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Abstract

We propose a novel framework for using consensus survey forecasts to estimate
economic uncertainty, defined as the conditional volatility of unanticipated fluctua-
tions. Comprehensive information contained in survey forecasts enables us to capture
the unanticipated fluctuations in a parsimonious but efficient way. We jointly estimate
macroeconomic (common) and indicator-specific uncertainties of nine indicators in a
framework that extends a Factor Stochastic Volatility model to incorporate different
starting dates of indicators. Our macroeconomic uncertainty has three major spikes
aligned with the 1973-75, 1980, and 2007-09 recessions, while other recessions were
characterized by increases in indicator-specific uncertainties. We also demonstrate for
the first time in the literature that the selection of data vintage affects the relative
size of jumps in estimated uncertainty series substantially. Finally, our macroeco-
nomic uncertainty has a persistent negative impact on real economic activity, rather
than producing “wait-and-see” dynamics.
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1 Introduction

The literature on the impacts of uncertainty on real economic activity has recently witnessed

a rapid growth following the last Financial Crisis and Great Recession.2 Several studies

have aimed at empirically quantifying the effect of uncertainty. Central to these studies is

a need for a measure of time-varying uncertainty, as uncertainty is not directly observable.

Bloom (2009) has pioneered the use of the VIX, the implied stock market volatility based

on the S&P index. Others have used different approaches to quantify uncertainty. For

example, Bloom et al. (2012) use the cross-sectional dispersion of total factor productivity

shocks. Another popular proxy for uncertainty is the cross-sectional dispersion of individual

forecasts, as in Bachmann et al. (2013). A proxy constructed using word searches from

newspaper articles is proposed in Alexopoulos and Cohen (2009), and Baker et al. (2013)’s

Economic Policy Uncertainty index combines news article counts with the number of federal

tax code provisions set to expire as well as the forecast dispersions.

This paper proposes a novel framework for using consensus survey forecasts to estimate

subjective and real-time measures of common, as well as idiosyncratic uncertainties. We

define macroeconomic uncertainty as the conditional time-varying standard deviation of a

factor that is common to the forecast errors for various macroeconomic indicators such as

unemployment, industrial production, consumption expenditure, among others. In other

words, an increase in the macroeconomic uncertainty implies the higher probability of

many economic variables to deviate from their expectations simultaneously. This idea

is effectively captured by a Factor Stochastic Volatility (FSV) model, first developed by

Pitt and Shephard (1999). The stochastic volatility process is widely adopted in finance

literature, as it is parsimonious, yet efficiently quantifies time-varying volatility.3 More

recently, it has also been employed often in macroeconomic analysis to model the time-

varying volatility of macroeconomic indicators.4 Combined with a factor model structure,

it provides a straightforward approach to jointly model common (macroeconomic) as well

as indicator-specific uncertainties.

2See, for example, Bloom (2009), Arellano et al. (2012), Caggiano et al. (2014), Aastveit et al. (2013),
and Mumtaz and Surico (2013), among many others.

3See Kim et al. (1998).
4See Primiceri (2005) and Justiniano and Primiceri (2008), among others.
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We use total nine economic indicators from the Survey of Professional Forecasters (SPF)

conducted by the Federal Reserve Bank of Philadelphia, with which we calculate forecast er-

rors to estimate uncertainty series. Using survey forecasts provide the following advantages.

First, they are not tied to any particular econometric models. Hence, it is not necessary to

select and estimate a specific forecasting model in order to obtain forecast errors. Second,

they provide an effective way of removing expected variations in macroeconomic series. As

highlighted by Jurado et al. (2015), it is crucial to remove the predictable component of

macro series when estimating macroeconomic uncertainty, in order not to attribute some of

the predictable variability to unpredictable shocks. Subjective forecasts have been shown to

be at least as accurate as forecasts from econometric models.5 Therefore, survey forecasts

are good candidates to control for the predictable variations in economic indicators.

On the methodological side, our contribution is to extend the standard FSV model to

incorporate the forecasting errors of economic indicators whose histories differ in length.6

The SPF has expanded its coverage beyond the six variables that were included in the ini-

tial form of the survey in 1968. To capture a common factor that can span a larger number

of indicators, we augment the FSV model to easily include forecasts for new indicators as

they become available. The augmented FSV model allows us then to estimate the longest

possible common and idiosyncratic uncertainty series, while continuously incorporate in-

formation from new indicators that were appended to the survey over time.

Our paper shares similarity with recent studies focusing on estimating macroeconomic

uncertainty, as well as papers using stochastic volatility with a factor structure. For ex-

ample, Jurado et al. (2015) fit a factor model to a variety of macro and financial variables

to generate forecasts. They assume that the volatilities of individual forecast errors follow

a univariate stochastic volatility process, whose average becomes macroeconomic uncer-

5Ang et al. (2007) and Faust and Wright (2013) document the advantage of surveys over forecasting
models for inflation. Aiolfi et al. (2011) study the optimal combination of the two types of forecasts for
different indicators, and find that combinations always improve over time series models, but still fail to
systematically improve on the survey forecasts alone.

6Stambaugh (1997) demonstrates that utilizing information from longer series benefits overall param-
eter estimation for portfolio analysis using return histories of different starting dates. In a factor model
setup, citestock2002macroeconomic and Bańbura and Modugno (2014) investigated how to deal with miss-
ing observations in a panel data set when estimating common factors under the assumption of constant
volatilities. Thus, we differ in that our main interest is to estimate the time-varying conditional volatility
series with in a factor framework, rather than the common factors.
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tainty. Rossi and Sekhposyan (2015) use the SPF for GDP to construct an uncertainty

index from the unconditional historical distribution of forecast errors. Carriero et al. (2015)

develop a vector autoregressive (VAR) model where macroeconomic variables share a com-

mon stochastic volatility factor. Contrary to our framework, idiosyncratic volatility is not

modeled, since the variations of individual volatilities over time are completely determined

by the common factor. Scotti (2013) exploits survey forecasts and creates an uncertainty

index as the sum of the squared forecast errors for different indicators. The squared fore-

cast errors are weighted by the loadings taken from a factor model estimated to construct

a business condition index as in Aruoba et al. (2009). The most distinct feature of our

approach is that it postulates a factor structure explicitly for an increasing set of survey

forecast errors over time, which jointly estimates time-varying common and idiosyncratic

volatilities as well as factor loadings. As a result, our proposed framework is parsimonious,

yet provides consistent indexes of both macroeconomic and indicator-specific uncertainties

in one step.

