

of the KP matrix, the θP vector, and the Σ matrix are shown for the B-AFNS(3) model using the extended

KS sample. The associated estimated λ is 0.4893 (0.0044) with maturity measured in years. The numbers in

parentheses are estimated parameter standard deviations. The maximum log likelihood value is 35,568.52.

see Christensen and Rudebusch (2012) for an example. Dealing with such estimation issues

is outside the scope of this paper but is an important issue for future applied work.

6 Results for Extended KS Sample

In this section, we estimate all three shadow-rate models on the extended KS sample that ends

on November 16, 2012. For a start, we compare the estimated parameters from the extended
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(c) Curvature.

Figure 5: Estimated Factors in Shadow-Rate Models. Illustration of the estimated factors

in the B-V(1), B-AFNS(2), and B-AFNS(3) models from the extended KS sample.

KS sample to those reported in the previous section for the original KS sample. Table 12

reports the estimated parameters for the B-V(1) model. Relative to the results reported for

the B-V(1) model in Table 2, there is an increase in persistence and a decline in volatility,

likely because the added four years of data have lower and more stable yields than the prior

13 years of the sample, as can be seen in Figure 1. When we compare the results for the

B-AFNS(2) model on the extended sample reported in Table 13 to the corresponding results

for the KS sample in Table 5, we see a similar pattern of increased persistence and lower

volatility for both the level and the slope factor with only minor changes to their estimated

mean levels. For the B-AFNS(3) model, whose estimated parameters for the extended sample

are shown in Table 14, a slightly different pattern is observed, with the level factor becoming

less persistent and more volatile, while only the slope and curvature factors follow the pattern

of greater persistence observed in the more parsimonious models.

Next, we compare the estimated factors across models. Figure 5(a) shows the estimated

level factors from all three models. There is a very high correlation (96.1 percent) between

the level factors in the B-AFNS(2) and B-AFNS(3) models, whereas the connection to the

factor in the B-V(1) model is much weaker. Figure 5(b) shows the estimated slope factors

from the B-AFNS(2) and B-AFNS(3) models, where we again see a high correlation of 88.5

percent. Furthermore, within each model, there are interesting relationships. In the B-

AFNS(2) model, the correlation between its factors is -90.5 percent, while the corresponding

correlation between level and slope in the B-AFNS(3) model is as high as -97.5 percent. Also,

its correlation is -73.2 percent between level and curvature and 77.2 percent between slope

and curvature. Thus, the state variables in the AFNS models are highly correlated, which

supports the use of flexible specifications for this data.

Figure 6 shows the estimated shadow-rate paths implied by the three models on the

extended sample. As in Figure 2, there is much less disagreement across models when the
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Figure 6: Model-Implied Shadow Rates from the Extended KS Sample. Illustration

of the model-implied shadow rate from the B-V(1), B-AFNS(2), and B-AFNS(3) models.

instantaneous rate is in positive territory (1995-1998 and 2006-2009), presumably because

short-term yields are far enough away from the ZLB that the fit to the cross section of yields

requires a positive short rate and all models are forced to accommodate that. On the other

hand, when all models indicate that the shadow rate is in negative territory—the 2001-2005

period is a particularly strong example of this—there is notable disagreement about its exact

level across the one-, two-, and three-factor models. Unreported results show that, even

within each model class, there can be disagreement across specifications about how negative

the shadow rate is during this important part of the sample. Thus, great care must be

taken in interpreting the magnitude of the negative shadow rate as a measure of the stance

of monetary policy when yields are near the ZLB, as suggested by Krippner (2013). At a

minimum, a number of model specifications should be analyzed to verify the robustness of

the results.

An alternative way of looking at these results is to note that the shadow-rate paths are

very highly correlated across models. As a consequence, all the models would tend to agree in

terms of qualitative statements about the movements in the shadow rate from one period to

another. This kind of inference seems to be more robust. Building on this insight, we find it

safe to say that the shadow rate in Japan has declined over the extended part of our sample

since March 2008 and is lower at the end of the sample than it was back then. However,
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whether it is currently negative and, if so, to what extent is not really possible to tell. A

much more detailed analysis of each model class would be required, including a validation

of their performance along multiple dimensions such as their ability to replicate the yield

volatility and excess returns seen in the data, as illustrated in KS.

