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ABSTRACT

We establish an information equilibrium concept that provides existence and unique-
ness conditions for dynamic economies with incomplete information. Our equilibrium
concept overturns non-existence results once thought to be pervasive in models with
non-trivial informational dynamics, and establishes a connection between hierarchical
and dispersed information structures. We show that the equilibria belonging to this
class are characterized by a generalization of the celebrated Hansen-Sargent formula. A
ubiquitous characteristic of this generalized Hansen-Sargent formula is a propagation
effect triggered by perpetual learning about structural innovations from equilibrium
variables. We provide analytic characterizations of equilibrium dynamics, which per-
mit closed-form solutions of higher order belief dynamics. We also derive an equivalence
between non-fundamental moving average representations and dynamic signal extrac-
tion problems. This equivalence allows for a novel rational expectations interpretation
of moving average processes.
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1 INTRODUCTION

In market economies, agents use diverse sources of information to set demand and supply
strategies. While some sources of information are exogenous to the specific market under
consideration, other sources, such as prices and interest rates, are endogenous in that the
information is generated as a by-product of the functioning of market forces. In this paper,
we study rational expectations equilibria with competitive markets where agents have access
to both exogenous and endogenous sources of information. We refer to these equilibria as
“information equilibria.”

Since the rational expectations revolution, solving for equilibria in dynamic macroeco-
nomic models relies on imposing the restriction that equilibrium dynamics are a function
of expectations of stochastic variables. Such expectations, in turn, determine a mapping
from exogenous stochastic processes to endogenous variables. This mapping is often referred
to as cross-equation restrictions, which are the “hallmark of rational expectations models,”
Sargent (1981). In this paper, we examine the cross-equation restrictions arising from a
class of dynamic rational expectations models containing informational frictions, and de-
rive conditions for which the informational friction persists in equilibrium. We show that
the determination of the mapping between equilibrium variables and exogenous shocks, and
the resulting cross-equation restrictions, are crucially affected by the interaction between
exogenous and endogenous information.

The novelty of our results arises in part because the informational assumptions typically
imposed on dynamic models do not nest incomplete information. Consider the following
equilibrium equation for a standard speculative market

pe = BE (pis1 ) + st (1.1)

where s; is assumed to be exogenous, p; endogenous, and |#| < 1. Suppose that there
is a proportion of “informed” agents who are endowed with current and past structural
innovations to s;, say &, so that Q; = &' = (g4,&,_1, ...), and a proportion of “uninformed”
rational agents who only observe the history of equilibrium outcomes p’, but not the history
of structural innovations &’ directly. Suppose also that s; follows an autoregressive, moving
average process of order one, ARMA(1,1)

St = PSt—1 + &+ HEt—l- (12)

The typical assumption is to set 6 = 0, and for s; to follow a purely autoregressive process.
An important result derived below is that agents observing endogenous information only,
p' generated by (1.1), will always be able to recover ¢’ if § = 0. A straightforward and
convenient implication of this property is that one can abstract from exogenous informa-
tional differences altogether. The downside, however, is that there exists a set of interesting
“information equilibria” that are disregarded. This insight extends to more complex dy-
namic models where, even under the standard AR(1) assumption for the exogenous shocks,
interesting information equilibria are usually overlooked.

In this paper, we characterize these equilibria and show that their propagation properties
can be dramatically different from the fully-informed equilibrium. The paper makes the
following contributions.



First, we provide a novel informational interpretation for moving average (MA) represen-
tations within the context of rational expectations models. Incomplete information models
of several types are shown to produce endogenous variables with non-fundamental MA rep-
resentations. As noted above, focusing solely on autoregressive components misses entirely
this set of equilibria. We facilitate the informational interpretation of MA representations
by providing an “informational equivalence” between non-fundamental MA representations
and the more familiar dynamic signal extraction problem.

Second, we establish an information equilibrium concept that provides existence and
uniqueness conditions for dynamic economies with incomplete information. The defining
characteristic of information equilibria is a fixed point condition in information. Solving for
the fixed point condition is tantamount to identifying which linear combination of structural
shocks agents are able to infer from endogenous and exogenous variables. We demonstrate
how rationality and common knowledge of rationality delivers an additional linear combi-
nation of innovations beyond that contained in endogenous and exogenous variables. Ac-
counting for this additional restriction overturns non-existence results once thought to be
pervasive in models with non-trivial informational dynamics [Futia (1981)].

Third, we analytically characterize the space of information equilibria in both the sym-
metric and hierarchical setup of Futia (1981) and a dispersed informational setup where
each agent is equally uninformed. The assumption of rationality in dynamic models with
incomplete information leads naturally to agents forming higher-order beliefs [Townsend
(1983)] and signal extraction from endogenous variables [Sargent (1991)]. These character-
istics make solving and characterizing information equilibria using traditional state space,
recursive methods challenging, and has resulted in numerical approximation of equilibria.
We take advantage of a version of the powerful Riesz-Fischer Theorem—which provides an
alternative to a state space / Kalman filter approach—to solve for the information equilibria
in closed form.! Our solution method not only easily handles the technical difficulties associ-
ated with incomplete information, as argued by Kasa (2000) and Kasa et al. (2008), but also
permits generalized conditions for existence and uniqueness, as demonstrated by Whiteman
(1983). Therefore we are able to examine the robustness of the information equilibrium to
perturbations in parameter values and informational distributions, and for various stochastic
processes.

Finally, we examine the dynamic properties of models with incomplete information. We
show that the equilibria belonging to this class are characterized by a generalization of
the celebrated Hansen and Sargent (1980) formula. The ubiquitous characteristic of this
generalized Hansen-Sargent formula is a propagation effect triggered by perpetual learning
about structural innovations from equilibrium variables. One interpretation of this effect
lends itself directly to the “waves of optimism and pessimism” that Pigou (1929) argued is
a key source of cyclical variation in economic activity.

Another important characteristic of asymmetric information models is the failure of the
law of iterated expectations and the formation of higher-order beliefs. Given that we derive
an analytical solution and establish conditions of existence and uniqueness, we are able to

n a companion paper Rondina and Walker (2009), we demonstrate the connection between our approach
and the recursive approach, and discuss the advantages and disadvantages of both. See Sargent (1987) for a
discussion of the Riesz-Fischer Theorem.



sharply characterize these aspects of the equilibrium.

2 CONNECTION TO LITERATURE

Models of incomplete information are becoming increasingly prominent in several literatures
such as asset pricing, optimal policy communication, international finance, and business
cycles.? The role of incomplete information in many of these settings was acknowledged
very early on; Keynes (1936) believed higher-order expectations played a fundamental role
in asset markets, while Pigou (1929) argued that business cycles may be subject to “waves of
optimism and pessimism.” The idea that incomplete information could induce a propagation
mechanism and contribute substantially to business cycle fluctuations was first formalized
in a rational expectations setting by Lucas (1975), Townsend (1983) and King (1982). The
defining characteristic of these models was asymmetrically informed agents who observed
endogenous variables that did not fully reveal the structural innovations hitting the economy.
This incomplete information induced forecast errors that were correlated across agents, which
resulted in business cycle fluctuations that exceeded the initial aggregate shock in both
size and persistence. We too find that incomplete information induces propagation and
amplification of innovations.

Solving for equilibria in dynamic models with incomplete information is challenging.
Bacchetta and van Wincoop (2006) attribute the lack of research following the early work
of Lucas (1972), Lucas (1975), King (1982) and Townsend (1983) to the technical challenges
of solving for equilibrium, even though these models harbored much potential. The primary
difficulties are rational agents forming higher-order beliefs [Townsend (1983)], which makes
the typical recursive state space formulation approach problematic because the state may
be infinite dimensional, and signal extraction from endogenous variables [Sargent (1991)],
which leads to a delicate fixed point condition in information.

Following Townsend (1983), the customary way of solving for information equilibria in
dynamic models with incomplete information is to assume that the innovations are perfectly
observed at some arbitrary distant point in the past.®> This allows one to put the system
in state space recursive form, which permits the use of the Kalman filter to solve for the
signal extraction problem, and implicitly solves the informational fixed point condition.
Rondina and Walker (2009) show that truncating the state space in this manner runs the
risk of revealing the entire history of innovations up to the current period, regardless of the
point of truncation. Clearly, if the model generates a signal extraction problem of the type
described here, this assumption has the undesirable implication of completely removing an
important informational friction from the equilibrium outcome. Hence, the approximation
error associated with truncation can be quite large.? Our solution procedure and equilibrium
concept does not rely on truncating the state and therefore does not dampen the effects from
incomplete information. We also provide general restrictions which guarantee the existence

2The literature is too voluminous to cite every worthy paper. Recent examples include: Morris and Shin
(2002), Woodford (2003), Allen et al. (2006), Bacchetta and van Wincoop (2006), Gregoir and Weill (2007)
Angeletos and Pavan (2007), Kasa et al. (2008), Lorenzoni (2009), Rondina (2009), Angeletos and La’O
(2009).

3There have been other approaches to handle these technical issues. Most notably Nimark (2007) main-
tains the recursive structure and employs the Kalman filter, allowing for a large, yet finite, state space.

4Walker (2007) demonstrates this point in the model of Singleton (1987).



and uniqueness of information equilibria by deriving the informational fixed point condition
endogenously.

Our work most closely relates to that of Futia (1981). Futia’s key insight was that,
in dynamic settings, moving average representations could be used to preserve asymmetric
information in equilibrium. In a simple speculative market model, Futia examined both a
symmetric and a hierarchical information structure, assuming that equilibrium prices con-
vey information to price-taking investors. Using analytic function methods to solve for
equilibrium linear pricing functions, Futia derived non-existence conditions for a symmetric
information equilibrium, where the non-existence of equilibria was attributed to the endo-
geneity of information.> The non-existence result of Futia (1981) has since been regarded as
a problematic feature of endogenous information equilibria in rational expectations models.
We extend Futia in three directions.

i. We derive general existence conditions that are consistent with Futia’s hierarchical in-
formation example, but diverge from Futia’s symmetric case in the sense that we show
that Futia’s non-existence result disappears. We argue that this discrepancy can be
attributed to rationality and common knowledge of rationality. We refer to this concept
as “knowledge of the model” and argue that it plays a crucial role in characterizing the
space of any information equilibria.

ii. We introduce a dispersed information structure and show how the equilibrium properties
in this case are related to the hierarchical information equilibrium through a simple
reinterpretation of a key informational parameter.

iii. We show that the equilibrium characterization can be interpreted as a “generalized”
Hansen-Sargent formula, which facilitates the comparison to the typical representative
agent rational expectations model. We also derive and examine important properties of
the information equilibria (i.e. higher-order beliefs) in closed form.

