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Abstract

When assessing the predictive content of financial variables for economic activity, researchers

usually aggregated data available at higher frequency before estimating a forecasting model that

takes the relation between the financial variable and the dependent variable as linear. This paper

proposes a model that relaxes both these assumptions by directly using high frequency data while

taking into account regime changes in the slope parameters, called smooth transition mixed data

sampling (STMIDAS) regression. The model is applied to the use of financial variables, such as

term spreads, short-term interest rates, and stock returns, for out-of-sample forecasting of UK

and US output growth in real time. The empirical results suggest that regime changes have a

more important role in affecting the measurement of the predictive ability of financial variables

for economic activity than the direct use of high frequency data.
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1 Introduction

Asset prices incorporate expectations of future economic activity because they are set on the basis

of expectations about future dividends, interest rates. This forward-looking characteristic suggests

that bond and stock returns should be useful predictors of output growth (Harvey, 1988; Stock

and Watson, 2003). Empirical evaluations of out-of-sample predictability have found instabilities

on the predictive power of asset prices for economic activity (see, Stock and Watson (2003) for a

survey). The typical forecasting model of empirical evaluations is an autoregressive distributed lag

model employing one measure of asset returns as predictor. The forecasting performance of the

model that includes the information of the financial variable is then compared with the forecasting

performance of autoregressive models for economic activity. Because measures of economic activity,

such as real output and industrial production, are available at quarterly and monthly frequencies,

daily financial data are aggregated before the estimation of the forecasting model. The typical

forecasting model assumes a linear relation between the financial predictor and the future economic

activity; as a consequence, asymmetries in the impact of the predictor on the future of economic

activity depending on business cycles phases, monetary policy regimes and market cycles are not

taken into account.1

This paper improves the forecast model employed to extract the information of financial variables

for forecasting economic activity with the inclusion of high frequency data and regime changes. The

out-of-sample predictive power of asset returns on future economic activity economic activity is then

reassessed using this new forecasting model. The forecasting accuracy of the model with nonlinearities

and direct use of high frequency data is compared with the linear specification with aggregated data

of previous empirical exercises (Stock and Watson, 2003). This paper also presents strong evidence

of instability on the predictive content of financial variables for forecasting US and UK economic

activity using real-time data, in agreement with Stock and Watson (2003) and Estrella, Rodrigues

and Schich (2003), and Giacomini and Rossi (2006). Of interest is to assess whether the inclusion

of regime-switching in the forecasting model is capable of providing more reliable forecasts using

financial variables.

The direct inclusion of high frequency data on the forecasting model is obtained by the application

of the mixed-data sampling (MIDAS) approach of Ghysels, Santa-Clara and Valkanov (2004). In the

context of macroeconomic forecasting, the MIDAS approach has been successfully applied to forecast

quarterly macroeconomic series using monthly data (Clements and Galvão, 2008; Clements and

Galvao, 2009; Kuzin, Marcellino and Schumacher, 2009). However, Andreou, Ghysels and Kourtellos

(2009a) study on the properties of MIDAS regressions suggests that the impact on the slope coeffi cient

from disaggregation should be larger when considering weekly and daily data for forecasting quarterly

1Asymmetries were found in the predictive power of the term spread for output growth by Galbraith and Tkacz

(2000), Anderson and Vahid (2001) and Galvão (2006).
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series.2

When using monthly predictors, the MIDAS approach improves forecasts by using current quar-

ter information on the indicators (Clements and Galvão, 2008) and by providing a parsimonious

specification when combining a small group of indicators (Clements and Galvao, 2009). In this paper

I aim at exploiting improvements in forecast accuracy from disaggregation. The evaluated MIDAS

specifications exclude the possibility of forecast accuracy improvements from lag selection and from

the use of current quarter information for nowcasting. As a consequence, the objective of this paper

differs from Andreou, Ghysels and Kourtellos (2009b) that search for large improvements in fore-

casting accuracy from the use of high frequency predictors using a large number of candidates. My

objective instead is to evaluate the relative role of high frequency data and regime changes on the

inference about out-of-sample predictive power of a small group of financial predictors for future

economic activity.

In addition to the use of mixed frequency data, the slope of the new forecasting model switches

repeatedly over time with a transition function that depends on an observed transition variable.

Therefore, I add regimes with smooth transition over time (Teräsvirta, 1998) to the MIDAS regres-

sions (Ghysels et al., 2004). In the context of the empirical application, the assumption of a linear

specification may be inadequate and could explain the evidence of instability on the ability of finan-

cial variables in predicting economic activity. Indeed if the reported instability is caused by changes

in the slope because of monetary policy regimes, business cycle regimes or market trend (bull/bear)

regimes, tests for instabilitity in the predictive ability should find no instability when employing

smooth transition MIDAS as forecasting model. However, if out-of-sample tests still detect insta-

bility even after considering regime-switching, this new evidence suggests that instabilities are more

likely caused by structural changes that alter the way expectations about future economic activity

affect asset prices than by a functional form mispecification.

The new forecasting model is applied to forecast US and UK output growth when using three

types of financial indicators. One of the most popular leading indicators of US growth is the spread

between long-term and short-term interest rates (Estrella and Hardouvelis, 1991; Hamilton and

Kim, 2002). Stock returns, in contrast, have only marginal content for predicting output growth as

concluded by Stock and Watson (2003), although the results of Estrella and Mishkin (1998) suggest

some power in predicting recessions at short horizons. Short-term interest rates are not as popular

indicators as the spread, but recently, Ang, Piazzesi and Wei (2006) argue that short-rates are a

better leading indicator than the spread from 1990 onwards. I evaluate forecasting models with

these three types of financial indicators using real-time data on US and UK output growth.

The assessment of the predictive ability of financial variables for economic activity is carried out

using the fluctuation test of Giacomini and Rossi (2009) such that instability is taken into account

2Ghysels and Wright (2009) apply MIDAS regressions to use the information of daily financial indicators to anticipate

forecasters expectations regarding the future of macroeconomic variables.
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while testing for equal forecast accuracy. The test of equal forecast accuracy compares the forecast

performance of a model with the financial predictor with an autoregressive model. I also apply tests

for equal forecast accuracy (Clark and McCracken, 2005a) for different subsamples in the out-of-

sample period such that it is possible to identify periods in which financial variables have predictive

content for economic activity.