7 Conclusion

To adapt the Gaussian term structure model to the recent near-zero interest rate environment,

we have combined the arbitrage-free Nelson-Siegel model dynamics with the shadow-rate

framework of Krippner (2012). To investigate the suitability of this pairing, we estimate vari-

ants of this model using near-zero Japanese yields. We find that model fit and the magnitude

of estimated negative shadow rates appear to be sensitive to the number of factors included in

the estimation. Other aspects of model specification—such as the sample maturity selection

or sample period (including the ratio of near-ZLB yields to normal yield observations)—would

also likely have an important influence on the shadow rate.

As emphasized by Krippner (2013), one potential use for shadow-rate models is to gauge

the stance of monetary policy in near-zero yield environments where the target rate itself is

constrained at its effective lower boundary and, by implication, is not a useful indicator of the

stance of monetary policy. Regarding this type of inference, our results suggest fairly robust

qualitative or directional, rather than quantitative, statements can be made. For gauging the

current and future stance of monetary policy, the B-AFNS(3) model introduced in this paper

appears competitive. Still, care must be taken to assess the sensitivity of the results to the

number of factors used in estimation and other modeling choices. Finding a preferred shadow-

rate specification of the factor dynamics and dealing with any finite-sample estimation bias

is left to future research.

26



Appendix A: Bond Option Pricing in the AFNS(3) Model

In this appendix we derive the value of a European call option with maturity at time T and strike K

written on the zero-coupon bond with maturity T + δ when it is assumed that the state variables have the

AFNS(3) Q-dynamics in equation (4).

In short form, the factor Q-dynamics in the AFNS(3) model are

dXt = K
Q(θQ −Xt)dt+ ΣdWQ

t ,

while the instantaneous risk-free rate is rt = ρ′1Xt.

Now, recall that the value of the zero-coupon bond that matures at T + δ is

P (t, T + δ) = exp(A(t, T + δ) +B(t, T + δ)′Xt),

where A(t, T + δ) and B(t, T + δ) are the unique solutions to the following ordinary differential equations

(ODE) as in Duffie and Kan (1996)

dB(t, T + δ)

dt
= ρ1 + (KQ)′B(t, T + δ), B(T + δ, T + δ) = 0,

dA(t, T + δ)

dt
= −1

2

n∑

j=1

(Σ′
B(t, T + δ)B(t, T + δ)′Σ)j,j , A(T + δ, T + δ) = 0.

By Ito’s lemma, the Q-dynamics of P (t, T + δ) are

dP (t, T + δ) = P (t, T + δ)
[
dA(t, T + δ)

dt
+
dB(t, T + δ)

dt

′
Xt

]
dt+ P (t, T + δ)B(t, T + δ)′dXt

+
1

2
P (t, T + δ)dX ′

tB(t, T + δ)B(t, T + δ)′dXt

= P (t, T + δ)
[
− 1

2

3∑

j=1

(Σ′
B(t, T + δ)B(t, T + δ)′Σ)j,j + (ρ1 + (KQ)′B(t, T + δ))′Xt

]
dt

+P (t, T + δ)B(t, T + δ)′[−κQ
Xtdt+ΣdWQ

t ]

+
1

2
P (t, T + δ)

3∑

j=1

(Σ′
B(t, T + δ)B(t, T + δ)′Σ)j,jdt

= ρ
′
1XtP (t, T + δ)dt+ P (t, T + δ)B(t, T + δ)′ΣdWQ

t .

Since ρ′1Xt = rt, this reduces to

dP (t, T + δ) = rtP (t, T + δ)dt+ P (t, T + δ)B(t, T + δ)′ΣdWQ
t . (8)

These are the bond price dynamics under the risk-neutral measure where the riskless asset has been used as

the deflator and foundation for the martingale measure applied for asset pricing.