Our estimated uncertainty measure shows persistent dynamics. In particular, all major

spikes of uncertainty are associated with episodes of economic recessions, i.e., the 1973-75,

1980, and 2007-09 recessions, similar to the findings in Jurado et al. (2015). However,

other recessions (i.e. the 1990-91 and 2001 recessions) are still notable in the dynamics of

idiosyncratic uncertainty, but were not picked up by the macroeconomic uncertainty series,

suggesting that increases in uncertainty during these periods were not as broad-based as

during other recessions.

We also examine the impact of data revisions on the estimation of economic uncertainty.

To the best of our knowledge, ours is the first paper to do so. As macroeconomic variables

are constantly revised, uncertainty measures based on the most recent data vintage use a

different information set than that previously available to professional forecasters. We find

large quantitative differences in the uncertainty series with real-time and revised forecast

errors. More specifically, the 1973-75 and 1980 recessions exhibit the largest jumps in

our baseline uncertainty index with forecast errors based on the initial release. Yet, data

revision conducted within one quarter after the initial release pushes the uncertainty jump

accompanying the 1980 recession further up, leaving its peak at the highest level throughout
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the entire sample period. On the contrary, uncertainty is at its highest in the Great

Recession when the data available five quarters after the initial release is used, although

overall dynamics remain similar. Hence, the use of a specific data vintage can be very

important especially when the interest lies in estimating the relative level of macroeconomic

uncertainty over time.

We compare our measure to another popular survey-based proxy of uncertainty, namely

forecast disagreement. We construct a common disagreement factor using the same set of

variables as in our uncertainty index. The most notable difference is that a common dis-

agreement factor is significantly more volatile and less persistent than our uncertainty index.

A further investigation of the dynamic relationship between the two shows that while com-

mon disagreement reacts strongly to uncertainty shocks, shocks to common disagreement

actually lead to a small decreases in uncertainty.

In addition, VAR analysis show that shocks to our uncertainty measure have significant

and negative effects on a variety of real economic variables: investment, non-durable and

durable consumptions and GDP retract after an increase in macroeconomic uncertainty.

The impact of uncertainty shocks are not only sizable, but also highly persistent. This is

in stark contrast to VAR analysis using traditional proxies for macroeconomic uncertainty,

such as the VIX in Bloom (2009) and Caggiano et al. (2014), where the negative effects of

uncertainty dissipates quickly.

The rest of the paper is organized as follows. Section 2 introduces the dataset. Section 3

provides an exposition of our econometric model. The next section presents our estimates of

common, as well as idiosyncratic uncertainties. We also study the effects of data revisions

to our uncertainty estimates, as well as compare our measure to forecast disagreement.

A VAR analysis show the impact of shocks to our uncertainty measure to real economic

activity in section 5. Finally, section 6 concludes.

2 Data

We use the data from the U.S. Survey of Professional Forecasters (SFP). The survey was

initially introduced by the National Bureau of Economic Research and the American Sta-

tistical Association in 1968, which was then taken over by the Federal Reserve Bank of
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Philadelphia in June, 1990. An important feature of the survey is that the set of economic

indicators for which professional forecasters provide forecasts for has expanded significantly

since the survey began. While the survey started with a handful of variables in 1968Q4

(e.g., Gross Domestic Product (GDP), Industrial Production, Unemployment Rate), oth-

ers variables have been added over time (e.g., expenditure side components of GDP in

1981Q3, Nonfarm Payroll in 2003Q4). We use total nine variables which are added in three

sub-groups. Three variables, industrial production, unemployment rate and housing starts,

span the longest periods starting from 1968Q4; next, five additional variables represent-

ing components of GDP (consumption, non-residential investment, residential investment,

federal government spending and local government spending) are added from 1981Q3 and

onwards; finally, we add non-farm payroll employment in 2003Q4. The final data point of

our sample is 2015Q1. Table 1 summarizes the variables in our dataset, as well as their

starting date.

Since forecasters are surveyed on a quarterly basis, the most recent quarter of data

in their information set would be the previous quarter. The forecast submission dead-

line of the survey tends to occur close to the middle of the quarter (after the Bureau of

Economic Analysis’ advance report of the national income and product accounts (NIPA),

which contains the first estimates of the previous quarter’s GDP), so for macroeconomic

variables released on a monthly basis, forecasters would have access to the first month’s

realized data for the current forecast horizon, before the survey is submitted. We use their

one-step-ahead forecasts, namely their nowcasts, in order to construct the forecast errors.

The calculation of forecast errors at any point in time is contingent on the realized

value of the series. The NIPA data go through substantial revisions, and these revisions

can ultimately affect our measurement of uncertainty. Thus, we use the first release, and

revised data available in one and five quarters after the initial release to compute three

possible values of forecast errors. When calculating the forecasting errors, we take con-

sensus forecasts, i.e., averages of individual professional forecasters’ forecasts, to minimize

potential influences from individual forecasting biases.7

7Arai (2014) finds that the SPF consensus forecasts for GDP growth present no systematic biases.
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3 Factor Stochastic Volatility Model

In order to estimate macroeconomic as well as idiosyncratic uncertainty indexes from fore-

casting errors whose histories differ in length, we build on the FSV model developed in Pitt

and Shephard (1999). We start by defining the forecasting error of a variable i in period t,

denoted as εi,t, as follows:

(1) εi,t = xi,t − E[xi,t|It],

where xi,t is the realization of variable i in time t, and E[xi,t|It] is a conditional mean of

forecasts of variable i for the quarter t across different forecasters (i.e., consensus forecast).

One of the key differences of our measure from other uncertainty indexes based on a par-

ticular forecasting model is that we obtain E[xi,t|It] from the consensus forecasts, instead

of using forecasts from a specific econometric model. The information set (It) also has the

same time-subscript t, as it contains information obtained until the middle of the quarter

t. As discussed in the previous section, for monthly macroeconomic indicators such as

industrial production and the unemployment rate, the first month’s value in the quarter

t is included in It along with the first NIPA release of xi,t−1. For indicators of quarterly

frequency, It includes the first NIPA estimate of xi,t−1 which is only available in the middle

of the quarter t.