Our work is also related to Kasa et al. (2008) (KWW). KWW examine Futia’s speculative
market model under a symmetric, heterogeneous information structure and derive conditions
under which information remains heterogeneous in equilibrium. Once appropriately reinter-
preted (taking into account the differences in information structure), the existence conditions
for an heterogeneous information equilibrium in Futia (1981), KWW (2008) and the results
derived herein can be shown to be consistent. KWW then study how the stochastic proper-
ties of such equilibrium can help in understanding the empirical properties of asset prices.

3 INFORMATION EQUILIBRIUM: PRELIMINARIES

3.1 EqQuiLiBRIUM To fix notation and ideas, we define an information equilibrium within
the model of Futia (1981). We work within this framework to juxtapose our definition of
equilibrium to that of Futia’s and to allow a broad range of interpretations. Futia assumed
stochastic “market fundamentals” (s;), which he interpreted as a speculative component of

STaub (1989), Kasa (2000), Walker (2007), Kasa et al. (2008) and Rondina (2009) also use the space of
analytic functions to characterize equilibrium in models with informational frictions. Seiler and Taub (2008),
Bernhardt and Taub (2008), and Bernhardt et al. (2009) show how these methods can be used to accurately
approximate asymmetric information equilibria in models with richer specifications of information.
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supply. Agents are risk neutral and discount the future at rate §. For now, we assume a
continuum of asymmetrically informed agents indexed by 7. The model is given by

1
Dt = ﬁ/ Eipri1di + s (3.1)
0

where E! is the conditional expectation of agent i.
The exogenous process (s;) is driven by a Gaussian shock
s; = A(L)zy, e, Y N(0,02) (3.2)
where A(L) is a square summable polynomial in the lag operator L.

Information is assumed to originate from two sources—exogenous and endogenous. FEx-
ogenous information, denoted by U}, is that which is not affected by market forces. This
dimension of information must be endowed by the modeler. Endogenous information is gen-
erated through market interactions. When agents are asymmetrically informed, endogenous
variables may convey additional information not contained in the exogenous information set.
We separate endogenous information into two components—V,(p) and M;(p). The notation
Vi(p) denotes the smallest closed subspace that is spanned by current and past p, and M,(p)
embeds the assumption that agents know the equilibrium process p; evolves according to
(3.1). This distinction is important and elaborated on below. The time ¢ information of
trader i is then Q! = U} V V,(p) V My(p), where the operator V denotes the span (i.e., the
smallest closed subspace which contains the subspaces) of the U}, V;(p) and M,(p) spaces.
If the exogenous and endogenous information are disjoint, then the linear span becomes a
direct sum. We use similar notation as Futia (1981) in that V,(x) = V,(y) means the space
spanned by {z;;}72, is equivalent, in mean square, to the space spanned by {y;;}52,.

Uncertainty is assumed to be driven entirely by the Gaussian stochastic process ;, which
rules out sunspots and implies the equilibrium lies in a well-known Hilbert space (the space
spanned by square-summable linear combinations of &;). Normality implies that optimal
projection formulas are equivalent to conditional expectations,

E(per1) = W[pen |2 = pea [UF V Vi(p) V My(p)]. (3.3)
where II denotes linear projection. We now define an information equilibrium.

Definition IE. An Information Equilibrium (IE) is a stochastic process for {p;} and a
stochastic process for the information sets {Q¢ 1 € [0, 1]} such that: (i) each agent i, given the
price and the information set, follows an optimal strateqy and forms expectations according
0 (3.3); (ii) p: satisfies the equilibrium condition (3.1).

An IE consists of two objects: a price and a distribution of information. The two objects are
both endogenously and simultaneously determined in equilibrium. An IE can be summarized
by two statements: (a) given a distribution of information sets, there exists a market clearing
price determined by each agent i’s optimal prediction conditional on the information sets;
(b) given a price process, there exists a distribution of information sets generated by the
price process that provides the basis for optimal prediction. Both statements (a) and (b)
must be satisfied by the same price and the same distribution of information simultaneously
in order to satisfy the requirements of an IE.



3.2 INFORMATION In dynamic settings, agents continually collect new observations, but
what is crucial is how much the current and past observations reveal about the structural
innovations—e;_;. One of the key contributions of this paper with respect to the existing
literature on information asymmetries is the emphasis on a class of signal extraction that
pertains only to dynamic settings. Even without exogenous and superimposed noise, a
general dynamic structure exists such that the effects of a contemporaneous shock ¢; cannot
be parsed out from past realizations €;_1, €;_o,....
As an example, consider the problem of extracting information about &; from

Ty =&+ 95t—1~ (34)

If we assume |0 < 1, then there exists a linear combination of current and past x;’s that
allows the exact recovery of ¢;. This is

Ejgj<1 (5t\xt) = (:ct —Oxi g + 0?5 — Pry s+ ) = &4 (3.5)

Note that the infinite sum converges as 6" goes to zero for n “big enough.” In this case
the z; process spans the same informational space as the ¢; process, [V,(z) = V(¢)].

When |6| > 1 information is partially lost. Obviously, (3.5) is no longer well defined as
the coefficients for the past realizations of x; grow without bound. Nevertheless, there is still
a linear combination of x; that minimizes the forecast error for £;; this is given by

]E|9‘>1 (€t|$t) =40 (Z't — 9_1l't_1 + 9_2l't_2 — 9_3l't_3 + ) = ét. (36)

In this case, the representation for x; spans &, [Vi(x) = V(€)]. & contains strictly less
information than &;, in the sense that the mean squared forecast error conditional on &, is
bigger than e, (which is identically zero). More specifically,

E (e —2)%] = (1 - %) 0% > 0.

The forecast error approaches zero as |#| — 1; that is, the information in &, approaches the
full information &;.

A dynamic interpretation of this informational imperfection is to imagine an original
state of the world that is imperfectly observed at ¢ = 0 (e.g. ¢_1). If |#] < 1, the forecast
error associated with this “original ignorance” approaches zero over time. The dynamics of
the signal do not prevent the agents from learning the correct state of the world as the sample
size increases. Conversely, when |f]| > 1, the same original ignorance never diminishes and
agents never perfectly recover e;, at any arbitrary time in the future.

It is useful at this point to establish a connection between the information contained in
€, when |0] > 1 and a dynamic signal extraction problem cast in a more familiar setting.
Suppose that agents observe an infinite history of the signal

2y = €t + Nt (37)

where 7, YN (O, 0727). The optimal prediction is well known and given by E(g|2!) =
where 7 is the standard signal-to-noise ratio parameter 7 = 02 /7.

-
1+7’Zt’
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Rondina and Walker (2009) show the equivalence (in terms of the variance of the predic-
tion errors) between the signal extraction problem (3.4) when || > 1 and (3.7) is equivalent
when )

2

0= =1+ — (3.8)

where equivalence is defined as equality of variance of the forecast error conditioned on the
infinite history of the observed signal, i.e.

E[(e — Bopr (22)’] = E [~ E (212)’] .

This suggests that agents, concerned with minimizing the variance of forecast errors,
should be indifferent between receiving the signal z; or z;, assuming that (3.8) is satisfied.
However from a positive point of view, there are important differences. For example, the
impulse responses of x; and z; to an innovation in ¢, are far from similar. For z;, the
prediction formula reacts at impact according to the magnitude 11—, but is zero thereafter.
Conversely, the response of x; extends for many periods beyond impact. To see this more

clearly, rewrite (3.6) as

~ -1 ) -1 -2 .
& = 0 &t —+ Sl 0 ) [51&—1 0 é?t_Qj— 0 Et—3 l (39)
= weight X signal +  weight X noise

This equation demonstrates how 6! controls the information that &, contains about &,
through two channels—a signal with weight 6!, and a noise component with weight (1—6072).
As 0 increases there are three effects. First, the weight on the signal decreases and x;
contains less information about &;. Second, the weight on the noise increases, but this
is offset (somewhat) by the third effect, which is a reduction in the noise associated with
innovations dated t—2 and earlier (¢,_2, &;_3,...). In the limit as § — oo, the distribution of &
is degenerate at £;_; so that the best prediction for ¢, is last period’s realization ;1.5 As |6)]
approaches 1, these three effects are reversed and past realizations contribute substantially
to the noise while the weight on the noise decreases.

Figure 1 plots the impulse response functions for E(e;|2") and Ejg>1 (¢|2). For both
values of 7, the reaction at impact of the impulse responses are the same for x; and z;.
However, the impulse response for prediction conditional on z; dies out immediately after
impact, while the impulse response for prediction based on x; exhibits the interesting dy-
namics characterized by (3.9). For the high signal case (7 = 1, blue line), z; declines after
impact, mimicking the actual behavior of &, (the black line); then subsequently overshoots
zero and continues to oscillate for many periods. For the low signal case (7 = .1, red line),
x; initially increases at impact, producing a hump-shaped response of the same order of
magnitude as the initial innovation. The impulse then overshoots and oscillates for only a
few periods. These dynamics continually resurface in the models studied below.

®Note that the mean squared forecast error in this limiting case is equal to o2, which is what one would get
with an unconditional forecast. Agents prefer to use (3.9) rather than the unconditional forecast, E (¢;) = 0,
because the resulting mean squared forecast error is smaller than o2 for finite values of 6.
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Figure 1: Impulse Responses of x; and z; to a one unit change in ¢; for signal-to-noise ratios
of 7 =1, # = v/2 (dashed, triangle markers) and 7 = 0.1, # = /11 (dashed-dot, circle
markers). The solid line is the innovation itself, ¢;, normalized to 1.

3.3 SOLUTION PROCEDURE As stated in Definition 3.1, an Information Equilibrium (IE)
must satisfy two conditions. Given a distribution of information sets, there exists a market
clearing price determined by each agent’s optimal prediction. Given a price process, there
exists a distribution of information generated by the price that provides the basis for optimal
prediction. Our solution procedure described here uses a recursion in the space of analytic
functions to solve for the fixed point conditions, initiated with a candidate solution that is
“minimal” from an informational point of view.