The Forward Measure

Now, an alternative martingale measure turns out to be convenient for asset pricing for the problem at

hand. This measure is frequently referred to as the forward measure and uses the zero-coupon bond price with

the same maturity as the option, that is P (t, T ), as deflator instead of the riskless asset.

To begin, let Z(t, T, T + δ) denote the zero-coupon bond price underlying the option deflated by the

zero-coupon bond P (t, T )

Z(t, T, T + δ) =
P (t, T + δ)

P (t, T )
.
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By Ito’s lemma,

dZ(t, T, T + δ) =
1

P (t, T )
dP (t, T + δ)− P (t, T + δ)

P (t, T )
dP (t, T )

+
1

2

(
dP (t, T + δ) dP (t, T )

)( 0 −1
P (t,T )2

−1
P (t,T )2

2P (t,T+δ)

P (t,T )3

)(
dP (t, T + δ)

dP (t, T )

)

.

Using the result in equation (8), this reduces to

dZ(t, T, T + δ) = rtZ(t, T, T + δ)dt+ Z(t, T, T + δ)B(t, T + δ)′ΣdWQ
t

−rtZ(t, T, T + δ)dt− Z(t, T, T + δ)B(t, T )′ΣdWQ
t

− 1

P (t, T )2
dP (t, T + δ)dP (t, T ) +

P (t, T + δ)

P (t, T )3
dP (t, T )2

= Z(t, T, T + δ)[B(t, T + δ)−B(t, T )]′ΣdWQ
t

−Z(t, T, T + δ)
3∑

j=1

(Σ′
B(t, T + δ)B(t, T )′Σ)j,jdt

+Z(t, T, T + δ)
3∑

j=1

(Σ′
B(t, T )B(t, T )′Σ)j,jdt.

We can now define the new measure by determining the Girsanov transformation, which is the process

g(t, T ) that shows the change in drift from the old measure to the new measure and establishes the connection

between the old Brownian motion and the new Brownian motion

dW
QT

t = dW
Q
t − g(t, T )dt.

Inserting this in the dynamics above, it follows

dZ(t, T, T + δ) = Z(t, T, T + δ)[B(t, T + δ)−B(t, T )]′Σ[dWQT

t + g(t, T )dt]

−Z(t, T, T + δ)

3∑

j=1

(Σ′
B(t, T + δ)B(t, T )′Σ)j,jdt

+Z(t, T, T + δ)
3∑

j=1

(Σ′
B(t, T )B(t, T )′Σ)j,jdt.

Since the new measure should be a martingale measure that can be used for pricing, g(t, T ) is chosen such

that the drift in the dynamics above is eliminated

−
3∑

j=1

(
Σ′[B(t, T + δ)−B(t, T )]B(t, T )′Σ

)

j,j
+ [B(t, T + δ)−B(t, T )]′Σg(t, T ) = 0 for t ∈ [0, T ]. (9)

Thus, under the forward QT -measure, it holds that

dZ(t, T, T + δ) = Z(t, T, T + δ)[B(t, T + δ)−B(t, T )]′ΣdWQT

t .

Option Pricing under the Forward Measure

Now, the key thing is the dynamics of the deflated zero-coupon bond price underlying the option, i.e.

P (t, T + δ), under the T -forward measure

dZ(t, T, T + δ) = Z(t, T, T + δ)[B(t, T + δ)−B(t, T )]′ΣdWQT

t .
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In integral form, this converts into

Z(s, T, T + δ) = Z(t, T, T + δ) +

∫ s

t

Z(u, T, T + δ)[B(u, T + δ)−B(u, T )]′ΣdWQT

u , s ∈ (t, T ).

Due to the martingale property of the Ito integral, it follows that

E
QT

t [Z(s, T, T + δ)] = Z(t, T, T + δ).