Next, we postulate that the forecasting error of a macroeconomic series i has a factor

structure:

εi,t = λift + ui,t,(2)

where ft is a common factor across different i’s, λi is a factor loading, and ui,t is an

idiosyncratic error, capturing indicator-specific variations. Equation (2) implies that there

is a factor that drives the common dynamics across the forecasting errors of total n economic

indicators.

One distinct feature of our model compared to standard factor models is that the

forecasting errors have different lengths of history. In other words, the starting period of

ε̃i,t can vary for each i, making the available number of observations of forecasting errors
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differ across n economic indicators. This is due to the expansion of the SPF over time

to include more variables, as noted in the previous section: the first set of variables has

been surveyed since 1968Q4, others have been added starting from 1981Q3. If we were to

restrict the model to use the SPF data with equal and longest histories, only a couple of

indicators would remain at our disposal. Or, if we focus on the period during which most

variables are available, we would discard a considerable number of observations in earlier

periods, which is not desirable given that the main purpose of this paper to construct a

historical time series of uncertainty. Therefore, we develop a factor model which can easily

add economic indicators to the model as they become available in the SPF. The proposed

framework incorporates as much information as possible and does not require discarding

data in early periods. In this fashion, we can properly construct a long time series of the

volatility of a common component that simultaneously drives cross-sectional variations in

various economic indicators.

Based on a factor model framework, our main interest is to estimate common and

idiosyncratic uncertainty series, defined as time-varying conditional volatilities. Here we

follow the FSV model in Pitt and Shephard (1999), and postulate that the volatilities of

the factor ft and idiosyncratic errors ui,t’s evolve as stochastic volatility processes. For

demonstration, here we assume that variables in the data are divided into two groups only

depending on their starting dates.8 Let the vector εn1,t contain forecasting errors of n1

variables in period t and εn1,t have T observations are available for periods t = 1, . . . , T .

Let εn2,t denote the vector of n2 forecasting errors that are observed for periods s, . . . , T

where s ≥ 1. Hence, the total number of indicators available from time s is n = n1 + n2.

As in the standard FSV model (e.g., Pitt and Shephard 1999 and Chib et al. 2006), we

assume that un,t and ft are conditionally independent Gaussian random vectors. That is,

for periods before s un1,t

ft

 |Σn1,t, hf,t ∼ N

0,

 Σn1,t 0

0 hf,t

 ,(3)

8However, it is straightforward to extend the model to include a number of different starting dates. In
the application of the model, we have three groups of economic indicators that start in 1968Q4, 1981Q3
and 2003Q4.
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and from s+ 1  un,t

ft

 |Σn,t, hf,t ∼ N

0,

 Σn,t 0

0 hf,t

 ,(4)

where Σn,t are a n× n diagonal matrix of time-varying idiosyncratic volatilities,

Σn,t =


h1,t 0 · · · 0

0 h2,t · · · 0
...

...
. . .

...

0 0 · · · hn,t

 ,

and Σn1,t is a diagonal sub-matrix containing the first n1× n1 elements of Σn,t. The factor

structure of our model simplifies incorporating variables of different starting dates, since

comovements across variables in each period are captured by the common factor by defi-

nition. This implies that we do not need to consider the covariance among idiosyncratic

variations separately. The common as well as indicator-specific volatilities follow indepen-

dent stochastic volatility processes:

log hf,t = log hf,t−1 + σfηf,t

log hi,t = log hi,t−1 + σiηi,t,(5)

where σf and σi’s are time-invariant parameters determining the variability of the volatil-

ities.

Based on multivariate Gaussianity and conditional independence, the likelihood func-
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tion becomes,

p(ε|λ, σ) =
s−1∏
t=1

∫
p(εn1,t|ht, ft, λ, σ) dht dft(6)

×
T∏
t=s

∫
p(εn1,t, εn2,t|ht, ft, λ, σ) dht dft

=
s−1∏
t=1

∫
p(εn1,t|ht, ft) p(ht, ft|Ft−1, λ, σ) dht dft

×
T∏
t=s

∫
p(εn1,t, εn2,t|ht, ft) p(ht, ft|Ft−1, λ, σ) dht dft,

where Ft−1 denotes the history of the {εt} process up to time t− 1 and p(ht, ft|Ft−1, λ, σ)

the density of the latent variables conditioned on (Ft−1, λ, σ).

In this setup, one salient estimate of interest is the time-varying standard deviations of

the factor, i.e., {
√
hf,t } which we define as our measure of the macroeconomic uncertainty

index: the time series of macroeconomic uncertainty captures the volatility of a common

driver that simultaneously affects the magnitude of forecasting errors across different vari-

ables, by determining the magnitude of common variations across all indicators. Other

important estimates are the time-varying standard deviations of idiosyncratic errors, i.e.,

{
√
hi,t }. These idiosyncratic volatility series will capture the size of indicator-specific

shocks. It is worthwhile to note again that our framework hence yields both common and

indicator-specific uncertainty indexes, which are consistently modeled and estimated in one

step.

Our model is estimated using Bayesian methods, since the model features high di-

mensionality as well as non-linearity. The Bayesian methods deal with such features by

separating parameters into several blocks, which greatly simplifies the estimation process.

In particular, the Markov Chain Monte Carlo (MCMC) algorithm breaks the parameters

into several blocks and repeatedly draws from conditional posterior distributions, in order

to simulate the joint posterior distribution. Thus, instead of using the likelihood function

directly, this efficiently summarizes the joint posterior distribution, once blocks are care-

fully selected. While details regarding the MCMC algorithm is provided in Appendix A,

here we briefly summarize steps in the estimation procedure as follows:
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1. Assign initial values for λ, {fT}, σf , {hf}, and σi and {hi} for all i.

2. Draw λ from p(λ|εT , fT , σf , σi, hTf , hTi )

3. Draw {fT} from p(fT |εT , λ, σf , σi, hTf , hTi )

4. Draw σf and σis from p(σ|εT , fT , hTf , hTi )

5. Draw {hf}, and {hi}’s from p(h|εT , fT , σf , σi)

6. Go to step 2.

The algorithm is iterated a total of 80, 000 times, discarding the first 30, 000 draws of

parameters. We collect 5, 000 draws by storing every 10th draw in order to avoid potential

autocorrelation across draws.

