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1 Introduction

The Beveridge curve describes the relationship between the unemployment rate and open

positions, that is, vacancies, in the labor market. Plotting the former against the latter in

a scatter diagram results in a downward-sloping relationship that appears to be clustered

around a concave curve (see Figure 1). The curve re�ects the highly negative correla-

tion between unemployment and vacancies that is a hallmark of labor markets in market

economies.

Empirical work on the Beveridge curve has explored the relationship between vacancies

and the unemployment rate under the maintained assumption that it can be regarded, as

a �rst approximation, as time-invariant. The behaviour of the two series during the Great

Recession, with the unemployment rate seemingly stuck at high levels, even in the presence

of a vacancy rate which has been progressively improving, has, however, raised doubts

about the meaningfulness of the assumption of time-invariance. This suggests exploring the

relationship between the two series allowing for the possibility that it may have evolved

over time.

Our paper builds directly on the seminal contribution of Blanchard and Diamond (1989).

These authors reintroduced the concept of the Beveridge curve as one of the key relationships

in macroeconomic data. They conducted a VAR analysis of unemployment, vacancies, and

the labor force in order to identify the driving forces behind movements in the Beveridge

curve. We build upon their analysis by identifying both permanent and transitory structural

shocks in a time-varying VAR context. By doing so, we are able to trace out the sources of

movements, shifts and tilts in the Beveridge curve over time.

The theoretical background for our study, and one that we use for identifying the struc-

tural shocks, is the simple search and matching approach to modeling labor markets (see

Shimer, 2005). The Beveridge curve speci�cally encapsulates the logic of this model. In

times of economic expansions, unemployment is low and vacancies� that is, open positions

o¤ered by �rms� are high. Firms want to expand their workforce, but they are unable to

do so since the pool of potential employees (that is, the unemployed) is small. As economic

conditions slow down and demand slackens, �rms post fewer vacancies and unemployment

rises, consistent with a downward move along the Beveridge curve. At the trough of the

business cycle, �rms may have expectations of a future uptick in demand and start posting

open positions. This decision is ampli�ed by the large pool of unemployed, which guar-

antees �rms high chances of �nding suitable candidates and thus outweighs the incurred
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search costs. As the economy improves, unemployment falls and vacancy postings rise in

an upward move along the Beveridge curve.

Our empirical analysis starts by documenting the presence of time-variation in the re-

lationship between vacancies and the unemployment rate in the post-WWII United States

by means of Stock and Watson�s (1996, 1998) time-varying parameters median-unbiased

estimation (henceforth, TVP-MUB) methodology, which allows a researcher to test for the

presence of random-walk time-variation in the data (against the null of no time-variation).

Having detected evidence of random-walk time-variation in the bivariate relationship be-

tween vacancies and the unemployment rate, we then use a Bayesian time-varying para-

meters structural VAR with stochastic volatility to characterize changes over time in the

such relationship. Evidence points towards both similarities and di¤erences between the

Great Recession and the Volcker disin�ation, and widespread time-variation along two key

dimensions.

First, the slope of the Beveridge curve, which we capture by the average cross-spectral

gain between vacancies and the unemployment rate at business-cycle frequencies, exhibits a

large extent of variation since the second half of the 1960s, and a striking counter-cyclicality,

with the gain being strongly negatively correlated with the Congressional Budget O¢ ce�s

estimate of the output gap. The evolution of the slope of the Beveridge curve during the

Great Recession is very similar to its evolution during the Volcker recession in terms of both

its magnitude, and its time-pro�le. This suggests that the seemingly anomalous behavior

of the Beveridge curve during the Great Recession should be met with some caution.

Second, both the Great In�ation episode, and the subsequent Volcker disin�ation, are

characterized by a signi�cantly larger (in absolute value) negative correlation between the

reduced-form innovations to vacancies and the unemployment rate than the rest of the

sample period. These years also appear to be characterized by a greater cross-spectral

coherence between the two series at the business-cycle frequencies, thus pointing towards

them being driven, to a larger extent than the rest of the sample, by common shocks.

Having characterized changes over time in the relationship between vacancies and the

unemployment rate, we then proceed, to interpret the previously documented time-varying

stylized facts based on an estimated search and matching model. First, we explore, within a

simple theoretical model how changes in individual parameters�values a¤ect the relationship

between vacancies and the unemployment rate, in order to gauge the origin of the previously

documented pattern of variation in the Beveridge relationship.

The paper is organized as follows. The next section presents preliminary evidence on the
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presence of (random-walk) time-variation in the bivariate relationship between the vacancy

rate and the unemployment rate. Section 3 describes the Bayesian methodology we use

to estimate the time-varying parameters VARs with stochastic volatility, whereas Section 4

discusses the evidence of changes over time in the Beveridge relationship. Section 5 describes

our structural identi�cation procedure based on insights from a simple search and model,

whereby we use both long-run and sign restrictions. We present the results of the structural

identi�cation procedure in Section 6. In Section 7 we explore how changes in individual

structural parameters of the search and matching model map into coresponding changes in

the relationship between vacancies and the unemployment rate. Section 8 concludes.

2 Searching for Time Variation in the Beveridge Relation-
ship

Figure 1 presents a time series plot of the unemployment rate and vacancies from 1949

to 2011. The negative comovement between the two series is readily apparent. At the

peak of the business cycle unemployment is low and vacancies high. Over the course of a

downturn the former rises and the latter declines as fewer and fewer workers are employed

and �rms have fewer and fewer open positions. The voltility and serial correlation of both

series appear of similar magnitude. The second panel in Figure 1 depicts the same series in

a scatter plot of vacancies against unemployment, resulting in the well-known downward-

sloping relationship that has come to be known as the Beveridge curve. In the graph

we identify combinations of unemployment and vacancy rates as belonging to individual

business cycles with di¤erent colors. Each individual scatter plot starts at the business

cycle peak and ends the period before the next peak, as identi�ed by the NBER dates.

These peak-to-peak plots thus represents separate Beveridge curves for one business cycle.

Visual inspection reveals two observations. First, all curves are downward-sloping, but with

di¤erent slopes. Second, there is substantial lateral movement in the individual Beveridge

curves, ranging from the innermost cucle, the 1953-1957 episode, to the outermost, 1982-

1990. We take these observations as motivating evidence that the relationship between

unemployment and vacancies exhibits substantial variation over time, which a focus on a

single aggregate Beveridge curve obscures.

Time variation in data and in theoretical models can take many forms, from continuous

variations in unit-root time-varying parameter models to discrete parameter shifts such as

in regime-switching frameworks. We regard both discrete and continuous changes as a priori

plausible. In this paper, we focus on the latter. As a preliminary step, we provide evidence
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of instability in the bivariate relationship between vacancies and unemployment. We apply

the methodology developed by Stock and Watson (1996, 1998) to test for the presence of

random-walk time-variation in the two-equation VAR representation for the two variables.

From an empirical perspective, we prefer their methodology over, for instance, structural

break tests for reasons of robustness to uncertainty regarding the speci�c form of time-

variation present in the data. While time-varying parameter models can successfully track

processes subject to structural breaks, both Cogley and Sargent (2005) and Benati (2007)

show that break tests possess low power when the true data-generation process (DGP) is

characterized by random walk time variation. Generally speaking, break tests perform well

if the DGP is subject to discrete structural breaks, while TVP models perform well under

both scenarios.

The regression model we consider is:

xt = �+ �(L)Vt�1 + �(L)Ut�1 + �t � �0Zt + �t; (1)

where xt = Vt, Ut, with Vt and Ut being the vacancy rate and the unemployment rate,

respectively. �(L) and �(L) are lag polynomials; � = [�; �(L); �(L)]0 and Zt = [1, Vt�1,

..., Ut�p]0. We select the lag order as the maximum of the lag orders individually chosen

by the Akaike, Schwartz, and Hannan-Quinn criteria. Letting �t = [�t, �
0
t(L), �

0
t(L)]

0, the

time-varying parameter version of (1) is given by

xt = �0tZt + �t; (2)

�t = �t�1 + �t; (3)

with �t � iid N(04p+1; �
2�2Q), where 04p+1 is a (4p + 1)-dimensional vector of zeros.