Now, we focus on pricing bond options under the T -forward measure. To begin, consider the call option

with maturity at T and strike price K written on the zero-coupon bond maturing at T + δ. Denote its price

by C(t, T, T + δ;K). Due to the QT -martingale property of the deflated bond price dynamics, it holds that

C(t, T, T + δ;K)

P (t, T )
= E

QT

t

[
C(T, T, T + δ;K)

P (T, T )

]
.

However, at maturity T , P (T, T ) = 1 and C(T, T, T + δ;K) = max{P (T, T + δ)−K, 0}. This implies that the

call option price can be calculated as

C(t, T, T + δ;K) = P (t, T )EQT

t

[
P (T, T + δ)1{P (T,T+δ)≥K}

]
−KP (t, T )EQT

t

[
1{P (T,T+δ)≥K}

]
.

To calculate these two contingent expectations, we exploit the properties of the Z(t, T, T + δ) process. At

time T , it holds that

Z(T, T, T + δ) =
P (T, T + δ)

P (T, T )
= P (T, T + δ).

Thus, the states of the world where P (T, T + δ) are above the strike K are the states of the world where

Z(T, T, T + δ) ≥ K.

Since Z(t, T, T + δ) is a log-normal process, we take its log

Y (t, T, T + δ) = lnZ(t, T, T + δ).

By Ito’s lemma, it holds that

dY (t, T, T + δ) =
1

Z(t, T, T + δ)
dZ(t, T, T + δ)− 1

2

1

Z(t, T, T + δ)2
(dZ(t, T, T + δ))2

= [B(t, T + δ)−B(t, T )]′ΣdWQT

t

−1

2

3∑

j=1

(Σ′[B(t, T + δ)−B(t, T )][B(t, T + δ)−B(t, T )]′Σ)j,jdt.

In integral form, this converts into

Y (T, T, T + δ) = Y (t, T, T + δ)− 1

2

∫ T

t

3∑

j=1

(Σ′[B(s, T + δ)−B(s, T )][B(s, T + δ)−B(s, T )]′Σ)j,jds

+

∫ T

t

[B(s, T + δ)−B(s, T )]′ΣdWQT

s .

It follows that Y (T, T, T + δ) is normally distributed

Y (T, T, T + δ) ∼ N(mY (t, T, T + δ), vY (t, T, T + δ)),

where mY (t, T, T + δ) and vY (t, T, T + δ) will be determined below.
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Now, the call option is in the money whenever

Y (T, T, T + δ) = mY (t, T, T + δ) +
√
vY (t, T, T + δ)XY ≥ lnK,

where XY is a standard normally distributed variable. Equivalently,

XY ≥ lnK −mY (t, T, T + δ)√
vY (t, T, T + δ)

.

It follows that the second part of the option payment can be calculated as

C2(t, T, T + δ;K) = −KP (t, T )EQT

t

[
1{P (T,T+δ)≥K}

]

= −KP (t, T )
1√
2π

∫ ∞

lnK−mY (t,T,T+δ)√
vY (t,T,T+δ)

e
− 1

2
X2

Y dXY

= −KP (t, T )Φ
(mY (t, T, T + δ)− lnK√

vY (t, T, T + δ)

)
.

As for the first part of the option payment, it holds that

C1(t, T, T + δ;K) = P (t, T )EQT

t

[
P (T, T + δ)1{P (T,T+δ)≥K}

]

= P (t, T )EQT

t

[
Z(T, T, T + δ)1{P (T,T+δ)≥K}

]

= P (t, T )EQT

t

[
e
Y (T,T,T+δ)

1{P (T,T+δ)≥K}

]

= P (t, T )
1√
2π

∫ ∞

ln K−mY (t,T,T+δ)√
vY (t,T,T+δ)

e
mY (t,T,T+δ)+

√
vY (t,T,T+δ)XY e

− 1
2
X2

Y dXY .

Now, it is noted that

−1

2
(XY −

√
vY (t, T, T + δ))2 +

1

2
vY (t, T, T + δ) = −1

2
X

2
Y +

√
vY (t, T, T + δ)XY ,

which implies that we can integrate by substitution with xY = XY −
√
vY (t, T, T + δ) whereby dxY = dXY

and the intervals to be integrated over change to

x
top
Y = X

top
Y −

√
vY (t, T, T + δ) = ∞,

x
bottom
Y = X

bottom
Y −

√
vY (t, T, T + δ) =

lnK −mY (t, T, T + δ)− vY (t, T, T + δ)√
vY (t, T, T + δ)

.