Hence, the MCMC algorithm proposed for the new model with different starting dates

builds on the one introduced in Pitt and Shephard (1999), dividing parameters into blocks

in a similar manner. In particular, as in Pitt and Shephard, steps 2, 4 and 5 can further

break down to drawing from a univariate process, due to the conditional independence

across t and i as well as of ft and ui,t’s. Thus, the conditional independence further makes

the extension straightforward in these steps: one only needs to take into account different

starting dates of each variable i. For instance, when drawing λi, the sub-step becomes

regressing the forecast errors {εi} on the factor {f} for the period t = s, . . . , T . Likewise,

step 3, i.e. sampling the common factor ft, is conditioned on available forecast errors and

factor loadings in each period t. That is, when t < s, the factor is sampled from n1 forecast

errors, but once the algorithm hits the period s, it incorporates all available n forecast

errors to extract a common variation. Likewise, when sampling the common factor ft, the

step is conditioned on available forecast errors and factor loadings in each period t. That

is, when t < s, the factor is sampled from n1 forecast errors, but once the algorithm hits

the period s, it incorporates all available n forecast errors to extract a common variation.9

When the volatility states {h} are drawn, we incorporate Metropolis methods within

the overall Gibbs sampler, following the algorithm by Jacquier et al. (2002). We follow

the common identification scheme of a factor model which sets the first factor loading (of

9We do not backcast missing observations of the series that start later in the sample, since the main goal
of this paper is to estimate the time-varying volatility series of a factor and idiosyncratic errors rather than
the factor itself. In addition, filling in the earlier missing forecasting errors using the information on the
factor and loadings does not have an impact on the posterior estimation under the conditional independence
assumption. See Stock and Watson (2002) and Bańbura and Modugno (2014) for the estimation of a
dynamic factor models with missing observations via the EM algorithm.
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IP) equal to unity. However, the resulting baseline index of macroeconomic uncertainty is

robust to equalizing other factor loadings to one or changing the ordering of variables. The

choice of prior distributions and their parameter values is very similar to Pitt and Shephard

(1999). A detailed description of the prior distribution setup and the MCMC algorithm is

provided in Appendix A.

4 Results

4.1 Estimated Macroeconomic and Idiosyncratic Uncertainties

We plot our baseline macroeconomic uncertainty series in Figure 1: the solid line is the

median posterior draw of the common stochastic volatility ({
√
hf,t }Tt=1), and the shaded

area represents the 95% posterior confidence set. For our baseline estimates, we use the

first data release to calculate the forecasting errors.10

There are three main spikes in macroeconomic uncertainty, all associated with deep

recessions. The first spike was observed during the 1973-75 recession, the second during

the 1980 recession, and the last one during the recent Great Recession. The highest increase

in macroeconomic uncertainty occurred during the 1980 recession. It is also clear from the

figure that, in general, the level of macroeconomic uncertainty was significantly higher in

the 1968-85 period than from 1985 until the great Recession, consistent with the findings

in Kim and Nelson (1999) and McConnell and Perez-Quiros (2000). The index shows some

increase around the 1991 recession, but a small one in comparison with the three critical

spikes. The 2001 recession, on the other hand, was accompanied by very mild increases in

macroeconomic uncertainty.

Table 2 reports the median posterior draws of factor loadings. For identification of

a factor and factor loadings, we set the factor loading of IP to unity, as mentioned in

the previous section. However, the relative sizes of the factor loadings and subsequently

the estimated series of uncertainty are robust to different normalization.11 We find that

10We assess, in the next section, the effect of data revisions on our uncertainty measure.
11In addition, while the medians change depending on which vintage is used to calculate forecast errors,

the relative sizes of the most factor loadings also remain robust to the change of the data vintages. The
results based on different data vintages are available upon request.
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the forecast errors of unemployment rate, non-residential investment and non-farm payroll

employment load more on the common factor than other variables. On the contrary, federal

government spending and local government spending load least on the common factor, with

a extremely high probability of the loading of the local government spending being around

zero.

Using the median posterior draws, we further examine how much of the total variation

in the forecasting errors of each indicator is driven by the common versus idiosyncratic

volatilities. This is calculated by using the factor structure of our model. In particular,

our model implies a total variance of each variable in each period, var(εi,t), to be

var(εi,t) = var(λift + ui,t)

= λ2i var(ft) + var(ui,t)

= λ2ihf,t + hi,t,

as the factor and idiosyncratic error terms are assumed to be uncorrelated. We hence

measure the size of the total common variation driven by macroeconomic uncertainty in

each period as λ2i var(ft) = λ2ihf,t, incorporating the heterogeneity due to the difference in

factor loadings. Then, we compare
√
var(εi,t) and λi

√
hf,t to investigate the contributions

of the common and idiosyncratic uncertainties.

Figure 2 plots the decomposition of each total variation into components explained

by macroeconomic and idiosyncratic uncertainties. For most variables except federal and

state/local government spendings, the most notable spikes in the total variances are driven

to a large extent by macroeconomic uncertainty. More interestingly, recessions that were

not accompanied by distinct increases in macroeconomic uncertainty do show up in the total

variations of unemployment (the 1991 and 2001 recessions) and IP and consumption (the

2001 recession), indicating that these two recessions were not as broad-based as the others.

Among the nine variables in the sample, IP and unemployment contribute most to the

macroeconomic uncertainty series. The volatility of nonresidential investment and employ-

ment also largely commove with the common uncertainty, but their respective idiosyncratic

uncertainties still account for a sizable share of their total variations. In particular, from

1985 to 2007, when the baseline macroeconomic uncertainty index was relatively subdued,
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idiosyncratic volatilities of unemployment and nonresidential investment were still high,

peaking in different periods. The forecast errors of state and local government expenditure

contributes little to a common factor, and thus, to the macroeconomic uncertainty.

4.2 The Impact of Data Revisions

Macroeconomic data goes through substantial revisions after their initial release.12 Like-

wise, macroeconometric analysis using latest available vintage often times results in differ-

ent conclusions from work that takes real-time issues into account (Orphanides 2001 and

Orphanides and Van Norden 2002, for example). A large body of papers have also shown

that real-time data issues are particularly important for evaluating the forecasting power of

econometric models (Diebold and Rudebusch 1991, Faust et al. 2003, Amato and Swanson

2001, and Ghysels et al. 2014, among many others). However, previous studies focus on the

effects on point forecasts, i.e., the conditional mean, and consequently, the effect of data

revision on the estimation of the conditional second moments has not been documented.