�2 is the variance of �t, Q a covariance matrix, and E[�t�t] = 0. Following Stock and

Watson (1996, 1998), we set Q = [E(ZtZ
0
t)]
�1. Under this normalization, the coe¢ cients

on the transformed regressors, [E(ZtZ 0t)]
�1=2Zt, evolve according to a (4p+ 1)-dimensional

standard random walk, where �2 is the ratio between the variance of each transformed

innovation and the variance of �t. We estimate the matrix Q as Q̂ =
h
T�1

PT
t=1 ztz

0
t

i�1
.

We estimate the speci�cation (1) by OLS, from which we obtain an estimate of the

innovation variance, �̂2. We then perform an exp- and a sup-Wald joint test for a single

unknown break in � and in the sums of the ��s and ��s, using either the Newey and West

(1987) or the Andrews (1991) HAC covariance matrix estimator to control for possible

autocorrelation and/or heteroskedasticity in the residuals. Following Stock and Watson

(1996), we compute the empirical distribution of the test statistic by considering a 100-

point grid of values for � over the interval [0, 0.1]. For each element of the grid we compute
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the corresponding estimate of the covariance matrix of �t as Q̂j=�
2
j �̂
2Q̂; conditional on Q̂j

we simulate the model (2)-(3) 10,000 times, drawing the pseudo innovations from pseudo-

random iid N(0; �̂2). We compute the median-unbiased estimate of � as that particular

value for which the median of the simulated empirical distribution of the test is closest to the

test statistic previously computed based on the actual data. Finally, we compute the p-value

based on the empirical distribution of the test conditional on �j = 0, which we compute

based onBentai (2007)�s extension of the Stock and Watson (1996, 1998) methodology.

We report the estimation results in Table 1. Two main �ndings emerge. First, there is

strong evidence of random-walk time-variation in the equation for the vacancy rate. The

p-values for the null of no time-variation ranges from 0:0028 to 0:0195, depending on the

speci�c test stastistic. The median-unbiased estimates of � are comparatively large, between

0:0235 and 0:0327. On the other hand, the corresponding p-values for the unemployment

rate are much larger, ranging from 0:1661 to 0:2594, which suggests time-invariance. How-

ever, the PDFs of the median-unbiased estimates of � in Figure 2 paint a more complex

picture. Substantial fractions of the probability mass are clearly above zero, while median-

unbiased estimates of � range between 0:0122 and 0:0153. Although, strictly speaking, the

null hypothesis of no time-variation cannot be rejected at conventional signi�cance levels

in a frequentist sense, the evidence reported in Figure 2 suggests more caution. A more

sensible interpretion of the evidence is that all possible values of � should be regarded, ex

ante, as equally legitimate. It is the econometrician�s task to simply get the more plausible

estimate. In what follows we will therefore assume that both equations feature random-

walk time-variation. We now proceed to investigate the changing relationship between the

vacancy rate and the unemployment rate based on a Bayesian time-varying parameter VAR.

3 A Bayesian Time-Varying Parameter VAR with Stochastic
Volatility

We de�ne the data vector Yt � [�yt, Vt, Ut]0, where �yt is real GDP growth, computed

as the log-di¤erence of real GDP; Vt is the vacancy rate based the Conference Board�s

Help-Wanted Index and Barnichon�s (2010) extension; and Ut is the unemployment rate.

The vacancies and unemployment series are both normalized by the labor force, seasonally

adjusted, and converted from the original monthly series by simple averaging. The overall

sample period is 1951Q1-2011Q4. We use the �rst 15 years of data to compute the Bayesian

priors, which makes the e¤ective sample period 1965Q1-2011Q4. Appendix A contains a

complete description of the data and of their sources.
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We specify the following time-varying parameter VAR(p) model:

Yt = B0;t +B1;tYt�1 + :::+Bp;tYt�p + �t � X
0
t�t + �t: (4)

The notation is standard. As is customary in the literature on Bayesian time-varying

parameters VARs, we set the lag order to p = 2. The time-varying lag coe¢ cients, collected

in the vector �t, are postulated to evolve according to:

p(�t j �t�1, Q) = I(�t) f(�t j �t�1, Q); (5)

where I(�t) is an indicator function that rejects unstable draws and thereby enforces sta-

tionarity on the VAR. The transition f(�t j �t�1, Q) is given by:

�t = �t�1 + �t; (6)

with �t � N(0; Q).
We assume that the reduced-form innovations �t in (4) are normally distributed with

zero mean, where we factor the time-varying covariance matrix 
t as:

V ar(�t) � 
t = A�1t Ht(A�1t )0: (7)

The time-varying matrices Ht and At are de�ned as:

Ht �

24 h1;t 0 0
0 h2;t 0
0 0 h3;t

35 ; At �

24 1 0 0
�21;t 1 0
�31;t �32;t 1

35 : (8)

We assume that the hi;t evolve as geometric random walks,

lnhi;t = lnhi;t�1 + �i;t; i = 1; 2; 3: (9)

For future reference, we de�ne ht � [h1;t, h2;t, h3;t]0. We assume, as in Primiceri (2005),

that the non-zero and non-unity elements of the matrix At, which we collect in the vector

�t � [�21;t, �31;t, �32;t]0, evolve as driftless random walks:

�t = �t�1 + � t , (10)

where � t � N(0; S). Finally, we assume that the innovations vector [u0t, �
0
t, �

0
t, �

0
t]
0 is

distributed as:2664
ut
�t
� t
�t

3775 � N (0; V ) , with V =
2664
I3 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 Z

3775 and Z =

24 �21 0 0
0 �22 0
0 0 �23

35 ; (11)
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where ut is such that �t � A�1t H
1
2
t ut.

We follow the literature in imposing a block-diagonal structure for V , the main reason

being parsimony, since the model is already quite heavily parameterized. Allowing for a

completely generic correlation structure among di¤erent sources of uncertainty would also

preclude any structural interpretation of the innovations. Finally, following Primiceri (2005)

we adopt the additional simplifying assumption of postulating a block-diagonal structure

for S:

S � V ar (� t) = V ar (� t) =
�

S1 01�2
02�1 S2

�
; (12)

with S1 � Var(�21;t), and S2 � Var([�31;t; �32;t]0). This implies that the non-zero and

non-one elements of At belonging to di¤erent rows evolve independently. As discussed

in Primiceri (2005), this assumption drastically simpli�es inference, since it allows Gibbs

sampling on the non-zero and non-one elements of At equation by equation.

We estimate (??)-(12) via standard Bayesian methods. Appendix B discusses our choices

for the priors, and the Markov-Chain Monte Carlo algorithm we use to simulate the posterior

distribution of the hyperparameters and the states conditional on the data.

4 Reduced-Form Evidence

Figure 3 presents the �rst set of reduced-form results. It shows time-varying statistics of the

estimated innovations in the VAR (4). The �rst panel depicts the median posterior estimate

of the correlation coe¢ cient of the innovations to vacancies and the unemployment rate and

associated 68% and 90% coverage regions. The plot shows substantial time variation in this

statistic. From the late 1960s to the early 1980s the correlation strengthens from �0:4 to
�0:85 before rising (in absolute value) to a low of �0:25. Over the course of the last decade,
the correlation has strengthened again, settling recently close to the average median value

of �0:55. This suggests that the unemployment-vacancy correlation strengthens during
periods of broad downturns and high volatility, whereas it weakens in general upswings with

low economic turbulence. The evidence over the last decade also supports the impression

that the U.S. economy is in a period of a prolonged downswing.1

This impression of substantial time variation is strongly supported by second panel

which shows the fraction of draws from the posterior distribution for which the correlation

coe¢ cient is greater than the average median value over the sample. The fraction of draws

1We also note that at the same time the coverage regions are tightly clustered around the median estimate
during the period of highest instability, namely the last 1970s and the Volcker disin�ation, whereas they are
more spread out in the beginning and towards the end of the sample.
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sinks toward zero at the end of the Volcker disin�ation, while it oscillates for much of the

Great Moderation between 0:6 and 0:9. Similarly to the results in the �rst panel, the period

since the beginning of the �nancial crisis in August 2007 is characterized by a substantial

decrease in the fraction of draws.

