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Abstract

Standard inference in cointegrating models is fragile for two distinct reasons. First,

inference assumes an I(1) model for the common stochastic trends, which may not

accurately describe the data’s persistence; second, while cointegration concerns low-

frequency variability, inference relies on higher frequency variability in the data. This

paper discusses efficient inference about cointegrating vectors that is robust to both

sources of misspecification. A simple test motivated by the analysis in Wright (2000) is

developed and shown to be approximately optimal in the case of a single cointegrating

vector.
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1 Introduction

The fundamental insight of cointegration is that while economic time series may be individ-

ually highly persistent, some linear combinations are much less persistent. Accordingly, a

suite of practical methods have been developed for conducting inference about cointegrating

vectors, the coefficients that lead to this reduction in persistence. In their standard form,

these methods assume that the persistence is the result of common I(1) stochastic trends,

and that the error correction terms, the non-persistent linear combination of the variables,

are I(0).1 This I(1)/I(0) dichotomy drives standard cointegration analysis, but may lead

to fragile inference for two distinct reasons. First, the persistence reduction associated with

moving from an I(1) to an I(0) process might be implausible in many applications. Second,

standard methods rely critically on particular properties of the I(1) process about which

there may be uncertainty that cannot be resolved by examination of the data. This paper

studies efficient inference methods for cointegrating vectors that are robust to both of these

potential fragilities.

Consider first the issue that in the standard asymptotic reasoning, the error correction

term and the stochastic trend are of different orders of persistence: apart from a scaling

factor, the asymptotic behavior of I(0) processes is no different from i.i.d. random variables

in the sense that both satisfy a functional central limit theorem, while I(1) processes are

just like random walks in this sense. In practice, the dividing line between an persistent

and non-persistent process is far less clear. Because cointegration is inherently about the

low-frequency behavior of time series, persistence and non-persistence might more usefully

be defined in terms of low frequency variability. This in turn requires a dividing line to define

“low-frequencies”, but natural definitions typically follow from the phenomenon under study.

For example, in macroeconomics, long-run or low-frequency variability typically refers to

frequencies lower than the business cycle, which are reasonably characterized by periodicities

greater than 8 years. Thus, a macroeconomic time series might usefully be defined as I(0)

or “non-persistent” if it behaves like an i.i.d. process for frequencies with periods longer

than 8 years, and otherwise it is “persistent”. Müller and Watson (2007) use this idea to

study univariate properties of economic time series, but the reasoning is equally (or more)

1See, for instance, Johansen (1988), Phillips and Hansen (1990), Saikkonen (1991), Park (1992) and Stock

and Watson (1993).
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compelling for cointegration.

As shown by Müller and Watson (2007), low-frequency variability can be summarized by

a small number of weighted averages of the data, where the weights are low frequency trigono-

metric series. For example, only q = 12 weighted averages are needed to capture variability

lower than the business cycle for time series that span 50 years (postwar data) regardless of

the sampling frequency (months, quarters, weeks, etc.). Section 3 thus considers the behav-

ior of these weighted averages as the sample size T grows large, but with q held fixed.2 As in

Bierens (1997), the weighted averages have a multivariate normal limiting distribution, and

cointegration imposes restrictions on the covariance matrix of this distribution. Asymptoti-

cally, inference about the cointegrating vector thus becomes inference about the covariance

matrix of a multivariate normal random vector. The low-frequency transformation approach

is attractive beyond its statistical convenience because it explicitly acknowledges the relative

scarcity of low-frequency information, it is robust to dynamic properties beyond the chosen

frequency band, it does not require hard-to-interpret bandwidth choices, it is stable under

aggregation, and it arguably gives the concept of “persistence” of an economic time series a

straightforward interpretation.3

The second important issue in cointegration analysis involves the uncertain nature of the

common stochastic trend. Elliott (1998) provides a dramatic demonstration of the fragility of

standard cointegration methods by showing that they fail to control size when the common

stochastic trends are not I(1), but rather are “local-to-unity” in the sense of Bobkoski

(1983), Cavanagh (1985), Chan and Wei (1987) and Phillips (1987).4 The development of

valid tests for local-to-unity stochastic trends is complicated by the fact that the local-to-

unity nuisance parameters cannot be consistently estimated. In a bivariate model, Cavanagh,

Elliott, and Stock (1995) propose several procedures to adjust critical values from standard

tests to control size over a range of values of the local-to-unity parameter, and their general

2This is discussed in further detail in Müller and Watson (2007); also see Bierens (1997), Phillips (1998)

and Müller (2007b) who consider time series inference based on a finite number of weighted averages.
3An alternative to this low-frequency transformation approach is to model the persistence in the error

correction term. A well-developed body of work has pursued this approach in the fractional integration

framework, where the error correction term is allowed to have long memory. See, for instance, Jeganathan

(1999), Kim and Phillips (2000), Robinson and Hualde (2003), Robinson and Marinucci (2003) and Velasco

(2003); Canjels (1997) considers the same idea with a local-to-unity specification of the error correction term.
4Also see Elliott and Stock (1994) and Jeganathan (1997).
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approach has been used by several other researchers; Campbell and Yogo (2006) provides a

recent example. Stock and Watson (1996) and Jansson and Moreira (2006) go further and

develop inference procedures with specific optimality properties in the local-to-unity model.