Thus, the first payment expectation can be calculated as

C1(t, T, T + δ;K) = P (t, T )
1√
2π

∫ ∞

lnK−mY (t,T,T+δ)−vY (t,T,T+δ)√
vY (t,T,T+δ)

e
mY (t,T,T+δ)+ 1

2
vY (t,T,T+δ)

e
− 1

2
x2
Y dxY

= P (t, T )emY (t,T,T+δ)+ 1
2
vY (t,T,T+δ)Φ

(mY (t, T, T + δ) + vY (t, T, T + δ)− lnK√
vY (t, T, T + δ)

)
.

Due to the property of the log-normal distribution, it follows that

E
QT

t [eY (T,T,T+δ)] = E
QT

t [Z(T, T, T + δ)] = e
mY (t,T,T+δ)+ 1

2
vY (t,T,T+δ)

.

Since Z(t, T, T + δ) is a QT -martingale, this implies that

Z(t, T, T + δ) =
P (t, T + δ)

P (t, T )
= e

mY (t,T,T+δ)+ 1
2
vY (t,T,T+δ)

.
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Now, insert that in the expression above to obtain

C1(t, T, T + δ;K) = P (t, T + δ)Φ
(
mY (t, T, T + δ) + vY (t, T, T + δ)− lnK√

vY (t, T, T + δ)

)
.

To summarize, the call option with maturity at T and strike price K written on the zero-coupon bond

maturing at T + δ is given by

C(t, T, T + δ;K) = C1(t, T, T + δ;K) + C2(t, T, T + δ;K)

= P (t, T + δ)Φ(d1)−KP (t, T )Φ(d2),

where

• d1 = mY (t,T,T+δ)+vY (t,T,T+δ)−lnK√
vY (t,T,T+δ)

,

• d2 = d1 −
√
vY (t, T, T + δ).

The conditional mean of Y (T, T, T + δ) under the T -forward measure is

mY (t, T, T + δ) = Y (t, T, T + δ)− 1

2

∫ T

t

3∑

j=1

(Σ′[B(s, T + δ)−B(s, T )][B(s, T + δ)−B(s, T )]′Σ)j,jds,

while its conditional variance is given by

vY (t, T, T + δ) = V
QT
[ ∫ T

t

[B(s, T + δ)−B(s, T )]′ΣdWQT

s |Ft

]

=

∫ T

t

3∑

j=1

(Σ′[B(s, T + δ)−B(s, T )][B(s, T + δ)−B(s, T )]′Σ)j,jds.

From this it follows that

mY (t, T, T + δ) = Y (t, T, T + δ)− 1

2
vY (t, T, T + δ)

= ln
(P (t, T + δ)

P (t, T )

)
− 1

2
vY (t, T, T + δ).

This implies that we can rewrite d1 as

d1 =
ln
(

P (t,T+δ)
P (t,T )K

)
+ 1

2
vY (t, T, T + δ)

√
vY (t, T, T + δ)

.

This structure is consistent with the more simple Gaussian option price formulas derived in Jamshidian (1989)

and Chen (1992). Importantly, once we have the analytical formula for the conditional variance, we have all

ingredients needed to calculate the call option price. This is the task we now turn to.

The Analytical Formula for the Conditional Variance
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To begin, we expand the expression for the conditional variance of Y (t, T, T + δ) as follows:

vY (t, T, T + δ) =

∫ T

t

3∑

j=1









σ11 σ21 σ31

0 σ22 σ32

0 0 σ33









B1(s, T + δ)−B1(s, T )

B2(s, T + δ)−B2(s, T )

B3(s, T + δ)−B3(s, T )





×
(
B1(s, T + δ)−B1(s, T ) B2(s, T + δ)−B2(s, T ) B3(s, T + δ)−B3(s, T )

)

×





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









j,j

ds.