In the third panel of Figure 3, we look at the ratio of the estimated standard deviations

of the unemployment and vacancy innovations. The graph shows substantial time variation

in this ratio, although overall both innovation variances are of roughly equal size. While the

innovation variance of the vacancy rate appears overall dominant, unemployment innova-

tions play a relatively larger role at the end of the Great In�ation, the Volcker disin�ation,

and the Great Recesssion. All of these are periods during which the unemployment rate shot

up sharply. This suggests a dominant role of speci�c shocks. namely those tied closely to

reduced-form innovations to the unemployment rate, at the onset of an economic downturn.

We attempt to identify the sources for this behavior in the following section.

We now narrow our focus on the behavior of unemployment and vacancies at the

business-cycle frequencies between 6 quarters and 8 years. We report these results us-

ing statistics from the frequency domain. Figure 4 shows median posterior estimates (and

associated coverage regions) of the average cross-spectral gain and coherence between the

two labor market variables. The gain of a variable xt onto another variable yt at the fre-

quency ! is de�ned as the absolute value of the OLS-coe¢ cient in the regression of yt on

xt at that frequency, whereas the coherence is the R2 in that regression. Consequently, the

gain has a natural interpretation in terms of the slope of the Beveridge curve, while the

coherence measures the fraction of the vacancy-rate�s variance at given frequencies that is

accounted for by the variation in the unemployment rate. We �nd it convenient to express

time-variation in the Beveridge curve in terms of the frequency domain since it allows us

to isolate the �uctuations of interest, namely policy-relevant business cycles, and therefore

abstract from secular movements.

Overall, evidence of time-variation is signi�cantly stronger for the gain than for the

coherence. As the third panel shows, the coherence beween the two series appears to have

remained broadly unchanged since the second half of the 1960s, except for a brief run-

up during the Great In�ation of the 1970s culminating in the tight posterior distribution

during the Volcker disin�ation of the early 1980s. Moreover, average coherence is always

above 0.8, with 0.9 contained in the 68% coverage region. The high explanatory power of

one variable for the other at the business cycle frequencies thus suggests that unemployment

and vacancies are driven by a set of common shocks over the sample period.
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Panels 1 and 2 of Figure 4 point towards a signi�cant extent of time-variation, whereby

the fraction of draws for which the average gain of the unemployment rate onto the vacancy

rate is below one oscillates substantially over the sample period. The gain is large during

the same periods in which the relative innovation variance of reduced-form shocks to the

unemployment rate is large, namely during the �rst oil shock, the Volcker recession, and

the Great Recession. That is, during these recessionary episodes movements in the unem-

ployment rate are relatively larger than those in the vacancy rate. This points towards a

�attening of the Beveridge curve in downturns, when small movements in vacancies are ac-

companied by large movements in unemployment. Time variation in the gain thus captures

the shifts and tilts in the individual Beveridge curves highlighted in Figure 1 in one simple

statistic.

As a side note, our evidence does not indicate fundamental di¤erences between the

Volcker disin�ation and the Great Recession, that is between the two deepest recessions in

the post-war era. This is especially apparent from the estimated gain in Figure 4 which

shows a similar time pro�le during both episodes. The relationship between vacancies and

unemployment, although clearly di¤erent from the years leading up to the �nancial crisis,

is broadly in line with that of the early 1980s.

We can now summarize our �ndings from the reduced-form evidence as follows. The

correlation pattern between unemployment and vacancies shows a signi�cant degree of time

variation. It strengthens during downturns and weakens in upswings. This is consistent

with the idea that over the course of a business cycle, as the economy shifts from a peak

to a trough, the labor market moves downward along the Beveridge curve. This movement

creates a tight negative relationship between unemployment and vacancies. As the economy

recovers, however, vacancies start rising without much movement in unemployment. Hence,

the correlation weakens. The economy thus goes o¤ the existing Beveridge curve, in the

manner of a counter-clockwise loop, as identi�ed by Blanchard and Diamond (1989), or it

moves to a new Beveridge curve, as suggested by the recent literature on mismatch, e.g.

Lubik (2012), Furlanetto and Groshenny (2012), Sahin et al. (2012). Evidence from the

frequency domain suggests that the same shocks underlie movements in the labor market,

but that over the course of the business cycle shocks change in their importance. During

recessions movements in unemployment dominate, while in upswings vacancies play a more

important role. We now try to identify the structural factors determining this reduced-form

behavior.
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5 Identi�cation

A key focus of our analysis is to identify the underlying sources of the movements in the

Beveridge curve. In order to do so we need to identify the structural shocks underlying

the behavior of unemployment and vacancies. Our data set contains a nonstationary vari-

able, GDP, and two stationary variables, namely the unemployment and vacancy rates.

This allows us to identify one permanent and two transitory shocks from the reduced-form

innovation covariance matrix. While the permanent shock has no e¤ect on the two labor

market variables in the long-run, it can still lead to persistent movements in these variables,

and therefore the Beveridge curve, in the short to medium run.2 More speci�cally, we are

interested which shocks can tied to the changing slope and the shifts in the Beveridge curve.

We let our identi�cation strategy be guided by the implications of the simple model, which

o¤ers predictions for the e¤ects of permanent and transitory productivity shocks as well as

for other transitory labor market disturbances.

5.1 A Simple Theoretical Framework

We organize the interpretation of our empirical �ndings around the predictions of the stan-

dard search and matching model of the model labor market as described in Shimer (2005).

The model is a data-generating process for unemployment and vacancies that is driven by

a variety of fundamental shocks.

The model can be reduced to three key equations that will guide our thinking about the

empirics. The �rst equation describes the law of motion for employment:

Nt = (1� �t)
h
Nt�1 +mU

�
t�1V

1��
t�1

i
Figure 5 depicts the theoretical impulse response functions of the unemployment and

vacancy rate to each of the shocks. We can categorize the shocks in two groups, namely into

shocks that move unemployment and vacancies in the same direction, and those that imply

opposite movements of these variables. This classi�cation underlies the identi�cation by sign

restrictions that we use later on in the paper. Both productivity shocks increase vacancies

on impact and lower unemployment over the course of the adjustment period. The e¤ect of

the temporary shock is much more pronounced since it is calibrated at a much higher level of

persistence than the productivity growth rate shock. Persistent productivity shocks increase

2While this rules out strict hysteresis e¤ects, in the sense that temporary shocks can have permanent
e¤ecs, it can still lead to behavior that looks over typical sample periods as hysteresis-induced. Moreover,
the empircial evidence concerning hysteresis is decidedly mixed.
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vacancy posting because they raise the expected value of a �lled position. As more vacancies

get posted, new employment relationships are established and the unemployment rate falls.

We note that permanent shocks have a temporary e¤ect on the labor market because they

tilt the expected pro�t pro�le in a similar manner to temporary shocks. However, they are

identi�ed by their long-run e¤ect on output, which by de�nition no other shock can muster.

Shocks to match e¢ ciency, vacancy posting costs and unemployment bene�ts lead to

negative comovement between unemployment and bene�ts. Increases in match e¢ ciency

and decreases in the vacancy costs both lower e¤ective vacancy creation cost �t
mt
��t ceteris

paribus and thereby stimulate initial vacancy creation. These vacancies then lead to lower

unemployment over time. In the case of �t there is additional feedback from wage setting

since the hold-up term �t�t can rise or fall. Similarly, increases in match e¢ ciency have an

additional e¤ect via the matching function as the higher level of vacancies is now turned

into even more new hires, so that employment rises. Movements in bene�ts also produce

negative comovements between the key labor market variables, but the channel is via wage

setting. Higher bene�ts increase the outside option of the worker in bargaining which leads

to higher wages. This reduces the expected pro�t stream to the �rm and fewer vacancy

postings and higher unemployment.