In solving for the fixed point conditions of Definition 3.1, we use the analytic function
approach advocated by Futia (1981), Whiteman (1983), Taub (1989) and Kasa (2000). The
analytic function approach is particularly useful when solving for an informational fixed
point because the information encoded into endogenous equilibrium variables can be easily
detected by the behavior of the analytic functional representation of these variables in the
complex plane. As shown above, the property of invertibility of an analytic function inside
the complex unit circle informs about the existence of a linear combination of observed
information that reveals the state of the system. If perfect recovery is not possible, the
invertible representation delivers the precise mapping into the smaller space that is revealed.

The solution procedure involves two steps: [i] guess a candidate solution that is minimal
with respect to information and impose equilibrium conditions [ii] check the invertibility of
the endogenous variables to ensure the informational fixed point condition holds. Through
market interactions, the information conveyed by the candidate solution may be larger than
the initial information set of step [i|. If this is the case, the new enlarged information set
is used to generate a new candidate solution, and the process is repeated until convergence.
Since the expansion of the information set is bounded above by the full information bench-
mark, the iteration is sure to converge.

A critical component of the solution procedure is initializing the recursion in information.



In principle, for any specification of the exogenous information structure {U}} there might
exist a unique convergence point in the recursion described above. It is useful to think
of IE as a set of equilibria where each equilibrium is indexed by the assumed exogenous
information structure. It will never be an empty set as one can always assume exogenous
information such that the equilibrium is fully revealing.”

In initializing the recursion in information, we follow the spirit of Radner (1979), who
advocated forming an “exogenous information equilibrium” as an initial guess for the IE. The
exogenous information equilibrium assumes agents are only able to condition on exogenous
information, which places a lower-bound restriction on the initial condition for information.
Radner argued that such an equilibrium would persist only if every agent remained unso-
phisticated and ignored the information coming from the model. A dynamic interpretation
of Radner is to say that a “sophisticated” agent acting rationally will not generate forecast
errors that are serially correlated with respect to their own information sets. As we see below,
this does not preclude the possibility that agent i’s forecast errors will be serially correlated
with respect to agent j’s information set.

The machinery of the previous section can now be used to generate a initial guess for the
equilibrium that is consistent with Radner’s motivation. For the models described below,
this guess is given by

pe=Q(L) f[(L — Ai)e (3.10)

i=1

where |\;| < 1 for all 7 is assumed, and Q(L) is assumed to contain no zeros inside the unit
circle.® As noted in Section 3.2, if |\;| < 1 for all 4, conditioning on the price process implies
agents will not be able to infer {e;, ;}52, perfectly. This guess for the price process spans
the space of &;, where now

ét = 15’)\1([/)[5>\2 (L) s 'B)\n(L)Et (3.11)

and By, (L) = |N|[(L — X))/ Ni(1 — N\ L), i.e. a product of Blaschke factors must be used to
derive the information set of the agents [see Hansen and Sargent (1991), Lippi and Reichlin
(1994)]. Using the tools of previous section, it is easy to show that for every additional
|A;| inside the unit circle, the conditioning set V,(p) contains strictly less information than
before. As our solution procedure permits the number of zeros inside the unit circle (n) to
be arbitrarily large, (3.10) represents an “informational lower bound.” As we show for the
specific informational assumptions that follow, our solution procedure endogenizes \; and
Q(L) and therefore is very flexible in that it does not impose |\;| < 1 for any ¢ in equilibrium.
Thus the candidate equilibrium is minimal from an informational standpoint but allows for
a potentially larger information set endogenously.

"In Rondina and Walker (2009) we show that the choice of casting the solution to an IE in a recursive
fashion (i.e. specifying a state representation for the problem) is subject to the risk of implicitly initializing
the agents’ information set in a way that excludes entire classes of information equilibria.

8In what follows, we also impose the restriction that \; # 3 for all i. This restriction, along with |3| < 1,
ensures existence and uniqueness of the equilibrium, for a given exogenous information structure.



4 SYMMETRIC INFORMATION

Consider model (3.1) where the heterogenous beliefs collapse to a common knowledge, sym-
metric information structure,

pe = BEi(pr+1) + 5. (4.1)

Symmetric information implies the law of iterated expectations holds and the above difference
equation may be written as the contemporaneous expectation of the discounted sum of future
St7sa

Pt = Z BTEy(se15)- (4.2)
=0

4.1 EXISTENCE OF INFORMATION EQUILIBRIA It is useful to establish a benchmark
equilibrium solution to the above equation. Assume that the exogenous information provided
to the agents is the full knowledge of the innovations up to time ¢, i.e.

Ul =V,(e),Vi€10,1]. (4.3)

Here, and in the following analysis, we assume that agents observe the endogenous infor-
mation V;(p) V My(p). In lieu of characterizing each term in the summation, we posit that
the solution to (4.2) has the functional form p; = P¢(L)e;, where P°(L) satisfies square
summability. Expectations are given by the Wiener-Kolmogorov optimal prediction for-
mula, E[pf,|Vi(e)] = L7'[P(L) — F§le; which follows from our assumption that agents
have knowledge of current and past innovations, {g;_;}52,. Substituting the expectation
into the equilibrium yields a functional equation for p;. As noted above, we solve for the
functional fixed point problem in the space of analytic functions. The z-transform of the p;
process may be written as

zA(z) — BB
z2—pB

The z-transform must be analytic in the frequency domain, which is tantamount to square
summability in the time domain. If |3| > 1, then (4.4) is analytic and the free parameter P§
can be set arbitrarily. Uniqueness, then, requires |5| < 1, in which case the free parameter
P is set to ensure the function is analytic for |z| < 1.2 The equilibrium is then characterized
by

P(z) = (4.4)

pr = (LA(L) £t (4.5)

— BA(B)
L-p
which is the celebrated Hansen-Sargent formula [Hansen and Sargent (1991)]. This char-
acterization of a rational expectations equilibrium is not controversial and can be obtained

through many different solution procedures [e.g., Blanchard and Kahn (1980), Sims (2002)].

9See Futia (1981) and Whiteman (1983) for more on solving rational expectations models using z-
transform techniques.
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As noted by Hansen and Sargent, this equation clearly captures the cross-equation restric-
tions, which are the “hallmark” of rational expectations models. It is the unique solution to
(4.2) when information is specified as (4.3). However, the definition of an IE does not rule
out the existence of other equilibria when the exogenous information is specified differently.
The relevant questions are then: under what exogenous informational assumption does (4.5)
represent an [E? What are the characteristics of an IE when the exogenous information does
not support (4.5) as an equilibrium?

In contrast to (4.3), assume exogenous information is given by the empty set U} = {0}
Vi. Hence, all information is coming from current and past observations of the endogenous
variable V,(p) and knowledge that this endogenous variable is generated by (4.1), M, (p). We
focus on this exogenous information for two reasons. First, signal extraction from endogenous
variables in a dynamic asymmetric information setting is nontrivial, and this section lays
the groundwork for that case. Second, this is the same informational setup as Futia (1981);
however, we overturn the non-existence pathologies derived therein.

The solution procedure outlined above advocates forming an initial guess of the endoge-
nous variable that is minimal with respect to information. This “informational lower bound”
may be achieved by assuming (3.10) as the guess for the exogenous information equilibrium.
The conditional expectation may be derived by applying the Wiener-Kolmogorov optimal
prediction formula to (3.10) conditional on observing {&;_;}32, given by (3.11). This condi-
tional expectation is'”

Elpe1|Vi(€)] = H 1= XAL) = Qolé:. (4.6)

Substituting this into (4.1) and solving the model in the space of analytic functions yields
the following theorem.

Theorem 1. Under the exogenous information assumption U} = {0} Vi, a unique Infor-
mation Equilibrium for (4.1) with |5| < 1 always exists and is determined as follows: let
{INi| <1}, be a collection of real numbers such that

A(N) =0, (4.7)
then the information equilibrium price process is
: 1 [1i=, By (L)}
L L—\)eg=——=<LA(L) — BA(SB 4.8
-2 = pam - Ao G e 0y

where

If condition (4.7) does not hold for any |\;| < 1, the IE is given by (4.5).

0Kasa et al. (2008) emphasize the conditioning down onto the smaller subspace &; in the conditional
expectation. We show that this conditioning down also applies to the equilibrium characterization and takes
the form of (4.8).



Proof. See Appendix A. O

As will be emphasized throughout, an IE consists of both an information set and a price
process. The statement of Theorem 1 highlights this duality by requiring an IE to satisfy
two conditions—(4.7) and (4.8). Restriction (4.7) states that the initial guess of the price
(3.10), will only be an IE if A()\;) = 0 holds for every ¢ = 1,...n. Restriction (4.7), then,
determines the exact number of |\;| < 1 for ¢ = 1,...n that exist in equilibrium, and hence
determines the endogenous information available to the agents. This restriction stipulates
that the exogenous process, s;, must vanish when evaluated at each of the \’s given by (4.8).
Given that the s; and p, process share common zeros (A), the information content of s; must
be equal to that of p;.

The intuition behind this result is best understood by distinguishing between information
generated by observing the price sequence or “time series information” of p; (V,(p)), and
information generated by the model or “equilibrium information” of p; (M, (p)). Knowledge of
the time series properties of p; is straightforward, while information generated by the model is
a more subtle concept. In the symmetric information case, knowledge of the model implies
that agents know that all other agents are similarly informed. This common knowledge
suggests that, whatever the time series properties of the equilibrium process are, the mere
fact that equilibrium holds implies

Pt — 5Et(pt+1) = S¢.

Therefore, the minimal information agents receive in equilibrium is that which is generated
by the exogenous process, s; (i.e., M;(p) = V,(s)). What is important is that this relationship
holds no matter the process for p;, so long as a unique equilibrium exists. It is in this sense
that the model-and common knowledge of the model-places significant structure on the
information sets of agents, and provides agents with an additional linear combination of
structural shocks beyond that given by the price sequence alone. The initial guess assumed
n zeros inside the unit circle without specifying the specific value of those zeros. Unless the
supply process contained the same number of zeros in exactly the same location, knowledge
of the model would reveal additional information to the agents.