Nonetheless, data revisions should also have an important impact on the measurement of

uncertainty, since it directly affects the magnitude of forecast errors. Our baseline measure

is estimated with forecast errors computed using the first data release; in this section, we

also examine to what extent our macroeconomic uncertainty index differs, if we use vin-

tages available in one and five quarter(s) after the initial release to calculate the forecast

errors. To our knowledge, this is the first paper that examines the effect of data revisions

for the estimation of volatility.

Figure 3 shows the macro uncertainty index estimated with the data revised in one

and five quarter(s) after the initial data release along with the benchmark index. The

correlations among the three indexes are high, with the two based on revised data peaking

substantially at the same periods as the real-time index, i.e., the 1973-75, 1980, and 2008-09

recessions. Therefore, we find that the estimated series of uncertainty based on different

data vintages largely coincide with the one using real-time data, under our framework.

Nonetheless, we find quantitative differences across the three series. Most notably,

the relative size of the peaks changes depending on the data vintage used to calculate

12See Faust et al. (2005), Aruoba (2008) and Amir-Ahmadi et al. (2015) for more details on the empirical
properties of data revisions.
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forecasting errors. In other words, the jump in uncertainty during the 1980 recession is

shifted upward when the data vintage available in one quarter after the first release is used,

pushing the level of uncertainty to an unprecedented level. With the revised data available

in five quarters after the initial release, the increase in uncertainty associated with the

recent Great Recession is the largest since the beginning of the series. In contrast, with

the forecast errors based on the initial data release, the uncertainty during the recessions

in the pre-Great Moderation periods, i.e., the 1973-75 and 1980 recessions, are higher than

the level of uncertainty during the last recession.

In sum, our findings suggest that while overall dynamics of both macroeconomic and

idiosyncratic uncertainties remain robust, they exhibit differences particularly in the rel-

ative size of major peaks over time depending on a particular data vintage chosen. For

instance, macroeconomic uncertainty based on later vintage data will likely underestimate

the actual volatility faced by professional forecasters in the 1970s and 1980s in comparison

with the level during the Great Recession.

4.3 Comparison with Measures of Disagreement

A widely-used proxy for uncertainty based on survey forecasts is forecast disagreement,

commonly measured as the interquartile range (e.g. Bachmann et al. 2013). Underlying

this practice is the assumption that predictions of forecasters are more likely to be close

to each other when economic uncertainty is low. However, forecast disagreement may just

reflect heterogeneous, but not uncertain, beliefs.13

In this section, we investigate the relationship between our macroeconomic uncertainty

measure and an analogous, disagreement-based proxy of uncertainty. We first create an

unbalanced panel including the disagreement of economic indicators used for our index

for the sample period that matches ours as in Table 1. Disagreement is measured as

the interquartile ranges, i.e., the 75th percentile minus the 25th percentile of individual

forecasts. Next, we take the averages of the interquartile ranges for available variables

in each period. The average disagreement series which summarizes disagreements among

surveyed forecasters for different variables, is then compared to our baseline macroeconomic

13See, for example, Mankiw et al. (2004), Lahiri and Sheng (2010) and Sill (2012) for more detailed
discussions of measuring uncertainty using forecast disagreement.
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uncertainty series.

Figure 4 presents the resulting average disagreement series. The most notable differ-

ence is that the disagreement-based uncertainty index is significantly more volatile than

our baseline macroeconomic uncertainty index. Nonetheless, the three major spikes in dis-

agreement coincide with the three main episodes of uncertainty increases in our baseline

index. One notable difference is that the relative size of the increment in the average dis-

agreement during the Great Recession is substantially smaller than that of our measure of

macroeconomic uncertainty. This suggests that although economic uncertainty was high,

point forecasts of different professional forecasters on average had more centered distribu-

tions during this period, resulting in an increase of a relatively moderate size. In addition,

the average disagreement series peaks during the 2000 - 2001 recession markedly, compared

to our baseline index. Furthermore, while our baseline measure dwindles quickly upon the

arrival of the Great Moderation in mid-80s, the average disagreement series shows a sizable

jump around 1986 comparable to that during the Great Recession, stays at a relatively

high level, and then finally drops in 1989.

We further investigate the differences between our measure of uncertainty and the av-

erage forecast disagreement in a more formal manner. That is, we examine the dynamic

relationship between the two by estimating a bivariate VAR(4) with the average disagree-

ment ordered first for the recursive identification of shocks. Figure 5 shows the impulse

response functions to both uncertainty and average disagreement shocks. A few interesting

results emerge. First, it is evident that the response to its own shock is significantly more

persistent for our measure of macroeconomic uncertainty, compared to that of the com-

mon disagreement. Second, we find that while the average disagreement reacts strongly

positively to uncertainty shocks, the reverse is not true: shocks to common disagreement

actually lead to a small decreases in uncertainty. If the dispersion factor was a close

proxy of macroeconomic uncertainty, one would expect a significant and positive impact

on uncertainty of a dispersion shock. We thus conclude that, even though we find a high

unconditional correlation, an increase in disagreement is likely the result of heightened

uncertainty, but not vice versa.
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5 The Effects of Uncertainty on Economic Activities

In this section, we examine the dynamic relationship between our measure of macroeco-

nomic as well as idiosyncratic uncertainties and a set of macroeconomic indicators using

a standard recursively identified VAR. Previous studies using proxies for macroeconomic

uncertainty, like the VIX in Bloom (2009), tend to find a significantly negative, but short-

lived impact of uncertainty on economic activity. This drop in activity is then followed by

an overshoot, as economic activity rebounds. In contrast, studies that estimate macroe-

conomic uncertainty, as Jurado et al. (2015), find that these shocks have a much more

persistent effect on economic activity, and no evidence of a strong rebound and overshoot-

ing. We add to the literature by i) revisiting the impacts of an macroeconomic uncertainty

shock and ii) distinguishing the effects due to an increase in macroeconomic uncertainty

and that in variable-specific uncertainty.

Our benchmark specification of a VAR comprises six variables, with the following order:

log(private investment), log(nondurable consumption expenditure), log(durable consump-

tion), log(GDP), log(S&P index), and our macroeconomic uncertainty index. The VAR is

estimated in levels and with four lags. A natural choice of the ordering of variables in the

VAR is not clear, as our uncertainty measure should react to real activity shocks within

a quarter, while it is also possible that other real variables respond to uncertainty during

the same quarter. Given the above difficulty, we choose to order our uncertainty measure

last in our baseline VAR analysis. Hence, we purge innovations to our uncertainty measure

from any contemporaneous and past movements in the real activity variables, as well as the

S&P index. This choice of ordering implies, by construction, both a zero contemporaneous

impact of uncertainty on economic activity and a more conservative estimate of the impact

of uncertainty shocks.