The Smooth Transition MIxed Data Sampling (STMIDAS) regression is described in section 2

in comparison with the previous literature on MIDAS regression and nonlinear models. Section

2 also presents monte carlo evidence on the properties of nonlinear least squares when estimating

STMIDAS regressions. Section 3 discusses the design of the empirical exercise to test for out-of-

sample predictive ability of a group of financial indicators in forecasting US and UK output growth.

Section 3 also presents details of the testing procedures employed and discusses the empirical results.

Section 4 presents concluding remarks.

2 Smooth Transition Mixed Data Sampling Regression

2.1 MIDAS Approach

Ghysels et al. (2004) proposed the MIDAS approach, which is aimed at using different sampling

frequencies in a regression so that a low frequency variable can be directly regressed on a high

frequency variable. In this paper, I apply the MIDAS approach to directly employ financial variables

available at high frequencies to forecast quarterly measures of economic activity.

A MIDAS regression that employs xt for directly forecast yt at h-steps ahead is:

yt+h = β
(m)
0,h + β

(m)
1,h w(L1/m)x

(m)
t + εt+h (1)

where w(L1/m) =
K∑
j=1

w(j)Lj/m is a polynomial in the lag operator L1/m such that Lj/mxt = xt−j/m.

β
(m)
1,h is the impact of one unit change in x(m)t , which is aggregated using weights w(j), on yt at

h-steps-ahead. The impact is identified if
K∑
j=1

w(j) = 1. For example, when yt is sampled quarterly

and x(m)t is sampled weekly, but only one quarter of information on x(m)t is considered, one has the

following equation with K = m = 13:

yt+h = β
(13)
0,h + β

(13)
1,h

[
w(1)x

(13)
t + w(2)x

(13)
t−1/13 + · · ·+ w(13)x

(13)
t−12/13

]
+ εt+h.

3

A problem with this specification is that the number of parameters in w(L1/m) increases with

the frequency of the predictor. A solution is the use of a function to approximate the weights. A

3Of course, not all quarters have 13 full weeks consequently, m = 13 is an approximation. Empirically, the last 13

observations from the date of the end of quarter are employed as information on the current quarter. Similar reasoning

applies when setting m = 65 for the use of daily data.
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weighting function that depends on the vector of parameters κ = (κ1, κ2, ..., κq) is:

w (j;κ) =
f(j, κ)∑K
k=1 f(j, κ)

.

Two specifications for f(j, κ) are popular in the literature, Ghysels, Santa-Clara and Valkanov (2005),

Clements and Galvão (2008), Kuzin et al. (2009), Andreou et al. (2009b) use exponential polynomial

functions:

f(j, κ) = exp(κ1j + κ2j
2 + ...+ κqj

q).

And Ghysels, Santa-Clara, Sinko and Valkanov (2007) use a beta function with only two parameters:

f(j, κ) =
(k)κ1−1(1− k)κ2−1Γ(κ1 + κ2)

Γ(κ1)Γ(κ2)
; k = j/(K + 1)

Ghysels et al. (2007) argue that even with only two parameters, the beta function is flexible enough

to accommodate different weighting shapes. For comparison purposes, the exponential function is

also employed with only two parameters in the remainder of this paper, that is,

f(j, κ) = exp(κ1j + κ2j
2).

The main advantage of MIDAS regression is to give an opportunity to consider information on xt

that may otherwise be smoothed out after the aggregation process (taking the mean over quarter, for

example) to contribute for forecasting y. It also improves effi ciency of the estimates in comparison

with the use of only equal frequency and may eliminate a bias created by aggregation when the

predictor is described by an autoregressive process (Andreou et al., 2009a). Because the aim of this

paper is evaluate the effect of disaggregation in forecasting, I assume that K = m. The notation can

be then simplified by writing the weighted sum of x(m)t , that is, the aggregated high frequency data

as

x
(m)
t(κ,m) =

m∑
j=1

w(j, κ)Lj/mx
(m)
t , (2)

such that MIDAS regression is simply:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(κ,m) + εt+h.

The comparison of MIDAS regressions with predictive regressions can be done by noting that the

weighting scheme that implies taking the average over the quarter is nested in the MIDAS regression.

The imposition of the restrictions that κ = 1 in the case of beta functions or κ = 0 in the case of

exponential weight functions in the MIDAS regression delivers the following predictive regression

when K = m:

yt+h = β0,h + β1,hxt + εt+h. (3)

This type of regression was employed to measure the ability of the spread to predict output growth

(Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002; Ang et al., 2006), of dividend/price ratios

for excess returns (see Cochrane (2005), ch. 20 for a survey), and of economic fundamentals for

exchange rates (Kilian and Taylor, 2003).
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2.2 Smooth Transition MIDAS

Switching regimes are a popular way to model nonlinear dynamics in regressions by using piecewise

linear regimes linked by a transition function (Tong, 1990). When the transition between regimes

is smooth and depends on the size of an observed transition variable, switching-regime models are

called smooth transition regressions (surveyed by Van Dijk, Teräsvirta and Franses (2002)). This

type of non-linear approach permits the simple modelling of regime changes in the parameters of

MIDAS regressions, as switches between regimes depend on the sign and the size of the weighted

high frequency predictor.

The smooth transition MIDAS (STMIDAS) regression is:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(λ,m)

[
1−Gt(x(m)t(α,m); γ, c)

]
+ β

(m)
2,h x

(m)
t(λ,m)

[
Gt(x

(m)
t(α,m); γ, c)

]
+ εt+h, (4)

where

Gt(x
(m)
t(α,m); γ, c) =

1

1 + exp(−(γ/σ̂x)(x
(m)
t(α,m) − c)

.

The transition function Gt(x
(m)
t(α,m); γ, c) is a logistic function that depends on the weighted sum of

the explanatory variable in the current quarter. The parameters of the function that weights the

transition variable x(m)t(α,m) may differ from the parameters weighting the predictor x(m)t(λ,m).

The function Gt(x
(m)
t(α,m); γ, c) has values between 0 and 1. When the smoothing parameter γ is

large, the function is similar to an indicator function that is zero when x(m)t(α,m) ≤ c and equal to 1

when x(m)t(α,m) > c. Thus, the impact of x(m)t(λ,m) in predicting yt+h is β
(m)
1,h when the weighted sum of

x
(m)
t is small, and β(m)2,h when the weighted sum x

(m)
t(α,m) is large. When γ is small but is not equal

to zero, the impact of x(m)t(λ,m) in predicting yt+h is a time-variable weighted sum of β(m)1,h and β(m)2,h

depending on the value of Gt(x
(m)
t(α,m); γ, c).