This distinction is important because if one fails to recognize the information generated
by the model when imposing common knowledge, one could end up wrongly concluding
that information equilibria may not exist. Non-existence pathologies of this type emerge
in Futia (1981). Corollary 3.16 of Futia argues that a necessary and sufficient condition
for the existence of an IE when agents are symmetrically informed is V,(p) = V,(s). Futia
provides an example where s, = (1+60L)e; with § = 5/8 and § ~ 1. This parameter
setting implies that the p; spans a strictly smaller space than &;, while s; spans the space
of e, (Vi(p) C Vi(s) = Vy(e)). Futia argues that no rational expectations equilibrium exists
for this parameter setting. This notion of an information equilibrium, however, ignores
the information being generated by the model. In fact, observing the equilibrium process
pr and knowing that it is generated by (4.1) implies knowledge of V,(s) by construction—
Vi(p) VM, (p) = Vi(s). This means that where Futia thought an IE did not exist, an IE does
exist and is equal to (4.5), the fully revealing equilibrium.

More generally, our results show that an IE will always exist for (4.1) given |B] < 1,
provided that one looks for it in the appropriate space. Representation (4.5) is the unique
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equilibrium that resides in Vy(¢), while (4.8) is the unique equilibrium residing in V,(€).
The exogenous informational assumption {U;} delivers uniqueness, and hence there are no
issues with multiplicity. However, without a precise definition of an IE, it would difficult to
distinguish between the two.

4.2 CHARACTERIZATION OF INFORMATION EQUILIBRIA Given that existence and unique-
ness has been established, we now examine the properties of the IE of Theorem 1. Notice
that while the IE given by (4.5) is the “typical” Hansen-Sargent formula, (4.8) is a modified
version of the same formula.'! There is an informational interpretation to the Hansen-
Sargent formula which applies to both equations. The first component of (4.5) and (4.8) is
the perfect foresight equilibrium,

LA(L)
L-p

= Fsiy = et (4.9)
j=0

This is the IE that would emerge if agents knew current, past and future values of &;.

The second component represents what must be subtracted off from the perfect foresight
equilibrium because future values of ; are not known at ¢. In other words, the second com-
ponent isolates the conditioning down that corresponds with the agents’ information set.
When agents observe current and past ey, this conditioning down amounts to subtracting
off a particular linear combination of future values of ;. Appendix A of Hansen and Sar-
gent (1980) shows that this component is given by the principal part of the Laurent series
expansion of A(z) around [, specifically

BAB) Y Fler (4.10)
j=1

In the modified Hansen-Sargent formula (4.8), the conditioning down amounts to sub-
tracting off the usual component (4.10) plus a specific linear combination of past values of
g; determined by A;. Assuming n = 1 and using partial fractions yields the combination of
future and past ¢;’s that must be subtracted from the perfect foresight price,

[e’e] )2 [e%e] '
BA(B) (Z Blery; + % > Afst_j) (4.11)
j=1 j=0

The second component on the RHS is the exact linear combination of past ¢;’s that the
agents do not observe. The denominator of this term, (5 — \), cancels given restriction (4.7)
and we get the noise term of (3.9). Hence the intuition laid out in Section 3.2 applies here.

UThe IE given by (4.8) also nests the sticky information setup of Mankiw and Reis (2002) (\; = 0). How-
ever, the structural interpretation of our setup is quite different. “Inattentiveness” relies on an assumption
that agents do not fully incorporate widely-available macroeconomic data into, say, price setting decisions.
Our approach allows for a reinterpretation of this behavioral assumption in that our agents are acting ratio-
nally but are unable to infer the true innovations hitting the economy. Our approach also allows for more
flexibility in the degree of uncertainty.
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Characterizing the equilibrium in &; space reveals the more familiar Hansen-Sargent rep-
resentation. Assuming n = 1, (4.7)-(4.8) may be written in &, space as

5, = (1= AL)A(L)é, (4.12)
]%:<u1—nmu@:§a—AmAwUé (4.13)

where A(L) is assumed to have no zeros inside the unit circle. This representation of equilib-
rium bears the more familiar features of the Hansen-Sargent formula. Because the Hansen-
Sargent formula is derived from optimality conditions, a version of this formula must hold
in the space spanned by the agents’ conditioning set. Theorem 1 establishes conditions
for which the space of existence is &;, and (4.12)—(4.13) demonstrates the existence of the
Hansen-Sargent formula in this space. This representation of equilibrium delivers exactly
the uninformed agents’ belief of market fundamentals: 5, = (1 — AL)A(L)&,.

We conclude this section with a specific example that puts more structure on the general

results already derived. Assume that the moving-average representation of s, is given by
St = PSt—1 + &+ 95t—1> |p| < 1. (414)

According to Theorem 1 the type of IE encountered hinges upon the whether s; spans the
space of &;, which is determined solely by 6. If |#] < 1, then the s; process spans ¢;. In this
case, the information equilibrium is obtained by plugging (4.14) into (4.5), which yields

1468
1—pp

If |§] > 1, then the specification of the exogenous information given to the agents is
crucial. If we assume U} = V;(¢), Vi, then the IE would be equal to (4.15). However, if we
maintain the assumption that U} = 0, Vi, the IE is found by plugging (4.14) into (4.8),

. [(0+B\. .  [(1+406L 0+ 5
Pt — PPt—1 = <1 _pﬁ)5t+5t—1 = < 0 ) {(1 _pﬁ)ald—at_l} (4.16)

where the second equality shows the mapping into e-space.

Notice also that the way the agents discount the news or innovations is different across the
two equilibria. Equation (4.14) shows that last period’s innovation, €;_1, receives a smaller
discount than the contemporaneous innovation, ;, when || > 1. The opposite is true for

the equilibrium that lies in &; space. Here the agents believe the exogenous process is given
by

Pt — PPt—1 = ( )Et + Og;_q. (4.15)

§t = Pgt—l + Hét + ét—l (417)

where the contemporaneous innovation receives the smaller discount. This “flipping” of dis-
count factors for s; has an obvious impact on the conditional forecast error in predicting p;.
The effect on equilibrium dynamics can be seen by examining impulse response functions.
Figure 2 plots the impulse response functions for p, and p; for # = y/11 (which, according
to (3.8), corresponds to a signal-to-noise ratio of 1/10) in the left panel, and = v/2 (which
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Figure 2: Responses of p,; (4.15) and p; (4.16) to innovation in ;.

corresponds to a signal-to-noise ratio of 1) for a one-unit shock to € at time ¢. The impulse
responses are normalized with respect to the impulse response at impact for the price under
complete information p;. The additional parameters values are: p = 0.8, § = 0.985, 0. = 1.

For p;, a one-unit shock to the structural innovation ¢, at time ¢ has an interesting
propagation effect. At impact p; underreacts with respect to the full information price py,
while it overreacts one period after impact. The pattern then settles into waves of under— and
overreaction over the subsequent periods as in Section 3.2. Comparing the impulse responses
across the two panels reveals that in the presence of low noise, the initial underreaction at
impact is smaller compared to the high noise case. In contrast, the subsequent “mood
swings” are of greater magnitude and more persistent in the low noise case, while they tend
to decay fairly quickly in the high noise case. Interestingly, if one were to measure the
efficiency loss in terms of the relative discrepancy from the full information benchmark, it
is not immediately clear whether one would prefer the low noise case to the high noise case.
We leave the analysis of this issue to future work.

There are two aspects of the equilibrium dynamics that should be emphasized. First,
despite the fact that the model itself is very simplistic—a univariate present value model-the
propagation effects of p, can be quite rich. Here we have added a single parameter (6) to a
simple model and through an interesting informational angle are able to deliver significant
propagation. Second, the difference in the dynamics between p; and p; is quite dramatic
given that the only distinguishing characteristic is information. It is a well known result that
fundamental and non-fundamental moving average representations have the same covariance
generating functions. Thus, the covariance generating functions of (4.14) and (4.17) are
identical. The only difference here is that in one scenario, agents form expectations by
conditioning on current and past €;; in the other, agents are assumed to only observe current
and past p; and s;, which does not fully reveal &;.
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5 ASYMMETRIC INFORMATION

Having established the benchmark Information Equilibria for the symmetric information
case, we now introduce asymmetric information structures. We examine two forms: the
clustered informational setup of Futia (1981), where agents are clustered into groups of
“informed” and “uninformed”, and a dispersed informational setup, where each agent re-
ceives an idiosyncratic signal about market fundamentals. We derive an explicit connection
between the two informational structures.

5.1 CLUSTERED / HIERARCHICAL INFORMATION STRUCTURE There are two types of
agents, informed and uninformed. The proportion of the informed agents is denoted by
w € [0,1] and they are assumed to observe the entire history of the structural shock € up
to time ¢t. The remaining 1 — u agents are uninformed in the sense that they observe only
equilibrium outcomes (V(p), M;(p)). Using our notation for exogenous information

U = Vi(e) for icp
U = {0} for i€l—p.
For = 1 this setup is equivalent to the full information equilibrium (4.5); while for = 0

it corresponds to the incomplete information equilibrium (4.8). Both agents are assumed to
be rational and have common knowledge of rationality. The equilibrium is given by

pr = BIHE(pia|Vi (€) VML (p) ) + (1 = ) E(pea Vi (D) VML (p) )] + 5. (5.1)

5.1.1 EXISTENCE OF INFORMATION EQUILIBRIUM Without loss of generality, we assume
our initial guess, (3.10), contains exactly one zero inside the unit circle. The following
theorem delivers existence and uniqueness conditions.

Theorem 2. Under the exogenous information assumption Ul = V,(e) for i € u and U} =
{0} fori € 1—pu, aunique Information Equilibrium for (5.1) with |5| < 1 always exists and
is determined as follows: If there exists a |A| < 1 such that

pBA(B)

AN) — W =0 (5.2)
then the IE of (5.1) is given by
P = (L= NQL)e = L%B{LA@ - BA(B)%}& (5.
with
ML) = mh— (1= wB(L),  Byl)= >

If restriction (5.2) does not hold for |\| < 1, the IE converges to (4.5).

