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Abstract

Many real-world networks exhibit a community structure: The vertices of the
network are partitioned into groups such that the concentration of linkages is high
among vertices in the same group and low otherwise. This motivates us to introduce
a class of Gaussian graphical models with a community structure that replicates
this empirical regularity. A natural question that arises in this framework is how
to detect the communities from a random sample of observations. We introduce an
algorithm called Blockbuster that recovers the communities using the eigenvectors
of the sample covariance matrix. We study the properties of the procedure and
establish consistency. The methodology is used to study real activity clustering in
the U.S. and Europe.
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1 Introduction

Network analysis has become an active field of research in statistics and econometrics
recently (Meinshausen and Bihlmann, [2006; Peng, Wang, Zhou, and Zhu, 2009} Diebold
and Yilmaz, 2013). Broadly speaking, contributions to network analysis in these areas
focus on developing methodologies to learn the interdependence structure of large mul-
tivariate systems. Network techniques have been applied successfully for dimensionality
reduction and regularisation of such systems.

In the analysis of networks it is often found that vertices are partitioned into groups
where the concentration of linkages is high among vertices in the same group and low
otherwise. This empirical regularity is called community structure or clustering (Girvan
and Newman, [2002). Over the years, an extensive literature has emerged and developed
tools to detect communities in large networks, see [Fortunato (2010) for a comprehensive
overview. In this work we formalise the community detection problem for a class of
Gaussian graphical models with a community structure and introduce an algorithm for
community detection tailored to this setting.

We begin by introducing a class of graphical models (Lauritzen, 1996)) where the net-
work structure of the variables in the system is random. We consider an n-dimensional
random vector from a multivariate Gaussian distribution. The covariance matrix of the
model is assumed to be a function of a latent random graph defined on n vertices (Chung
and Lul, 2006; van der Hofstad, 2015). The model is such that the i-th and j-th com-
ponents of the random vector are conditionally independent (conditioned on the rest of
the components) if and only if vertices ¢ and j in the latent graph are not connected
by an edge. Notice that two layers of randomness are present in this framework: The
first layer comes from the random graph that determines the covariance structure of the
observations and the second from the multivariate Gaussian sampling.

We use this framework to introduce two types of random graphical models with a
community structure. In the first case, we assume that the latent graph is a stochastic

block model (Holland, Laskey, and Leinhardt] 1983)). The stochastic block model is a



random graph in which vertices are partitioned into £ communities and edges are randomly
determined by a Bernoulli trial, independent of all other edges. In the simplest version
of the model, the probability of a link between two vertices is p if they belong to the
same community and g otherwise. A limitation of the stochastic block model is that the
expected degrees of all vertices in a given community is homogeneous, which is often an
unrealistic assumption. In the second case, we assume that the latent graph is a degree-
corrected stochastic block model (Karrer and Newman, 2011), which is an extension of
the stochastic block model that allows for general heterogeneity in the expected degrees.

A natural question that arises in this setting is how to detect the communities of the
model from a random sample of T independent and identically distributed (i.i.d.) ob-
servations of the multivariate Gaussian vector. An extensive literature (Fortunato, 2010)
deals with the problem of community detection when the network structure of the data
is observable. A popular algorithm to carry out community detection is the spectral clus-
tering algorithm, which uses the eigenvectors of the graph Laplacian to detect community
structure. In our framework, community detection is more challenging as the network
structure of the data is not observed. Motivated by spectral clustering methods (Ng,
Jordan, and Weiss, 2001; [von Luxburg, [2007), we propose a community detection proce-
dure called Blockbuster in which spectral clustering is applied to the sample covariance
matrix of the observations. In particular, the algorithm applies k-means clustering to
a matrix whose columns are the eigenvectors corresponding to the k largest eigenvalues
of the sample covariance matrix. The k-means partition of the rows of the eigenvector
matrix is the estimate of the community partition.

We study the properties of the Blockbuster community detection procedure and show
that it consistently detects the communities when the size of the random vector and
number of observations are large. More precisely, our key result establishes a bound
on the fraction of vertices that the algorithm misclusters in a similar fashion to [Rohe,
Chatterjee, and Yu (2010)), Qin and Rohe (2013) and Sarkar and Bickel (2013)), and
shows that it tends to zero with high probability as n and T' grow large, provided that

n/T — 0. We carry out a simulation study which shows that the algorithm performs



adequately in finite samples.

A number of extensions to the baseline methodology are developed. Typically, panels
of economic and financial time series exhibit evidence of a factor structure. To this extent,
we consider an extension of the baseline model in which the components of the random
vector are also influenced by a set of common factors. We then introduce a variant of the
Blockbuster algorithm which detects communities in this setting and establish consistency.
Last, we introduce a regularised covariance estimator based on Blockbuster motivated by
the block covariance structure of the models introduced in this work.

We apply the methodology to analyse two panels of real activity growth measures for
the U.S. and Europe. Detecting the communities of the European panel is of interest
in light of recent statements of the ECB president Mario Draghi, who warned that a
high degree of economic heterogeneity between Euro-zone countries might threaten the
monetary unionE] The methodology developed in this work can detect which areas, or
communities, of Europe exhibit different behaviour from the data. For the U.S. we use a
dataset constructed by Hamilton and Owyang| (2011) comprising quarterly employment
growth rates for the states of the U.S. (excluding Alaska and Hawaii) from 1956-Q2 to
2007-Q4. For Europe we use data from Eurostat comprising yearly gross regional prod-
uct for the European Nomenclature of Territorial Units for Statistics (NUTS 1) regions
(excluding Iceland and Turkey) from 2000 to 2013. Blockbuster delivers a meaningful par-
tition of the states/regions in the two panels. In particular, the U.S. communities bear
close resemblance with previously published results by [Hamilton and Owyang (2011). In
the U.S. dataset we also carry out an out-of-sample validation exercise and show that the
covariance regularisation procedure based on Blockbuster improves covariance prediction
compared to a number of alternative procedures.

This paper is related to several different strands of literature. First of all, the network
and graphical modelling literature (Dempster, 1972; [Lauritzen, 1996). Recently, estima-

tion of large dimensional network models (typically through LASSO type estimation) has

1On May 23rd 2015 at the ECB Forum on Central Banking in Sintra (Portugal) Mario Draghi stated
“In a monetary union you can’t afford to have large and increasing structural divergences between coun-
tries, they tend to become explosive”.



become an active field of research, see Meinshausen and Biithlmann| (2006), Peng et al.|

(2009)), Diebold and Yilmaz (2013) and Barigozzi and Brownlees| (2013). Second, it is

related to the community detection literature, see [Donath and Hoffman| (1973)), Fiedler]

(1973)), von Luxburg| (2007), |Girvan and Newman| (2002)), Newman| (2006a)) and Newman,

(2006b)). Third, the paper builds upon the stochastic block model, which has garnered

much interest since the work of Holland et al.| (1983), see for example |Abbe, Bandeira, and|

Hall| (2014), Mossel, Neeman, and Sly| (2012), [Joseph and Yu| (2013), Rohe et al| (2010),

Qin and Rohe (2013) and Sarkar and Bickel (2013)). Finally, an influential paper showing

the relevance of networks in economics is, inter alia, Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi| (2012).

The rest of the paper is organised as follows. Section [2] presents the mathematical
framework. Section [3| introduces a number of extensions to the baseline methodology.
Section [] carries out a simulation study to assess the finite-sample properties of the
procedure. Section [p| uses our community detection methodology to study real activity

clustering in the U.S. and Europe. Concluding remarks follow in Section [6]

2 Methodology

2.1 A Partial Correlation Network Model with Communities with
Homogeneous Degrees

Let Y = (Y3,...,Y,) be an n-dimensional vector of zero-mean Gaussian random variables
with covariance matrix ¥ = E[Y'Y”], where Y is the transpose of Y. The inverse
covariance matrix K = 37!, provided that it exists, plays a key role in this paper and is
referred to as the concentration matrix hereafter. It is well known that the conditional
dependence structure of the system is embedded in the concentration matrix. To see

this, it is useful to introduce the notion of partial correlation, defined as the conditional



correlation between Y; and Y; given the remaining variables

p”? = Corr (Y;, Y;[{Ys : s #1,5}).

Partial correlation measures the linear dependence between two variables after partialling
out the influence of all other variables. It can be shown (Dempster, 1972 |Pourahmadi,
2013) that the elements of the concentration matrix [K];; are related to the partial corre-

lations through the identity

Thus, the concentration matrix and the partial correlations of Y share the same sparsity
structure: The (i, 7)-th element of K is zero if and only if Y¥; and Y; are conditionally
uncorrelated. As Y is Gaussian, a zero partial correlation between variables Y; and Y
implies conditional independence given the remaining components of Y.

In this work we assume that the conditional dependence structure of Y is determined
by a latent graph. We denote an undirected graph as G = (V, &) where V = {1,...,n} is
the vertex set and £ C V' x V is the edge set. It is useful to introduce the adjacency, degree
and Laplacian matrices to represent the structure of a graph. The adjacency matrix A
of a graph is defined as an n x n matrix with the (7, j)-th element [A];; equal to one if
there is an edge between vertices ¢ and j and zero otherwise. Let d; denote the degree of
vertex i, that is, d; = > 7_[A];;. We define the degree matrix D as an n x n diagonal
matrix with element [D];; = d;. Finally, the symmetric degree-normalised Laplacian is
defined as L =1,, — D 2AD'/2 where I, is the n x n identity matrix. Note that both
the adjacency matrix and the Laplacian are symmetric.