In the fractional cointegration literature, the common stochastic trends are modelled as

fractionally integrated, although the problem is different from the local-to-unity case as the

fractional parameter can be consistently estimated under standard asymptotics. Yet, Müller

and Watson (2007) demonstrate that, at least based on below business cycle variation, it

is a hopeless endeavor to try to consistently discriminate between, say, local-to-unity and

fractionally integrated stochastic data spanning 50 years.

As demonstrated by Wright (2000), it is nevertheless possible to conduct inference about

a cointegrating vector without knowledge about the precise nature of the common stochastic

trend. Wright’s idea is to use the I(0) property of the error correction term as the identifying

property of the true cointegrating vector, so that a stationarity test of the model’s putative

error correction term is used to conduct inference about the value of the cointegrating vec-

tors. Because the common stochastic trends drop out under the null hypothesis, Wright’s

procedure is robust in the sense that it controls size under any model for the common sto-

chastic trend. But the procedure ignores the data beyond the putative error correction term,

and is thus potentially quite inefficient.

Section 2 of this paper provides a formulation of the cointegrated model in which the

common stochastic trends follow a flexible limiting Gaussian process that includes the I(1),

local-to-unity, and fractional/long-memory models as special cases. Throughout the paper,

inference procedures are studied in the context of this general formulation of the cointegrated

model. This may be viewed as a response to Granger’s (1993) call to think of the persistence

of macro time series as the result of a wide range of possible data generating processes beyond

the I(1) model, and to abandon attempts to identify the exact nature of the persistence

process from the data.

The price to pay for this generality is that it introduces a potentially large number of

nuisance parameters that complicate the derivation of efficient inference procedures. The

nuisance parameters characterize the properties of the stochastic trends and the relationship

between the stochastic trends and the model’s I(0) components. None of these nuisance pa-

rameters can be consistently estimated in the low-frequency framework outlined in Section

3, because they only affect the covariance matrix of the Gaussian limiting distribution of

3



the weighted averages. Invariance considerations makes a subset of these parameters irrele-

vant for the testing problem, but potentially many nuisance parameters remain. The main

challenge of this paper is thus to study efficient tests in the presence of nuisance parameters

under the null hypothesis, and Sections 4—6 address this issue.

Section 4 builds on Wright’s (2000) suggestion and derives a low-frequency test for the

value of the cointegration vectors based on an I(0) test for the putative error correction

term. Specifically, we derive a low-frequency version of a multivariate point-optimal scale and

rotation invariant test against the alternative in which the common trends are I(1). Similar

to Wright’s (2000) original suggestion, while simple, the application of this low-frequency

test for inference about cointegrating vectors is potentially quite inefficient, as it ignores the

data beyond the putative error correction term. But the null rejection probability of this

test is unaffected by the properties of the common stochastic trend, so its power constitutes

an easily achievable lower bound on the power of efficient tests.

Section 5 considers low-frequency tests based on all of the variables in the model. This

section discusses an upper bound on the power of invariant tests of the value of the cointe-

grating vectors. The section discusses a general result concerning upper bounds for the power

of tests when the null hypothesis involves nuisance parameters.5 We then discuss numerical

techniques to obtain low upper power bounds (approximate “least upper power bounds”) for

tests concerning the value of cointegrating vectors in our low-frequency framework. These

bounds are computed for an alternative with the standard I(1) stochastic trend, but under

the constraint that the tests control size over a wide range of stochastic trend processes,

ranging from the standard I(1) model to a highly flexible model. These power bounds are

useful for two main purposes. First, differences in the power bounds (interpreted as differ-

ences in least upper bounds) associated with restrictions on the trend process (for example,

restricting the general stochastic trend process to be I(1)) quantify the restriction’s infor-

mation about the value of the cointegrating vector. Second, and most importantly, they

provide a benchmark for the efficiency of any asymptotically valid test.

Section 6 combines the insights of Sections 4 and 5. In particular, the bounds derived in

Section 5 allow us to assess the relative efficiency of the low-frequency version of Wright’s

(2000) test developed in Section 4. As it turns out, when attention is focused on a single

5The same insight about upper bounds on power was noted independently by Andrews, Moreira, and

Stock (2007) and used for inference in IV models with potentially weak instruments.
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cointegrating vector, and regardless of the number of common trends, the power of this

test essentially coincides with the upper bound for an unrestricted version of the common

trend process under the null hypothesis, and is close to the bound for several restricted,

but still flexible common trend processes. Thus in this case, the low-frequency version of

Wright’s test–that is, ignoring the data beyond the putative error correction term–yields

an essentially efficient test in the absence of strong a priori knowledge about the nature of

the persistence.