Proof. See Appendix A. O

16



The intuition behind Theorem 2 is similar to that of Theorem 1 with the important
difference that now restriction (5.2) must be satisfied in order for asymmetric information to
persist in equilibrium. The initial exogenous informational guess of p, = (L — \)Q(L)e; with
|A| < 1 implies uninformed agents, through knowledge of the price process alone (V,(p)), will
be able to infer the linear combination of current and past £, = By(L)e;. In order for this
informational assumption to survive in equilibrium, it must be the case that knowledge of
the model does not provide any additional information. More precisely, through knowledge
of the model Mj;(p), uniformed agents are able to subtract off their expectation (E¥) from the
equilibrium price. What remains is the expectation of the informed (E%) and the exogenous
process, s;. That is,

pe— B(1 - M)Eu(pt+l|Mt(p) VVi(p)) = 5MEI(pt+l|Vt(5)) + 5
AA(B)

= BpL™ (L = NQ(L) — TB) e+ A(L)ee  (5.4)

where the last equality follows from the proof of Theorem 2 in Appendix A. (5.4) provides
the exact linear combination of structural shocks that the uninformed agents are able to
glean from having knowledge of the model. Therefore, the information provided by (5.4)
must be equivalent to £; in order for the exogenous informational guess to be consistent with
an IE. This will be true if and only if (5.4) vanishes at L = X. Condition (5.2) ensures that
this is the case.'?

Theorem 2 provides general restrictions for any stochastic process A(-). We now turn to
a specific example to provide a sharper characterization of existence. Assuming s; follows
the ARMA(1,1) process (4.14) yields the following corollary,

Corollary 1. The model described by (5.1) and (4.14) with 5,p € (0,1) and 8 > 0 defines
a space of existence for unique asymmetric IE of the form (5.3). The space is characterized
as follows.

(1.a) If 0 < 1 an asymmetric information equilibrium does not exist.
(1.b) If 0 > 1 an asymmetric equilibrium exists for any pu > 0 and p > 0 if

'z (=5t7m) o

(1.c) If @ > 1, and (1.b) is not satisfied, an asymmetric IE exists for u if and only if
e (0, 1) with
. O—1)(1—pp)

B+ p)(1+06p)
Proof. See Appendix A. O

Figure 3 characterizes the IE for the ARMA(1,1) process in (5, 0) space. Three points are
noteworthy. First, as is evident from the figure and condition (1.a), if < 1 an asymmetric

12Restriction (5.2) corresponds to Equation (6.18) in Futia (1981) and Assumption 3.7 in Kasa et al. (2008)
once the exogenous process s; and information structure are appropriately defined.
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Figure 3: Existence of Symmetric and Asymmetric Information Equilibria following Corol-
lary 1 for s, = ps;_1 + &4 + Oe4_1.

IE does not exist regardless of the other parameters in the model. As emphasized in the
introduction, it is the MA component which acts as a noise that prevents the uniformed
from learning the true innovations, and the typical assumption of an AR(1) cannot deliver
asymmetric information in equilibrium. A pure autoregressive representation will always
reveal the information of the informed agents to the uninformed. Second, from condition
(1.c) and figure 3, for a certain region of the parameter space (to the right of the dashed
lines in figure 3) an asymmetric IE exists only if the distribution of informed traders is
sufficiently small. The dashed lines represent the IE that prevails as u — 1, plotted for
various serial correlation parameters. To the left of the dashed line, asymmetric information
will always be preserved in equilibrium regardless of the ratio of informed to uninformed.
The derivations of section 3.2 demonstrate that an increase in @ may be interpreted as
an increase in the noise associated with the signal extraction problem. The informational
disparity between the informed and uninformed may become so large that no matter how
many informed agents participate in the market, the uninformed will not fully learn the
structural innovations in equilibrium. How the discount factor [ alters the space of existence
is similar to that of the serial correlation parameter p, which is the final point to be made. As
the serial correlation in the s; process increases and [ increases, it is more difficult to preserve
asymmetric information, ceteris paribus (the dashed line shifts to the left as p increases from
0 to 0.99). An increase in 8 and p leads to a longer lasting effect of current information. This
results in a higher |A| and a decrease in the informational discrepancy between the informed
and uninformed.
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5.1.2 CHARACTERIZATION OF INFORMATION EQUILIBRIUM The equilibrium representa-
tion (5.3) of Theorem 2 is algebraically the cleanest because it makes clear p — 0 implies
convergence to the equilibrium of Theorem 1, and as u — 1, the equilibrium approaches
the fully revealing (4.5). However there are equivalent representations which have a more
natural economic interpretation. We state this as a corollary to Theorem 2.

Corollary 2. If |\ < 1, the equilibrium described in Theorem 2 has an equivalent represen-
tation in € space given by

po= {1 =AML - (- a9 b (5:5)
and a representation in € space given by
1 Ty _ AT
p= {0 - M) (5:6)

where MY(L) = CAGERRAD and MP(L) = LA(L) — (1 = p) BQo £

Proof. Follows directly from Theorem 2. O

These representations highlight what the uninformed and informed agents believe to be
“market fundamentals.” For the informed (uninformed) agents, the market fundamental is a
combination of the exogenous process, s;, and the forecast error of the uninformed (informed)
agents. The modification of the Hansen-Sargent formula is due to the speculative dynamics
associated with IE. This is true even though (as we show below) uninformed agents are not
forming higher-order expectations.

Compared to the symmetric IE of Section 4, the partial fractions expansion of the IE in
Theorem 2, given by

S J 1_)‘2 S J
Pt = —514 <Zﬁ Et4j + 5 )\ uﬂl—)@ Z)\ ) (5.7)

=" = BAB)Y " e — MH(B)(1— A?) Z Ne,
j=1 j=0

shows that now the linear combination of past ¢;’s that must be subtracted from the perfect
foresight price is weighted by the proportion of informed agents in the economy. Moreover,
changes in p will alter A and in turn, the information content of the price.

Recent papers have emphasized the role of higher-order belief (HOB) dynamics and the
subsequent breakdown in the law of iterated expectations with respect to the average expec-
tations operator in models with asymmetric information, but resort to numerical analysis
or truncation in demonstrating the dynamic case [Allen et al. (2006), Bacchetta and van
Wincoop (2006), Nimark (2005), Bacchetta and van Wincoop (2004)]. We are able to char-
acterize these objects in closed form and show precisely why HOB exist and why and when
HOB imply a failure of the law of iterated expectations. This is of first order given the
findings of, for example, Pearlman and Sargent (2005), who document that HOB do not
exist in the model of Townsend (1983), as previously believed. The following proposition
shows why HOB are formed and why HOB lead to the break down in the law of iterated
expectations for the average expectations operator.
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Proposition 1. If the information equilibrium given by Theorem 2 holds for |\| < 1, then
1. the informed agents form higher order beliefs, while the uninformed do not;
1. the average expectations operator does not satisfy the law of iterated expectations.

Proof. The proof of the proposition is perhaps more instructive than the proposition itself
and hence selected parts of the proof follow, while the proof in its entirety can be found in
Appendix A. O

In a model with asymmetrically informed agents there exists an incentive to form higher-
order beliefs. The average expectation of the price determines equilibrium according to (5.1).
So if agent j could observe agent k’s forecast of tomorrow’s price, her forecast error would
be smaller.!® From the definition of equilibrium, we may write the informed and uninformed
agents’ expectation of tomorrow’s price as

EtZ(PtH) = 5Etszt+1pt+2 + Etzst-l-la Ei/{(pt-i-l) = 6E€€/{Et+lpt+2 + Ei/{st-‘rl (5-8)

where E, denotes the time-t average forecast. Therefore, the optimal conditional expectation
of each agent type is a discounted expectation of next period’s average expectation. Writing
the price as p; = (L — A\)Q(L)e; where |A\| < 1, the appendix shows the time ¢ + 1 average
expectation of the price at t + 2 is

MEtI+1pt+2 + (1 — M)E?+1pt+2 = P2 — Qo[(1 — ) BA(L) — ppA]erso (5.9)

The second term in the RHS of (5.9) represents the market’s average forecast error. If we
take the informed agent’s time ¢ expectation of this average

EtI]EH-lpt-i-Q = E%Ptﬁ + M)\QOEtIEtJrz — Qo(1 — N)E%B(L)gtw

Bt 0 —Q-wi-W((Eg)a 6w

we see that the uninformed agents’ forecast error, given by the Blaschke factor B(L)e;, o, is
serially correlated with respect to the informed agents’ information set. Re-arranging (5.10),

Eﬂptw - I_Et+1pt+2] = Qo(1 —p)(1— )\2) (1 Mi\L)ﬁt

gives the interpretation of the informed agents’ expectation of the average forecast error
in forecasting p;o [Bacchetta and van Wincoop (2006)]. Conditional on the informed’s
information set, the uninformed’s forecast errors are serially correlated. Hence, the informed
agents will always do better, if they correct their expectation of the average price according
to the forecast errors of the uninformed.

Conversely, the uninformed do not form HOB because the forecast errors of the informed
are not forecastable conditional on the uninformed’s information set at time ¢

E?I_Et+1pt+2 = Ezfptw + QON)‘E%{Q—M — Qo(1 — M)E?B(L)gtw
=EYpiia +0—0 (5.11)

I3Note that we are abstracting from a Grossman-Stiglitz type market for information. While this type of
market would have interesting features, we leave this for future research.
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Agents form HOB if the average forecast error is serially correlated (along some di-
mension) with respect to their own information set. Notice that as information becomes
symmetric (that is, as A — 1 and g — 1) this term disappears. This result sheds light on
the finding of Pearlman and Sargent (2005) who show that when agents’ information sets
are symmetric, no HOB exist.

Moreover, this analysis makes clear why the law of iterated expectations fails with respect
to the average expectations operator. Combining (5.10) and (5.11) gives

EEii1pire = MEtII_EthHz + (1 — M)E?Et+1pt+2

= I_Etpt+2 — (1= p)(1 - )‘2) <1Q_Oli\>}/)5t

Iterating on this equation, as shown in Appendix A, yields

Zzl(u)\)i@j_i)st (5.12)

BBy - 'E+jpt+j+1 = Eptﬂ'ﬂ —(1-p- >\2)< 1\

When either y = 0 or p = 1, the law of iterated expectations holds as the average expectation
collapses to the expectation of the informed or uninformed, respectively. This is because the
law of iterated expectations certainly holds with respect to individual traders’ information
sets. Thus, it is the formation of HOB that leads directly to the failure of the law of iterated
expectations. The degree to which the law of iterated expectations fails is determined by
the distribution of informed agents, i, and degree of asymmetric information, as indexed by
A

Given that we have an analytic solution for the HOBs component, we are able to iso-
late the contribution of HOBs to equilibrium dynamics. The following proposition is the
boundedly rational equilibrium that would emerge if all HOBs were removed.