We assume that the concentration matrix K of the graphical model is a function of

the latent graph G and takes the form



where 02 > 0 is called the network-variance parameter and ¢ > 0 the network-dependence
parameter. Note that this definition guarantees that [K];; is zero if and only if ¢ and j are
not joined by an edge. The graph G thus determines the partial correlation network struc-
ture of the random vector Y. Note that the model also guarantees that the concentration
matrix is symmetric and positive definite.

In this work we assume that the latent graph G is generated randomly from a stochastic
block model (Holland et all [1983). A random graph is defined as a graph in which the
vertex set V is fixed and the existence of an edge in £ is determined by a Bernoulli trial,
independent of all other edges. The stochastic block model is an extension of the Erd&s-
Rényi random graph in which the vertex set V is partitioned into k subsets Vi, ...V,
typically referred to as communities. An edge is present between vertices ¢ and j with
probability p, if both vertices belong to V, and probability ¢, if they belong to V, and
V,, respectively, with s # v. Let 1,—, be equal to one if a = b and zero otherwise. We

formally define the stochastic block model as follows, see (Qin and Rohe| 2013).

Definition 1. Let z : V — {1,...,k} be the community assignment function. Let Z be
the n x k community membership matriz, such that [Z];s = 1,,—s. Let B be the symmetric
k x k matriz of community-specific edge probabilities such that [B|ss = ps and [Bls, = ¢so
if s £ v. In a stochastic block model with parameters Z and B, the probability of an edge

between vertices i and j is [B]..., and all edges are independent. It is convenient to write

G ~ SBM (Z, B) (2)

to indicate that a random graph G is a stochastic block model with parameters Z and B.

We require B to be invertible so that all & communities are distinguishable. We fur-
thermore assume that B is positive deﬁniteE] We assume there are no empty communities,
so that each column of Z has at least one non zero entry. Notice that Z defines the com-

munity partition V¥ = {V;, ...V} of the vertex set V. We let n, = |V,| denote the size of

2In fact, the algorithm we propose in this work can easily handle the case where B is negative definite.
This corresponds to a bipartite graph with a heterophilic community structure, where there are few edges
within the communities but many across them (Rohe et al.l 2010).
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community s. We may assume that the elements of V), are the first n; elements of V', the
elements of V5 the next no, and so on. Figure [1| gives an example of a stochastic block

model with n =100, £k =5, p, = p = 0.25 and ¢4, = g = 0.01.

Figure 1: THE STOCHASTIC BLOCK MODEL
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()Tgf figure displays a visual representation of a stochastic block model realisation with n = 100, k = 5, p = 0.25 and
q=0.0L

It is natural to characterize the behaviour of a random graph when n grows as a
function of the edge probabilities in B. For ease of notation, we introduce a common rate
variable p, that all the elements of B are proportional to, following [Sarkar and Bickel
(2013). That is, [B];; = b;jp, with b;; > 0 for all 4, j = 1,...,n. The regime where p,, is
constant results in a dense graph as n grows large, whereas regimes where the probabilities
shrink to zero yield less dense graphs. We make a distinction between the sparse regime
where p,, is proportional to 1/n and regimes where it shrinks to zero at a slower rate, for
example log n/n. In this paper we focus exclusively on the regime where logn/(np,) tends
to zero as n — oo which is termed the semi-sparse regime by Sarkar and Bickel| (2013)).

This is among the sparsest regimes where exact recovery of the communities is possible



(Abbe et al., 2014)). Furthermore, norm convergence of graph matrices is well established
in this regime, see (Oliveira, 2009; Chung and Radcliffe, 2011} |(Chaudhuri, Chung, and
Tsiatas, [2012)).

To summarise, we introduce a Gaussian graphical model for the vector Y where the
concentration matrix K is based on a latent random graph G with a community structure.
We call this model the stochastic block partial correlation network model and formally

define it as follows.

Definition 2. Let G ~ SBM(Z,B) be a stochastic block model as in Definition [1] Let
K be the n x n concentration matriz corresponding to the random graph G, defined as in
. In a stochastic block partial correlation network model, the n-dimensional vector' Y

is drawn from a multivariate normal with mean zero and covariance matriz 3 = K1,

2.2 A Partial Correlation Network Model with Communities with

Heterogeneous Degrees

In the stochastic block model, all vertices within a given community have the same ex-
pected degree. This is often an unrealistic assumption. In this section we extend our
methodology by assuming that G is generated by a degree-corrected stochastic block model
(Karrer and Newman| 2011)), an extension of the stochastic block model that allows for a

general degree distribution. A formal definition follows naturally from Definition [I}

Definition 3. Let z : V — {1, ..., k} be the community assignment function. Let Z be the
nxk community membership matriz, such that [Z];s = 1,,—s. Let B be the symmetric kxk
matriz of community-specific edge probabilities and let © be the n X n diagonal matrix of
non-negative, fived and unknown vertex-specific probability weights. In a degree-corrected
stochastic block model with parameters Z, B and ©, the probability of an edge between
vertices i and j is [0];[Bl;,;[®];; <1 and all edges are independent. It is convenient to
write

G ~ DCSBM (Z, B, ©) (3)



to indicate that a random graph G is a degree-corrected stochastic block model.

The edge probabilities in the degree-corrected stochastic block model are weighted
with vertex-specific weights 6; = [@]; > 0 for all i = 1,...,n, so that two vertices that
belong to the same community can have different expected degrees. Notice that © and
B are only unique up to a multiplicative constant. We follow Karrer and Newman| (2011))
and normalise 6; such that they sum to one within communities, that is, > . 6;1.,—; = 1 for
all s=1,..., k. Then [B];, can be interpreted as the expected number of edges between
communities s and v if s # v and twice the expected number of edges within community
sif s =w.

We introduce a generalisation of the stochastic block partial correlation network model
from Definition [2] based on the degree-corrected stochastic block model that allows for a

general degree distribution.

Definition 4. Let G ~ DCSBM (Z, B, ©) be a degree-corrected stochastic block model as
in Definition [3]. Let K be the n X n concentration matriz corresponding to the random
graph G, defined as in . In a degree-corrected stochastic block partial correlation network
model, the n-dimensional vector Y is drawn from a multivariate normal with mean zero

and covariance matriz X = K1,

2.3 The Blockbuster Algorithm

Suppose we observe a sample Yi,...,Yr of i.i.d. observations from a degree-corrected
stochastic block partial correlation network model as in Definition {] arranged into the
T xn matrix Y = [Y7,...,Y7]', and let k be the number of communities. The community
structure of the model is assumed to be unknown, although we assume that £ is known.
We adapt spectral clustering techniques to detect the communities of the model from
the sample in a procedure we call Blockbuster. The proposed algorithm detects the
communities using the eigenvectors of the sample covariance matrix.

We provide a description of the Blockbuster procedure in Algorithm [I] Given the

sample and the number of communities £, the procedure consists of first constructing the
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n x k matrix U of the eigenvectors corresponding to the k largest eigenvalues of the sample
covariance matrix 3 = (1/7)Y’ Y. We refer to this matrix as the matrix of partitioning
eigenvectors. Then form the matrix X by normalising the rows of U to unit length, that

A~

is, X = NU where N is an n x n diagonal matrix with its i-th element [ﬁ]” =1/ H [G]Z.

and H [Ul:a]| is the Euclidean norm of [Ul,, the i-th row of U. The algorithm then applies

k-means clustering to the rows of X. The k-means algorithm partitions a set of data

points into k clusters by solving the optimisation problem

n

min stinqui. —m,|% (4)

{m17“'7mk} .
=1

Let m* € R* be the vectors that solve it.ﬁ These vectors are called the centroids of the
clusters returned by k-means. Each row [)A(]Z. is then assigned to the cluster corresponding
to the centroid closest to it. This yields a partition Vk = {171, e ,ﬁk} of the vertex set,
which is our estimator of the community partition V¥.

It is well known that the exact solution of is NP hard, and that the standard iter-
ative algorithm for approximation to its solution is prone to finding local minima, which
may yield an approximation that is arbitrarily bad as compared to the optimal solution.
We may use a variant of the algorithm called k-means++ (Arthur and Vassilvitskii, 2007)),
which guarantees an approximation within O (log k) of the optimum. For the simplicity

of discussion, we assume that the minimum is computed. All theoretical findings remain

true for k-means-+-.

2.4 Theory

In this section we show that the fraction of vertices that are incorrectly clustered by

the [Blockbuster algorithm| tends to zero with probability approaching one as the cross-

sectional dimension n and the number of observations 1" grow. We hereafter refer to an

event that happens with probability approaching one as an event that happens with high

3If the k-th and k + 1-th are tied, we may take both.
4The solution to the problem is not necessarily unique, but this is not a concern. We let m* be some
set of vectors that achieve the minimum in .
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Algorithm 1 The Blockbuster Algorithm
INPUT: Sample Y; for t = 1,..., 7T, number of communities k.

PROCEDURE:
1. Compute the sample covariance matrix 3.

2. Construct the [n x k] eigenvector matrix U such that its columns are the eigenvectors
corresponding to the k largest eigenvalues of 3.

3. Standardise each row of U by its norm and denote the row-normalized eigenvector
matrix by X, so that [X],; = [U];;/ ‘[ﬁ]i. .

4. Apply the k-means algorithm to the rows of X.

OuTPUT: Return the k-means partition VE = {1/}1, o ,9k} as the estimate of the com-
munity structure.

probability. We work with the degree-corrected model as in Definition [4] in this section,
as the results for the homogeneous degrees model of Definition [2| may be recovered by
setting ® =1,,.

We introduce additional notation that is used throughout this work. Let ||A| and
|A||; denote the spectral and Frobenius norms of the n x n matrix A, respectively. We
denote the i-th smallest eigenvalue of A as \;(A) and the set of eigenvalues of A that are
in the interval S as Ag(A). Notice that we use the convention \;(A) < ... <\, (A). We
refer to the eigenvectors corresponding to the k largest (smallest) eigenvalues of A as its
k top (bottom) eigenvectors, counting multiplicities.