One of the algorithms developed in Section 5 jointly determines a low power bound

and a feasible test whose power is within a predetermined distance from the bound. The

algorithm is generically applicable when the number of nuisance parameters is small and the

density under the null and alternative is readily computable. Problems of this nature occur

frequently in non-standard testing problems, so that this aspect of the present paper is likely

to be of independent interest.

2 Model

Let pt, t = 1, ..., T denote the n× 1 vector of variables under study. This section outlines a
time domain representation of the cointegrated model for pt in terms of canonical variables

representing a set of common trends and I(0) error correction terms. The common trends

are allowed to follow a flexible process that includes I(1), local-to-unity, and fraction models

as special cases, but aside from this generalization, the cointegrated model for pt is standard.

To begin, pt is transformed into two components, where one component is I(0) under the

null hypothesis and the other component contains elements that are not cointegrated. Thus,

let β denote an n×rmatrix whose linearly independent columns are the cointegrating vectors,
let β0 denote the value of β under the null, and yt = β00pt. The elements in yt are the model’s

error correction terms under the null hypothesis. Let xt = δ0pt where δ is n×k with k = n−r,
and where the linearly independent columns of δ are linearly independent of the columns of

β0, so that the elements of xt are not cointegrated under the null. Because the cointegrated

model only determines the column space of the matrix of cointegrating vectors, the variables

yt and xt are determined up to transformations (yt, xt)→ (Ayyyt, Axxxt+Axyyt), where Ayy

and Axx are non-singular. Most extant inference procedures are invariant (or asymptotically

invariant) to these transformations, and, as discussed in detail below, our analysis will also
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focus on invariant tests.

2.1 Canonical Variable Representation of yt and xt

We will represent yt and xt in terms of a common stochastic trend vector vt and an I(0)

vector zt

yt = Γyzzt + Γyvvt (1)

xt = Γxzzt + Γxvvt,

where zt is r × 1, vt is k × 1, and Γyz and Γxv have full rank. In this representation, the

restriction that yt is I(0) corresponds to the restriction Γyv = 0. All of the test statistics

discussed in this paper are invariant to adding constants to the observations, so that constant

terms are suppressed in (1). Deterministic time trends will be briefly discussed in Section 5.

As a technical matter, we think of {zt, vt}Tt=1 (and thus also {xt, yt}Tt=1) as being generated
from a triangular array; we omit the additional dependence on T to ease notation. Also, we

write bxc for the integer part of x ∈ R, ||A|| =
√
trA0A for any real matrix A, x ∨ y for

the maximum of x, y ∈ R, ’⊗’ for the usual Kronecker product and ’⇒’ to indicate weak
convergence.

LetW (·) denote a n×1 standard Wiener process. The vector zt is a canonical I(0) vector
in the sense that its partial sums converge to a r × 1 Wiener process

T−1/2
bsT cX
t=1

zt ⇒ SzW (s) =Wz(s), where SzS0z = Ir. (2)

The vector vt is a common trend in the sense that scaled versions of its level converge

to a stochastic integral with respect to W (·). For example, in the standard I(1) model,

T−1/2vbsTc ⇒
R s
0
HdW (t), where H is a k×n matrix and (H 0, S0z) has full rank. More general

trend processes, such as the local-to-unity formulation, allow the matrix H to depend on s

and t. The general representation for the common trends used in this paper is

T−1/2vbsT c ⇒
Z s

−∞
H(s, t)dW (t) (3)

where H(s, t) is sufficiently well behaved to ensure that there exists a cadlag version of the

process
R s
−∞H(s, t)dW (t).6

6The common scale T−1/2 for the k × 1 vector vt in (3) is assumed for convenience; with an appropriate
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2.2 Invariance and Reparameterization

As discussed above, because cointegration only identifies the column space of β, attention is

restricted to tests that are invariant to the group of transformations

(yt, xt)→ (Ayyyt, Axxxt +Axyyt) (4)

where Ayy and Axx are non-singular, but (Ayy, Axx, Axy) are otherwise unrestricted real

matrices.

The restriction to invariant tests allows a simplification of notation: because the test

statistics are invariant to the transformations in (4), there is no loss of generality setting

Γyz = Ir, Γxv = Ik, and Γxz = 0. With these values, the model is

yt = zt + Γyvvt (5)

xt = vt.

2.3 Restricted Versions of the Trend Model

We will refer to the general trend specification in (3) as the “unrestricted” stochastic trend

model throughout the remainder of the paper. The existing literature on efficient tests relies

on restricted forms of the trend process (3) such as I(1) or local-to-unity processes, and we

compute the potential power gains associated with these and other a priori restrictions on

H(s, t) below. Here we introduce notation that is useful to describe five restricted versions

of the stochastic trend.