On the other hand, a persistent increase in the separation rate drives both unemployment

and vacancy postings higher. There is an immediate e¤ect on unemployment, which ceteris

paribus lowers labor market tightness, thereby reducing e¤ective vacancy posting cost. In

isolation, this e¤ect stimulates vacancy creation. At the same time, persistent increases

in separations reduce expected pro�t streams from �lled positions which has a dampening

e¤ect on desired vacancies. This is balanced, however, by persistent declines in tightness

becuase of increased separations. The resulting overall e¤ect is that �rms take advantage

of the larger pool of potential hires and increase vacancy postings to return to the previous

long-run level over time.

Based on the theoretical insights derived above, we now describe how we implement

identi�cation of a single permanent shock and two transitory shocks in our time-varying

parameter VAR model.

5.2 Disentangling Permanent and Transitory Shocks

The permanent shock is identi�ed from a long-run restriction as originally proposed by

Blanchard and Quah (1989). We label a shock as permanent if it a¤ects only GDP in the

long run, but not the labor market variables. The short- and medium-run e¤ects on all
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variables is left unrestricted. In terms of the simple model, the identi�ed permanent shock

is consistent with the permanent productivity shock APt which underlies the stochastic trend

in output. We follow the procedure proposed by Galí and Gambetti (2009) for imposing

long-run restrictions within a time-varying parameter VAR model. It is based on two

alternative rotations of the VAR�s covariance matrix of reduced-form innovations.

Let 
t = PtDtP 0t be the eigenvalue-eigenvector decomposition of the VAR�s time-varying

covariance matrix 
t in each time period and for each draw from the ergodic distribution.

We compute a local approximation to the matrix of the cumulative impulse-response func-

tions (IRFs) to the VAR�s structural shocks as:

�Ct;1 = [IN �B1;t � :::�Bp;t]�1| {z }
C0

�A0;t; (13)

where IN is the N�N identity matrix. The matrix of the cumulative impulse-response func-

tions is then rotated via an appropriate Householder matrix H in order to introduce zeros in

the �rst row of �Ct;1, which corresponds to GDP, except for the (1,1) entry. Consequently,

the �rst row of the cumulative impulse-response functions,

CPt;1 = �Ct;1H = C0 �A0;tH = C0A
P
0;t (14)

is given by [x 0 0], with x being a non-zero entry. By de�nition, the �rst shock identi�ed

by AP0;t is the only one exerting a long-run impact on the level of GDP. We therefore

label it the permanent output shock. We then consider an alternative rotation of �Ct;1

which introduces a zero in the �rst column of the second and third rows of the matrix of the

cumulative impulse-response functions, CTt;1 = C0A
T
0;t. This implies that the remaining two

shocks identi�ed by the matrix AT0;t only have a transitory impact on GDP. We therefore

label them the transitory shocks.

5.3 Identifying the Transitory Shocks Based on Sign Restrictions

We identify the two transitory shocks by assuming that they induce a di¤erent impact pat-

tern on vacancies and the unemployment rate. Our theoretical discussion of the search and

matching model has shown that a host of shocks, e.g. temporary productivity, vacancy cost,

match e¢ ciency shocks, imply negative comovement for the two variables, while separation

rate shocks increase vacancies and unemployment on impact. We transfer these insights to

the structural VAR identi�cation scheme.

Let ut � [uPt ; u
T1
t ; u

T2
t ]

0 be the vector of the structural shocks: uPt is the permanent

output shock, uT1t and uT2t are the two transitory shocks; let ut = A�10;t �t, with A0;t being
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the VAR�s structural impact matrix. Our sign restriction approach postulates that uT1t
induces the same sign on vacancies and the unemployment rate contemporaneously, while

uT2t induces an opposite sign. We compute the time-varying structural impact matrix, A0;t

by combining the methodology proposed by Rubio-Ramirez et al. (2005) for imposing sign

restrictions, and the procedure proposed by Galí and Gambetti (2009) for imposing long-run

restrictions in time-varying parameter VARs.

Let 
t = PtDtP 0t be the eigenvalue-eigenvector decomposition of the VAR�s time-varying

covariance matrix 
t, and let ~A0;t � PtD
1
2
t . We draw an N �N matrix K from a standard-

normal distribution and compute the QR decomposition of K, that is, we �nd matrices Q

and R such thatK = Q�R. The intermediate estimate of the time-varying structural impact
matrix can then be computed as �A0;t = ~A0;t �Q0. We then compute the local approximation
to the matrix of the cumulative IRFs to the VAR�s structural shocks, �Ct;1, from (13). In

order to introduce zeros in the �rst row of �Ct;1, we rotate the matrix of the cumulative IRFs

via an appropriate Householder matrix H. The �rst row of the matrix of the cumulative

IRFs, Ct;1 = �Ct;1H = C0;t �A0;tH = C0;tA0;t, is given by [x 0 0], with x being a non-zero

entry. If the resulting structural impact matrix A0;t = �A0;tH satis�es the sign restrictions

we store it. It is discarded otherwise. We then repeat the procedure until we obtain an

impact matrix which satis�es both the sign restrictions and the long-run restriction at the

same time.

6 Structural Evidence

Our identi�cation strategy discussed in section 4 allows us distinguish between one perma-

nent and two transitory shocks. The permanent shock is identi�ed as having a long-run

e¤ect on GDP, while the transitory shocks are identi�ed from sign restrictions derived from

a simple search and matching model. A side product of our strategy is that we can identify

the natural rate of output as its permanent component. Figure 6 shows real GDP in logs

together with the median of the posterior distribution of the estimated permanent compo-

nent and the 68% coverage region. We also report the corresponding transitory component

together with the output gap estimate from the Congressional Budget O¢ ce (CBO).

Our estimate of the transitory component is most of the times quite close to the CBO

output gap, which is produced from a production function approach to potential output,

whereas our estimate is largely atheoretical. The main discrepancy between the two esti-

mates is in the wake of the Great Recession, particularly the quarters following the collapse

of Lehman Brothers. Whereas the CBO estimate implies a dramatic output shortfall of
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around 7.5% of potential output in the �rst half of 2009, our estimated gap is much less

at between 3-4% with little change since then. The reason behind our smaller estimate of

the current gap is a comparatively large role played by permanent output shocks in the

Great Recession. As the �rst panel shows, the time pro�le of the permanent component

of log real GDP is estimated to have been negatively a¤ected in a signi�cant way by the

Great Recession, with a downward shift in the trend path. That is, natural output is now

permanently lower. The question we now investigate is whether and to what extent these

trend shifts due to permanent output shocks seep into the Beveridge curve.

6.1 Impulse Response Functions

As a �rst pass, we report impulse response functions (IRFs) to unemployment and vacancies

for each of the three shocks in Figures 7-9. Because of the nature of the time-varying

parameter VAR, there is not a single IRF for each shock-variable combination. We therefore

represent the IRFs by collecting the time-varying coe¢ cients on impact, two quarters ahead,

one year ahead, and �ve years ahead in individual graphs to allow us tracking of how the

dynamic behavior of the labor market variables changes over time. An IRF for a speci�c

period can then be extracted by following the impulse response coe¢ cient over the the four

panels. The IRFs are normalized such that the long-run e¤ect is attained at a value of one,

while transitory shocks eventually return the responses to zero.

In Figure 7, an innovation to the permanent component of output raises GDP on impact

by one half of the long-run e¤ect which is obtained fairly quickly after around one year in

most periods. A permanent shock tends to raise the vacancy rate on impact, after which

it rises for a few quarters before falling to its long-run level. The unemployment rate

rises on impact, but then quickly settles around zero. The initial, seemingly counterfactual

response is reminiscent of the �nding by Galí (1999) that positive productivity shocks have

negative employment consequences, which in our model translates into an initial rise in

the unemployment rate. Furthermore, the behavior of the estimated impulse responses is

broadly consistent with the results from the calibrated theoretical model, both in terms of

direction and size of the responses. As we will see below, compared to the transitory shocks

the permanent productivity shock, which in the theoretical model takes the form of a growth

rate variations exerts only a small e¤ect on unemployment and vacancy rates. Notably, the

coverage regions for both variables include zero at all horizons. Overall, the extent of time

variation in the IRFs appears small. It is more pronounced at shorther horizons than in

the long run.
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We report the IRFs to the �rst transitory shock in Figure 8. This shock is identi�ed as

inducing an opposite response of the vacancy and the unemployment rate on impact. In the

theoretical model, this identi�ed empirical shock is associated with a transitory productivity

shock, variations in match e¢ ciency, hiring costs, or bene�t movements. The IRFs of all

three variables in the VAR are hump-shaped, with a peak response at one year ahead.