For checking the restrictions required for identification of all the parameters, note that the STMI-

DAS regression can be rewritten as:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(λ,m) + (β

(m)
2,h − β

(m)
1,h )x

(m)
t(λ,m)

[
Gt(x

(m)
t(α,m); γ, c)

]
+ εt+h (5)

The assumption that the weights in w (j;λ) sum up to 1 guarantees the identification of the slope

parameter β(m)1,h , as in the case of MIDAS regressions. When applying the same restriction for w (j;α),

the identification of γ and c are warranted. Finally, if in addition γ > 0, β(m)2,h is identified. Similar

restrictions are imposed to obtain identification of the parameters of the transition function in the

flexible smooth transition regression of Medeiros and Veiga (2005). A discussion of the application

of nonlinear least squares to estimate STMIDAS regressions is found in Appendix A.

This specification nests other regressions proposed in the literature to model regime switching.

When the parameters of the weight functions are such that each lag is equally weighted (λ = α = 1

for beta functions and λ = α = 0 for exponential functions), the STMIDAS regression simplifies to a
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smooth transition regression with data on the predictor and the dependent variable sampled at the

same frequency:

yt+h = β0,h + β1,hxt [1−Gt(xt; γ, c)] + β2,hxt [Gt(xt; γ, c)] + εt+h. (6)

An important advantage of the STMIDAS regression is that the delay of the transition variable

does not need to be estimated/chosen when the transition variable is the weighted sum of past values.

Becker and Osborn (2007) use a specification similar to STMIDAS regressions, but with aggregated

regressors (λ = 0 or λ = 1 depending on the type of function), to test for nonlinearity.

Another feature of STMIDAS regressions is that they are designed for direct forecasting. Previous

applications of non-linear time series models for verifying changes in the dynamic relationship between

output growth and the spread (Galbraith and Tkacz, 2000; Anderson and Vahid, 2001; Galvão, 2006)

have specified models only for one-step-ahead forecasts. Forecasts for longer horizons were then

obtained iteraction with the aid of monte carlo methods to take into account the nonlinearity of the

conditional expectation.

Another alternative for modelling switching regimes is to make the regimes dependent on a latent

variable that is controlled by a Markov process (Hamilton, 1989). In comparison with this alternative,

the STMIDAS has a regime-switching behaviour that depends on the size and sign of an observable

variable available at high frequency.

Finally, STMIDAS is able to capture asymmetries in the predictive content of x(m)t to yt+h.

Galbraith and Tkacz (2000) argue that the slope of the yield curve has only predictive content for

future output growth when it is small or negative. This kind of asymmetry can be easily captured

by a STMIDAS model.

2.2.1 Inclusion of an Autoregressive Term

Specifications (3), (1), (4) and (6) can be extended to allow for autoregressive behaviour. If there is

some weak memory in yt, it is likely that an autoregressive term may improve out-of-sample forecasts

as in the case of Ang et al. (2006). The STMIDAS specification with an autoregressive term is:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(λ,m)

[
1−Gt(x(m)t(α,m); γ, c)

]
+ β

(m)
2,h x

(m)
t(λ,m)

[
Gt(x

(m)
t(α,m); γ, c)

]
(7)

+ρhyt + εt+h.

Clements and Galvão (2008) discuss the problem of including autoregressive terms in MIDAS mod-

elling. Because of the polynomial in L1/m, the lag structure, with the inclusion of a lag dependent

variable, generates a “seasonal”behaviour on the effect of x(m)t for yt+h with stronger peaks at the

end of each quarter. The solution proposed was to use a common factor structure. However, the lag

structure of x(m)t does not go beyond a quarter because K = m; as a consequence, one can simply

add yt as an explanatory variable on the left-hand-side of the regressions.
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2.2.2 Example

STMIDAS regressions are able to improve the measurement of the predictive content of high fre-

quency predictors for low frequency dependent variables by the direct use of information on high

frequency predictors and by allowing for the predictors’impact on the dependent variable to change

over time. Suppose, for example, that one wants to use annual stock returns sampled weekly for fore-

casting annual output growth one year in advance. The first plot in Figure 1 presents annual returns

sampled quarterly, and weekly returns that have been aggregated by using weights estimated with a

STMIDAS regression. The figure presents data weighed by two schemes: the first weighting scheme

(xw1) is estimated while measuring the impact of stock returns on output growth (xt(λ̂,13)), and the

second one (xw2) while identifying changes on the predictor’s impact (xt(α̂,13)).4 Figure 1 indicates

that the stock data aggregated with MIDAS weights differ from their quarterly counterpart, such

that the weighting shifts the series towards values either at the beginning or the end of the quarter.

This effect is more dramatic when aggregating with the first weighting scheme (xw1).

The second plot in Figure 1 shows how the estimates of stock returns’impact (βt,4) change over

time. The plot shows estimates with the STMIDAS regression and a regression with only quarterly

data. When the returns are, say, 20% and -20%, the estimated impacts on next year’s output growth,

conditional on the output growth mean, are .8 p.p. and -.8 p.p.. However, when using STMIDAS

estimates, the estimated impacts for the same values of returns are 1.6 p.p. and .4 p.p.. As a

consequence, STMIDAS estimates imply that stock returns have a stronger impact on future output

growth when the stock market is booming.

2.3 Monte Carlo Evaluation

My aim in this subsection is to use a Monte Carlo simulation for evaluating the properties of nonlinear

least squares (NLS) in the estimation of STMIDAS regressions. I also check for biases when the true

data generating process has aggregation weights far from equal weighting and a researcher estimates

a model with data aggregated by averaging over the quarter.

The data generating process (DGP) for x(m)t is similar to the empirical estimates when using the

spread between 10-year and 3-month interest rates. The process for x(m)t is an AR(1) with a large

autoregressive coeffi cient (0.98) and a small drift (0.05). The maximum value of m is set to 65 (daily

data), so at least mT observations of x(m)t are generated, assuming that the disturbances are N(0, 1).