The first model, which we will refer to as the G-model, restricts H(s, t) to satisfy

H(s, t) = G(s, t)Sv, (6)

where G(s, t) is k × k and Sv is k × n with SvS
0
v = Ik and (S0z, S

0
v) nonsingular. In this

model, the common trend depends onW (·) only through the k× 1 standard Wiener process
Wv(·) = SvW (·), and this restricts the way that vt and zt interact. In this model

T−1/2vbsT c ⇒
Z s

−∞
G(s, t)dWv(t), (7)

definition of local alternatives, the invariance (4) ensures that one would obtain the same results for any

scaling of vt.
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and the covariance between the Wiener process characterizing the partial sums of zt,Wz, and

Wv is equal to the r× k matrix R = SzS
0
v. Standard I(1) and local-to-unity formulations of

cointegration satisfy this restriction and impose additional parametric restrictions on G(s, t).

The second model further restricts (7) so that G(s, t) is diagonal:

G(s, t) = diag(g1(s, t), · · · , gk(s, t)). (8)

An interpretation of this model is that the k common trends evolve independently of one

another (recall thatWv has identity covariance matrix), where each trend is allowed to follow

a different process characterized by the functions gi(s, t).

The third model further restricts the diagonal-G model so that the k stochastic trends

converge weakly to a stationary continuous time process. We thus impose

gi(s, t) = gSi (s− t), i = 1, · · · , k. (9)

The stationary local-to-unity model (with an initial condition drawn from the unconditional

distribution), for instance, satisfies this restriction.

Finally, we consider two parametric restrictions of G:

G(s, t) = 1[t > 0]Ik (10)

which is the I(1) model, and

G(s, t) = 1[t > 0]eC(s−t) (11)

which is the multivariate local-to-unity model, where C is the k × k diffusion matrix of the

limiting Ornstein-Uhlenbeck process (with zero initial condition).

Because of the invariance (4), the trend models are unaffected by premultiplication of

H(s, t) (or G(s, t)) by an arbitrary non-singular k× k matrix. (This is why the I(1) specifi-

cation in (10) is the same as the I(1) specification given below (2).)

2.4 Testing Problem and Local Alternatives

The goal of the paper is to derive asymptotically efficient tests for the value of the cointe-

grating vectors with controlled rejection probability under the null hypothesis for a range of

stochastic trend specifications. The different orders of magnitude of zt and vt in (2) and (3)
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suggest a local embedding of this null hypothesis against alternatives where Γyv = T−1B for

B a constant r × k matrix, so that in model (5),

T−1/2
bsTcX
t=1

yt ⇒ SzW (s) +B

Z s

0

Z u

−∞
H(u, t)dW (t)du.

In this parametrization, the null hypothesis becomes

H0 : B = 0, H(s, t) ∈ H0 (12)

where H(s, t) is restricted to a set of functions H0, that, in the unrestricted trend model

includes functions sufficiently well behaved to ensure that there exists a cadlag version of

the process
R s
−∞H(s, t)dW (t), or more restricted versions of H(s, t) as in (6), (8), (9), (10),

or (11).

Since our goal is to consider efficient tests of the null hypothesis (12), we also need to

specify the alternative hypothesis. Our results below are general enough to allow for the

derivation of efficient tests against any particular alternative with specified B = B1 and

stochastic trend process H(s, t) = H1(s, t),

Ha : B = B1, H(s, t) = H1(s, t) (13)

or, more generally, for tests that are efficient in the sense of maximizing weighted average

power against a set of values for B1 and stochastic trend models H1(s, t).

Our numerical results, however, focus on alternatives in which the stochastic trend vt is

I(1), so that H1(s, t) satisfies (6) and (10). This is partly out of practical considerations:

while there is a wide range of potentially interesting trend specification, the computations

for any particular specification are involved, and these computational complications limit

the number of alternatives we can usefully consider. At the same time, one might consider

the classical I(1) model as an important benchmark against which it is useful to maximize

power–not necessarily because this is the only plausible model under the alternative, but

because a test that performs well against this alternative presumably has reasonable power

properties for a range of empirically relevant models. We stress that despite this focus on

the I(1) stochastic trend model for the alternative hypothesis (13), we restrict attention to

tests that control size for a range of models under the null hypothesis (12). The idea is to

control the frequency of rejections under the null hypothesis for any stochastic trend model
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in H0, so that the rejection of a set of cointegrating vectors cannot simply be explained by

the stochastic trends not being exactly I(1). In this sense, our approach is one of “robust”

cointegration testing, with the degree of robustness governed by the size of the set H0.

2.5 Summary

To summarize, this section has introduced the time domain representation of the cointegrated

model with a focus on the problem of inference about the space of cointegrating vectors. In

all respects except one, the representation is the standard one: the data are expressed as

a linear function of a canonical vector or common trends and a vector of I(0) components.

Under the null, certain linear combinations of the data do not involve the common trends.