This produces a total of six unique integrals that have to be calculated.

The first of the six integrals is given by

v
1
Y (t, T, T + δ) = σ

2
11

∫ T

t

[B1(s, T + δ)−B
1(s, T )]2ds.

The second integral is given by

v
2
Y (t, T, T + δ) = (σ2

21 + σ
2
22)

∫ T

t

[B2(s, T + δ)−B
2(s, T )]2ds.

The third integral is given by

v
3
Y (t, T, T + δ) = (σ2

31 + σ
2
32 + σ

2
33)

∫ T

t

[B3(s, T + δ)−B
3(s, T )]2ds.

The fourth integral is given by

v
4
Y (t, T, T + δ) = 2σ11σ21

∫ T

t

[B1(s, T + δ)−B
1(s, T )][B2(s, T + δ)−B

2(s, T )]ds.

The fifth integral is given by

v
5
Y (t, T, T + δ) = 2σ11σ31

∫ T

t

[B1(s, T + δ)−B
1(s, T )][B3(s, T + δ)−B

3(s, T )]ds.

The sixth and final integral is given by

v
6
Y (t, T, T + δ) = 2(σ21σ31 + σ22σ32)

∫ T

t

[B2(s, T + δ)−B
2(s, T )][B3(s, T + δ)−B

3(s, T )]ds.

32



Unreported calculations show that the conditional volatility of the Y (t, T, T + δ) process is18

vY (t, T, T + δ) =

6∑

i=1

v
i
Y (t, T, T + δ)

= σ
2
11δ

2(T − t) + (σ2
21 + σ

2
22)
(1− e−λδ

λ

)2 1− e−2λ(T−t)

2λ

+(σ2
31 + σ

2
32 + σ

2
33)
(1− e−λδ

λ

)2 1− e−2λ(T−t)

2λ

+(σ2
31 + σ

2
32 + σ

2
33)e

−2λδ
[ δ2 − (T + δ − t)2e−2λ(T−t)

2λ
+
δ − (T + δ − t)e−2λ(T−t)

2λ2
+

1− e−2λ(T−t)

4λ3

]

+(σ2
31 + σ

2
32 + σ

2
33)
[
− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ3

]

−(σ2
31 + σ

2
32 + σ

2
33)

(1− e−λδ)e−λδ

λ2

[
δ − (T + δ − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

+(σ2
31 + σ

2
32 + σ

2
33)

1− e−λδ

λ2

[1− e−2λ(T−t)

2λ
− (T − t)e−2λ(T−t)

]

+(σ2
31 + σ

2
32 + σ

2
33)

1

λ
δe

−λδ
[
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ

]

+(σ2
31 + σ

2
32 + σ

2
33)

1

λ
e
−λδ
[
(T − t)2e−2λ(T−t) +

1

λ
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ2

]

+2σ11σ21δ(1− e
−λδ)

1− e−λ(T−t)

λ2

+2σ11σ31δ
[
− 1

λ
(T − t)e−λ(T−t) − 1

λ
e
−λδ
(
δ − (T + δ − t)e−λ(T−t)

)
+ 2(1− e

−λδ)
1− e−λ(T−t)

λ2

]

+(σ21σ31 + σ22σ32)
(1− e−λδ

λ

)2 1− e−2λ(T−t)

λ

+(σ21σ31 + σ22σ32)
1

λ2
e
−2λδ

[
δ − (T + δ − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

+(σ21σ31 + σ22σ32)
1

λ2

[
− (T − t)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

−(σ21σ31 + σ22σ32)
1

λ2
e
−λδ
[
δ − (2T + δ − 2t)e−2λ(T−t) +

1− e−2λ(T−t)

λ

]
.

Appendix B: Kalman Filter Estimation of Shadow-Rate Models

In this appendix we describe the estimation of the shadow-rate models based on the extended Kalman

filter.