The DGP of yt has switching parameters such that β
(m)
1,1 is larger than β

(m)
2,1 , so x

(m)
t has a stronger

impact on yt+1 in the first regime than in the second regime. The values of the βs are β
(m)
0,1 = 0.5

and β(m)1,1 = 1.5. The difference between β(m)2,1 and β
(m)
1,1 is δ

(m)
1 = −0.9. The yt+1 data are generated

with the described parameters applied to specification (5) assuming that εt+1 ∼ N(0, .125). This

parameterization follows Andreou et al. (2009a) that use slope equal to 1.5 as a high sign/noise case

4All estimates of this example were obtained while allowing for an autoregressive term in the regressions.
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and equal to .6 as a low sign/noise. In the case of STMIDAS processes, the first regime has a high

sign/noise and the second regime has low sign/noise. The threshold c is set to 2.3, which is near the

unconditional mean of the x(m)t process.

The weighting functions are set such that the predictor’s weights are inverted U-shape, and the

transition variable’s weights are decreasing. The specific values of the parameters vary with the type

of function (beta and exponential) and m. Figure 2 presents the weighting functions of the data

generating process for m = 13, 65. Preliminary results show that large biases in the estimates of λ

and α do not imply large biases in the estimates of β0, β1 and β2 because the biases in λ and α may

not imply significant changes in the shape of the weight function, and in particular in lags that have

comparatively higher weights. Therefore, in this Monte Carlo exercise, I evaluate how well the NLS

estimator approximates the shape of the true weight function, similar to the analysis of Ghysels and

Valkanov (2006). I obtain approximation errors by using the sum of the squared error between the

estimated and the true weighting functions, normalized by the squared weights of the true function:

m∑
j=1

[w(j, λ̂)− w(j, λ)]2

m∑
j=1

w(j, λ)2
+

m∑
j=1

[w(j, α̂)− w(j, α)]2

m∑
j=1

w(j, α)2
(8)

Table 1 presents the biases and approximation errors for T = 100, 200 and 500. The biases are

computed assuming the right specification (m and weighting function) is known. They are computed

for DGPs using both the exponential and the beta functions with the weights described in Figure 2

for m = 13 and 65. Table 1 also presents the biases when m = 1, that is, when the predictor and the

dependent variable are sampled at the same frequency and weighting functions are not estimated.

In Andreou et al. (2009a), this is called flat MIDAS.

All biases and the approximation errors decrease with T, but they are reasonable small even

when T = 100, with exception of the bias in γ. The literature on the estimation of smooth transition

models (Teräsvirta, 1998) describes inaccuracies in the estimation of γ when the sample is small.

An interesting result presented in Table 1 is that biases in the estimation of the parameters of the

transition function for a given T are generally smaller using STMIDAS with m = 13, 65 than when

using a smooth transition regression (m = 1). These results indicate that the direct use of high

frequency data improves the estimation of the transition function. STMIDAS models with the beta

function deliver smaller biases than with the exponential function for all parameters, especially with

m = 65, although the slopes’biases are in general small.

The main message of the first panel of Table 1 is that NLS estimator is adequate to estimate

STMIDAS regression, but also of interest is the impact of using a model with aggregate data when

the true relation between xt and yt+1 uses xt sampled m times more frequently than yt+1. The data

generating process in the second panel of Table 1 assumes that m = 65 using the same parameters

as the first panel. Then I use a model with m = 1 and m = 13 to obtain the estimates of the
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intercept, slopes and parameters of the transition function. Because the high frequency predictor

is described by an AR(1) process with large autoregressive coeffi cient, the results of Andreou et al.

(2009a) suggest that the estimates of the slope are biased when the weighting (aggregating) function

is far from equal weighting. The DGP weighting functions in Figure 2 are far from equal weighting.

The biases on the parameters of the transition function in the second panel of Table 2 are generally

larger than in the first panel, but biases on the slopes are large only with m = 1. When using weekly

data instead of daily, the impact on the slopes’estimation is small, but there is some impact on the

estimates of the parameters of the transition function especially when using the exponential weighting

function. Summarising, if the true relation between xt and yt+1 is described by a STMIDAS regression

with a large m, the application of smooth transition regression to aggregated data delivers biased

estimates of the parameters. In addition, it is possible to use the beta function to approximate the

true STMIDAS relation with a m that is five times smaller than the true one, at least for the data

generating processes considered.

3 Out-of-sample forecasting of US and UK output growth using

financial predictors

Out-of-sample evaluation allows us to use only the time series of data that were available for the

practitioner at each forecast origin. For each forecast origin, forecasts models are estimated for

horizons h = 1, 4, and forecasts are computed using only data available at that time. This forecasting

exercise design differs from Stock and Watson’s (2003) pseudo-out-of-sample exercise by making use

of quarterly vintages of data available in real-time datasets.5 Quarterly vintages refer to the time

series of data available in the month at middle of the quarter. When using US data, the last value

in a given quarterly vintage is the preliminary estimate of the real GDP observed in the previous

quarter. The UK real-time data has similar structure such that the last observation in a quarterly

vintage is an estimate of the data observed in previous quarter revised just once.

At each forecast origin, the next quarter vintage is employed to estimate the forecasting models

and compute forecasts. This implies that if the first forecast origin is 1989:Q3, the time series of

data of the 1989:Q4 vintage is used to estimate the forecast models. At each time the forecast origin

changes in the out-of-sample period, the vintage of data employed in the estimation also changes.

As in the case of pseudo-forecasting exercises, forecast errors are computed using data from the last

vintage available as actuals (2009:Q1 vintage). This assumes that we are aiming at forecasting the

true data, which is revealed with the revision process.

5Real-time data on US real output are from the Philadelphia Fed dataset (http://www.philadelphiafed.org/research-

and-data/real-time-center/real-time-data/) and on UK real output are from the Bank of England dataset

(http://www.bankofengland.co.uk/statistics/gdpdatabase/). UK real-time data is available in monthly vintages which

are converted to quarterly by using the vintage of the middle month in the quarter.



10

In this forecasting exercise, I consider four specifications that use current quarter information of

a financial indicator to predict economic activity. All theses specifications also include an autore-

gressive term, that is, current quarter information of output growth. Each specification is estimated

separately for each forecast horizon, that is, direct forecasts are computed.

The first specification is called R, which adds information on the financial indicator after be-

ing aggregated by taking averages over each quarter with weekly data. This forecasting model is

equivalent to usual predictive regressions and the flat MIDAS of Andreou et al. (2009a).