Figure 6 presents the estimated dynamic responses of the various economic activity

measures to a one standard deviation innovation to macroeconomic uncertainty. All of

the economic activity variables show a significant and persistent decline following an un-

certainty shock, supporting the findings of long-lived negative effects of uncertainty as

in Bachmann et al. (2013) and Jurado et al. (2015). Moreover, we find no evidence of

overshooting in economic activity, as the uncertainty shock dissipates.
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There is some heterogeneity in how the different economic activity measures respond

to innovations in our measure of macroeconomic uncertainty: uncertainty shocks generate

a larger fall of durables consumption and investment compared to the responses of non-

durables consumption and GDP. These findings are consistent with theoretical models of

business investment and durable consumption where irreversibility plays a significant role;

any investment or durable consumption is accompanied by a fixed adjustment cost that

makes it difficult to reverse such decisions, and as a result, economic agents will postpone

investment or durable consumption when uncertainty is high.14

To verify the quantitative importance of an uncertainty shock, Table 3 reports the

forecast error variance decomposition for the real economic activity variables included in

the VAR. As discussed earlier, given our choice of the benchmark VAR with uncertainty

ordered last, these estimates should be viewed as a lower bound. The decomposition shows

that an uncertainty shock can explain a maximum of 5.58 to 8.08% of the variance of

various real economic activity measures within 5 years after the shock. These numbers are

near the lower end of those reported by Bachmann et al. (2013), Jurado et al. (2015) and

Caggiano et al. (2014).

Next, we investigate the robustness of the findings to the ordering assumption of the

VAR. We estimate a VAR with the same set of variables, but now our uncertainty measure

is ordered second after the S&P index, before the real economic activity indicators. Figure

7 reports the impulse response functions of the economic activity indicators, and Table 4

the resulting forecast error variance decomposition. As one would expect, this change in

ordering results in a larger decline of economic activity, following a positive innovation to

uncertainty. Its importance in the variance decomposition of economic activity also rises

significantly. Under this ordering, uncertainty shocks account for a maximum of 20.08 to

28.98% of the variance of the real economic activity indicators. Notwithstanding the more

pronounced effects, the qualitative evidence is very similar to our baseline ordering choice.

We also conduct a comparison of our impulse response functions to the ones obtained

with other estimates and proxies for macroeconomic uncertainty. Figure 8 plots responses

to innovations in our baseline uncertainty series, as well as Jurado et al. (2015) estimates

14See e.g., Pindyck (1991) and Bertola et al. (2005).
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of macroeconomic uncertainty, the common disagreement estimated in Section 4.3 and the

VIX. There is a clear divergence in results. Both innovations to our measures, as well as

JLN measure of macroeconomic uncertainty result in large and persistent drops in economic

activity. On the other hand, innovations to proxies of macroeconomic uncertainty, as the

disagreement and the VIX result in very small and short-lived negative impacts on economic

activity, followed by strong rebounds.

6 Conclusion

This paper estimates macroeconomic uncertainty from 1968Q4 to 2015Q1 as perceived by

professional forecasters. Using a FSV model proposed by Pitt and Shephard (1999), we

estimate volatilities of a common factor and idiosyncratic components across consensus

forecast errors of different economic indicators. We define the time-varying standard devi-

ation of the factor as a measure of macroeconomic uncertainty, and estimate it jointly with

indicator-specific uncertainties.

In general, macroeconomic uncertainty was higher in the 1968-85 period compared to

the post-1985 period. Our baseline uncertainty measure is relatively smooth and persistent

with all major spikes associated with economics recessions (the 1973-75, 1980, and 2007-09

recessions), consistent with Jurado et al. (2015). Additionally, we find that data revisions

have a substantial effect on the estimated macroeconomic uncertainty. In particular, data

vintage selection influences the relative size of major uncertainty peaks.

We also compare our baseline measure of uncertainty to another survey-based uncer-

tainty proxy, namely forecast disagreement. The first principal component of disagreement

is significantly more volatile than our measure throughout the sample period. Further in-

vestigation on the dynamic relationship between the two shows that shocks to common

disagreement do not have any meaningful impact on uncertainty, while common disagree-

ment reacts strongly positively to uncertainty shocks.

Finally, we conduct a VAR analysis to investigate the dynamic relationship between

uncertainty and real economic variables. A one-standard deviation increase in our baseline

uncertainty index results in a significant and persistent decrease in various measures of

economic activity such as investment, durable and non-durable consumptions, in line with
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the findings in Bachmann et al. (2013) and Jurado et al. (2015). However, this evidence

is at odds with the short-lived negative impact followed by a strong rebound, as suggested

by Bloom (2009).

Appendix

A Bayesian Estimation Method

A.1 Prior Distributions and Starting Values

Our choice of prior distributions and their parameter values is very similar to Pitt and Shep-

hard (1999) except for the values of the conditional inverse Gamma prior, σ2 ∼ IG(v0
2
, δ0

2
).

We set v0 = 1 and δ0 = 1, which makes the conditional prior distribution flatter than

the one in Pitt and Shephard (1999) and more so than the ones in other recent studies

incorporating stochastic volatility (see e.g., Primiceri 2005 and Baumeister et al. 2013)

to allow for a large time variation for stochastic volatilities a priori. Compared to the

previous studies using time-varying VAR models with stochastic volatility (e.g., Primiceri

2005 and Baumeister and Peersman 2013), the total number of parameters to estimate is

substantially smaller in our case. Thus, we use a more diffuse prior and put a larger weight

on data.

The prior distribution for factor loadings is the Normal distribution, i.e., λi ∼

N(λ0,Λ0) with λ0 = 1 and Λ0 = 25, as in Pitt and Shephard (1999). The choice of

relatively large Λ0 represents a fair degree of uncertainty around the factor loadings. The

initial value of the factor loadings is the OLS estimates of forecasting errors on the first

principal component as a proxy of a factor. Since the factor and loadings are not completely

identified in a factor model, we set the loading of the first variable (i.e., IP) to be equal

to one, a commonly-used identification strategy of a factor model. Factor loadings of the

second variable to the last are drawn from the posterior distribution introduced below.