Proposition 2. Under the exogenous information assumption U} = V(¢) for i € p and
Ul = {0} fori € 1— pu and assuming that the informed agents do not form HOBs, a unique
boundedly rational equilibrium always exists and is determined as follows: If there exists a
IA| <1 such that

BrA(B)

AN) - ————=0 5.13
RO o1

then the boundedly-rational IE is given by

_ 1 K(L)
=15 (LA(L) — BA(B) k(ﬁ))at (5.14)
where k(L) = % — (L= pw)BA(L). If (5.13) does not hold for || < 1, the IE converges to
(4.5).

Proof. See Appendix A. O
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Figure 4: Existence space for the boundedly rational equilibrium as higher-order beliefs are
removed from the expectation of informed agents: s; = 0.8s;_1 + &; + vV 11e,_1, f = 0.985.

There are two elements of the boundedly rational equilibrium that are noteworthy. First,
higher-order belief dynamics play a crucial role in disseminating information. As discussed
above, the informed agents are correcting for the bias in the uniformed agents’ expectations.
But there is an important feedback mechanism at work. The uninformed agents are able to
extract information about their own forecast errors by observing the endogenous variables
due to the formation of HOBs. One consequence of this informational feedback effect is
highlighted in figure 4. This figure shows the existence space of the boundedly rational
information equilibrium as higher-order belief dynamics are removed from the expectation
of the informed agents. As HOBs are removed, the asymmetric information equilibrium can
support more informed agents. This is because the information that the uninformed are
extracting from the endogenous variable is declining as fewer HOBs are being formulated.
Second, the functional form of the equilibrium when HOBs are removed is identical to the
functional form of Theorem 2. However, the coefficients characterizing the equilibrium will
be different. Figure 5 plots the impulse responses to an innovation in ¢; for p = 1, u = 0, and
1= 0.06 with and without HOBs. The figure shows the the boundedly rational equilibrium
fluctuates relatively more wildly. These fluctuations can be attributed to the decline in
information content of the endogenous variable.

5.2 DISPERSED INFORMATION STRUCTURE In this section we assume that all agents
are identical in terms of the imperfect quality of information they possess. In particular,
we assume each agent observes its own particular “window” of the world, as in Phelps
(1969). Agents observe a noisy signal of the innovation e, which is idiosyncratic across
agents. Information is dispersed in the sense that, although complete knowledge of the
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Figure 5: Responses of p; to an innovation in ; with s; = 0.8s;_1 + ¢, + vV 11g,_1, f = 0.985
for y =1, p =0, p= 0.6 with and without HOBs.

fundamentals is not given to anyone agent, by pooling the noisy signal of all agents, it is
possible to recover the full information about the state of the economy &;. The noisy signal
is specified as

Eit = &t T Vi with Vit ~ N (0, 0'5) . (515)

The exogenous dispersed information assumption corresponds to
UZ =V, (62) for i€ [O, 1] . (516)

Notice that when the noise is driven to zero, 02 — 0, this setup is equivalent to the full infor-
mation symmetric equilibrium (4.5), while an infinite noise, 02 — oo, yields the symmetric
equilibrium (4.8).

As we have seen in Section 3.2, the information conveyed by the noisy signal e; can be
measured by the signal-to-noise ratio, 7 = 02/02. Each agent then forms

Eit (pe1) = E (peg1|Ve(ei) V Vi(p) V My (p)) (5.17)

and the equilibrium is now given by

1
pe = 5/ Eit (peg1) di + sy (5.18)
0

5.2.1 EXISTENCE OF INFORMATION EQUILIBRIA What is unique about this setup is that
each agent formulates a forecast by extracting optimally the information from a vector of
two signals (p;,e). The basic idea of deriving a fundamental representation developed in
Section 3.2 extends naturally to a multivariate setting. The mapping between the signal
and innovations is now a matrix, and the invertibility of that matrix determines the infor-
mation content of the signals. We maintain the assumption that (3.10) contains exactly one
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zero inside the unit circle; again, this is without loss of generality. The mapping between
innovations and signals is given by

(Z):{(L—;)Q(L) H(i) (5.19)

Given the candidate price function, this matrix is of rank 1 at L = X\ and so it cannot be
inverted. As shown in Appendix A and Rondina (2009), the invertible representation is
derived through use of a Blaschke factor and factorization of the signal €;;. The expectation
(5.17) will always be given by the sum of two terms: a linear combination of current and past
innovations €; and a linear combination of current and past idiosyncratic noise v;. Taking
the average of the expectations across agents, the second term would be zero yielding

E(pa) = ((L=NQL)+AQ ) L Fmze

2

+((1-AL)Q(L)— Qo ) L™ Fis ( L= ) £ (5.20)

1—-AL
= H%E%(ptﬂ) + H%Ezf(ptﬂ)

where the last line follows from the results in the previous section. Theorem 3 follows
immediately.

Theorem 3. Let 7 = 02 /02 be the signal-to-noise ratio of the noisy signal (5.15). Under the
ezogenous dispersed information assumption U} = Vy(g;), a unique Information Equilibrium
for (5.18) with |B| < 1 always exists and is equivalent to the equilibrium characterized in
Theorem 2 where p is now defined as

Under the ARMA(1,1) assumption for the process s;, the existence space of an IE under
dispersed information is identical to that provided by Corollary 1.

Corollary 3. The model described by (5.18) and (4.14) with B,p € (0,1) and 6 > 0 defines
a space of existence for unique asymmetric IE of the form (5.3) as described in Corollary 1,
where 1 1s now specified as in Theorem 3.

Proof. See Appendix A. O

Theorem 3 and Corollary 3 show that, from an aggregate point of view, the dynam-
ics of the IE under dispersed information display a remarkable connection to the clus-
tered /hierachical setup. In this setup, agents use the exogenous signal (5.15) to mitigate
the dynamic noise associated with the non-fundamental MA representation. As the signal-
to-noise ratio approaches 0, the average conditional expectation given by (5.20), and therefore
the equilibrium, converges to the fully uninformed equilibrium of Theorem 1 and (4.8). Con-
versely as the signal-to-noise ratio approaches infinity, the IE converges to the fully informed
equilibrium of (4.5). Hence the equilibrium may be interpreted as a linear combination of
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informed and uninformed agents, where the proportion of informed to uninformed is given
by the signal-to-noise ratio.

As noted by Theorem 3, the restriction for asymmetric information to persist in equi-
librium is given by (5.2), with p appropriately defined. As with previous definitions of an
information equilibrium, knowledge of the model plays a crucial role. In this setup knowl-
edge of the model for agent i (My(p,e;)) is given by: p; — BE(pes1lel, p) = B[E(piy1) —
E(pii1let, p')]+ s¢. Appendix A shows that adding this additional piece of information to the
vector of observables (5.19) gives

. 1 1
)= e ; < o ) (5.21)
M (p, &) A(L) L (%) BQs Vit

An IE stipulates that this enlarged information set cannot reveal any additional information
than the price function. Therefore, the matrix mapping innovations to signals must also be
of rank 1 at L = \. It is straightforward to show that 2 of the 3 minors of this matrix have
rank 1 at L = A. For the third minor the condition for rank 1 is

u<1_)\2)BQO—A(L):O at L=\

1—-AL

which is identical to (5.2).

The intuition for the existence of a dispersed information equilibrium as p changes lies
in the information discrepancy and discounting mechanisms outlined in Section 5.1. As the
precision of the private signal ¢;; increases, agent ¢ will rely more on the signal to forecast the
innovation in s;. In so doing, all agents will put more weight on the current innovation &,
which reduces the discounting on current information. This is analogous to the direct effect
triggered by an increase in p upon the information conveyed by the model to the uninformed
agents in the hierarchical case. The direct effect triggers an equilibrium effect in this case
as well. Because all the agents rely more on their private signal, on average expectations
will discount current information less and thus the equilibrium price, being a function of
the average expectations, will carry more information about the current innovation. As
a consequence, the equilibrium price will become more informative and the dispersion of
information in equilibrium reduced, up to the point of disappearance for y large enough.

5.2.2 CHARACTERIZATION OF INFORMATION EQUILIBRIA While a reinterpretation of u
allows for a connection to the IE of the previous section, there are noteworthy differences
between the two setups. For example, the cross sectional distribution of beliefs in the hi-
erarchical setup was degenerate; whereas in the dispersed information, a well defined cross
section emerges with interesting properties. First, individual expectations are persistently
different from the average expectation. Second, the cross sectional variation is perpetual in
the sense that the unconditional cross sectional variance is positive. These two results are
stated in the following proposition.

Proposition 3. The difference between the average market expectation and individual ex-
pectations in the IE of Theorem 3 is given by the AR(1) process
A(B)1-N

Ei(pt+1) — E, (Pr1) = — Wl — )\Lvit'

(5.22)
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Figure 6: Impulse responses of the deviation of agent i’s expectation from the market average
(5.22) for @ = v/11 (red line) and 6 = /2 (blue line)

The cross-sectional unconditional variance of the difference in beliefs is

1’ (1= N (%) ol (5.23)

Proof. See Appendix A. O

This proposition points out a remarkable feature of the IE of Theorem 3. Even though
agents observe a common source of information (the equilibrium price), the presence of
exogenous dispersed information prevents the agents from learning perfectly the aggregate
innovation. The pooling of information through the market interaction fails to result in
a sufficient statistic for the state of the world. Rational agents have dispersed beliefs, in
equilibrium, that are persistently far away from the average market beliefs and may be so
for many periods. The extent of the divergence of opinion depends on the parameters of the
model. Agents’ beliefs tend to converge when they all become very uninformed or when they
all become very informed. As p — 0, or as pr — 1 which implies |A\] — 1, the unconditional
variance (5.23) converges to zero. Figure 6 reports the impulse response function of (5.22)
to a unit variance positive innovation in the noise process vy, assuming s, is given by (1.2).
A familiar pattern emerges from the figure: the disagreement of the individual agent with
respect to the market average goes through waves of under and overreaction with respect to
the market expectations. Such waves are specific to each agent as they are the result of the
individual innovation component v;;.