The second specification is a MIDAS regression using weekly data on the financial indicator, that

is, m = 13, and the beta function to compute aggregation weights. The monte carlo results in Table

1 suggest that it may be better to use the beta instead of the exponential function when estimating

STMIDAS regressions. Preliminary empirical results (not shown) indicate that the qualitative results

do not change when employing either the exponential function or daily data. The results in Table 1

can also be used to justify the use of weekly data since the slope coeffi cients only suffer a small bias

when using weekly data instead of daily even if the true model is generated with daily data.

The third specification is called STR, that is, it is a smooth transition regression using aggregated

predictor as transition variable. The final specification is a STMIDAS regression (eq. 4) with the

same choice of weighting function and predictor’s frequency (m = 13) as the MIDAS regression. In

this empirical exercise, I do not exploit restrictions in the STMIDAS regressions that could reduce the

impact of overfitting such as testing whether λ = α, that is, the predictor and the transition variables

have the same weighting function. Preliminary results (not shown) suggest that these restrictions

have in general small impact on improving STMIDAS forecasting performance for the majority of

cases.

I evaluate the real-time forecasting performance of these four specifications that include financial

predictors against an autoregressive model as benchmark. The benchmark model is also estimated

for each h using only current quarter aggregated information on output growth as predictor.

The financial predictors are a term spread, a short-rate, and stock prices. The US term spread

is measured by the difference between 5-year treasury bond rate and the 3-month bond rate, while

the 3-month bond rate is the short-rate. The qualitative results do not change if the long-rate is

the 10-year interest rate. Spread with the 10-year interest rate has been considered by Estrella

and Hardouvelis (1991), while with the 5-year rate is employed by Ang et al. (2006). UK term

spread is measured with a long-term treasury bond rate (Datastream) and the 3-month treasury

bond rate. Stock returns have been employed as leading indicators by Zellner, Hong and Min (1991)

and Estrella and Mishkin (1998), and they are computed using the annual difference in the price

index. For the US, the SP500 is employed, while FTSE100 is employed to measure stock prices

for the UK. The US interest rate data are obtained from the FRED database in weekly frequency.6

The stock prices are obtained daily from Datastream. UK data on financial indicators are obtained

6http://research.stlouisfed.org/fred2/.
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from Datastream at daily frequency with start date in 1985:Q1 due to availability. Weekly data

are obtained using the value of the last day of the week. Note that stock returns are computed

as sr(13)t = 100(ln(p
(13)
t ) − ln(p

(13)
t−52)) with weekly data. Quarterly data are obtained by averaging

weekly data of a given quarter.

Following the literature (for example, Estrella and Hardouvelis (1991)), we aim at forecasting

yt+h = (400/h) [zt+h − zt], where zt is the log-level of real GDP.

3.1 The instability of out-of-sample predictive ability

The fluctuation statistic developed by Giacomini and Rossi (2009) tests for equal forecast accuracy

even if there is instability in the relative predictive accuracy between two forecasting models. The

test is based on a local measure of relative loss function between two forecasting models. In this

specific application, if the null hypothesis is rejected, the forecasting model with the predictor is more

accurate forecaster than the autoregressive benchmark at least once during the out-of-sample period.

An important by-product of the test is the construction of a measure of the local relative forecasting

performance that is useful to assess whether the financial variables have predictive power in some

specific points in time. Based on the squared loss function, the difference between the benchmark

model (AR) and the economic model (EM) loss functions is

∆Lh,t = (yt+h − ŷt+h,AR)2 − (yt+h − ŷt+h,EM )2 for t = N + 1, ..., P +R

where P is the number of observations in the out-of-sample period and N is the number of obser-

vations in the in-sample period. When disconsidering the impact of autoregressive terms on sample

availability, the total number of observations available is T = P + N + h. The relative loss may be

computed for subsamples of the out-of-sample period, that is, the local relative loss is:

m−1
∑t+m/2−1

j=t−m/2 ∆Lh,j for t = N +m/2 + ...+ T −m/2 + 1.

The fluctuation test statistic standardizes the local relative loss by the variance of the relative loss

function computed for the full out-of-sample period, that is,

Ft,h,m = σ̂−1m−1/2
∑t+m/2−1

j=t−m/2 ∆Lh,j ,

where σ̂2 is the HAC estimator of σ2 computed to capture the variance of ∆Lh,t over t = N +

1, ..., P +N . Giacomini and Rossi (2009) derived the distribution of this statistic and provide critical

values. Their monte carlo exercise on the empirical size and power of the fluctuation test suggests

to choose m such that m/P ≈ 0.3. The one-sided critical value at 5% confidence when m/P = 0.3 is

2.77. This means that if Ft,h,m cross the critical value during the out-of-sample period, the economic

model is more accurate than the autoregressive model at least once. A graphical analysis of the local

relative loss can be used to check periods in which the economic model is more accurate. Note that

there are no restrictions on the number of times that Ft,h,m crosses the critical value: the economic
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model may be only more accurate than the autoregressive model in subsamples of the out-of-sample

period.

An important assumption to apply this test procedure is that forecasting models are estimated

with rolling samples of size N . Previous evaluations of the relative forecasting performance of MIDAS

models generally use recursive estimation since effi ciency gains from the direct use of disaggregate

data may be only available at large samples. In addition, improvements in forecast accuracy from

the use of nonlinear models also depend on relatively long time series. In the next part, I also

exploit forecasts computed using recursive estimation of the forecasting models, but in order to

check instability of predictive performance with the fluctuation test, rolling estimation is employed.

An issue that may affect the properties of fluctuation test is the use of real-time vintages. Clark

and McCracken (2009) show that when data revisions reduce measurement errors such that revisions

are predictable, the distribution of standard tests of forecasting accuracy is affected. It is less

clear if data revisions affect the distribution of tests of forecast accuracy that assume that we are

comparing forecasting methods as in the Giacomini and Rossi (2009) approach. Finally, we aim at

forecasting final revised data, while the Clark and McCracken (2009) have the actuals extracted also

from different vintages of data. Rossi and Sekhposyan (2009) have applied the fluctuation test when

using real-time data in the computation of forecasts and final data on the computation of forecasting

errors.