Because the null only restricts the column space of the matrix of cointegrating vectors,

attention is restricted to invariant tests. The goal is to construct tests with best power for

an alternative value for the matrix of cointegrating vectors under a particular model for the

trend (or best weighted average power for a collection of B1 and H1(s, t)). The formulation

differs from the standard one only in that it allows the model for trend under the null

to be less restrictive than the standard formulation. Said differently, because of potential

uncertainty about the specific form of the trend process, the formulation restricts attention

to tests that control size for a range of different trend processes. As will become evident,

this generalization complicates the problem of constructing efficient tests by introducing a

potentially large number of nuisance parameters (associated with trend process) under the

null hypothesis.

3 Low-Frequency Representation of the Model

Cointegration is a restriction on the low-frequency behavior of time series, and as discussed

in the introduction, we therefore focus on the low-frequency behavior of (yt, xt). This low-

frequency variability is summarized by a small number, q, of weighted averages of the data.

In this section we discuss these weighted averages and derive their limiting behavior under

the null and alternative hypotheses.
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3.1 Low-Frequency Weighted Averages

We use weights associated with the cosine transform, where the j’th weight is given byΨj(s) =√
2 cos(jπs). For any sequence {at}Tt=1, the j’th weighted average will be denoted by

AT (j) =

Z 1

0

Ψj(s)absT c+1ds = ιjTT
−1

TX
t=1

Ψj(
t−1/2
T
)at (14)

where ιjT = (2T/jπ) sin(jπ/2T )→ 1 for all fixed j. As demonstrated by Müller and Watson

(2007), the weighted averages AT (j), j = 0, · · · , q, essentially capture the variability in the
sequence corresponding to frequencies below qπ/T .

We use the following notation: with at a h×1 vector time series, let Ψ(s) = (Ψ1(s),Ψ2(s),

· · · ,Ψq(s))
0 denote the q × 1 vector of weighting functions, and AT =

R 1
0
Ψ(s)a0bsT c+1ds the

q×h matrix of weighted averages of the elements of at, where Ψ0(s) is excluded to make the

results invariant to adding constants to the data. Using this notation, the q × r matrix YT

and the q× k matrix XT summarize the variability in the data corresponding to frequencies

lower than qπ/T . With q = 12, (YT ,XT ) capture variability lower than the business cycle

(periodicities greater than 8 years) for time series that span 50 years (postwar data) regardless

of the sampling frequency (months, quarters, weeks, etc.). This motivates us to consider the

behavior of these matrices as T →∞, but with q held fixed.

The large-sample behavior of XT and YT follows from the behavior of ZT and VT . Using

the assumed limits (2) and (3), the continuous mapping theorem, and integration by parts

for the terms involves ZT , one obtains"
T 1/2ZT

T−1/2VT

#
⇒
"
Z

V

#
(15)

where "
vecZ

vecV

#
∼ N

Ã
0,

"
Irq ΣZV

ΣV Z ΣV V

#!
(16)

with

ΣV Z =

Z 1

0

µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶
[Sz ⊗Ψ(t)]0dt (17)

ΣV V =

Z 1

−∞

µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶0
dt.
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The relative scarcity of low-frequency information is thus formally captured by considering

the weak limits (2) and (3) as pertinent only for the subspace spanned by the weight function

Ψ(·), yielding (15) as a complete characterization of the relevant properties of the error
correction term zt and the common stochastic trend vt.

Using Γyv = T−1B, equation (5) implies that YT = ZT + T−1VTB
0 and XT = VT . Thus,"

T 1/2YT

T−1/2XT

#
⇒
"
Y

X

#
=

"
Z + V B0

V

#
(18)

where "
vecY

vecX

#
∼ N

¡
0,Σ(Y,X)

¢
(19)

with

Σ(Y,X) =

"
Ir ⊗ Iq B ⊗ Iq

0 Ik ⊗ Iq

#"
Ir ⊗ Iq ΣZV

ΣV Z ΣV V

#"
Ir ⊗ Iq 0

B0 ⊗ Iq Ik ⊗ Iq

#
. (20)

3.2 “Best” Low-Frequency Hypothesis Tests

We consider invariant tests of H0 against Ha given in (12) and (13) based on the data

{yt, xt}Tt=1. Because we are concerned with the model’s implications for the low-frequency
variability of the data, we restrict attention to tests that control asymptotic size for all

models that satisfy (18)-(20). Our goal is to find an invariant test that maximizes power

subject to this restriction, and for brevity we will refer to such a test as a “best” test.

Müller (2007a) considers the general problem of constructing asymptotically most powerful

tests subject to asymptotic size control over a class of models such as ours. In our context,

his results imply that asymptotically best tests correspond to the most powerful invariant

tests associated with the limiting distribution (19).