Define A = E[A] as the population adjacency matrix of the graph G. Notice that
if G is a degree-corrected stochastic block model, we may decompose the population

adjacency matrix as A = OZBZ'GO. We also define the population degree matrix D

n
J=1

as the diagonal matrix with [D]; = > '_[Al;j, the population normalised Laplacian
L =1,—D 2AD~"/? and the population concentration matrix K = (1/62)I,4(¢/0?) L,
analogously to D, L and K. In this section we state results in terms of the sample
concentration matrix K = f]fl, with U being the matrix of its bottom k eigenvectors.
Let U and U be the n x k matrices of the bottom k eigenvectors of K and KC, respectively.

Define N and A as n x n diagonal matrices with [N]; = ||[U]|| ™" and [Ns; = ||[[4]se]]

12



respectively. Let X = NU and X = MU be the row-normalised counterparts of U and
Uu.

To bound the fraction of misclustered vertices, we follow the strategy of Rohe et al.
(2010) and Qin and Rohe|(2013)). We begin by noting that the k-means objective function
of () can be written as

min Zmin”[fi]i.—msHQ: min H}A(—M‘

2
{mai,mp} = s MEM (n,k) r
1=

where

M(n, k) = {M € R™* : M has no more than k different rows}.

Let the estimated centroid matrix C be defined as

. ~ 2
C = argmin HX—MH . (5)
MeM(n,k) F

~

Its i-th row [C];e is equal to the k-means centroid that is closest to row ¢ of the eigenvector
matrix X, so that [Cli, € {m?, ... ,mj}. It is clear that the k-means centroid matrix
has no more than £ different rows. Let the population centroid matrix C be defined
analogously to with X replaced with XO, where O is a k x k orthonormal rotation
matrix that depends on X and X. This matrix is discussed in detail in Theorem . We
adopt the same definition of misclustered vertices as Rohe et al.| (2010) and |Qin and Rohe

(2013) and say that vertex i is correctly clustered if [Cl;, is closer to [C];e than any other

population centroid [C|;e for j # i. Define the set

M= {z : H[G]“ ~ [Clie

> 1/2}. (6)

The condition H[G]" — [Clie|| = +/1/2 is necessary for vertex i to be misclustered, as

shown and discussed in more detail in Lemma [2| The size of the set .# is thus an upper
bound of the number of misclustered vertices.

Theorem [1| bounds the fraction |.#Z|/n. The theorem is in the spirit of Theorem 3.1

13



from Rohe et al. (2010)) and Theorem 4.4 of |Qin and Rohe| (2013).

Theorem 1 (Misclustered Vertices). Consider a degree-corrected stochastic block partial
correlation network model as in Definition . Let A be as in @ Assume that B 1is
positive definite. Furthermore, assume that [B|;; = b;jp, with b;; > 0 for alli,j =1,...,n
and that logn/(np,) — 0 as n — oo.

Then

with high probability.

The theorem shows that the fraction of misclassified vertices goes to zero with high
probability under the assumption that logn/(np,) — 0 as n — oo and n/T — 0.

The strategy we follow to establish Theorem [I]is the following. Lemma[I]and Corollary
abstract from all randomness and show that Blockbuster recovers the partition Wk
trivially from the eigenvectors of the population concentration matrix . Theorem [2| uses
random matrix concentration results from Oliveira| (2009) and [Vershynin| (2010) to show
the concentration of the first k eigenvectors of K around those of K with high probability
as n,T — oo. Using these results, we can prove Theorem [} Proofs of the statements in
this section can be found in Appendix [A]

The following lemma is a slight variation of Lemma 3.3 from (Qin and Rohe (2013]).
The lemma establishes the form of the matrix of the bottom k eigenvectors of £, and its

row-normalised counterpart.

Lemma 1. Let G ~ DCSBM (Z, B, ©) be a degree-corrected stochastic block model as in
Definition . Let A = OZBZ'O be the population adjacency matriz, D the population
degree matriz, L = I, — D~ Y2 AD~Y2 the population normalised Laplacian, and \;(L) the
i-th eigenvalue of L. Assume that B is positive definite.

Then \i(L) =1 foralli =k+1,...,n and \; (L) € [0,1) fori=1,..., k. Further-
more, there exists a k x k orthonormal matriz V such that ©'/?Z (Z’@Z)_l/2 Viisannxk

matriz with the k bottom eigenvectors of L as columns and the row-normalised counterpart

14



of this matriz is ZV, that is, [ZV];; = [©Y?Z (2'©Z)* V);;/

1©°7(2'02) V],

fori,j=1,...,n.
An immediate corollary of Lemma (1] is:

Corollary 1. Let G ~ DCSBM (Z,B, ©) be a degree-corrected stochastic block model as
i Lemma . Let the population concentration matrix K be defined as J%In + %E as the
population analogue of and let U be the matrix of its bottom k eigenvectors. Assume
that B is positive definite.

Then \(K) = (1 + @)/o? for alli = k+1,....n and \; (K) € [1/0?, (1 + ¢)/0?)
for i = 1,... k. Furthermore, there exists a k x k orthonormal matrix V such that
U = ©Y2Z(Z'OZ) >V are the bottom k eigenvectors of K and X = ZV s its row-

normalised counterpart, that is, [X);; = [Ui;/||[Uie|| fori,j=1,...,n.

Corollary [1| establishes the form of ¢/ and its row-normalised counterpart X'. In par-
ticular, rows ¢ and j of & have the same direction if z; = z;, but are orthogonal if the

vertices do not belong to the same community. Row ¢ of &/ has length

0 1/2
| [U]il| = (m) (7)

and rows corresponding to vertices in the same community may thus have different lengths.
Furthermore, [X];e = [X],e if and only if [Z];e = [Z];e, so the rows corresponding to two
vertices that belong to the same community are equal in X. Hence there are only k&
different rows in X and k-means can trivially recover the partition V* from X by selecting
each of the different rows as centroids.

Theorem [2] establishes the concentration of the eigenvectors of K around those of K,

using concentration results from [Oliveiral (2009)] and [Vershynin| (2010)).

Theorem 2 (Concentration). LetY; fort =1,...,T be i.i.d. observations from a degree-

corrected stochastic block partial correlation network model as in Definition . Let K be

5Tt should be noted that Chung and Radcliffe (2011)) extend the results of Oliveira (2009) by improving
the bound and weakening the minimum degree assumption, both by a constant.
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the inverse of the sample covariance matrix, U the matriz of its bottom k eigenvectors
-1

and let U be as in Corollary . Let N and N be diagonal matrices with [N];; = H (Ul

and [N = ||[U)ie]| ", respectively. Let X = NU and X = NU be the row-normalised
counterparts of U and U. Assume that the matriz B is positive definite. Furthermore,
assume that [Bl;; = bijpn with b;; > 0 for alli,j =1,...,n and that logn/(np,) — 0 as
n — oo.

Then there exists a k X k orthonormal rotation matrix O, that depends on U and U,

[o-uol -0 /7 =22)

- xo] -0+ 2 )

such that

and

with high probability.

The theorem shows that the spectral norm of the difference between U and a rotation

of U is of the order O <\/n/T + +/log n/(npn)> with high probability as n and T grow.
The eigenvectors of K thus converge to the rotated eigenvectors of K with high probability
under the assumptions that logn/(np,) — 0 and n/T — 0| The theorem also establishes
that the spectral norm of X — XO is of the order O <n/\/T+ \/m>, which is
larger by a factor of y/n as compared to the unnormalised case. This implies that the
row-normalised eigenvectors do not necessarily converge under our assumption on the
probabilities, but the next theorem demonstrates that this is not a concern.

The estimated centroid matrix C was defined in H We define

C = argmin | XO — M|[7.. (8)
MeM(n,k)

We include the orthonormal rotation because the sample eigenvector matrix X concen-

trates around the rotated population eigenvectors XO as shown in Theorem [2 In the

6The rotation is required because K = K does not necessarily imply U = U. At the very least, the
columns might be permuted.
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degree-corrected stochastic block model we have C = XO = ZVO. It follows that
[Clie = [Z];aVO. Thus for the degree-corrected stochastic block model we can equiva-
lently define vertex i as correctly clustered if [Clss is closer to [Z];s VO than any other
rotated population centroid [Z];6 VO, j # i.

The next lemma provides a condition that implies that vertex i is correctly clustered.

The lemma is an extension of Lemma 3.2 of Rohe et al.| (2010).

Lemma 2. Let C be the estimated centroid matriz as in . Let 'V and the community
membership matrix Z be as in Corollary (1|, and let the orthonormal rotation O be as in
Theorem [2l.

Then for all j # 1

H[é]i. - [Z]i.VoH < H[é]i. - [Z]j.VOH

whenever H[(A?]l. - [Z]i.V(’)H </1/2.

The lemma justifies bounding the number of misclustered vertices by the number of
nodes that do not satisfy the condition H[@]Z. — [Z]"VOH < /1/2, which is sufficient
for vertex i to be correctly clustered. The set .# from @ hence contains the set of
all misclustered nodes. At this point, all the tools for proving Theorem [I| have been
established.

2.5 Discussion

A number of comments on the degree-corrected stochastic block partial correlation net-

work model of Definition [4] and the [Blockbuster algorithm| are in order.