Moreover, the amplitudes of the responses are much more pronounced than in the previous

case. The vacancy rate is back at its long-run level after 5 years, while there is much more

persistence in the unemployment rate and GDP. We also note that our simple theoretical

framework cannot replicate this degree of persistence.

The vacancy rate exhibits the highest degree of time variation. What stands out is

that its response is asymmetric over the business cycle, but only in the pre-1984 period.

During the recessions of the early and mid-1970s, and the deep recession of the early 1980s

culminating in the Volcker disin�ation, the initial vacancy response declines (in absolute

value) over the course of the downturn, before increasing in the recovery phase. That is, the

vacancy rate responds less elastically to the �rst transitory shock during downturns than

in expansions - which is not the case for the unemployment rate. This pattern is visible

at all horizons. Between the Volcker disin�ation and shortly before the onset of the Great

Recession the impact response of the vacancy rate declines gradually from -1 to almost -2

percent, before rising again sharply during the recession.

The second transitory shock is identi�ed by imposing the same sign response on un-

employment and vacancies. In the context of the theoretical model, such a pattern is due

to movements in the separation rate. The IRFs in Figure 9 show that the vacancy rate

rises on impact, then reaches a peak four quarters out before returning gradually over the

long run. The unemployment rate follows the same pattern, while the shock induces a

large negative response of GDP. None of the responses exhibits much time variation, at

best there are slow-moving changes in the IRF-coe¢ cients towards less elastic responses.

Interestingly, the impact behavior of the vacancy rate declines over the course of the Great

Recession. We note, however, that the coverage regions are very wide and include zero for

the unemployment rate and GDP at all horizons.

6.2 Variance Decompositions

Figure 10 provides evidence on the relative importance of permanent and transitory shocks

for �uctuations in vacancies and the unemployment rate. We report the median of the pos-

terior distributions of the respective fractions of innovation variance due to the permanent
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shock and the associated coverage regions. For the vacancy rate, permanent shocks appear

to play a minor role, with a median estimate of between 10% and 20%. The median esti-

mate for the unemployment rate exhibits a greater degree of variation, oscillating between

10 and 40%. Despite this large extent of time variation, it is di¢ cult to relate �uctuations

in the relative importance of permanent shocks to key macroeconomic events. Possible

candidates are the period after the �rst oil shock, when contribution of permanent shocks

shot up temporarily, and the long expansion of the 1980s until the late 1990s, which was

temporarily punctured by the recession in 1991. Moreover, there is no consistent behavior

of the permanent shock contribution over the business cycle. Their importance rises both

in downturns and in upswings. On the other hand, this observation gives rise to the idea

that all business cycles, at least in the labor market, are di¤erent along this dimension.

We now turn to the relative contribution of the two transitory shocks identi�ed by sign

restrictions. The evidence is fairly clear-cut. Given the strongly negative unconditional

relationship between vacancies and the unemployment rate, we would expect the contribu-

tion of uT1t , that is, the shock that induces induces positive contemporaneous co-movement

between the two variables, to be small. This is, in fact, borne out by the �rst column of

the graph in Figure 11. The median estimate of the fraction of innovation variance of the

two series due to uT1t is well below 20%. Correspondingly, the second transitory appears

clearly to be dominant for both variables. Based on the theoretical model, we can associate

this shock with either temporary productivity disturbances or with stochastic movements

in hiring costs, match e¢ ciency or unemployment bene�ts. Given the parsimonious nature

of both the theorectial and empirical model, we cannot further entangle this. The �rst

transitory shock, however, is associated with movements in the separation rate.

6.3 Structural Shocks and Beveridge Curve Shifts

We now turn to one of the main �ndings of the paper, namely the structural sources of time

variation in the Beveridge curve. We �rst discuss the relationship between the business cycle,

as identi�ed by the transitory component in GDP and measures of the Beveridge curve. We

then decompose the estimated gain and coherence of unemployment and vacancies into their

structural components based on the identifying scheme discussed above.

Figure 12 reports two key pieces of evidence on the cyclical behavior of the slope of the

Beveridge curve. The left panel shows the fraction of draws from the posterior distribution

for which the transitory component of output is positive. This is plotted against the fraction

of draws for which the average cross-spectral gain between vacancies and the unemployment
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rate at the business-cycle frequencies is greater than one. The graph thus gives an indication

of how the slope of the Beveridge curve moves with aggregate activity over the business

cycle.

We can di¤erentiate two separate time periods. During the 1970s and the early 1980s,

that is, during the Great In�ation, the slope of the Beveridge curve systematically comoves

contemporaneously with the state of the business cycle. It is comparatively larger (in

absolute value) during business-cycle upswings, and comparatively smaller during periods

of weak economic activity. Similarly, the Great Recession is characterized by a very strong

co-movement between the slope of the Beveridge curve and the transitory component of

output, but this time evidence suggests that the slope slightly leads the business cycle.

On the other hand, in the long expansion period from 1982 to 2008, labelled the Great

Moderation and only marred by two minor recessions, the slope of the Beveridge curve

comoves less clearly with the business cycle, which is especially apparent during the 1990s.

In the early and late part of this sample period the Beveridge curve appears to lag the

cycle. This is consistent with the notion of jobless recoveries after the two mild recessions.

Despite upticks in economic activity, the labor market did not recover quickly after 1992

and, especially, after 2001. In the data this manifests itself in a large gain between un-

employment and vacancies. Moreover, this is also consistent with the changing impulse

response patterns to structural shocks discussed above. The outlier in a sense is the Great

Recession which resembles more the recessions of the Great In�ation rather than those of

the Great Moderation.

The second panel reports additional evidence on the extent of cyclicality of the slope of

the Beveridge curve. It shows the distribution of the slope coe¢ cient in the LAD (Least

Absolute Deviations) regression of the cross-spectral gain on a constant and the transitory

component of output. Overall, the LAD coe¢ cient is greater than zero for 82.5% of the

draws from the posterior distribution, which points towards the pro-cyclicality of the slope

of the Beveridge curve.

Figure 13 shows how the two types of shocks shape the evolution of the Beveridge

curve. We plot the average gain and coherence between vacancies and the unemployment

rate at business-cycle frequencies over time together with the fraction of draws for which

the average gain is greater than one. The upper row of the panel reports the statistics

conditional on the permanent shock, the lower panel contains those conditional on the two

transitory shocks. Whereas the coherence conditional on the permanent shock does not

show much time-variation, conditioning on transitory shocks reveals a pattern which is
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broadly similar to the reduced-form representation. This suggests that the comparatively

greater coherence between the two series around the time of the Great In�ation and of the

Volcker disin�ation is mostly due to transitory shocks.

Time variation in the gain, on the other hand, appears to be due to both types of shocks.

Although the middle column suggests that the extent of statistical signi�cance of the �uctu-

ations in the gain is similar, the �rst column suggests a di¤erent magnitude. In particular,

�uctuations in the gain conditional on permanent output shocks, which accounted for a

comparatively minor fraction of the innovation variance of the two series, is signi�cantly

wider than the corresponding �uctuations conditional on transitory shocks. Moreover, and

unsurprisingly in the light of the previously discussed evidence on the relative importance

of the two types of shocks, both the magnitude and the time-pro�le of the �uctuations of

the gain conditional on transitory shocks are very close to the reduced-form evidence.