Thus, the relevant testing problem has a simple form: vec(Y,X) has a normal distribution

with mean zero and covariance matrix that depends on B. Under the null B = 0, while under

the alternative B 6= 0. Tests are restricted to be invariant to the group of transformations

(Y,X)→ (Y A0yy, XA0xx + Y A0xy) (21)

where Ayy and Axx are nonsingular, and Ayy, Axx, and Axy are otherwise unrestricted. Thus,

the hypothesis testing problem becomes the problem of using an invariant procedure to test

a restriction on the covariance matrix of a multivariate normal vector.
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4 Efficient Y -Only Tests

The primary obstacle for constructing efficient tests of the null hypothesis that B = 0 is the

large number of nuisance parameters associated with the stochastic trend (the parameters

that determine H(s, t)). These parameters govern the values of ΣZV and ΣV V , which in turn

determine ΣY X and ΣXX . Any valid test must control size over all values of these nuisance

parameters. Wright (2000) notes that this obstacle can be avoided by ignoring the xt data

and basing inference only on yt, since under the null hypothesis, yt = zt. This section takes

up Wright’s suggestion and discusses efficient low-frequency “Y -only” tests.7

The power of the resulting test serves as an easily achievable lower bound on the power

of efficient tests that exploit both Y and X. The next section discusses upper bounds on the

power of tests that rely on both Y and X, so that the relative efficiency of the Y -only test

can be evaluated.

4.1 Efficient Tests against General Alternatives

The distribution of vecY ∼ N (0,ΣY Y ) follows from the derivations in Section 3: Under the

null hypothesis, ΣY Y = Irq, and under the alternative, ΣY Y depends on the local alternative

B, the properties of the stochastic trend and its relationship with the error correction term

Z. For a particular choice of alternative, the testing problem thus becomes H0 : ΣY Y = I

against H1 : ΣY Y = ΣY Y 1, and the invariance requirement (21) reduces to

Y → Y A0yy for arbitrary nonsingular r × r matrices Ayy. (22)

Any invariant test can be written as a function of a maximal invariant (Theorem 6.2.1 in

Lehmann and Romano (2005)), so that by the Neyman-Pearson lemma, the most powerful

invariant test rejects for large values of the likelihood ratio statistic of a maximal invariant.

7Wright (2000) implements this idea using a “stationarity” test of the I(0) null proposed by Saikkonen and

Luukonen (1993), using a robust covariance matrix as in Kwiatkowski, Phillips, Schmidt, and Shin (1992) for

the test proposed in Nyblom (1989). This test relies on a consistent estimator of the spectral density matrix

of zt at frequency zero. But consistent estimation requires a lot of pertinent low frequency information,

and lack thereof leads to well-known size control problems (see for example, Kwiatkowski, Phillips, Schmidt,

and Shin (1992), Caner and Kilian (2001), and Müller (2005)). These problems are avoided by using the

low-frequency components of yt only; see Müller and Watson (2007) for further discussion.
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The only remaining challenge is the computation of the density of a maximal invariant, and

this is addressed in the following theorem.

Theorem 1 (a) If vecY ∼ N (0,ΣY Y ) with positive definite ΣY Y and q > r, the density of

a maximal invariant to (22) has the form

c1(detΣY Y )
−1/2(detΩY )

−1/2EωY [|det(ωY )|q−r]

where c1 does not depend on ΣY Y , ωY is an r × r random matrix with vecωY ∼ N (0,Ω−1Y ),
ΩY = (Ir ⊗ Y )0Σ−1Y Y (Ir ⊗ Y ), and EωY denotes integration with respect to the distribution of

ωY (conditional on Y ).

(b) If in addition, ΣY Y = ṼY Y ⊗ Σ̃Y Y , then the density simplifies to

c2(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−q/2

where c2 does not depend on ΣY Y .

Part (a) of the theorem provides a formula for the density of a maximal invariant in terms

of absolute moments of the determinant of a multivariate normal matrix, whose covariance

matrix depends on Y . We know of no useful closed-form solution for this expectation, how-

ever the density can be evaluated by appropriate Monte Carlo techniques. Part (b) provides

an explicit and simple formula when the covariance matrix is of a specific Kronecker form.

This form arises under the null hypothesis with ΣY Y = Irk, and under alternatives where

each of the r putative error correction terms in yt have the same low-frequency covariance

matrix. For a simple alternative hypothesis with ΣY Y 1 = ṼY Y 1 ⊗ Σ̃Y Y 1, the best test then

rejects for large values of det(Y 0Y )/det(Y 0Σ̃−1Y Y 1Y ). The form of weighted average power

maximizing tests over a set of alternative covariance matrices ΣY Y 1 are also easily deduced

from Theorem 1 parts (a) and (b).

4.2 Efficient Tests against I(1) Alternative

As discussed above, the numerical results in this paper focus on the benchmark alternative

where the stochastic trend follows an I(1). Under this alternative, yt follows a multivariate

“local level model” (cf. Harvey (1989)), which is the alternative underlying well-known

“stationarity” tests such as Nyblom and Mäkeläinen (1983), Nyblom (1989), Kwiatkowski,
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Phillips, Schmidt, and Shin (1992), Nyblom and Harvey (2000), Jansson (2004), and others.