For affine Gaussian models, in general, the conditional mean vector and the conditional covariance matrix

are

E
P [XT |Ft] = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt,

V
P [XT |Ft] =

∫ ∆t

0

e
−KP sΣΣ′

e
−(KP )′s

ds,

where ∆t = T − t. We compute conditional moments of discrete observations and obtain the state transition

equation

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ξt,

where ∆t is the time between observations. In the standard Kalman filter, the measurement equation would

18The calculations leading to this result are available from the authors upon request.
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be affine, in which case

yt = A+BXt + εt.

The assumed error structure is

(
ξt

εt

)
∼ N

[(
0

0

)
,

(
Q 0

0 H

)]
,

where the matrix H is assumed diagonal, while the matrix Q has the following structure:

Q =

∫ ∆t

0

e
−KP sΣΣ′

e
−(KP )′s

ds.

In addition, the transition and measurement errors are assumed orthogonal to the initial state.

Now we consider Kalman filtering, which we use to evaluate the likelihood function.

Due to the assumed stationarity, the filter is initialized at the unconditional mean and variance of the

state variables under the P -measure: X0 = θP and Σ0 =
∫∞
0
e−KP sΣΣ′e−(KP )′sds, which we calculate using

the analytical solutions provided in Fisher and Gilles (1996).

Denote the information available at time t by Yt = (y1, y2, . . . , yt), and denote model parameters by ψ.

Consider period t − 1 and suppose that the state update Xt−1 and its mean square error matrix Σt−1 have

been obtained. The prediction step is

Xt|t−1 = E
P [Xt|Yt−1] = ΦX,0

t (ψ) + ΦX,1
t (ψ)Xt−1,

Σt|t−1 = ΦX,1
t (ψ)Σt−1Φ

X,1
t (ψ)′ +Qt(ψ),

where ΦX,0
t = (I − exp(−KP∆t))θP , ΦX,1

t = exp(−KP∆t), and Qt =
∫∆t

0
e−KP sΣΣ′e−(KP )′sds, while ∆t is

the time between observations.

In the time-t update step, Xt|t−1 is improved by using the additional information contained in Yt. We

have

Xt = E[Xt|Yt] = Xt|t−1 + Σt|t−1B(ψ)′F−1
t vt,

Σt = Σt|t−1 − Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1,

where

vt = yt −E[yt|Yt−1] = yt − A(ψ)−B(ψ)Xt|t−1,

Ft = cov(vt) = B(ψ)Σt|t−1B(ψ)′ +H(ψ),

H(ψ) = diag(σ2
ε(τ1), . . . , σ

2
ε(τN)).

At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaussian log likelihood,

the prediction-error decomposition of which is

log l(y1, . . . , yT ;ψ) =
T∑

t=1

(
− N

2
log(2π)− 1

2
log |Ft| −

1

2
v
′
tF

−1
t vt

)
,

where N is the number of observed yields. We numerically maximize the likelihood with respect to ψ using the

Nelder-Mead simplex algorithm. Upon convergence, we obtain standard errors from the estimated covariance

matrix,

Ω̂(ψ̂) =
1

T

[ 1
T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]−1

,

where ψ̂ denotes the estimated model parameters.
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This completes the description of the standard Kalman filter. However, in the shadow-rate models, the

zero-coupon bond yields are not affine functions of the state variables. Instead, the measurement equation

takes the general form

yt = z(Xt;ψ) + εt.

In the extended Kalman filter we use, this equation is linearized through a first-order Taylor expansion around

the best guess of Xt in the prediction step of the Kalman filter algorithm. Thus, in the notation introduced

above, this best guess is denoted Xt|t−1 and the approximation is given by

z(Xt;ψ) ≈ z(Xt|t−1;ψ) +
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

(Xt −Xt|t−1).

Now, by defining

At(ψ) ≡ z(Xt|t−1;ψ)−
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

Xt|t−1 and Bt(ψ) ≡
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

,

the measurement equation can be given in an affine form as

yt = At(ψ) +Bt(ψ)Xt + εt,

and the steps in the algorithm proceeds as previously described.
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