7 Interpreting Changes in the Beveridge Curve Based on an
Estimated DSGE Model

[Figure 14]

[TO BE COMPLETED]

8 Conclusion

In this paper we have used a Bayesian time-varying parameters structural VAR with sto-

chastic volatility to investigate, for the post-WWII United States, changes in both the

reduced-form relationship between vacancies and the unemployment rate, and in their rela-

tionship conditional on permanent and transitory output shocks. Evidence points towards

both similarities and di¤erences between the Great Recession and the Volcker disin�ation,

and a widespread time-variation along two key dimensions. First, the slope of the Beveridge

curve� as captured by the average cross-spectral gain between vacancies and the unemploy-

ment rate at the business-cycle frequencies� has exhibited a large extent of variation since

the second half of the 1960s, and a broad pro-cyclicality, with the gain being positively

correlated with the transitory component of output. The evolution of the slope of the Bev-

eridge curve during the Great Recession appears to have been, so far, very similar to its

evolution during the Volcker recession in terms of both its magnitude, and its time-pro�le.

Second, both the Great In�ation episode, and the subsequent Volcker disin�ation, have been

characterized by a signi�cantly larger (in absolute value) negative correlation between the
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reduced-form innovations to vacancies and the unemployment rate than the rest of the sam-

ple period. Those years also appear to have been characterized by a greater cross-spectral

coherence between the two series at the business-cycle frequencies, thus pointing towards

them being driven, to a larger extent than the rest of the sample, by common shocks.

References

[1] Andrews, Donald K. (1991): �Heteroskedasticity and Autocorrelation-Consistent Co-

variance Matrix Estimation�. Econometrica, 59, 817-858.

[2] Barnichon, Regis (2010): �Building a composite Help-Wanted Index�. Economics Let-

ters, 109, 175-178.

[3] Benati, Luca (2007): �Drifts and Breaks in Labor Productivity�. Journal of Economic

Dynamics and Control, 31(8), 2847-2877.

[4] Blanchard, Olivier J., and Peter Diamond (1989): �The Beveridge Curve�. Brookings

Papers on Economic Activity, 1, 1-60.

[5] Blanchard, Olivier J., and Danny Quah (1989): �The Dynamic E¤ects of Aggregate

Demand and Supply Disturbances�. American Economic Review, 79(4), 655-673.

[6] Canova and Paustian (2011)

[7] Cogley, Timothy, and Thomas J. Sargent (2005): �Drifts and Volatilities: Monetary

Policies and Outcomes in the Post WWII US�. Review of Economic Dynamics, 8,

262-302.

[8] Furlanetto, Francesco and Nicolas Groshenny (2012): �Mismatch Shocks and Unem-

ployment During the Great Recession�. Manuscript, Norges Bank.

[9] Galí, Jordi (1999): �Technology, Employment, and the Business Cycle: Do Technology

Shock Explain Aggregate Fluctuations?�American Economic Review, 89(1), 249-271.

[10] Galí, Jordi and Luca Gambetti (2009): �On the Sources of the Great Moderation�.

American Economic Journal: Macroeconomics, 1(1), 26-57.

[11] Lubik, Thomas A. (2012): �The Shifting and Twisting Beveridge Curve�. Manuscript,

Federal Reserve Bank of Richmond.

20



[12] Newey, Whitney, and Kenneth West (1987): �A Simple Positive-Semi-De�nite Het-

eroskedasticity and Autocorrelation-Consistent Covariance Matrix�. Econometrica, 55,

703-708.

[13] Primiceri, Giorgio (2005): �Time Varying Structural Vector Autoregressions and Mon-

etary Policy�. Review of Economic Studies, 72, 821-852.

[14] Rubio-Ramirez, Juan, Dan Waggoner, and Tao Zha (2005): �Structural Vector Autore-

gressions: Theory of Identi�cation and Algorithms for Inference�. Review of Economic

Studies, 77(2), 665-696.

[15] Sahin, Aysegul, Joseph Song, Giorgio Topa, and Giovanni L. Violante (2012): �Mis-

match Unemployment�. Federal Reserve Bank of New York Sta¤ Reports, No. 566.

[16] Shimer, Robert (2005): �The Cyclical Behavior of Equilibrium Unemployment and

Vacancies�. American Economic Review, 95, 25-49.

[17] Stock, James, and Mark M. Watson (1996): �Evidence of Structural Instability in

Macroeconomic Time Series Relations�. Journal of Business and Economic Statistics,

14(1), 11-30.

[18] Stock, James, and Mark M. Watson (1998): �Median-Unbiased Estimation of Co-

e¢ cient Variance in a Time-Varying Parameter Model�. Journal of the American

Statistical Association, 93(441), 349-358.

21



A The Data

A quarterly seasonally adjusted series for real GDP (�GDPC96, Real Gross Domestic Prod-

uct, 3 Decimal, Seasonally Adjusted Annual Rate, Quarterly, Billions of Chained 2005 Dol-

lars�) is from the U.S. Department of Commerce: Bureau of Economic Analysis. A quarterly

seasonally adjusted series for the unemployment rate has been computed by converting to

the quarterly frequency (by taking averages within the quarter) the series UNRATE (�Civil-

ian Unemployment Rate, Seasonally Adjusted, Monthly, Percent, Persons 16 years of age

and older�), from the U.S. Department of Labor: Bureau of Labor Statistics. A monthly

seasonally adjusted series for the vacancy rate has been computed as the ratio between the

�Help Wanted Index�(HWI) and the civilian labor force. The HWI index is from the Con-

ference Board up until 1994Q4, and from Barnichon (2010) after that. The labor force series

is from the U.S. Department of Labor: Bureau of Labor Statistics (�CLF16OV, Civilian La-

bor Force, Persons 16 years of age and older, Seasonally Adjusted, Monthly, Thousands of

Persons�). The monthly seasonally adjusted series for the vacancy rate has been converted

to the quarterly frequency by taking averages within the quarter.

B Deconvoluting the Probability Density Function of �̂

This appendix describes the procedure we use in section 2 to deconvolute the probability

density function of �̂. To �x ideas, let�s start by considering the construction of a (1-�)%

con�dence interval for �̂, [�̂
L

(1��); �̂
U

(1��)], and let�s assume, for the sake of simplicity, that

�j and �̂ can take any value over [0; 1). Given the duality between hypothesis testing and
the construction of con�dence intervals, the (1-�)% con�dence set for �̂ comprises all the

values of �j that cannot be rejected based on a two-sided test at the �% level. Given that

an increase in �j automatically shifts the PDF of L̂j conditional on �j upwards, �̂
L

(1��) and

�̂
U

(1��) are therefore such that

P
�
L̂j > L̂ j �j = �̂

L

(1��)

�
= �=2 (B1)

P
�
L̂j < L̂ j �j = �̂

U

(1��)

�
= �=2 (B2)

Let ��̂(�j) and ��̂(�j) be the probability density function and, respectively, the cumu-

lative probability density function of �̂, de�ned over the domain of �j . The fact that

[�̂
L

(1��); �̂
U

(1��)] is a (1-�)% con�dence interval automatically implies that (1-�)% of the

probability mass of ��̂(�j) lies between �̂
L

(1��) and �̂
U

(1��). This in turn implies that
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��̂(�̂
L

(1��))=�=2 and ��̂(�̂
U

(1��))=1-�=2. Given that this holds for any 0<�<1, we therefore

have that

��̂(�j) = P
�
L̂j > L̂ j �j

�
(B3)

In this way, based on the exp-Wald test statistic, L̂, and on the simulated distributions of

the L̂j�s conditional on the �j�s in �, we obtain an estimate of the cumulative probability

density function of �̂ over the grid �, let�s call it �̂�̂(�j). Finally, we �t a logistic function

to �̂�̂(�j) via non-linear least squares and we compute the implied estimate of ��̂(�j)� call

it �̂�̂(�j)� scaling its elements so that they sum to one.

C Details of the Markov-Chain Monte Carlo Procedure

We estimate (??)-(??) via Bayesian methods. The next two subsections describe our choices

for the priors, and the Markov-Chain Monte Carlo algorithm we use to simulate the poste-

rior distribution of the hyperparameters and the states conditional on the data, while the

third section discusses how we check for convergence of the Markov chain to the ergodic

distribution.