Thus, suppose that the stochastic trend satisfies (6) and (10), so that

T−1/2
bsT cX
t=1

yt ⇒Wz(s) +B

Z s

0

Wv(t)dt. (23)

The optimal test depends on the value of B under the alternative, and it is convenient to

assume

B = bS, (24)

where b is a scalar and S is the r × k selection matrix equal to S = [Ir, 0k−r] when r ≤ k

and S = [Ik, 0k−r]
0 when r > k. The invariance requirement (4) implies that (24) is without

loss of generality whenever there exist orthonormal r × r and k × k matrices Py and Px

such that PyBPx = ||B||S, which is always the case when min(r, k) = 1. In the formulation
(24), when r ≤ k (so that the number of linearly independent cointegrating vectors does not

exceed the number of common trends), each element of yt is the sum of an I(0) component

and an I(1) component, where the common relative magnitude of the two components is

determined by b. When r > k, there are fewer trends than cointegrating vectors, so that yt
can be rotated such that the trends load on only a subset of the variables in yt. This is the

“reduced rank” formulation used, for example, in the multivariate stationarity test proposed

in Eliasz, Stock, and Watson (2004).

In this model, the covariance matrix of Y depends on b and R = SzS
0
v = E[Wz(1)Wv(1)

0],

the correlation between the Wiener processes describing zt and vt. A straightforward calcu-

lation shows that ΣY Y can be written as

ΣY Y = (Ir ⊗ Iq) + b2(SS0 ⊗D) + b(SR0 ⊗ F ) + b(RS0 ⊗ F 0) (25)

where F and D are q× q matrices, where D is a diagonal matrix with i’th diagonal element

equal to (πi)−2 and F = [fij], with fij = 0 if i and j are both even or odd, and fij =

4/[π2(i2 − j2)] otherwise. (The simple diagonal form of D is due to the particular choice of

the weighting functions Ψ in (14); see Section 2.3 in Müller and Watson (2007)).

Examination of (25) suggests three simplifications of the testing problem. First, because

F = −F 0, the final two terms cancel when SR0 is symmetric. (When r ≤ k, SR0 is symmetric

if Rij = Rji for i, j ≤ r, and when r > k, symmetry requires Rij = Rji for i, j ≤ k and

Rij = 0 for i > k and all j.) Thus, when SR0 is symmetric, ΣY Y does not depend on R,
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which implies that the efficient test constructed using R = 0 is uniformly most powerful for

all values of R with SR0 symmetric. Second, when r ≤ k, SS0 = Ir, so in this case when

SR0 is symmetric, ΣY Y = Ir ⊗ (Iq + b2D), and from part (b) of Theorem 1, the optimal test

rejects for large values of det(Y 0Y )/det(Y 0(Iq + b2D)−1Y ). (We will refer to this statistic as

“JW” to highlight its origin in the ideas in Wright (2000).) Finally, when SR0 is symmetric,

but r > k, a calculation based on Theorem 1 (a) produces an expression for the best test.

These simplifications are summarized in the following corollary.

Corollary 1 For the alternative (23) and (24), the Neyman-Pearson test constructed with

R = 0 is uniformly most powerful over all values of R with SR0 symmetric, and rejects for

large values of

JW (b) = det(Y 0Y )/det(Y 0(Iq + b2D)−1Y )

when r ≤ k, and for large values of

ξ(b) = det(Y 0Y )(q+k−r)/2 det(Y 0(Iq + b2D)−1Y )−k/2EωY [| det(ωY )|q−r]

when r > k, where vecωY ∼ N (0,Ω−1Y ) and ΩY = diag(Ik ⊗ Y 0(Iq + b2D)−1Y, Ir−k ⊗ Y 0Y ).

Table 1 presents 10%, 5%, and 1% critical values for the point-optimal JW (10/
√
r) test

for various values of r and q, where the alternative is chosen so that 5% test has approximately

50% power for b = 10/
√
r.

In many empirical applications, r = 1, so that the best test based on Y is the JW test

using critical values given in the first column of the table. When r > 1, JW is the best

test when r ≤ k, but when r > k, the optimal test statistic is ξ given in part (b) of the

corollary. This test statistic is more difficult to calculate than JW because ξ depends on

the term EωY [| det(ωY )|q−r], which requires evaluating absolute moments of order q− r from

an r2-dimensional multivariate normal distribution. In a typical application q = 12 and

even with r = 2 or 3, accurate Monte Carlo evaluation of E[| det(ωY )|q−r] requires a large
number of draws, even using importance sampling methods. Because of the large marginal

computational cost of ξ over JW , it is natural to consider the marginal gain in power

associated with using ξ instead of JW . Figure 1 compares the power of ξ(b) and JW (b) for

(r, k) = (2, 1), (3, 1), and (3, 2) in models with SR0 symmetric for q = 12. The figures show

the power bound associated with tests based on ξ(b), and the power of the corresponding
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JW (b) for various values of b. When r = 2 and k = 1, the power of the JW (b) statistic is

within 3% of the power of ξ(b) when the power of ξ(b) is less than 50%, but the difference

increases to nearly 10% when the power of ξ(b) exceeds 80%. The differences are more

substantial when r = 3 and k = 1, where the power difference is approximately 7% when

power is 50%; the power differences are negligible when r = 3 and k = 2. Eliasz, Stock, and

Watson (2004) report similar power differences in a related testing problem.