Blockbuster is essentially an application of the spectral clustering algorithm of Ng
et al.| (2001) to the sample covariance matrix. Spectral clustering is a popular algorithm
that detects communities by applying k-means clustering to the bottom k eigenvectors
of the normalised Laplacian. For more background on spectral clustering and its various

versions, see von Luxburg (2007).
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An alternative approach to detect communities consists of estimating the partial corre-
lation network and then applying spectral clustering to the estimated network Laplacian.
The estimation of the graphical structure of the data is typically carried out using LASSO
techniques, which also requires the selection of a tuning parameter that determines the
sparsity of the estimated network. A highlight of our approach is that it allows one to
learn the community structure without estimating the structure of the network.

The stochastic block partial correlation network model bears some similarities to a
factor model with a block structure, that is, a model in which the variables in the system
are generated by a factor model and each variable is only loaded on by exactly one factor.
Examples of block factor models in the literature include Goldstein and Browne| (2002),
Choi, Kim, Kim, and Kwark| (2014)) and Moench, Ng, and Potter| (2009). However, a block
factor model is not equivalent to a stochastic block partial correlation network model in
general. Notice that a block factor model is associated with a partial correlation network
in which each community is a clique, that is, a sub-graph where every possible pair of
vertices is joined by an edge. Our model can replicate such network structures with p; = 1
and ¢, = 0, but it also allows for structures where the communities are less dense.

Our results in Section [2| hold without modifications when Y has a sub-Gaussian dis-
tribution. The family of sub-Gaussian probability distributions is characterised by a
super-exponential tail decay. A random variable Y is said to be sub-Gaussian when
P(Y|>t) < e/ for all t > 0, where C' > 0, see [Vershynin| (2010). Furthermore,
the analysis may be extended to heavy-tailed distributions at the cost of a worse bound,
where (nlogn)/T — 0 would be required for convergence, see Corollary 5.52 in |Vershynin
(2010).

The concentration results in Theorem [2] rely on the minimum degree being of order
Q2 (logn). While this is true under our assumption on the community-specific probabilities
in B for both the stochastic block model and the degree-corrected stochastic block model,
low vertex weights in ® may be problematic. A common way to deal with this problem
is to regularise the Laplacian as suggested in |Chen, Amini, Bickel, and Levinal (2012)) and

implemented in amongst others |Chaudhuri et al.| (2012), |Joseph and Yu (2013) and |Qin
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and Rohe| (2013)). We however do not pursue this for the concentration matrix in this

paper.

3 Extensions

3.1 Community Detection in the Presence of Common Factors

In this section we introduce an extension of the model in Definition [4]in which the compo-
nents of the random vector Y are influenced by a set of common factors, and a modification
of the Blockbuster algorithm that consistently detects communities in this setting.

Let F be an R-dimensional Gaussian vector of common factors with mean zero and

covariance matrix Ir and let g, be n-dimensional fixed vectors of factor loadings for

r=1,...,R. We assume that the random vector Y is generated as
Y =QF +e¢, (9)
where Q = [q1,q2,...,qgr| is an n X R matrix of factor loadings and € is generated

by a degree-corrected stochastic block partial correlation model as in Definition [4] with
covariance matrix .. We define the degree-corrected stochastic block partial correlation

model with common factors as follows.

Definition 5. Let G ~ DCSBM (Z, B, ©) be a degree-corrected stochastic block model as
in Definition [3l Let K¢ be the n x n concentration matriz corresponding to the random
graph G, defined as in . In a degree-corrected stochastic block partial correlation network
model with common factors, the n-dimensional vector'Y , defined as in @D, 18 drawn from

S . : , - R
a multivariate normal with mean zero and covariance matriz ¥ =K'+ 3" | q.q..

Consider a sample of i.i.d. observations drawn from the model in Definition [5| arranged
into a T'x n matrix Y = [Y7, ..., YT}/‘ Under appropriate conditions, the top R eigenvec-
tors of 3 = (1/T)Y'Y correspond to the R factors and the next k eigenvectors are the

partitioning eigenvectors. This motivates Algorithm [2} Given Y and k, first construct
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the n x k matrix U such that it contains the eigenvectors corresponding to the R + 1-th
largest to the R+ k-th largest eigenvalues of the sample covariance matrix 3. Then form
the row-normalised eigenvector matrix X as in Algorithm |1 and apply k-means clustering

to its rows.

Algorithm 2 The Blockbuster Algorithm in the Presence of Common Factors
INpPUT: Sample Y; for ¢ = 1,...,T, number of communities k, number of factors R.

PROCEDURE:
1. Compute the sample covariance matrix 3.

2. Construct the [n x k] eigenvector matrix U such that its columns are the eigenvectors
corresponding to the R + 1-th to the R + k-th largest eigenvalues of X.

3. Standardise each row of U by its norm and denote the row-normalized eigenvector
matrix by X, so that [X],; = [U];;/ ‘[ﬁ]i. .

4. Apply the k-means algorithm to the rows of X.

OuTpPUT: Return the k-means partition Pk = {]71, . ,91@} as the estimate of the com-
munity structure.

It is convenient to state the results of this section in terms of the concentration matrices
rather than covariances. Let K and K, be the population concentration matrices of Y and
e from (9)), respectively, and let u;(K) and w;(KCe) for i = 1,...,n be their eigenvectors.
Let U, be the n x k matrix of the bottom k eigenvectors of K, and I be the matrix of the
eigenvectors corresponding to the R 4 1-th smallest to the R + k-th smallest eigenvalues
of K, so that [U]e; = ursi(K) for i = 1,... k, where [U],; refers to the i-th column of U.

Throughout this section we assume that the factors are mutually orthogonal so that
q.q, =0 forall v =1,..., R, r # v. We furthermore assume that q.[U].; = 0, for all
r=1,...,Rand ¢« = 1,..., k. This assumption implies that the factor loading vectors
carry no information on the community structure nor the degrees of the underlying graph
G. We may assume without loss of generality that ||gi] > ||gz2]| > ... > ||qr||- Finally,
to guarantee that the factors are strong enough to be dominant in the spectrum I, we
assume that |gg||” is larger than a constant which does not depend on n. Notice that

this assumption is trivially satisfied when n is large enough, if we assume ||gz|° = O(n),
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which is standard in the factor model literature.
We now show that Algorithm [2| recovers the communities with high probability under
suitable conditions. Theorem [3| extends Theorem [1] to bound the fraction |.#|/n under

the model in Definition Bl

Theorem 3. Consider a degree-corrected stochastic block partial correlation network model
with common factors as in Definition . Let A be defined analogously to @ for this
model. Assume that B is positive definite. Furthermore, assume that [Bl;; = b;p, with
bij >0 foralli,j=1,...,n and that logn/(np,) — 0 as n — oco. Finally, assume that
q4q, =0rv=1,...,R, r#v,q[Ue=0foralr=1,...,Rand i =1,...,k, and

2 o'2¢
larll” > 175

Then

M n logn
Mo (Fimie+ £

NPn

with high probability.

We follow a similar strategy to Section [2] to establish Theorem [3] Lemma [3] extends

the population results in Lemma [I] and Corollary [I] to the model in Definition [5}

Lemma 3. Let G ~ DCSBM (Z, B, ©) be a degree-corrected stochastic block model as in
Lemma [I. Let the population covariance matriz in the presence of common factors be
Kt=K1+ Zf;l q.-q.., where K. is defined as %In + U%,C as the population analogue of
. Let U be the matrix of the R-th to the R + k-th bottom eigenvectors of KC. Assume
that B is positive definite. Furthermore, assume that q.q, = 0 r,v = 1,..., R, r # v,
qd.[Ule; =0 forallr=1,... Randi=1,....k, and ||qz|> > %

Then N (K) = 1/ (0%/(1 + ¢) + ||l@l*) fori=1,...R, X;(K) € [1/0% (1 + ¢)/0?) for
i=R+1,....,R+kand \y(K)=(1+¢)/0* for alli =R+ k+1,...,n. Furthermore,
there exists a k x k orthonormal matriz 'V such that U = @Y2Z (Z'OZ) >V are the
R+ 1-th to the R+ k-th eigenvectors of K and X = ZV 1is its row-normalised counterpart,

that iS, [‘X]U = [U]U/H[U]Z'H fOT Z,] = 1, o, n.
The R + 1-th to the R + k-th bottom eigenvectors of K contained in U thus allow
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k-means to recover the community partition, by a similar logic to before. Arguments

analogous to those in Section [2] then allow us to prove Theorem [3]

3.2 Community Structure and Covariance Estimation

The presence of a community structure in the data suggests a natural covariance estima-
tion strategy. The covariance matrix of the data can be estimated by a block covariance
matrix estimator where the diagonal blocks contain the sample covariance matrices of
each community, while the off-diagonal blocks are set to zero[] We provide a description

of an estimator based on this idea in Algorithm [3]

Algorithm 3 Blockbuster Covariance Estimator
INpPUT: Sample Y; for t = 1,..., T, number of communities k.

PROCEDURE:

1. Run the Blockbuster algorithm and obtain an estimate of the community partition
of the panel V¥ = {V, ..., V,}.

2. Reorder the series in the panel so that the first n; = \Vl\ series are the ones in
community Vl, the following ns series are the ones in VQ’ and so on.

3. Let f]s denote the ng x ng sample covariance matrix of the series in community 93.
4. The Blockbuster covariance estimator 3, g 1s defined as

i\)B’sv—{is =y

0;, 7, otherwise

where f]st denotes the (s,v)-th ng x n, block of f)B and Oy, 5, the ng X 7, matrix
of zeros.

OUTPUT: Return the Blockbuster covariance 3 B.

In case the data has a factor structure with R common factors as in the model in
Definition [f] we may employ a regularisation approach similar to POET (Fan, Liao, and

Mincheval 2013). Let A;() and uz(fl) denote the i-th eigenvalue and eigenvector of the

"Other possible shrinkage estimation strategies can be considered. For example, one could instead
shrink or threshold the off-diagonal blocks of the covariance matrix.
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sample covariance matrix. Then we can regularise the sample covariance of the data using

n

Sp= Y M(E)uw(D)ul(S) + Ra,

i=n—R+1

where ﬁB is the Blockbuster covariance estimator applied to the residual matrix R =

A~ A~

n—R «
2im1 Ai(B)ui(B)ui(X).