A diffuse Normal prior is used as the prior distribution for a factor conditional on

{hf,t}Tt=1, consistent with equation (??) (i.e., ft ∼ N(θ0,Θ0) where θ0 = 0 and Θ0 = hf,t).

As mentioned above, we use the first principal component for the initial iteration.
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The prior for the variability of volatilities is the inverse Gamma, i.e., σ2
f and σ2

i

∼ IG(v0
2
, δ0

2
), where v0 = 1 and δ0 = 1. As discussed above, we choose a larger value of δ0

compared to a conventional setup to be less informative about the variability of volatilities,

allowing for potentially larger time variation of volatilities at the same time.

The prior of each time-varying volatility is the log-normal. In particular, for the

initial period’s stochastic volatility, h20, we have log h0 ∼ N(µh0 , V
h
0 ), where µh0 = 1 and

V h
0 = 10 to allow a good chance for the data to determine the posterior distribution.

A.2 Posterior Distribution Simulation

The MCMC algorithm proposed for the joint posterior distribution of the FSV model with

different starting dates extends the one introduced in Pitt and Shephard (1999). We divide

the parameters in the model into four blocks; a) the factor loadings (λ), b) the time series

of the factor ({ft}Tt=1), c) the hyperparameters of volatilities (σf and σi for all i), and d)

the volatility states ( {hf,t}Tt=1 and {hi,t}Tt=s for all i where s denotes the starting date of

each series).

As will be explained in detail, the conditional independence across t and i as well as

of ft and ui,t’s makes the extension straightforward. To be more specific, most steps in

the Gibbs sampler, such as drawing factor loadings ({λ}), volatility states ({h}) and the

variance of volatilities ({σ}) further break down to drawing from a univariate process. As

a result, one only needs to take into account different starting dates of each variable i, and

each sub-step can be conducted given the different length of history. When sampling the

common factor ft, the step is conditioned on available forecast errors and factor loadings

in each period t.

Finally, the volatility states are drawn via Metropolis methods within the overall Gibbs

sampler. Denoting by zT the time-series of a variable z from t = 1 to T , the sampler

algorithm is described below.

A.2.1 Factor loadings

Conditional on all other parameters, this step is a simple Bayesian regression of forecasting

errors on the factor with known heteroskedastic error structures. Moreover, because all
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correlations are captured by the factor by definition, this step further decomposes into the

n sub-steps of drawing each i-th loading separately from the following distribution given

the history of variable i:

λi|ε̃T , fT , σf , σi, hTf , hTi ∼ N(λ1,Λ1),

where Λ1 = (Λ−1
0 +

∑T
t=s f

2
t /(hi,t))

−1 and λ1 = Λ1(Λ
−1
0 λ0 +

∑T
t=s ft · ε̃i,t/(hi,t)) with s ≥ 1

is the starting point of each forecasting error series ε̃i.

A.2.2 Factor

Conditional independence also simplifies this step. Given all other parameter values, this

step again becomes a Bayesian regression of available forecasting errors on factor loadings

with known heteroskedasticity for each period t. That is,

ft|ε̃T , λi, σf , σi, hTf , hTi ∼ N(θ1,Θ1),

where Θ1 = {h−1
f,t +

∑ns

i=1 λ
2
i (hi,t)}−1, θ1 = Θ1(

∑ns

i=1 λi · ε̃i,t/(hf,t)), and ns is the number of

variables whose forecast errors are available in period s = 1 . . . T .

A.2.3 Innovation variance of volatilities

Since we model each stochastic volatility to follow a unit-root process without a drift, the

conditional posterior distribution of σ can be simplified from the posterior inverse Gamma

distribution in Kim et al. (1998). Hence, σ2 is drawn from

σ|ε̃T , fT , hTf , hTi ∼ IG(
v1
2
,
δ1
2

)

where v1 = v0 + S, δ1 = δ0 +
∑T

t=s+1(hi,t − hi,t−1)
2, and S is the total number of periods

that a series i is available.
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A.2.4 Volatility states

This step further decomposes to the n+1 sub-steps of univariate stochastic volatility draws,

based on the Markovian property of stochastic volatility. It follows the algorithm by

Jacquier et al. (2002) as used in Cogley and Sargent (2005). For each volatility series

of an idiosyncratic error i or of the factor, the algorithm draws the exponential of volatility

(h2i,t) one by one for each t = s, . . . , T , based on f(hi,t|hi,t−1, hi,t+1, y
T
i , λ, f

T , σ).

Before sampling the states, we first transform forecasting errors to be ε∗i,t = ε̃i,t− λi,tft.

Such transformation is unnecessary for the factor.

Then, we apply Jacquier et al. (2002) ’s algorithm for each date, i.e.,

f(hi,t|(hi)T−t, y∗Ti , σ) = f(hi,t|hi,t−1, hi,t+1, y
∗T
i , σ)

∝ f(y∗i,t|hi,t)f(hi,t|hi,t−1)f(hi,t+1|hi,t)

= (hi,t)
−1.5 exp

(−y∗i,t
2hi,t

)
exp

(
−(log hi,t − µt)2

2σ2
c

)
,

where µt and σ2
c are the conditional mean and variance of log hi,t, respectively. Under the

unit-root specification of this paper, they can be calculated as

µt =
(log hi,t−1 + log hi,t+1)

2
,

σ2
c =

σ2
i

2
,

for t = s, · · ·, T − 1. Hence, a trial value of log hi,t is drawn from the Normal distribution

with mean µt and variance σ2
c . For the beginning and end periods of each series i, the

following conditional mean and variance are used instead:

t = s− 1 : σ2
c =

σiV
h
0

σi+V h
0
, µ = σ2

c

(
µh0
V h
0

+
log hi,t+1

σ2
i

)
,

t = T : σ2
c = σ2

i , µ = log hi,T−1.