An additional implication of diverse beliefs in equilibrium is that all the agents will form
higher order beliefs, whereas only the informed agents did so in the equilibrium of Theorem 2.
Here HOB do not imply that agent i is forecasting the forecasts of agent j, which would not
make sense as each agent is atomistic. Instead agent i uses her exogenous signal to forecast
the forecasts of the market. Hence, the aggregate HOB take the same form as those in the
hierarchical case. We summarize the description of the HOB for the dispersed information
case in the following proposition
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Proposition 4. If the information equilibrium given by Theorem 3 holds for |\| < 1, then
i. all agents form higher order beliefs

i1. the average expectations operator does not satisfy the law of iterated expectations

i11. higher-order belief dynamics follow an AR(1) process given by

le(li)\)in—i)gt

BBy - - 'Et-i-jpt-i-j-i-l = Etpt-i-j-i-l —(1=-p- )\2)< 1 -\

where 1 = 7.

The reason all agents form HOB is due to the presence of imperfectly informative private
and public signals. Morris and Shin (2002) show that noisy public information is a key factor
that causes agents to rationally engage in the guessing game about the average beliefs of the
average beliefs of the average beliefs, and so on. When an agent is faced with the problem
of forming an opinion about the average market expectation, she will take into account the
fact that all the other agents observe a common signal, in this case the price. Hence the
price plays an informative role as it is an important predictor of the average opinion of the
market.

For this model, agent i’s expectation of the market expectation is given by

_ L—)
EiE: 1 (Pt+2) = Eit(pH-Q) - Qo (1 - ,U) E; (1 — )\LEHQ) .

which is obtained by taking (5.20) one period forward and noticing that E; (e44+;) = 0 for
7 > 0 since any information set at time ¢ contains no information about future €’s under
our assumptions. The non-fundamental MA term (L — \)/(1 — AL)ey42 represents the noise
generated by the public signal. Following the intuition of Morris and Shin (2002), if this
term was not present or if |A\| > 1, the agents would not form HOB, as the expectation of the
market forecast would coincide exactly with their forecast. The higher the relative precision
of the public signal (1 — p), the more important that signal will be in forming expectations
about market beliefs. In the Appendix we show that this term is not zero and that agent i’s
beliefs about the market expectations are given by

2
BBt (p) = Ba (p) — Qo (1~ i) i 0= e, (5.24)
The second term on the RHS of (5.24) shows that the exogenous signal received by each
agent (g5) is correlated with the endogenous noise. In other words, the exogenous signal
has predictive power and agents will use it at each date in order to adjust their forecast of
the market average. While individual agents have uncorrelated forecast errors, the forecast
error of the market is a function of the noise implicit in the public signal. Rational agents
will recognize this and will smooth the forecast error of the market by conditioning on their
own private information.

Taking the average across agents gives

(1—2%)

Wgt, (525)

EthtH (Pt+2) = IEt (pt+2) — Qo (1 - M) HA
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which is exactly equal to (5.10). This shows that the law of iterated expectations fails to
hold in the dispersed information case, even though no agent is superiorly informed - as was
necessary in the hierarchical information setup. The reason for the convergence to (5.10) is
because, on average, the exogenous signal, €;; = €, + vy, will reveal ¢, perfectly. Individual
agents will adjust their expectation of the market average according to (5.24), but integrating
over all agents implies that, on average, the market behaves as the informed agents of the
previous section.

One crucial difference between our setup and that of Morris and Shin (2002) is that
the public signal in our case is an equilibrium variable and the noise is itself a feature that
emerges endogenously in equilibrium. Our methods present a framework that can easily
accommodate the informational assumptions of Morris and Shin (2002) but where the non-
linear interaction between private and public information is pervasive, in the sense that
it can take place in any market just because rational agents extract information from the
commonly and perfectly observed equilibrium price. In other words, our results suggest that
any competitive speculative dynamic market, because of its functioning through a commonly
observed signal, the price, by definition contains the seeds of the informational inefficiency
formalized by Morris and Shin (2002) and extensively analyzed by Angeletos and Pavan
(2007) and Angeletos and Pavan (2009). Our methods then suggest interesting applications
where part of the public noise can be endemic to the dynamics of the equilibrium and can
interact in interesting ways with other sources of noise or with economic policies.

6 CoONCLUDING COMMENTS

Models with incomplete information offer a rich set of results unobtainable in representative
agent, rational expectations economies and have implications for business cycle modeling,
asset pricing and optimal policy, to name a few applications. There are two important char-
acteristics of these models emphasized in this paper. First, the dynamic signal extraction of
the type studied here offers an endogenous propagation mechanism. A robust finding in the
empirical macroeconomic literature is that data prefer DSGE models with internal propaga-
tion mechanisms such as habit formation, investment adjustment costs, nominal rigidities,
etc. [Cogley and Nason (1995)]. Our paper suggests that in lieu of these mechanisms, mod-
eling uncertainty in a more nuanced manner might provide the needed propagation. Second,
the law of iterated expectations does not hold with respect to the average expectations op-
erator in dynamic models of asymmetric information. A robust finding in the empirical
asset pricing literature is a rejection of the martingale hypothesis. Therefore, the breakdown
in the law of iterated expectations due to speculative dynamics may play a pivotal role in
understanding this empirical finding.

More broadly, the results of this paper suggest that models with dynamic incomplete
information show great promise for many applications. This has been known (or at least
believed) since Lucas (1972). However, solving and characterizing equilibrium has proven to
be a significant challenge, impeding the progress of these models. In this paper, we derived
existence and uniqueness conditions, along with a solution methodology that yields analytic
solutions to dynamic models with incomplete information. While there is much more work
to be done, this solution methodology is a step towards making these models usable for
analysis.
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7 APPENDIX A: PROOFS
Theorem 1

Substituting the conditional expectation (4.6) into the equilibrium (4.1) yields the z-transform in e;-space

n

Q) ]z - 2) = B2"1Q()

=

(1= Xiz) — Qo] HBAi (2) + A(2)

=27 Q() [[(= = o) = Qo [ [ Ba,(2)] + A(2)
i=1 =1

A bit of algebra yields

Q)= B[]z = r) = 24(2) - Qo [T Bri(2) (7.1)

=1

For |8] < 1, uniqueness requires the Q(-) process to be analytic inside the unit circle, which will not be the
case unless the process vanishes at the poles z = {\;, 8} for every i. For simplicity, we assume \; # A;
for any ¢ # j, however this restriction can be relaxed [see, Whiteman (1983)]. If n = 1, we also rule out
A = 3, because the zero in the p; process ();) would cancel the pole in the denominator (8) and the rational
expectations solution would not be unique (i.e., Qo could be set arbitrarily). Evaluating at z = A; gives the
restriction on the A(-) process, A(A;) = 0 for all 4, which corresponds with (4.7). Evaluating at z = /3 gives

_BA®)
= B ) (72)

Substituting this into (7.1) yields (4.8).
Theorem 2

Given the price process follows (3.10) for n = 1, the conditional expectations for the informed and
uninformed are given by

E{ (pr+1) = L7 (L = NQ(L) + AQole:
E{ (pr+1) = L7 (L = NQ(L) — QoBa(L)]ex
Substituting the expectations into the equilibrium gives the z-transform in e; space as

(2 = NQ(2) = Buz""[(z = MQ(2) + AQo] + B(1 — p) 27 (2 = N)Q(2) — QuBA(2)] + A(z)  (7.3)

and re-arranging yields the following functional equation

(2 =)z = B)Q(2) = 2A(2) + BQo[uA — (1 — p)Ba(2)]

The Q(-) process will not be analytic unless the process vanishes at the poles z = {\, 8}. Evaluating at
z = A gives the restriction on A(+), A(A) = —uQo. Rearranging terms

1
z—=A
1
zZ—A

(z=0)Q(z) = {2A(2) + BQo[u — (1 — p)Bx(2)] }

{zA(z) + BQoh(2)} (7.4)

where h(z) = [uA— (1 — p)Bx(z)]. Evaluating at z = /3 gives Qp as Qo = —%. This implies the restriction
on A(-) is

AQ) = BrA(B)

h(B)
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which is (5.2). Substituting this into (7.4) delivers (5.3).
Corollary 1

The proof follows immediately from the restriction (5.2). Condition (1.a) is derived by taking the limit
of (5.2) as p — 0. This is the IE that would exist if no informed agents populated the model. Intuitively, if
no asymmetric IE exists in this case, then none would exist if informed agents had positive measure. This
restriction is given by A(X) = 0 for |A| < 1, which for the process A(A) = (1+60X)/(1—p]), implies 6 € (0, 1).
Notice that because § > 0, A — —1 from above. Substituting A = —1 into (5.2) and solving for u gives
condition (1.c). When A = —1, the IE equilibrium converges to the symmetric information case. Setting u*
equal to unity and solving for 6 gives condition (1.b).