In the empirical application section of this paper we use the estimator described in
Algorithm [3]to validate the community partition estimated by Blockbuster out-of-sample.

Analysing the theoretical properties of the estimator is not the focus of this work however,

so we leave it open for future research.

4 Simulation Study

In this section we carry out a simulation study to investigate the finite-sample properties
of the Blockbuster algorithm.

The simulation exercise consists of simulating a sample of size T" on n vertices from
the stochastic block partial correlation network model in Definition [2] its degree-corrected
variant of Definition |4] and the degree corrected variant with common factors as in
Definition [} The number of communities & is set to 5 and each community has size
n/k. The edge probabilities are equal to p, = p = M for all s = 1,...,k and
Qor = q = M for all v,r =1,...,k, v # r. We calibrate ¢, and ¢, so that when
n = 100 the (p,q) pair is equal to either (0.25,0.01), (0.25,0.05) or (0.50,0.01). Note
that as the edge probabilities are functions of n, varying n changes the probabilities. The
network-dependence parameter ¢ is either 5 or 50 while the network variance o? is 1.
When simulating from the degree-corrected models, we draw 6; once from a power law
distribution f(z) = az® /x> for x > x,, with parameters z,, = 1 and o = 2.5, and keep
it constant over replications. In the model with common factors, we draw a single factor

q, = q once from a standard normal and keep it constant over replications.

We then apply the Blockbuster algorithm to the sample to recover the communities. To
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measure the quality of the Blockbuster partition VF we compare it to V¥ by calculating the
fraction of correctly classified vertices, which we call hit ratio. As we previously discussed,
Pk only estimates V* up to a permutation. As the number of communities & is low in our
simulations, we calculate the hit percentage for every possible permutation and select the
maximum as the final hit ratio figure.

We replicate the Monte Carlo experiment 1000 times for different values of n (50, 100
and 500) and 7" (50, 100, 1000 and 10000). The results of the study are summarised
in Table [I] for the stochastic block partial correlation network model, in Table [2| for
the degree-corrected model and in Table |3| for the degree-corrected model with common
factors.

Table 1: HiT RATIOS STOCHASTIC BLOCK PARTIAL CORELATION NETWORK MODEL

Panel A: ¢ =5 Panel B: ¢ =50
T=50 100 1000 10000 50 100 1000 10000
p/q n =50 n =50
0.25/0.01 74% 8% 9% 97% 90% 95% 97% 98%
0.50/0.01 93% 99% 100%  100%  100% 100% 100%  100%
0.25/0.05 43% 7%  70% 76% 47% 53% 74% 76%
n =100 n = 100
0.25/0.01 54% 2% 9% 98% 82% 93% 98% 98%
0.50/0.01 72% 92% 100%  100% 98%  100% 100%  100%
0.25/0.05 35% 37% 60% 76% 37% 41% 67% 78%
n = 500 n = 500
0.25/0.01 30% 33%  92% 99% 42% 61% 98% 99%
0.50/0.01 33% 43%  99% 100% 66% 87%  100%  100%
0.25/0.05 25% 26%  31% 76% 26% 27% 38% 82%
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Network Model of Definition |Zl The probabilities in the rows correspond to n = 100.

The table reports hit ratios for Blockbuster applied to simulated data from the Stochastic Block Partial Correlation



Table 2: HIT RATIO DEGREE-CORRECTED STOCHASTIC BLOCK PARTIAL CORELATION
NETWORK MODEL

Panel A: ¢ =5 Panel B: ¢ = 50
T=50 100 1000 10000 50 100 1000 10000
p/q n =50 n =50
0.25/0.01 2% 84% 95% 96% 88% 92% 95% 96%
0.50/0.01 90% 99% 100%  100%  99% 100% 100%  100%
0.25/0.05 43% 47%  64% 69% 47%  52% 67% 69%
n = 100 n = 100
0.25/0.01 52% 69%  95% 96% 9%  90% 96% 97%
0.50/0.01 70% 90% 100%  100%  96%  99% 100%  100%
0.25/0.05 34% 3%  55% 62% 37%  41% 58% 63%
n = 500 n = 500
0.25/0.01 29% 33% 88% 98% 41%  59% 96% 98%
0.50/0.01 33% 42%  98% 100% 65% 85% 100%  100%
0.25/0.05 25% 26%  31% 47% 26%  26% 35% 50%

The table reports hit ratios for Blockbuster applied to simulated data from the Degree-Corrected Stochastic Block Partial
Correlation Network Model of Deﬁnition@ The vertex-specific weight ® is drawn once from a power law with z,,, = 1 and

B = 2.5, and then kept constant over replications. The probabilities in the rows correspond to n = 100.

Table 3: HIT RATIO DEGREE-CORRECTED STOCHASTIC BLOCK PARTIAL CORELATION
NETWORK MODEL WITH COMMON FACTORS

Panel A: ¢ =5 Panel B: ¢ = 50
T=50 100 1000 10000 50 100 1000 10000
p/q n =50 n =50
0.25/0.01 1% 85%  95% 95% 88%  91% 94% 95%
0.50/0.01 90% 98% 100%  100%  99% 100% 100%  100%
0.25/0.05 43% 46%  64% 69% 46%  52% 66% 69%
n = 100 n = 100
0.25/0.01 52% 68% 95% 96% 7% 89% 96% 97%
0.50/0.01 69% 90% 100%  100%  96%  99%  100%  100%
0.25/0.05 31% 36%  55% 61% 36%  40% 58% 63%
n = 500 n = 500
0.25/0.01 29% 32% 8™ 98% 41%  58% 96% 98%
0.50/0.01 33% 41%  98% 100% 64%  84%  100%  100%
0.25/0.05 25% 26%  31% 46% 26%  26% 35% 50%

The table reports hit ratios for Blockbuster applied to simulated data from the Degree-Corrected Stochastic Block Partial
Correlation Network Model with Common Factors of Deﬁnition@ The vertex-specific weight ® is drawn once from a power
law with x,, = 1 and g = 2.5, and then kept constant over replications. The factor loading vector g is drawn once from a

standard normal and kept constant over replications. The probabilities in the rows correspond to n = 100.

Panels A of Tables [I] through [3] show the results for the three models with network
dependence parameter ¢ = 5, whereas panels B show the results when ¢ = 50. The first

two rows of panel A in Table [I| show that Blockbuster performs quite well when n = 50.
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If the probability of within-community edges is high as in the second row, the algorithm
has a 93% hit ratio even with a small sample of T'= 50. However, the results are worse
if ¢ is large relative to p as in the third row, even with a larger sample of 7' = 10 000. It
is clear that the results when n = 100 and n = 500 are worse than those with n = 50,
except when the sample size is very large. For larger n, more samples are required to
consistently estimate the covariance matrix and thus the community partition as the
results of Theorem (1| suggest. The first, fourth and seventh rows of the last column of
panel A in Table [I]show that with sufficient observations of 7" = 10 000, higher n improves
hit ratio. Comparing the results in panels B with A shows that the results improve across
the board with stronger network dependence. Comparing Table [I] with Tables [2] and
shows that the performance of Blockbuster is quite similar for all three models, with

performance slightly worse for the general degree and common factor models.

5 Real Activity Clustering

We use the methodology developed in the paper to study two panels of real activity
growth measures for the U.S. and Europe. Our objective is to partition the series in the
panels into communities characterised by a high degree of interdependence in real activity

growth.

5.1 Community Detection in the U.S.

For our first application we consider a dataset constructed by |Hamilton and Owyang
(2011)). The data consists of quarterly growth rates of payroll employment for the U.S.
states (excluding Alaska and Hawaii) from the second quarter of 1956 to the fourth of
2007, which results in a panel of n = 48 time series over 7' = 207 periods. The data are
seasonally adjusted and annualised. See Hamilton and Owyang| (2011) for further details
on the dataset.

Hamilton and Owyang (2011)) use their dataset to study business cycle synchronicity.

We summarise their findings for the purpose of comparison, even though they deal with a
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research question different from the one considered here. The authors introduce a Bayesian
methodology based on a Markov-switching model to cluster states into communities with
similar business cycle timing. They also propose a cross-validation procedure to estimate
the number of communities and find evidence of three clusters. We focus on the results
where they use a set of exogenous state level characteristics in addition to the employment
growth rate. They find (see right column of figure 3 in Hamilton and Owyangj, |2011) that
the states are partitioned, roughly speaking, into a cluster of oil-producing and agricultural
states, a cluster containing several East Coast states together with California, Arizona
and Colorado, and a cluster containing the remaining states. Note that our results are
not directly comparable with theirs, as we provide point estimates while they provide
community membership posterior probability. Moreover, they use more information than
us with the exogenous explanatory variables. It is also worth pointing out that in their
results some states have a low posterior probability of belonging to any cluster, whereas

in our algorithm every state is assigned to a community.

5.1.1 In-Sample Community Detection

We show the results of applying Blockbuster to the entire sample in Figure[2 A scree plot
suggests that the data has one common factor, so we apply Algorithm 2] with R = 1. The
number of communities is set to three as in Hamilton and Owyang| (2011). Our results
bear interesting similarities to their findings. The red community roughly matches the
first cluster of Hamilton and Owyang| (2011) and contains oil-producing and agricultural
states. The green cluster contains East Coast states, California and Arizona, which
roughly corresponds to their third cluster. Finally, the remaining states are Mid West
states together with Alabama. Notice that the communities estimated by Blockbuster
mostly form geographically contiguous areas even though no spatial information is used

in the algorithm.