C.1 Priors

For the sake of simplicity, the prior distributions for the initial values of the states� �0 and

h0� which we postulate all to be normal, are assumed to be independent both from each

other, and from the distribution of the hyperparameters. In order to calibrate the prior

distributions for �0 and h0 we estimate a time-invariant version of (??) based on the �rst

15 years of data, and we set

�0 � N
h
�̂OLS ; 4 � V̂ (�̂OLS)

i
(B1)

where V̂ (�̂OLS) is the estimated asymptotic variance of �̂OLS . As for h0, we proceed as

follows. Let �̂OLS be the estimated covariance matrix of �t from the time-invariant VAR,

and let C be its lower-triangular Cholesky factor� i.e., CC 0 = �̂OLS . We set

lnh0 � N(ln�0; 10� IN ) (B2)

where �0 is a vector collecting the logarithms of the squared elements on the diagonal of C.

As stressed by Cogley and Sargent (2002), �a variance of 10 is huge on a natural-log scale,

making this weakly informative�for h0.
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Turning to the hyperparameters, we postulate independence between the parameters

corresponding to the two matricesQ and A� an assumption we adopt uniquely for reasons of

convenience� and we make the following, standard assumptions. The matrixQ is postulated

to follow an inverted Wishart distribution,

Q � IW
�
�Q�1; T0

�
(B3)

with prior degrees of freedom T0 and scale matrix T0 �Q. In order to minimize the impact

of the prior, thus maximizing the in�uence of sample information, we set T0 equal to the

minimum value allowed, the length of �t plus one. As for �Q, we calibrate it as �Q=  �
�̂OLS , setting =1.0�10�4, the same value used in Cogley and Sargent (2002), and a
slightly comparatively �conservative�prior� in the speci�c sense of allowing �little�random-

walk drift� under two respects. First, it is smaller than the value used by Cogley and

Sargent (2002), =3.5�10�4. Second� and crucially� it is smaller than the Stock-Watson
median-unbiased estimates of the extent of random-walk drift discussed in Section 2, ranging

between 0.0235 and 0.0327 for the equation for the vacancy rate, and between 0.0122 and

0.0153 for the equation for the unemployment rate.

As for �, we postulate it to be normally distributed with a �large�variance,

f (�) = N(0, 10000�IN(N�1)=2): (B4)

Finally, as for the variances of the stochastic volatility innovations, we follow Cogley and

Sargent (2002, 2005) and we postulate an inverse-Gamma distribution for �2i � Var(�i;t):

�2i � IG
�
10�4

2
;
1

2

�
(B5)

C.2 Simulating the posterior distribution

We simulate the posterior distribution of the hyperparameters and the states conditional

on the data via the following MCMC algorithm, as found in Cogley and Sargent (2002). In

what follows, xt denotes the entire history of the vector x up to time t� i.e. xt � [x01, x02,
, x0t]

0� while T is the sample length.

(a) Drawing the elements of �t Conditional on Y T , �, andHT , the observation equation

(??) is linear, with Gaussian innovations and a known covariance matrix. Following (?),

the density p(�T jY T ; �;HT ) can be factored as

p(�T jY T ; �;HT ) = p(�T jY T ; �;HT )
T�1Y
t=1

p(�tj�t+1; Y T ; �;HT ) (B6)
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Conditional on � and HT , the standard Kalman �lter recursions nail down the �rst element

on the right hand side of (A6), p(�T jY T ; �;HT ) = N(�T ; PT ), with PT being the precision

matrix of �T produced by the Kalman �lter. The remaining elements in the factorization

can then be computed via the backward recursion algorithm found, e.g., in (?), or Cogley

and Sargent (2005, appendix B.2.1). Given the conditional normality of �t, we have

�tjt+1 = �tjt + PtjtP
�1
t+1jt (�t+1 � �t) (B7)

Ptjt+1 = Ptjt � PtjtP�1t+1jtPtjt (B8)

which provides, for each t from T -1 to 1, the remaining elements in (??), p(�tj�t+1, Y T ,
�, HT ) = N(�tjt+1, Ptjt+1). Speci�cally, the backward recursion starts with a draw from

N(�T ; PT ), call it ~�T Conditional on ~�T , (A7)-(A8) give us �T�1jT and PT�1jT , thus allowing

us to draw ~�T�1 from N(�T�1jT ; PT�1jT ), and so on until t=1.

(b) Drawing the elements of Ht Conditional on Y T , �T , and �, the orthogonalised

innovations ut � A(Yt-X
0
t�t), with Var(ut)=Ht, are observable. Following Cogley and

Sargent (2002), we then sample the hi;t�s by applying the univariate algorithm of (?) element

by element.3

(c) Drawing the hyperparameters Conditional on Y T , �T , HT , and �, the innovations

to �t and to the hi;t�s are observable, which allows us to draw the hyperparameters� the

elements of Q and the �2i� from their respective distributions.

(d) Drawing the elements of � Finally, conditional on Y T and �T the �t�s are observable,

satisfying

A�t = ut (B9)

with the ut being a vector of orthogonalized residuals with known time-variying variance

Ht. Following Primiceri (2005), we interpret (B9) as a system of unrelated regressions. The

�rst equation in the system is given by �1;t � u1;t, while the following equations can be

expressed as transformed regressions as�
h
� 1
2

2;t �2;t

�
= ��2;1

�
h
� 1
2

2;t �1;t

�
+

�
h
� 1
2

2;t u2;t

�
(B10)

�
h
� 1
2

3;t �3;t

�
= ��3;1

�
h
� 1
2

3;t �1;t

�
� �3;2

�
h
� 1
2

3;t �2;t

�
+

�
h
� 1
2

3;t u3;t

�
where the residuals are independent standard normal. Assuming normal priors for each

equation�s regression coe¢ cients the posterior is also normal, and can be computed via

equations (77) of (78) in Cogley and Sargent (2005, section B.2.4).

3For details, see Cogley and Sargent (2005, Appendix B.2.5).
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Summing up, the MCMC algorithm simulates the posterior distribution of the states

and the hyperparameters, conditional on the data, by iterating on (a)-(d). In what follows,

we use a burn-in period of 50,000 iterations to converge to the ergodic distribution, and

after that we run 10,000 more iterations sampling every 10th draw in order to reduce the

autocorrelation across draws.4

D A Simple Search and Matching Model of the Labor Mar-
ket

Time is discrete and the time period is a quarter. The model economy is populated by a

continuum of identical �rms that employ workers, each of whom inelastically supplies one

unit of labor. Output Yt of a typical �rm is linear in employment Nt:

Yt = AtNt: (15)

At is a stochastic aggregate productivity process. We de�ne its law of motion, and those of

the model�s other shocks later in the text.

The labor market matching process combines unemployed job seekers Ut with job open-

ings (vacancies) Vt. This can be represented by a constant returns matching function,

Mt = mtU
�
t V

1��
t , where mt is stochastic match e¢ ciency, and 0 < � < 1 is the (�xed)

match elasticity. Unemployment is de�ned as those workers who are not currently em-

ployed:

Ut = 1�Nt; (16)

where the labor force is normalized to one. In�ows to unemployment arise from job de-

struction at rate 0 < �t < 1, which can vary over time. The dynamics of employment are

thus governed by the following relationship:

Nt = (1� �t)
h
Nt�1 +mt�1U

�
t�1V

1��
t�1

i
: (17)

This is a stock-�ow identity that relates the stock of employed workers Nt to the �ow of

new hires Mt = mtU
�
t V

1��
t into employment. The timing assumption is such that once a

worker is matched with a �rm, the labor market closes. This implies that if a newly hired

worker and a �rm separate the worker cannot reenter the pool of searchers immediately and

has to wait one period before searching again.
4 In this we follow (?). As stressed by (?), however, this has the drawback of �increasing the variance of

ensemble averages from the simulation�.
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The matching function can be used to de�ne the job �nding rate, i.e., the probability

that a worker will be matched with a �rm:

p(�t) =
Mt

Ut
= mt�

1��
t ; (18)

and the job matching rate, i.e., the probability that a �rm is matched with a worker:

q(�t) =
Mt

Vt
= mt�

��
t ; (19)

where �t = Vt=Ut is labor market tightness. From the perspective of an individual �rm,

the aggregate match probability q(�t) is exogenous and una¤ected by individual decisions.

Hence, for individual �rms new hires are linear in the number of vacancies posted: Mt =

q(�t)Vt.