Figures 3 and 4 present the local relative squared loss between the four specifications considered

in this empirical exercise and the autoregressive model for each one of the predictors when forecasting

US and UK output growth at h = 1 and h = 4. The figures also indicate the one-sided 5% critical

value of the fluctuation test that depends on m/P . Figure 3 confirms previous empirical results in

the literature: the spread looses predictive power during the 90’s (Giacomini and Rossi, 2006), the

short-rate has stronger predictive content than the spread up to 1999 (Ang et al., 2006), and stock

returns have only predictive content for short horizons (Estrella and Mishkin, 1998). Figure 3 also

provides a new empirical result: the spread is back as predictor of US output growth (confirming the

enduring predictive power of the spread for recessions argued by Rudebusch and Williams (2009)).

The inference on the predictive power of the spread at one-step-ahead horizon changes with the

inclusion of high frequency data and regimes changes (STMIDAS): there is some evidence of predic-

tive ability in the middle of 90’s in contrast with models with either aggregated data or constant

parameters. The STMIDAS also significantly improves forecasts in comparison with typical forecast-

ing models when using stock returns as predictors in the beginning of 90’s. In contrast, there is no

evidence that regime changes improve forecasts obtained with the short-rate.

The results for forecasting UK growth (Figure 4) also share the extensive evidence of changes in

predictive ability. Figure 4 suggests that the inclusion of high frequency data has almost no effect on

the accuracy of forecasts, while regime changes affect negatively the forecast accuracy. An exception

is found on the use of the short-rate to forecast next year output growth: models with regime changes
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suggest predictive content in the 00’s, while models with constant coeffi cients provide no evidence of

predictive content.

3.2 Tests of out-of-sample predictive ability

In addition to the use of fluctuation tests applied to forecasts computed using rolling samples, I also

compute forecasts using recursive samples. When using recursive samples to estimate competing

nested forecast models, the distribution of tests of equal forecast accuracy are non-standard (Clark

and McCraken, 2001) The fluctuation test requires the use of tests of equal forecast accuracy with

normal distribution. Therefore, following the approach of Stock and Watson (2008) to identify

periods in which the Phillips curve has predictive content for inflation, I divide the out-of-sample

period into three sub-samples for US data and two for UK data. Previous section results suggest that

financial variables should have predictive power for output growth in at least one of the subperiods

for each one of the indicators and horizons, except for stock returns as predictors of US output

growth at h = 4. Recall that the use of full out-of-sample measures of relative predictive ability is

not recommend since structural breaks and instability have a negative impact on the power of the

predictive ability test (Clark and McCracken, 2005b).

As discussed previously, an increasing sample size may have a positive impact on the forecast

accuracy of more complicated specifications (MIDAS, STMIDAS and STR), but it requires a care-

ful use of tests of equal forecast accuracy since the distribution of standard test statistics is data

dependent. We use the MSE-F test statistic of Clark and McCracken (2005a) with bootstrapped

critical values to assess the null of no predictive ability of a financial indicator for output growth

at a specific forecast horizon for each economic forecasting model. Clark and McCracken (2005a)

monte carlo exercise indicates that the MSE-F statistic with bootstrapped critical values delivers a

test with good size and power properties when forecasting models are nested.

Clark and McCracken (2009) show the impact of data revisions on the aymptotic distribution of

the MSE-F statistic when revisions are predictable and the forecasting aim is output growth after

a small number of revisions. Even though the theory developed by Clark and McCracken (2009)

suggests a more adequate test procedure when forecasting in real time, the use of MSE-F statistic

with bootstrapped p-values performs well in a monte carlo exercise because the size of the revisions

has to be really large with respect to variance of the underlying true process in order to real-time

data have large effects on the inference of predictive ability. In addition, revisions to output growth

are generally hard to predict, and the forecasting aim is final revised data. Summing up, I use MSE-

F statistic with bootstrapped p-values, and data from the final vintage to compute bootstrapped

p-values. Details of the boostrapped procedure and computation of the statistic are described in the

appendix. The split-sample structure is kept when computing the empirical distribution of the test

statistics by bootstrap.

Tables 2 and 3 also present results of tests of equal predictive ability using rolling estimates of
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the forecasting model as in the previous section. The t-statistic for the test is computed separately

for each subsample and critical values are taken from the normal distribution (Giacomini and White,

2006).

Table 2 indicates that the forecasting model specification has an impact on the inference on

the predictive ability of stock returns and spread at h = 4. In contrast with the results in Figure 3,

recursive forecasts from STR and STMIDAS models suggest that stock returns have predictive ability

for US output growth at least in the 95-01 period. There is evidence that the spread has predictive

power for output growth in the 01-07 period when using STR and STMIDAS as forecasting model and

rolling estimates. The results of Galvão (2006) pointed for both structural breaks and nonlinearities

when using the spread as predictor of output growth. These results confirm previous claim since

the use of rolling windows may smooth the effect of breaks on models’coeffi cients, and STR and

STMIDAS forecasts improve with rolling estimation.

Both Tables 2 and 3 suggest that significant improvements in forecasting accuracy are more

likely to arise from the inclusion of asymmetric dynamics and nonlinearities than from the use of

high frequency data on the predictor. The large effect of regime changes on forecast performance

may also significantly worsen forecasts as it is the case when using the spread and stock returns

for forecasting UK growth. In general, the disaggregation of the predictors has a small effect on

forecasting accuracy, while the inclusion of regime changes may affect our inference on the predictive

content of a specific financial indicator.

The common wisdom associates recent downturns (2001, 2008) with stock market crashes. Results

in Tables 2 and 3 suggest that stock returns can predict UK and US economic activity during the first

boom/crash period (96-02:Q2) but not in the second. However, the evidence of episodic predictive

ability may suggest that an extension of the estimation period beyond 2007:Q2 may change these

results against the predictive power of stock returns. In the more recent period, the spread is the

financial variable in the dataset that has predictive content for next year US growth while the short-

rate is the variable for UK growth. In both cases, regime-switching in the forecasting model improves

one-year-ahead forecasts.

4 Concluding Remarks

When assessing the predictive content of financial variables for economic activity, researchers nor-

mally aggregated data available at higher frequency before estimating a forecasting model that takes

the relation between the financial variable and the dependent variable as linear. This paper proposes

a forecasting model that relaxes both these assumptions by directly using high frequency data while

taking into account regime changes in the slope parameters.

A monte carlo exercise shows that the direct use of high frequency data reduces the small sample

bias of parameters of the transition function in comparison with equal frequency models. It also
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provides evidence of slope biases in large samples when estimating a model with equal weighting

aggregation while the true model has a different aggregation pattern.