After obtaining a draw, the conditional likelihood f(y∗i,t|hi,t) is evaluated in order to

obtain the acceptance probability, completing a Metropolis step (see Cogley and Sargent

2005 for a detailed description).
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We can summarize the estimation procedure as following:

1. Assign initial values for λ, fT , σf , σi for all i, hTf , and hTi for all i.

2. Draw λ from p(λ|ε̃T , fT , σf , σi, hTf , hTi )

3. Draw fT from p(fT |ε̃T , λ, σf , σi, hTf , hTi )

4. Draw σf and σis from p(σ|ε̃T , fT , hTf , hTi )

5. Draw hTf , and hTi s from p(h|ε̃T , fT , σf , σi)

6. Go to step 2.

We iterate over the Metropolis-within-Gibbs sampler a total of 80, 000 times, discarding

the first 30, 000 draws of parameters. Then we store every 10th draw in order to avoid po-

tential autocorrelation across draws, and finally obtain 5, 000 draws from the joint posterior

distribution.
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Table 1: Starting Dates of Survey Forecasts

1968Q4 Industrial Production Index (IP)
Civilian Unemployment Rate (UR)
Housing Starts (HS)

1981Q3 Real Personal Consumption Expenditures (RCON)
Real Nonresidential Fixed Investment (RNRESIN)
Real Residential Fixed Investment (RRESIN)
Real Federal Government Consumption Expenditures

& Gross Investment (RFEDGOV)
Real State and Local Government Consumption Expenditures

& Gross Investment (RSLGOV)
2003Q4 Nonfarm Payroll Employment (EMP)

Note: This table shows the starting date of each of the survey variables in our dataset.

Table 2: Summary Statics of Posterior Draws of Factor Loadings

IP UR HS RCON RNRESIN RRESIN RFEDGOV RSLGOV EMP

Initial Release
Median 1 −0.97 0.35 0.40 0.73 0.38 −0.33 −0.01 1.07

Std. Dev. - 0.19 0.16 0.20 0.20 0.24 0.18 0.19 0.44

Note: This table shows the median and standard deviations calculated from the posterior draws of nine
factor loadings. Since our identification strategy is to set the loading of IP to unity, the standard deviation
is not reported for IP.

Table 3: Variance Decomposition for the Baseline VAR

Quarters GDP RPI PCE-ND PCE-D

1 0.00 0.00 0.00 0.00
2 3.42 1.44 1.82 4.71
4 6.30 4.68 6.24 6.91
8 9.52 9.29 10.34 8.39
20 9.65 9.76 7.31 5.77

Note: This table shows forecast error variance decomposition for our baseline VAR with the following vari-
ables and Cholesky ordering: real private investment (RPI), real personal consumption expenditures on non
durables (PCE-ND), real personal consumption expenditures on durables (PCE-D), GDP, S&P index, and
our uncertainty measure. The VAR is estimated in levels with 4 lags. All variables, except our uncertainty
measure, enter the VAR in logs.
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Table 4: Variance Decomposition for alternative VAR ordering: Uncertainty Before Real
Activity

Quarters GDP RPI PCE-ND PCE-D

1 3.57 2.95 5.79 7.17
2 13.52 7.99 12.04 18.21
4 20.63 15.08 22.73 23.73
8 27.25 23.72 30.09 26.58
20 26.96 24.15 23.84 20.14

Note: This table shows forecast error variance decomposition for our baseline VAR with the following vari-
ables and Cholesky ordering: S&P index, our uncertainty measure, real private investment (RPI), real personal
consumption expenditures on non durables (PCE-ND), real personal consumption expenditures on durables
(PCE-D), and GDP. The VAR is estimated in levels with 4 lags. All variables, except our uncertainty mea-
sure, enter the VAR in logs.
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Figure 1: Estimated Macroeconomic Uncertainty Series
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Note: This figure plots the baseline macroeconomic uncertainty series estimated using real-time data.
The series is the time-varying standard deviation of a common factor across forecasting errors of four
macroeconomic indicators. The black solid line represents the median posterior draws along with the 95%
posterior credible set.
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Figure 3: Macroeconomic Uncertainty Based on the Different Vintages
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Note: This figure compares the baseline macroeconomic uncertainty factor (real-time) with the uncertainty
factor estimated with data from different vintages. The solid line is our baseline uncertainty index, the
blue dashed line is the one where forecasting errors of each variable are computed using the revised data
available in one quarter after the initial release, and the green dash-dot line is the one using the revised
value appearing in five quarters after the first release.
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Figure 4: Common Disagreement Factor
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Note: This figure shows the first principal component of the disagreements of the four economic indicators.
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Figure 5: Dynamic Relationship between Common Disagreement and Macroeconomic Un-
certainty
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Note: This figure shows the impulse response functions to a bivariate VAR with four lags featuring a
common dispersion factor and our baseline measure of macroeconomic uncertainty. The VAR uses a
Cholesky factorization for identification with the common dispersion factor ordered first. The shaded area
represents one standard deviation bands using Kilian (1998)’s bootstrap-after-bootstrap method.
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Figure 6: Responses to Innovations to Macroeconomic Uncertainty
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Note: This figure shows the response of various macroeconomic variables to uncertainty shocks in a 6-
variable VAR with the following variables and ordering: real private investment, real personal consumption
expenditures on non-durables, real personal consumption expenditures on durables, real GDP, S&P index,
macroeconomic uncertainty index. The VAR is estimated in levels with 4 lags. All variables, except the
uncertainty index, are measured in logs. The shaded area represents one standard deviation bands using
Kilian (1998)’s bootstrap-after-bootstrap method.
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Figure 7: Responses in the VAR with Alternative Ordering
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Note: This figure shows the response of various macroeconomic variables to uncertainty shocks in a 6-
variable VAR with the following variables and ordering: S&P index, macroeconomic uncertainty index, real
private investment, real personal consumption expenditures on non-durables, real personal consumption
expenditures on durables, real GDP. The VAR is estimated in levels with 4 lags. All variables, except
the macroeconomic uncertainty, are measured in logs. The shaded area represents one standard deviation
bands using Kilian (1998)’s bootstrap-after-bootstrap method.
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Figure 8: Responses with Alternative Measures of Uncertainty
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Note: This figure shows the response of various macroeconomic variables to uncertainty shocks in a 6-
variable VAR using alternative proxies and estimates of macroeconomic uncertainty: FSV is our baseline
measure of macroeconomic uncertainty as perceived by professional forecasters; JLN is the measure es-
timated by Jurado et al. (2015); VIX is the stock market implied volatility used by Bloom (2009); and
DIS is our estimate of common disagreement as discussed in section 4.3. The shaded area represents one
standard deviation bands using Kilian (1998)’s bootstrap-after-bootstrap method.
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