Corollary 2

Solving the asymmetric IE in & space. The guess for the price is ps = (1 — AL)Q(L)&;. The expectations

are given by
E{ (pe41) = L7H(1 = AL)Q(L) — Qolé;
Bl (pesn) = L7(E - NQUL) + MQole, = L1~ AL)Q(L) + LA

where the second equality follows from multiplying and dividing by the Blaschke factor. Substituting in the
expectations and a bit of algebra gives the equilibrium in € space as

1 (LA(L) + pBQo)) )
_L—ﬂ{(l—)\L) VRS - —5Q0(1—N)}5t

1 ~
- 5{ - - - 75)

Pt

where M(L) = W. There is a pole at z = A on the right-hand side of (7.5) in two places
and a pole at z = 5. Unless these poles are removed the equilibrium is not “informationally stable” in &
space. Notice that if © = 0, the assumption that A(z) has a zero at A will suffice to ensure that (7.5) is
informationally stable (as shown in the symmetric case). However, here there is an additional pole (still at
A) in the informed agent’s forecast error. This is the additional information that the uninformed see in this
model vis-a-vis the model where = 0. So now the restriction on A(-) is

[6QopA + zA(2)]] =0

A
AN) +BuQo =0 (7.6)
which is, of course, identical to the restriction in e space, (5.2). Qo is then set to remove the pole at z = 3,
AB)BAB)Y AB)

Qo =

CABA(B) Tt —(1—p)  h(B)

Proposition 1

Write the equilibrium price as p, = (L — \)Q(L)e, where |A| < 1 and Q(L) satisfies (5.3). For j = 1, the
time t + 1 average expectation of the price at ¢t + 2 is given by

Etr1per2 = pEf  pro + (1 — )EY  pego
=L ML —=NQ(L)ers1 + L' Qo[uA — (1 — p)Br(L)]er11
= prya + L7 QoA — (1 = ) BA(L)]er 41 (7.7)
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The informed agent’s time t expectation of the average expectation at ¢t + 1 is

E{Et11pe42Ei pega + pAQoE] etq2 — Qo(1 — w)E{ Br(L)er12
=E{prr2+0— Qo(1 — p)L™2{Bx(L) — BA(0) — Ba(1)L}e

Note

L—X 2712 373

BxLyzl_ALz(L—Mu+AL+AL + AL+ )
Ba(0)=—),  Ba(1)=(1-X(1+N)=(1-)
5B Eeiipere = Eiperr — (1= )QoL 2 {BA(L) + A — (1 = A*) L}

where

L—\ o A1 —A2)L2

T AU =y

Therefore, the informed agent’s expectation of the average expectation is

— A
E{Ei1pire = Eiprra — (1= X*)(1 - U)<1CEOAL>Et

For the uninformed,

EVEi 1pire = B proo + QopuAEY e140 — Qo(1 — w)EY Br(L)es10

=E{pry2 +0— Qo(1 — p)EY Br(L)er 12
= Epri2+0— Qo(1 — p)E/ &40
=E/pii2+0-0

Thus the uninformed are not forming higher-order expectations.
Therefore, we have that

EEi 10042 = pE Eip1pryo + (1 — W) EVEyy1pire
= QopA
=E —(1—p)(1 =2 =55
P2 — (1 — p)( A)<1—AL €t
# Etpt+2
For j = 2, we need to calculate E;E;;1E;,ops13. From (7.7)

Ettopits = peas + Qolpd — (1 — ) Ba(L)|er43

(7.8)

(7.10)

We now need the uninformed and informed’s time ¢ + 1 expectations of E; 2ps43. The uninformed

EtUH [E+2pt+3] = EtUJr1pt+3

B [a - AL)Q(L)

Ba(L)et+1
el

=L7?[(L - NQ(L) — {Qo + (@1 — AQo)L}BA(L)]er+1

The informed

]E{+1[Et+2pt+3] = E{+1pt+3 + QONAE{HEHB —Qo(1 - N)E{HB/\(L)EHS

Qo(1 — p)(1 = A*)A

= L7*[(L = MQ(L) +2Qo — (Qo = AQ1)L]err1 — V7
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QO(l _/1')(1_)‘2))‘] }
1AL “ti

Combining (7.11) and (7.12) gives
Etp1Eeopiss = p{L?[(L — MQ(L) + AQo — (Qo — AQ1)L]er1 — {

+(1 =)L [(L = NQ(L) = {Qo + (Q1 — AQo) L}BA(L)]et11
_ 32
Eip1Eiopiss = prys + p{AQo — (Qo — AQ1) L}erys — M[Qo(l lli)()\lL A ))\]atﬂ
—(1 = w[{Qo + (@1 — AQo)L}BA(L)]et+3 (7.13)
(7.14)

It is obvious again that the uninformed’s expectations of (7.13) are just
E? [EHEHPtJrs] = E?pwrs

J=0

This is because the uninformed cannot forecast the forecast errors of the informed and
o0
:|€t+1 = HEIISJ Z /\J€t+2+j =0

U
1-AL

K K
el

where = uQo(1 — p)(1 — A?)A\.
Ef[Eis1Eropris] = Efprys — KE{(1 = AL) "erq1 — (1 — p)E{T(L)erys
Qi1 =) (1 = XN)A -
1— AL K

For the informed
Qonn(1 = p)(1 — A2

]E{ [E+1E+2pt+3] = ]Etlpt+3 - [ 1- L
E{[Et1Eei2pevs] = Efpera — (1 — p)(1 = 2% [Qoﬁ)\j —/’\—LQIA} £t
Therefore the average expectation is
EE1Eeqopiss = Eeprys — (1 — p) (1 — %) [Qou?\i—;gm)\} €t (7.15)
compare to
EiEri1per2 = Ee(prya) — (1 — p)(1 = %) ( 1Q_0/f\)\L>5t

By induction, we are converging to
izt (BN Qi)
1-\L !

EEit1 - B jprsjir = Eeprrjon — (1 — p)(1 — )\2)<

Proposition 2

To be added.
Theorem 3
The first step in the proof is to obtain a representation for the signal vector (g4, p;) that can be used
to formulate the expectation at the agent’s level. The representation in terms of the innovation ¢; and the
noise vy is
Eit 08 UU ét ét
= N =I(L N 7.16
<pt> ((L_)‘)p(L) 0)(%) ()(Uzt) (7.16)
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where we have re-scaled the mapping so that the innovations €; and the noise ¥;; have unit variance and
we have implicitly defined p(L) = Q(L)o.. Let the fundamental representation be denoted by

( ;tf ) —T*(L) ( x% > (7.17)
The lag polynomial matrix I'*(L) is given by (see Rondina (2009))
(L) = T(L)WxBA(L)
where ) ) 0
=g (o ) w20 a5 )

The vector of fundamental innovations is then given by

1 A~
Wiy ~y T €t
(wzzt>_B/\(L ) /\<@it>'

The expectation term for agent 7 is provided by the second row of the Wiener-Kolmogorov prediction formula
applied to the fundamental representation (7.17), which is

E(pes|eh,p') = [T31(L) — T3, (0)] L~ wly + [[35(L) — T5,(0)] L™ w. (7.18)

It is straightforward to show that

Dh (L) =(L=Np() 7Z—. Th(0) = Mo

Mh (L) = —(1=A)p(L) ZZm, T5(0) =~
Solving for the equilibrium price requires averaging across all the agents. In taking those averages, the
idiosyncratic components of the innovation (the noise) will be zero and one would just have two terms that
are function only of the aggregate innovation, namely

! ! L—\
1. 1 - A 2 . 2 o A
widi = w; = ——2==—¢; and whdi = wi = — v .
‘/0 it /0’?4*0’12] 0 it /U?JFU%I—)\L

The average market expectation is then

o2 4 _ o2 L—X\ .
E(pi+1) = [(L = Mp(L) + Apo] L_lgg—Jr%gﬁt +[(1 = AL)p(L) — po] L 1Wm€t- (7.19)

Now, if we let

02

= £
,LL - 2 2
UE+U‘U

and we substitute the functional form of the average expectations into the equilibrium equation for p; we
would get

L— )\

(L = Np(L) = BpL=[(L = Np(L) + Apo] + B(1 = w) L [(L = Np(L) = po7— 7

]+ A(L)o.
which is equivalent to (7.3) since p(L) = Q(L)o.. The rest of the proof follows the same lines of Theorem
2. For the sake of completeness, we need to show that, for the dispersed information case, the information

conveyed by the knowledge of the model is consistent with the information used in the expectational equation
for agent ¢ presented above. Such knowledge can be represented by the variable

mit = pr — BE (pesalef, p') = B ( E (pey1) — E (prsalel, pt) ) + se.
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we then need to show that the fundamental representation of the signal vector (e, ps, mst) is the same as
the one we derived above. Essentially, we need to show that the mapping between this enlarged vector of
signal and the vector of structural innovation is still of rank 1 at L = A. Using the result in Corollary 3 to
write down the explicit form of the difference between the individual expectations and the average market
expectations, the mapping of interest is

Eit Oe Ov ~

o = | @-Npw 0 ( & ) . (7.20)
o.0 1-\? Vit

Myt A(L)o. o2 102 (m) Bpo

It is straightforward to show that 2 of the 3 minors of this matrix have rank 1 at L = A. For the third minor
the condition for rank 1 is

00y 1— X2
e (1_/\Z>U€ﬁpo—A(L)UEJU=O at L=\

Using the fact that pg = Qoo one can immediately see that this condition is equivalent to (5.2), hence, in a
dispersed information equilibrium, it is always true that the enlarged information matrix (7.20) carries the
same information as the information matrix (7.16). This completes the proof of Theorem 3.

Proposition 3

Substituting I's; (L) and I's, (L) into (7.24) and collecting the terms that constitute (7.19), one gets

_ o B L— .
E(pi+1lef p') = E(pr41) + U?Taff%L (L = Np(L) + Apo = (L = Np(L) + pop— 7 lowidu
_ Oc L — .
=E(pi41) + ot 012) [/\Po + po )\L]vait
_ 1— )2
= E(pe+1) + nQo T Vit (7.21)

which completes the proof.

Proposition 4

The notation of the proof is that of Theorem 3 unless otherwise specified. The crucial step in the proof
is to show that

L—\ L (=22
E(l—)\LEtH'Ei’p) = pA T it (7.22)

where pu = Let B(L) =£=3 and define

a'2+<72

Y= B (L) & (7.23)
then we look for E (y;12|et, p') = m1 (L) €i +m2 (L) pi. Following Theorem 1 in Rondina (2009) we know that

[ (L) m (L) ] = [L72%,cp (D) (T ] )™

where I'*(L) and (w},, w?) are defined in (7.17) and g, (c.p) (L) is the variance-covariance generating function
between the variable to be predicted and the variables in the information set. In our case we have that

9y,(e,p) (L) = [ B(L) Ug B(L) (L_l — /\)p (L_l) o } .

Plugging in the explicit forms and solving out the algebra

L2y (D () = A [ L7202 4 L2 (L7 -0 p (L) & -2,
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Applying the annihilator operator to the RHS we see that the second term of the vector goes to zero. For
the first term, the assumption that p(L) is analytic inside the unit circle ensures that L=2 (L~ — X) p (L™!)
does not contain any term in positive power of L. We are then left with

L— A(1— %)
-2 _
[L 1- ALL 1= AL (7.24)

as shown in section 4.1. Summarizing we have shown that

[ m (L) m (L) ] A1) 5 ]F*(L)‘l.

_ 1
\/ag—i-a% |: 1-2L Y¢

Notice that

so that

A=A 5

O Wiy

E (yeyolei,p') = [ m(L) 72 (L) ] [ M ] =T 1o

From the proof of Theorem 3 we know that wilt = \/% (et + vit), which, once substituted in the above
UE UU

expression completes the proof.
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