A �rm chooses the optimal number of vacancies Vt to be posted and its employment

level Nt by maximizing the intertemporal pro�t function:

E0

1X
t=0

�t [AtNt �WtNt � �tVt] ; (20)

subject to the employment accumulation equation (17). Pro�ts are discounted at rate

0 < � < 1. Wages paid to the workers are Wt, while �t > 0 is a �rm�s time-varying cost of

opening a vacancy. The �rst-order conditions are:

Nt : �t = At �Wt + �Et
�
(1� �t+1)�t+1

�
; (21)

Vt : �t = �q(�t)Et
�
(1� �t+1)�t+1

�
; (22)

where �t is the multiplier on the employment equation.

Combining these two �rst-order conditions results in the job creation condition (JCC):

�t
q(�t)

= �Et

�
(1� �t+1)

�
At+1 �Wt+1 +

�t+1
q(�t+1)

��
: (23)

This captures the trade-o¤ faced by the �rm: the marginal e¤ective cost of posting a

vacancy, �t
q(�t)

, that is, the per-vacancy cost � adjusted for the probability that the position

is �lled, is weighed against the discounted bene�t from the match. The latter consists of

the surplus generated by the production process net of wage payments to the workers, plus

the bene�t of not having to post a vacancy again in the next period.

In order to close the model, we assume in line with the existing literature that wages

are determined based on the Nash bargaining solution: surpluses accruing to the matched
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parties are split according to a rule that maximizes their weighted average. Denoting the

workers�weight in the bargaining process as � 2 [0; 1], this implies the sharing rule:

Wt � Ut =
�

1� � (Jt � Vt) ; (24)

where Wt is the asset value of employment, Ut is the value of being unemployed, Jt is the
value of the marginal worker to the �rm, and Vt is the value of a vacant job. By free entry,
Vt is assumed to be driven to zero.

The value of employment to a worker is described by the following Bellman equation:

Wt =Wt + Et�[(1� �t+1)Wt+1 + �t+1Ut+1]: (25)

Workers receive the wage Wt, and transition into unemployment next period with prob-

ability �t+1. The value of searching for a job, when the worker is currently unemployed,

is:

Ut = bt + Et�[pt(1� �t+1)Wt+1 + (1� pt(1� �t+1))Ut+1]: (26)

An unemployed searcher receives stochastic bene�ts bt and transitions into employment with

probability pt(1��t+1). Recall that the job �nding rate pt is de�ned as p(�t) =M(Vt; Ut)=Ut
which is decreasing in tightness �t. It is adjusted for the probability that a completed match

gets dissolved before production begins next period. The marginal value of a worker Jt is
equivalent to the multiplier on the employment equation, Jt = �t, so that the respective

�rst-order condition de�nes the Bellman-equation for the value of a job. Substituting the

asset equations into the sharing rule (24) results in the wage equation:

Wt = � (At + �t�t) + (1� �)bt: (27)

Wage payments are a weighted average of the worker�s marginal product At, which the

worker can appropriate at a fraction �, and the outside option bt, of which the �rm obtains

the portion (1��). Moreover, the presence of �xed vacancy posting costs leads to a hold-up
problem where the worker extracts an additional ��t�t from the �rm.

Finally, I can substitute the wage equation (27) into (23) to derive an alternative rep-

resentation of the job creation condition:

�t
mt
��t = �Et(1� �t+1)

�
(1� �) (At+1 � bt)� ��t�t+1 +

�t
mt+1

��t+1

�
: (28)

Note that this expression is a �rst-order expectational di¤erence equation in labor market

tightness, with productivity and separation rate shocks as driving processes.
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D.1 The Full System

1. Employment equation:

Nt = (1� �t)
h
Nt�1 +mt�1U

�
t�1V

1��
t�1

i
:

2. Job-creation condition:

�t
mt
��t = �Et(1� �t+1) bAt+1 �ATt+1 �cWt+1 +

�t+1
mt+1

��t+1

�
3. Wage equation: cWt = �

�
ATt + �t�t

�
+ (1� �)bt:

4. Unemployment de�nition:

Ut = 1�Nt

5.Tightness de�nition:

�t =
Vt
Ut
:

8. Output:

Yt = AtA
T
t Nt

7. Permanent productivity:

log bAt = �P log bAt�1 + "Pt
8. Temporary productivity:

logATt = �T logA
T
t�1 + "

T
t

9. Match e¢ ciency:

logmt = (1� �m) logm+ �m logmt�1 + "
m
t

10. Separation rate:

log �t = (1� ��) log �+ �� log �t�1 + "
�
t

11. Vacancy cost:

log �t = (1� ��) log �+ �� log �t�1 + "�t

12. Unemployment bene�ts:

log bt = (1� �b) log b+ �b log bt�1 + "bt

Note: the hatted variablesbdenote relative to the stochastic trend.
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D.2 Steady State

V =

�
�

1� �
1

m

� 1
1��

�
1� U
U

� 1
1��

U

� =
V

U

b =

�
1� �

1� ���
�
� 1� � (1� �)

� (1� �)
1

1� �
�

m
��

N = 1� U

cW = � (1 + ��) + (1� �) b

D.3 Linearized System

1. Employment equation:

eNt + �

1� �e�t = (1� �) eNt�1 + �� eUt�1 + � (1� �) eVt�1 + �emt�1

2. Job-creation condition:

� (1� �) �e�t � � (1� �) m
�

cW
��
fcWt = �e�t�1 + (1� � (1� �) ��) e�t�1 �

� (1� � (1� �) �m) emt�1 +
�

1� ���e�t�1 �
��P

gbAt�1 � � (1� �) m
�
����T eAt�1 +

+� (1� �) ���t � � (1� �)
m

�

cW
��
�Wt :

3. Wage equation:

cWfcWt � ���e�t � � eATt � ���e�t � (1� �)bebt = 0:
4. Unemployment de�nition:

eUt + 1� U
U

eNt = 0
5.Tightness de�nition: e�t � eVt + eUt = 0
And the rest of the linearized system is just the shocks.
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Table 1 Results based on the Stock-Watson TVP-MUB metho-
dology: exp- and sup-Wald test statistics, simulated p-values,
and median-unbiased estimates of �

exp-Wald sup-Wald

Equation for: (p-value) �̂ (p-value) �̂

Newey and West (1987) correction
vacancy rate 9.40 (0.0053) 0.0286 28.91 (0.0028) 0.0327
unemployment rate 4.97 (0.1661) 0.0153 16.17 (0.1770) 0.0153

Andrews (1991) correction
vacancy rate 7.65 (0.0195) 0.0235 25.40 (0.0086) 0.0286
unemployment rate 4.68 (0.1987) 0.0133 14.61 (0.2594) 0.0122
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 Figure 1  The unemployment rate and the vacancy rate 
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Figure 2  Deconvoluted PDFs of λ 
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Figure 3  Correlation coefficient of reduced-form innovations to vacancies and the unemployment rate,  
             and ratio between the standard deviations of reduced-form innovations to the two variables 
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Figure 4  Average gain of the unemployment rate onto vacancies, and average coherence between 
             vacancies and the unemployment rate, at the business-cycle frequencies 
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 Figure 5  Impulse response functions of calibrated search and matching model 
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Figure 6  Logarithm of real GDP and estimated permanent component, estimated transitory component 
             of log real GDP, and Congressional Budget Office estimate of the output gap 
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Figure 7  Impulse-response functions to a permanent output shock 
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Figure 8  Impulse-response functions to the first transitory shock 
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Figure 9  Impulse-response functions to the second transitory shock 
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Figure 10  Fractions of innovation variance due to the permanent output shock 
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Figure 11  Fractions of innovation variance due to the two transitory shocks  
             identified via sign restrictions 
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Figure 12  Evidence on the pro-cyclicality of the Beveridge curve 
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Figure 13  Business-cycle frequencies: average gain and coherence between vacancies and the 
             unemployment rate conditional on the permanent and the transitory output shocks 
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Figure 14  Average gain of the unemployment rate onto vacancies at the business-cycle frequencies, as 
             a function of individual parameters of the DSGE model (for parameters’ intervals around the  
             modal estimates generated by Random Walk Metropolis) 