The forecasting performance of the new model is compared with traditional distributed lag mod-

els, smooth transition regressions, and MIDAS regressions. The empirical results for forecasting US

and UK output growth using three popular financial indicators - term spreads, short-rates and stock

returns - suggest that regime changes have a more important role in affecting the measurement of

the predictive ability of financial variables for economic activity than the direct use of high frequency

data.

A Estimation of STMIDAS

Recall the STMIDAS regression can be written as:

yt+h = β
(m)
0,h + β

(m)
1,h x

(m)
t(λ,m) + (β

(m)
2,h − β

(m)
1,h )x

(m)
t(λ,m)

[
Gt(x

(m)
t(α,m); γ, c)

]
+ εt+h

The parameters of the STMIDAS are collected in the vector θh =
[
β
(m)
0,h , β

(m)
1,h , β

(m)
2,h , λ, α, γ, c

]′
. The

nonlinear regression is written as:

yt+h = m(x
(m)
t , θh) + εt+h.

Assuming that the restrictions required for identification described in section 2.2. are imposed,

the parameters of this regression can be consistently estimated by minimizing the sum of squared

residuals:

QT (θh) = T−1
T∑
t=1

(yt+h −m(x
(m)
t , θh))2,

because the function m(x
(m)
t , θh) satisfies the identification and regularity conditions described in

Hayashi (2000), ch. 7, proposition 7.4. Under additional conditions regarding the differentiability of

m(x
(m)
t , θh) and the behaviour of the Hessian h

(
θ̂
)
, the NLS estimator θ̂h is asymptotically normal,

so that
√
n(θ̂h − θh) −→d N(0, h (θh)−1 Σh (θh)−1).

The computation of estimates can be simplified by concentrating the sum of the squared residuals

function with respect to λ, α, γ, c, so that the parameters in the vector βh =
[
β
(m)
0,h β

(m)
1,h β

(m)
2,h

]′
can be computed with the least squares formula:

β̂h =

(
T∑
t=1

x
(m)

t(λ̂,α̂,γ̂,ĉ)
x
(m)′
t(λ̂,α̂,γ̂,ĉ)

)−1 T∑
t=1

x
(m)

t(λ̂,α̂,γ̂,ĉ)
yt.

In practice, STMIDAS regressions use the estimates of MIDAS regressions as initial values for λ1 and

λ2. Initial values for κ in the MIDAS regression (eq. 1) are obtained by a search over a grid of values

for κ1, κ2 such that they imply different shapes for the weight function w(j, κ). The initial values for

γ and c in the STMIDAS regressions are also computed in joint grid search for initial values of α1
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and α2 (parameters of the weighting function of the transition variable). The optimisation procedure

(with BFGS) imposes constraints in γ such that it is not too large or negative and in c such that it

is not smaller (larger) than the 5% (95%) quantile of the empirical distribution of the weight high

frequency predictor x(m)t(α,m).

Nonlinear least squares are also employed to estimate the MIDAS regression (equation 1) and

the smooth transition regression (equation 6).

B Out-of-sample Test of Equal Forecasting Accuracy

The following statistic, proposed by Clark and McCracken (2005a), is used for comparing the out-

of-sample forecasting accuracy of an economic model nested to an AR(1) benchmark:

MSE-Fh = P

(
MSEh,AR −MSEh,M

MSEh,M

)
where MSEh,M is the mean squared forecast error of the model M at h-steps ahead, and MSEh,AR

is the same measure computed with an autoregressive model.

The p-value of this test statistic is computed by a bootstrap, designed similarly to Clark and

McCracken (2005a). In the first step, the estimates of an AR(2) for (zt − zt−1) (where zt is log-level
real GDP from the final vintage) are used for simulating a time series of size T (T = N+R+h) of yt+h

(where yt+h = (400/h) [zt+h − zt]) by bootstrapping the residuals of the AR(2) model. Estimates
of an AR(5) computed using high frequency data on xt are used for simulating a time series of size

T ∗m of x(m)t . In the second step, the sample is divided to mimic the in-sample and out-of-sample

sizes employed in the computation of the statistic (N , P1, P2, P3 where Pi/P = 1/3). Then, the AR

and the economic model (using the specification of the empirical exercise) are estimated recursively

using the artificial data generated in the previous step. Simulated data on x(m)t are aggregated if

necessary for the estimation of the forecasting model at each forecast origin in the artificial out-of-

sample period and for each forecast horizon. At the end of the second step, the MSE-Fh statistic

is computed with the artificial data generated in step 1. In the third step, empirical distributions

of the statistics are used for computing the critical values of the test with the MSE-Fh statistic for

each one of the economic models considered.
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Figure 1: STMIDAS regressions: stock returns as predictor of next year output growth. 
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Figure 2: Weighting Functions of the Data Generating Process 
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Figure 3: Fluctuation test on the Predictive Ability of Financial Variables for US output growth (forecasting models estimated with rolling windows of 79 

observations and test statistic computed with rolling windows of 24 observation; dates are the forecast origin in the middle of 24 obs. window).  
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Figure 4: Fluctuation test on the Predictive Ability of Financial Variables for UK output growth (forecasting models estimated with rolling windows of 42 

observations and test statistic computed with rolling windows of 24 observation; dates are the forecast origin in the middle of 24 obs. window).  
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Table 1: Biases in the NLS estimation of STMIDAS regressions  

 
T weighting 

function 
β0 = .5 β1 = 1.5 β1 − β2= −.9 γ = 6 r =2.3 Approx. 