27



Figure 2: U.S. REAL AcTIviTY CLUSTERING (k = 3)

The figure displays the U.S. communities detected by Blockbuster when the number of communities is set to three.

We also run the Blockbuster algorithm with the number of communities set to two and
four. The results are reported in Figure (3l When the number of communities is set to two,
the algorithm partitions the U.S. into East Coast states together with California, Arizona,
Missouri and Tennessee, and a residual cluster containing all remaining states. When the
number of communities is set to four, in comparison to the baseline case, the oil-producing
and agricultural states community gets split into into two separate clusters and California
and Arizona are absorbed into the cluster containing oil-producing states. Note that the
community corresponding to the East Coast is relatively stable across different choices of

the number of clusters.

Figure 3: U.S. REAL ACTIVITY CLUSTERING (k =2 AND 4)

The figure displays the U.S. communities detected by Blockbuster when the number of communities is set to two (left)
and four (right).
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We report in-sample statistics on the Blockbuster partition in the left panel of Table [4]
The table reports the average correlation between states in the same community and the
average correlation between states in different communities. For k equal to 3 and 4, the
intra-community average correlation is around 0.15 while the inter-community correlation
has a much smaller magnitude. In the case of k = 2 the intra-community correlation is
smaller. Detailed inspection of the results shows that this is driven by the low number of
clusters. The average correlation between states in the green community is 0.13, but the
correlation in the residual cluster is close to zero. We interpret this as the consequence of
the residual cluster being the union of smaller communities. The table also reports the
proportion of variance explained by the principal components ranging from 2 to k£ + 1,
for k ranging from 2 to 4. The first principal component in the panel explains 50% of
the total variance. The proportion of the variance explained by the principal components
associated with the communities is sizeable and lies between 12% and 19% of the total

variation of the panel.

Table 4: U.S. REAL ACTIVITY CLUSTERING

In-Sample Analysis Out-of-Sample Analysis
k 2 3 4 k 2 3 4
Avg Cor Within Blocks 0.079 0.134 0.164 KL Loss 285.0 282.0 286.4
Avg Cor Between Blocks -0.098 -0.086 -0.074 Rel Gain Sample Cov 2.046 3.077 1.590
Prop of Explained Var 12.294 16.272  19.453 Rel Gain POET(k+1) 4.346  -0.631  -4.465
Rel Gain LW 17.689 18.556  17.307
k-means Loss 23.511 20.151 17.348 k-means Loss 23.497 29.461 28.018

The table reports summary in-sample and out-of-sample statistics for the Blockbuster results for different choices of
the number of communities k. The in-sample statistics are the average correlation between states in the same community,
the average correlation between states in different communities, the proportion of variance explained by the principal
components ranging from 2 to k + 1 and the loss of the k-means algorithm. The out-of-sample statistics are the Kullback-
Leibler loss of the Blockbuster covariance estimator, the relative gain of the Blockbuster covariance estimator with respect
to the sample covariance estimator, the relative gain with respect to the POET covariance estimator, the relative gain with

respect to the Ledoit and Wolf shrinkage covariance estimator and the out-of-sample k—means loss (defined in the text).

5.1.2 Out-of-Sample Community Validation

We carry out an out-of-sample validation exercise to assess the performance of the Block-
buster community detection algorithm on the basis of the covariance regularisation proce-

dure described in Algorithm 3] The validation exercise is designed as follows. We split the
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entire sample into an in-sample and an out-of-sample period, each containing 50% of the
entire sample. We estimate the Blockbuster covariance matrix in-sample and then evalu-
ate the estimator out-of-sample by predicting the out-of-sample sample covariance matrix
of the panel. Since there is evidence of one factor in the data, we apply the Blockbuster
covariance estimator which accounts for one factor. We measure the precision of the fore-
cast on the basis of the Kullback-Leibler loss proposed by Stein (Steinl (1956} |Pourahmadi,
2013). We run the procedure with the number of communities ranging from two to four.
We compare the performance of the Blockbuster covariance estimator with the (standard)
sample covariance as well as the POET covariance estimator (Fan et al., [2013), which is
a regularisation procedure based on an approximate factor model representation of the
panel, and the Ledoit and Wolf shrinkage covariance estimator (Ledoit and Wolf, 2004)).

We report the out-of-sample results in the right panel of Table[d] The table reports the
Kullback-Leibler loss of the Blockbuster covariance estimator as well as its relative gain
over the sample covariance, POET and shrinkage covariance estimators. The table shows
that when the number of communities is set to two the Blockbuster estimator achieves
the best out-of-sample performance, and that it performs favourably relative to the set of
alternative estimators considered.

As an additional out-of-sample diagnostic, Table [4] also reports what we call the out-
of-sample k-means loss. This is defined as the loss of the k-means algorithm in the
out-of-sample period of the k-means partition estimated in the in-sample period. It is
interesting to notice that k equal to two is the only instance in which the out-of-sample

k-means loss does not inflate considerably with respect to in-sample k-means loss.

5.2 Community Detection in Europe

For our second application we construct a dataset using data from Eurostat. The data
consists of yearly growth rates of the gross regional product (GRP) for the first-level
European Nomenclature of Territorial Units for Statistics (NUTS 1) regions of Europe

(excluding Iceland and Turkey) from 2000 to 2013, which results in a panel of n = 99 time
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series over T = 13 periods. The GRP data is in purchasing power standard units. The
analysis of this panel is clearly more challenging, as the large sample theory developed in
the paper is not applicable in this setting. However, simulations suggest that even when
T is much smaller than n the Blockbuster algorithm performs satisfactorily provided
that the probability of the intra-community linkages is sufficiently strong relative to the
probability of inter-community linkages. Due to size of the sample, we only carry out an

in-sample analysis.

5.2.1 In-Sample Community Detection

We show the results for Europe in Figure [ A scree plot suggests that the data has
one common factor as for the U.S., so we use Algorithm [2] setting the number of factors
to one. As we have little guidance from the literature on how to choose the number of
clusters, and due to the fact that the dataset exhibits a higher degree of heterogeneity
than the U.S. dataset, we let the number of communities range from five to eight. In the
following discussion we focus on the clustering results when then number of communities
is set to seven. Blockbuster finds mostly geographically contiguous areas. The four largest
European economies (France, Germany, Italy and the UK) essentially form clusters of their
own. In some cases, these clusters also include smaller neighbouring economies that have
strong economic ties with these large economies. For instance, Ireland is in the UK cluster
and Albania is in the Italian cluster ] On the other hand, smaller economies form larger
clusters made up of more regions. For instance, there is evidence of a Southern European
cluster, containing Greece, Portugal and Spain (with the exception of Catalonia), as
well as a Central-Eastern European cluster containing (among others) Austria, Finland,

Poland, Romania, and parts of Sweden and Switzerland.

8Ttaly is the main trade partner of Albania for most of the years in the sample.
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Figure 4: EUROPE REAL AcCTIVITY CLUSTERING (k =5,6,7 AND 8)

The figure displays the Europe communities detected by Blockbuster when the number of communities ranges from five
to eight.

We report statistics on the Blockbuster partition in Table The table reports the
average correlation between regions in the same community and the average correlation
between regions in different communities. In comparison to the U.S. results, the European
panel exhibits a higher degree of intra-community correlation. Overall, the clustering
results provide interesting insight into the community structure of Europe, despite the

small sample size.
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Table 5: EUROPE REAL ACTIVITY CLUSTERING

In-Sample Analysis

k 5 6 7 8

Avg Cor Within Blocks 0.476 0.495 0.491 0.511
Avg Cor Between Blocks -0.109 -0.086 -0.065 -0.064
Prop of Explained Var 27.900 30.035 31.492 32.766
k-means Loss 36.660 38.547  39.423  39.365

The table reports the average correlation between regions in the same community, the average correlation between regions
in different communities for different choices of the number communities k, the proportion of variance explained by the

principal components ranging form 2 to k and the loss of k~means algorithm.

6 Conclusion

In this paper we consider the problem of community detection in partial correlation net-
work models. We begin by introducing a class of Gaussian graphical models in which
the underlying network structure is random and determined by a latent random graph
(Chung and Lu, 2006 van der Hofstad, 2015). We use this framework to introduce a class
of graphical models with a community structure by assuming that the latent random graph
is a degree-corrected stochastic block model (Holland et al., 1983} |Karrer and Newman,
2011). The degree-corrected stochastic block model is a random graph in which vertices
are partitioned into different communities and the probability of an edge between two
vertices depends on the communities the vertices belong to and a vertex-specific weight.

A natural question that arises in this framework is how to detect communities from
a random sample of observations. We propose an algorithm called Blockbuster to tackle
this task. The algorithm uses the k-means clustering procedure on the top eigenvectors
of the estimated covariance matrix to detect communities. We study the large sample
properties of the algorithm and establish consistency of the procedure when the number
of variables n and observations T is large. A simulation study shows that the method
performs well in finite samples.