Error 

 m=1 

100  -0.003 0.000 -0.001 -0.962 0.004  
200 -0.002 0.000 0.000 -1.024 0.004 
500 -0.001 0.000 0.001 -1.003 0.007 

 m=13 

100 Exponential 0.001 -0.008 0.007 -0.066 0.005 0.008 
 Beta 0.001 0.000 -0.001 -0.066 0.009 0.003 

200 Exponential 0.002 -0.005 0.005 -0.102 -0.001 0.005 
 Beta 0.000 0.000 -0.001 -0.095 0.005 0.002 

500 Exponential 0.000 -0.002 0.002 -0.105 -0.003 0.002 
 Beta 0.000 0.000 0.000 -0.127 0.000 0.001 

 m=65 

100 Exponential -0.002 -0.003 0.002 0.060 0.005 0.021 
 Beta -0.001 0.000 0.000 0.067 0.006 0.010 

200 Exponential 0.000 -0.001 0.000 -0.146 -0.003 0.015 
 Beta 0.000 0.000 0.000 0.007 0.003 0.005 

500 Exponential 0.002 0.001 -0.003 -0.196 -0.006 0.006 
 Beta 0.000 0.000 0.000 -0.004 0.002 0.003 

Data generated with m=65, but STMIDAS estimated with ... 

m=1 

100  -0.115 0.207 -0.139 103.628 0.241  
200  -0.148 0.222 -0.188 33.677 0.135  
500  -0.166 0.203 -0.178 -2.855 0.083  

m=13 

100 Exponential 0.006 0.021 -0.021 0.321 0.109  
 Beta 0.011 0.001 -0.002 0.352 0.081  

200 Exponential 0.003 0.022 -0.022 -0.995 0.122  
 Beta 0.014 0.002 -0.005 -1.009 0.083  

500 Exponential 0.006 0.023 -0.023 -1.217 0.122  
 Beta 0.014 0.003 -0.007 -1.197 0.080  

 
Note: The approximation error is defined in equation (8) in the text. The weighting functions of the data 

generating processes are represented in Figure 2. Data generating processes are discussed in detail in section 

2.3. Number of replications: 1000. 

  



 

 

 

Table 2: Forecasting US output growth with Financial Variables 

Forecasting 1989:Q3 1995:Q3 2001:Q3 1989:Q3 1995:Q3 2001:Q3 
Origin 1995:Q2 2001:Q2 2007:Q2 1995:Q2 2001:Q2 2007:Q2 

Estimation:  Recursive Rolling 

h=1 

AR 2.104 2.266 1.815 2.149 2.290 1.857 

 with spread 

R 1.066 1.122 1.144 1.007 1.121 1.026 
MIDAS 1.057 1.087 1.190 1.003 1.094 1.034 
STR 1.076 1.083 1.159 1.013 1.071 1.033 
STMIDAS 1.013 1.073 1.185 0.965*** 1.101 0.988 

 with short-rate 

R 1.082 0.990 1.317 1.046 0.945*** 1.028 
MIDAS 1.100 1.002 1.373 1.068 0.940*** 1.032 
STR 1.167 1.003 1.190 1.066 1.011 1.236 
STMIDAS 1.249 1.053 1.401 1.236 0.963*** 1.207 

 with stock return 

R 1.003 0.903*** 1.047 1.014 0.928*** 1.043 
MIDAS 0.979 0.863*** 1.107 1.001 0.890*** 1.048 
STR 1.034 0.896*** 0.965* 1.022 0.937*** 0.994 
STMIDAS 1.024 0.886*** 1.222 0.997 0.925 1.025 

h=4 

AR 1.513 1.670 0.984 1.547 1.752 1.018 

 with spread 

R 0.978 1.239 1.225 0.915*** 1.246 0.979 
MIDAS 0.981 1.252 1.246 0.922*** 1.253 0.989 
STR 0.884* 1.228 1.263 0.851*** 1.237 0.923*** 
STMIDAS 0.874** 1.241 1.247 0.850*** 1.242 0.904*** 

 with short-rate 

R 0.996 0.963 1.647 0.994 0.935*** 1.197 
MIDAS 1.006 0.966 1.733 1.011 0.932*** 1.249 
STR 1.492 0.901* 2.037 1.329 0.901*** 1.585 
STMIDAS 1.419 0.952 2.132 1.390 0.888*** 2.141 

 with stock return 

R 1.050 1.043 0.999 1.055 1.081 1.022 
MIDAS 1.075 1.084 1.032 1.074 1.137 1.037 
STR 1.233 0.891** 1.004 1.151 1.083 1.237 
STMIDAS 1.206 0.897** 0.954 1.190 1.113 1.471 

 

Entries for the “AR” row are root mean squared forecast errors computed using data from 2009:Q1 

vintage as actuals. The entries for R, MIDAS, STR and STMIDAS are ratios to the AR RMSFE. *, **, 

*** are 1%, 5% and 10% rejection of the null that the model with the predictor is more accurate in 

forecasting output growth than the autoregressive model. For recursive estimation, we use MSE-F 

statistic with critical values computed by bootstrap. For rolling estimation, we use the Giacomini and 

White(2006) t-statistic with critical values from the normal distribution. N=79 (data from 1970). Each 

subsample of the out-of-sample period has 24 observations.  

  



 

 

Table 3: Forecasting UK output growth with Financial Variables 

Forecasting 1995:Q3 2001:Q3 1995:Q3 2001:Q3 
Origin 2001:Q2 2007:Q2 2001:Q2 2007:Q2 

Estimation:  Recursive Rolling 

h=1 

AR 1.409 1.077 1.530 1.027 

 with spread 

R 1.092 1.046 0.852*** 1.133 
MIDAS 1.091 1.045 0.852*** 1.133 
STR 1.197 1.394 1.407 1.097 
STMIDAS 1.204 1.403 1.411 1.101 

 with short-rate 

R 1.014 0.952** 1.075 0.968*** 
MIDAS 1.024 0.947** 1.086 0.968*** 
STR 0.974* 0.976* 1.287 1.046 
STMIDAS 0.975 1.003 1.300 0.961*** 

 with stock return 

R 0.787*** 0.996 0.725*** 1.003 
MIDAS 0.785*** 1.007 0.716*** 0.996 
STR 0.871*** 1.077 0.751*** 1.232 
STMIDAS 1.027 0.978 0.838*** 1.363 

h=4 

AR 1.054 0.620 1.319 0.587 

 with spread 

R 1.609 1.252 0.977 1.229 
MIDAS 1.608 1.252 0.976 1.228 
STR 2.417 2.569 2.297 1.317 

STMIDAS 2.314 2.572 2.288 1.322 

 with short-rate 

R 1.093 0.953 1.111 0.873*** 
MIDAS 1.099 0.932* 1.133 0.877*** 
STR 1.000 1.127 1.057 0.756*** 
STMIDAS 0.976 1.166 1.101 0.773*** 

 with stock return 

R 0.719*** 1.308 0.585*** 1.280 
MIDAS 0.714*** 1.311 0.596*** 1.324 
STR 0.696*** 2.082 0.571*** 1.804 
STMIDAS 0.717*** 2.011 0.678*** 1.727 

 

See notes of Table 2. N=42 (data from 1985).  