A number of extensions of the baseline methodology are introduced. First we extend
the baseline methodology to the case where pervasive factors affect the dependence struc-

ture of the data. Second, we introduce a covariance regularisation procedure based on
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Blockbuster which is motivated by the special block covariance structure of the model.
We apply the methodology to study real activity clustering in the U.S. and Europe.
The objective of the application is to partition the two panels into communities char-
acterised by a high degree of interdependence in real activity growth. For the U.S. we
employ a dataset of quarterly employment growth rates for the states from 1956 to 2007
constructed by Hamilton and Owyang| (2011, whereas for Europe we construct a dataset
of yearly GRP growth rates for the NUTS 1 regions from 2000 until 2013 using data
from Eurostat. Results show that Blockbuster detects a meaningful partition of the series
in the panels. Interestingly, the procedure performs well in the European panel despite
the short sample size. In the U.S. panel we design an out-of-sample validation exercise
and show that the covariance regularisation procedure based on Blockbuster improves

covariance prediction compared to a number of alternative procedures.
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A  Proofs

Proof of Lemma([]. See Lemmas 3.2 and 3.3 of Qin and Rohe (2013)) and let 7 = 0. Their
proof is for the matrix —£ + I,, which is easily translatable to our case. In the case of
© = I, see Lemma 3.1 in Rohe et al| (2010), as the proof of Qin and Rohe| (2013) is
based on the normalisation of #; such that they sum to unity within communities. O]

Proof of Corollary[]. The results follow from the fact that the spectra of K and L are
closely related, as K = (1/0%)L, + (¢/c?)L. O

Proof of Theorem[J. We first consider the normalised Laplacian L = I, — D™/2AD~1/2,
where A and D are the adjacency and degree matrices, and its concentration around
its population counterpart £. Let dpm = [D]s be the minimum expected degree of G
and apply Theorem 3.1 from |Oliveira, (2009), which is reproduced in Appendix [B| for
convenience. For any constant ¢ > 0 there exits another constant C'(¢) > 0 such that if

dpmin > C(c)logn, then for all n™¢ <n <1/2

IP’(HL—£||§14 k’gd(‘lﬂ> >1oy

min

In our case dpin = Q(np,), since all the elements of B are of the same asymptotic order

pn- We hence have
1 1
dmin NPn

with high probability. By the definition of K and K, this implies

IK — K| :o( log”) (10)

NPn

We next bound the spectral norm of the difference between ¥ and 3 with Theorem
5.39 and Remark 5.40 from [Vershynin| (2010) for sub-Gaussian random variables. A
random variable Y is said to be sub-Gaussian when P (|Y| > t) < e!"#/¢" for all t > 0,
where C' > 0 is a constant, and the sub-Gaussian norm of Y is defined as Y, =

sup,>q p~ /2 (E|Y|p)1/p, see [Vershynin (2010)) for more details. In particular, Gaussian
random variables are sub-Gaussian. As the Y; are centred, independent Gaussian random
vectors in R™ with second moment matrix 3, we have, for every s > 0

P (Hz - E:H < max(6, 52)”zu> > 1— exp (—cs?)

with 0 = C\/? + \/LT’ and C' > 0 and ¢ > 0 depend only on the maximum of the sub-

Gaussian norms of the isotropic random vectors £/2Y;, which are standard Gaussian
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and hence bounded by absolute constants. Now let s = v/C'n where C’ is a constant.
Then for C” sufficiently large

P (HZ — f]” < max(4, (52)HEH) >1—exp(—cC'n) >1—exp(—n),

where § = (C’ + \/@) \/¥ Hence

P(|=-2) <cry2) 2 1-ew-n

with ¢ = (C + \/C’> |X]| > 0 a constant. Note that ||X]| is bounded due to the sparsity

of the underlying graph G. To see this, note that the top eigenvalue of 3 is the reciprocal
of the smallest eigenvalue of K. Weyl’s inequality and establish that the eigenvalues
of K converge with high probability to those of IC as n grows large, under our assumption
on p. Corollary[dshows that \;(K) € [1/0?, (1+¢)/c?]. In particular, as £ is non-negative
definite and its rows sum to zero, A;(£) = 0 so that A\; (K) = 1/0?. Hence with high

probability
~ n
E—EH:O ny 11
| (V%) i

To turn this into a statement about the concentration matrix, note that we may write
& x| - [ (=-2) x| < [&]|}=- =] ]|

by the Cauchy-Schwarz inequality. Applying Weyl’s inequality with implies that the
eigenvalues of 3 converge to those of 3 with high probability, provided that n/T — 0. As
S is invertible, this implies HI/{H — HKH with high probability under the same conditions.

We showed in the previous paragraph that the eigenvalues of K converge to those of .
Taken together with the results of Corollary [1], this implies ||[K| — (1 + ¢)/0? with high

probability. Therefore
- - n
[k-x]|=o(J=-=[) =0 (/)

o (1 I

by the triangle inequality and ([L0)).

We next apply the Davis-Kahan theorem (Davis and Kahan| (1970)), Stewart and Sun
(1990), Bhatia; (1997)) to bound the angles between the subspaces of the bottom k eigen-
vectors of K and K, see Appendix |Bffor a statement of the theorem. We need to choose
the interval S such that it contains the k smallest eigenvalues of both K and K to ensure

Then we have
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that the subspaces in question are comparable. Weyl’s inequality yields

&) )] <[] <0 (5[] e

so that the eigenvalues converge with high probability under our assumption on p. We
follow Sarkar and Bickel| (2013)) and define v = (Ag11(K) — Ae(K))/4 > 0, a = A (K) — 27,
b = M\(K) + 27 and let S = [a,b]. The interval S contains only the k first eigenvalues

of IC by construction. Notice that for n large enough, ~ > HIA( — ICH Hence S also

contains only the first &k eigenvalues of K with high probability. Finally, notice that the
eigenvalues of interest are isolated from the rest of the spectrum in the sense that the
set (a —~v,a+v)U(b—,b+ ) contains none of the eigenvalues of K or K with high
probability. We define

0 =min{|A —s| : A € Ag(K),s € S}.

It follows that & = A\ 1 (K) — b = (A1 (K) — M(K))/2. We have 6 € (0,¢/(202%))] b
Corollaryl Let sin @ (U U> be the k x k diagonal matrix of the sines of the prlnmpal

angles between the column spaces of U and Y. The Davis-Kahan theorem gives

e (020 < 5 o )

To convert this into a direct statement about the eigenvector matrices, note that

o (0)|, =0 ({7 /221)

as sin ¢ (ﬁ,bf) is a k x k diagonal matrix. Apply the singular value decomposition to

U'U and decompose it as F®G’, where F and G orthonormal & x k& matrices and ¥ a
diagonal matrix of the singular values. We can then directly apply the arguments made
in Appendix B of Rohe et al. (2010)) to obtain

0-uo| =0 (@ +1/1;§j) 1s)

with high probability, where O = FG' is a k x k orthonormal rotation matrix that depends
on U and U. Note that we furthermore require n/T — 0 to guarantee that the eigenvalues
converge, to ensure that U and U contain comparable eigenvectors.

We next bound H)A( — XOH = Hﬁﬁ — NZ/{OH. For this, we first consider the conver-
gence of N to . Notice that implies
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foralli =1,...,k, by the definition of the operator norm and the fact that the Frobenius

norm bounds it. It then follows that
In [logn
=0 — )
( T + (s )

As the rows of U and U have only k elements

J;([ﬁ]ﬁ[u]j.[o].iy H[ﬁ]j.—[mj,ouz%\@ﬂ/%)

which bounds the row norms of U — #O. Notice that [N~} — A1), = H[ﬁ]].

H[L[] j.OH by the definition of N and N , and the fact that the Euclidean norm is in-
variant under orthonormal transformations. Then by the triangle inequality, we have
‘H[ﬁ]]. — H[L{]j.om < H[ﬁ]]. — [U]joOH which implies

as N1 — N~!is a diagonal matrix. Finally, note that Hﬁ — NH = Hﬁ(/\/‘l - ﬁ_l)NH <
|| e -5

Hﬁ—1 _ AL

approaches || as n — oco. Hence we have

oo (w72

with high probability. Notice that ||N|| = 1/ min;||[U];]|, the reciprocal of the shortest
row length of . Let | = argmin,||[U];q||. It then follows that

0,1, \"?
i = (Z52) <o (ym) =0 (v

from as 0; are constants. Hence, we have

B n logn B n logn
HN—./\/'H—O<\/H<\/;—I— npn>>_0(\/f+ o > (14)

It remains to put the pieces together. We may write

Hﬁﬁ —NL{OH - H(ﬁ ~ MU+ NU —NMOH

- H(N — )T +UO —UO) + N(T +UO - UO) —NuoH
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— H(ﬁ—/\/)(ﬁ—uc)) + (N = MUO +N(ﬁ—uO)H.
The triangle inequality then implies
|NT - wvuo|| < [|(N = AT - uo)| + [N = muo| + |MT -uo)|.

Notice that [|[/O|| is a constant, as the matrix /O has k columns of unit length. This
fact, taken together with and yields

st 55 ) o )

with high probability. Note, as before, that we require that n/7" tends to zero to guarantee

that the eigenvalues converge, to ensure that X and X contain comparable eigenvectors.
m

Proof of Lemma[3 This follows from a straightforward extension of the proof of Lemma
3.2 from Rohe et al. (2010). Furthermore, see the proof of Theorem 4.4 of |Qin and Rohe
(2013). ]

Proof of Theorem[]. The proof follows the approach in Rohe et al| (2010)), Sarkar and
Bickel (2013) and |Qin and Rohe (2013) closely. Note that as C € M(n, k)
[x-¢f, <[~ (15
F F
and by the triangle inequality

-l <[], + [%-c], <2z -]

F’
where the last inequality follows from ((15]).
We now bound the cardinality of the set of misclustered vertices. To this end, it
suffices to bound the size of the set .#. Notice that
) =3 1<2 ZH[@L‘- _[Z],.VO
i i

2

~ 2 ~ 2 ~ 2
F F F
The first inequality follows from the definition of .# in @ The second follows from the

A 2 ~ 2
fact that >, H [Clie — [Z]i.VOH = HC — C‘ and that the sum only includes a subset
F
of the vertices. The final inequality follows from . Theorem [2| implies

[r o], oG -"2")
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as H)A( — X(’)HF < \/EH}E — XOH for a rank k& matrix. It follows that
n? logn logn n? logn
— = 2 - j
| A | O<T+pn+n Tpn> O(T+pn)

L1 (1 k)
n T np,

and

It should be noted that the same result is obtained if the unnormalised eigenvec-
tors U are used in ([15). The definition of the set .# would change to .Z = {i :

H[(A]]Z. - [Z]i.p,(’)H > +/1/(2n,)} where n, = O(n) is the size of the largest community
(see Lemma 3.2 of Rohe et alf(2010)). The final result would thus be

~ 2 2]
U_uq\:o(£+0yﬁ
F T Pn

) <203 [ € - (2 VO|| < sn,
ieM

as before. ]

Proof of Lemma[3. We consider a perturbation of the matrix K_!, the spectrum of which
we know from Corollary [T, and wish to find the eigenvalues and eigenvectors of the matrix
Kt =K'+3" g.q.. We proceed by induction and consider K7 = K- + q,q) first.
We then find the eigenvectors of K1 = K' = Kz, + grgi given those of K5 .

Notice that the eigenvectors of K¢, u;(K,), form a basis in R™. We may then write g,
as a linear combination

q = Z %',1’UJZ‘(ICE),
i=1

where v;, are scalars. The assumption that g}[Ul].; = 0 then amounts to v;; = 0 for
t=1,...,k, so that
q = ’Yk—&—l,luk;—&—l (’Ce) + ...+ /yn,lun(’(:e)-

We guess and verify the eigenvectors and eigenvalues of Ky using the eigenvalue equa-

tion
/Cflu,(lCl) = )\i(lCl)*lui(lCl)

and ensure they are mutually orthogonal. We begin with the bottom eigenvalue and
eigenvector of K; and guess A\ (K1)~ = \,(Ko)™' + [l@|> and wi (K1) = qi/||qi]|. We
have

Kitai= (K +ad) @ =K 'qy + @i @ = (MK ™+ lan]?) @i,

where the last equality follows from

Kolgi = Z Vil Ky (Ke) = Z Yiahi(Ke) T 'ui(Ke) = M(Ke) '
i=k+1 i=k+1

as A\(Ke) = M(Ke) for i = k+1,...,n from Corollary [I Dividing through by ||g:|| we
have the eigenvector.

43



Next we consider the second to the k4 1-th bottom eigenvalues and eigenvectors of IC;.
We postulate A1 (K1)t = \(Ke)™ and uy (K1) = w;(K,) for i = 1,... k. Consider

Ki'wi(Ke) = Kwi(Ke) + aigrus(Ke) = K ui(Ke) = Ni(Ke) ™ us(Ke)

for i = 1,...,k, which follows from the fact that the bottom k eigenvectors of K_ ! are
orthogonal to q;.
It remains to find the last n — k& — 1 eigenvectors of ;. Let

un(’C1> - ’Yn—l,lun(lce) - f}/n,lun—l(lce)
and

n 2
Zj:n—i Vi1
Yn—i—1,1

un—i(lcl) - ’Yn,lun(’(:e)—l'/}/n—l,lun—l(’Ce)+- . ~+’7n—i,1un—i(lce)_ ( ) un—i—l(lce)

for all i = 1,...n — k — 2. These vectors are orthogonal to q;, as the last term always
cancels out all the others. They are also orthogonal to each other by a similar argument.
Returning to the eigenvalue equation, we have

ICl_lui(Kl) = (’Ce_l + Q1(1/1) ui(lcl) = ’Ce_lui(lcl) = A\n (’Ce)il ui(K:l)

for i = k+2,...,n. Dividing through by the norm delivers the remaining eigenvectors of
K1, all with eigenvalue A, (K¢)™t.

Now assume that we know the eigenvectors w;(}Cr_1) of Kr—1. We look for the eigen-
vectors of K~! = K;' = Ki' | + qrql and note that Kp' | = K21 + Zf:ll g-q... Proceed-
ing as before, we begin with the bottom R eigenvalues and eigenvectors of K and guess

M) P =M (Keo) ™t + ||ql||2 and u,(K) = q;/||q;|| for i = 1,... R. We have

R
K 'g = (Kel - quq£> =K 'q+ |lal’a = Cu(K)™ +lal®) @

r=1

foralli=1,...,Rasqlq,=0forallv=1,..., R, v #i. Wenext postulate A\gy;(K)™' =
Ni(Ke)™ and uri(K) = ui(Ke) for i =1,..., k. As before

R
K 'wi(Ke) = K 'ui(Ke) + ) qrgiun(Ke) = K 'ui(Ke) = \i(Ke) i (Ke)
r=1

for i = 1,..., k. Finally, notice that K is a rank-one update of Kr_1, so we may apply a
similar logic to before: Notice that w;(r_1) form a basis for R” and write

arn= > “irwi(Kp_1).

1=R+k

Then let
’U,n(IC) = ’Ynfl,Run(KRfl) - ’Yn,Runfl(’CRfl)
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and

> ;
j=n—i JiR
TYn—i—1,R

) unfifl(KRfl)

W—i(K) = Yo gUn (Kr—1)+Yn-1,8Un—1(Kg_1)+. . - +Yn—i gUn—i(Kr_1)— (

foralli=1,...n—k— R — 1. From the eigenvalue equation
K~ (K) = (}C;zl_1 + QR(I;%) u;(K) = Kplyui(K) = A, (’CR—l)il u;(K)

foralli=1,...n —k — R — 1. Notice that by induction A, (ICR_l)*1 =\, (lCe)fl. After
normalising, we have the last n — k — R eigenvectors, all with eigenvalue A, (lCe)_l. O]

Proof of Theorem[3. We have

R R
K+ qq - <i€;1 + quq;) H = K -k =0 ( ljff)") ,
r=1 r=1 n

where the last step follows from the fact that |K.— K[| = O (x/log n/ (npn)> from
Theorem [2 and that ||X!| is bounded by Lemma [1] This implies

1
K- K| =0 ( Og”>
npn

as [|K|| is bounded by Lemma 3]
We next bound the spectral norm of the difference between ¥ and 3. We have, for
every s > 0

e - -

P (HE — EJH < max(9, 52)||§]||> > 1 —exp (—cs”)

with § = C'\/? + \/if, and C' > 0 and ¢ > 0 are bounded by absolute constants. Now let

s = v/ (C'n where C' is a constant. Then for C” sufficiently large

P (HE — i” < max(4, 52)HEH) >1—exp(—cC'n) >1—exp(—n),

where 6 = (C’ + \/5) \/g Hence

P(|=-2 <cimiy3) 2 1-ewion

with C" = (C’ + C”) > 0 a constant. Hence with high probability

-5~ o ()
x| o )
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as ||K]|| is bounded with high probability. Then we have

-] < 2] o] <0 (im0

by the triangle inequality. We may then apply the Davis-Kahan theorem in a similar way
to before in the proof of theorem [} Finally, applying similar arguments as in Theorem

M 1
n np

n
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B Technical Tools

This appendix provides some results that are used in Sections [2| and [3] These have been
adapted to our notation and purposes.

The following result of |Oliveira; (2009) bounds the spectral norm of the difference
between the Laplacian and the population Laplacian.

Theorem B.1 (Theorem 3.1 of Oliveiral (2009)). Consider a random graph on n vertices
G = (V,&) where (i,j) € & with probability p;; = pj;; independently. Let L and L
the normalised Laplacian and population normalised Laplacian corresponding to G. Let

dmin be the minimum expected degree of G. For any constant ¢ > 0 there exists another
constant C(c) > 0 independent of n and the p;;, such that if dp, > C(c)logn, then for

alln=c<n<1/2
log (4
IP’<||L—£||§14 M) >1-1

mwn

Proof. See Oliveiral (2009). O

We follow von Luxburg (2007) and Rohe et al| (2010) in the discussion of principal
angles and the following theorem. Principal angles, also called canonical angles, are a
common way to measure distances between subspaces. If W and W are n x k matrices
with orthonormal columns, the singular values of W/ are the cosines of the k& principal
angles between the column spaces of W and W. Let sin® (W, W) be a k x k diagonal
matrix of the sines of the principal angles of W and W. The following theorem, known
as the Davis-Kahan theorem (Davis and Kahanl (1970), Stewart and Sunl (1990), Bhatia
(1997))), bounds the principal angles between the eigenspaces of two symmetric matrices.
We only need to consider the case where the eigenspaces are of the same dimension.

Lemma B.1 (Theorem 7 of von Luxburg (2007)). Let A and B be symmetric n x n
matrices. Let S be an interval and A\g(A) the set of eigenvalues of A that are in the
interval S and \g(B) the same for B. Let Ag(A) denote the eigenvalues of A that are
not in S. Define W as the image of the spectral projection induced by As(A) and W as
the analogous for \g(B). Assume that both W and W are n X k. Finally, let

0 =min{|A — s/ : A € Ag(A),s € S}

and sin ® (W, W) be the k x k diagonal matriz of the sines of the principal angles of W

and W. Then
|A-B|

)
Proof. See Bhatial (1997) and Stewart and Sun| (1990). O

|sin® (W, W)|| <

The next theorem bounds the spectral norm of the difference between the sample
covariance matrix and its population analogue.

Theorem B.2 (Theorem 5.39 and Remark 5.40 of Vershynin| (2010)). Assume A is a
T x n matriz the rows of which a;e are centred, independent sub-Gaussian random vectors
with second moment matriz 3. Then for every s > 0

1
P (HfA’A — EH < max(9, (52)H2H) > 1 —exp (—cs?)
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with 0 = C\/? + \/if C > 0 and ¢ > 0 are absolute constants that only depend on the

mazimum, of the sub-Gaussian norms of the isotropic vectors X~ /?a,,.

Proof. See Vershynin| (2010)). O
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