5 Power Bounds for Tests Using (Y,X)

The tests proposed in the last section avoided the complications associated with the nuisance

parameters describing the commons stochastic trend model by ignoring the information in X

and basing inference only on Y . This section considers invariant tests that utilize information

in both Y and X.

The analysis proceeds in four steps. The first step characterizes the distribution of the

maximal invariant of (Y,X), which forms the basis for efficient invariant inference. The

second step determines convenient parameterizations of the covariance matrix Σ(Y,X) in (20)

under the null and alternative hypotheses. A third step presents a general result about power

bounds for testing problems involving nuisance parameters under the null hypothesis, which

is closely related to the concept of a least favorable distribution for the nuisance parameters.

Finally, the fourth step discusses numerical techniques to implement the power bounds for

the problem under study. Each of these steps is presented in a subsection.

The penultimate subsection shows that power bounds for r = 1 and k = 2 also hold for

models with r = 1 and k > 2, and a final subsection offers a brief discussion of how linear

trends would affect the analysis.

5.1 Density of a Maximal Invariant

Theorem 1 presented the marginal density of a maximal invariant for Y → Y A0yy. The

following theorem provides an expression for the density of a maximal invariant for (Y,X)→
(Y A0yy,XA0xx + Y A0xy).
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Theorem 2 If vec(Y,X) ∼ N (0,Σ(Y,X)) with positive definite Σ(Y,X) and q > r + k, the

density of a maximal invariant of (21) has the form

c(detΣ(Y,X))
−1/2(detV 0

0YΣ
−1
(Y,X)V0Y )

−1/2(detΩ)−1/2Eω[| det(ωY )|q−r| det(ωX)|q−r−k]

where c does not depend on Σ(Y,X), ωY and ωX are random r × r and k × k matrices,

respectively, with (vecω0y, vecω
0
x)
0 ∼ N (0,Ω−1),

Ω = D0
Y XΣ

−1
(Y,X)DY X −D0

Y XΣ
−1
(Y,X)V0Y (V

0
0YΣ

−1
(Y,X)V0Y )

−1V 0
0YΣ

−1
(Y,X)DY X,

DY X = diag(Ir⊗Y, Ik⊗X), V0Y = (00rq×rk, Ik⊗Y 0)0, and Eω denotes integration with respect

to ωY and ωX, conditional on (Y,X).

Similar to Theorem 1, Theorem 2 shows that density of a maximal invariant can be

expressed in terms of absolute moments of determinants of jointly normally distributed ran-

dom matrices, whose covariance matrix depends on (Y,X). We do not know of a useful and

general closed-form solution for this expectation; for r = k = 1, however, Nabeya’s (1951)

results for the absolute moments of a bivariate normal yields an expression in terms of ele-

mentary functions, which we omit for brevity. When r+k > 2 and q ≈ 12, one can compute
the moments via Monte Carlo integration. However, computing accurate approximations

is difficult when r and k are large, and the numerical analysis reported below is therefore

limited to small values of r and k.

5.2 Parameterization of Σ(Y,X)

Since the density of the maximal invariant of Theorem 2 depends on Σ(Y,X), the derivation

of efficient invariant tests requires specification of Σ(Y,X) under the alternative and null

hypothesis. We discuss each of these in turn.

5.2.1 Specification of Σ(Y,X) under the Alternative Hypothesis

As discussed above, we focus on the alternative where the stochastic trends follow an I(1)

process, so that H(s, t) satisfies (6) and (10). There remains the issue of the value of B

(the coefficients that show how the trends affect Y ) and R (the correlation of the Wiener

processes describing the I(0) variables, zt, and the common trends, vt). For these parameters,
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we consider point-valued alternatives with B = B1 and R = R1; the power bounds derived

below then serve as bounds on the asymptotic power envelope over these values of B and R.

Invariance reduces the effective dimension of B and R somewhat, and this will be discussed

in the context of the numerical results presented below.

5.2.2 Parameterization of Σ(Y,X) under the Null Hypothesis

From (20), under the null hypothesis with B = 0, the covariance matrix Σ(Y,X) satisfies

Σ(Y,X) =

"
Irq ΣZV

ΣV Z ΣV V

#
.

The null model’s specification of the stochastic trend determines the rq × kq matrix ΣZV

and the kq × kq matrix ΣV V by the formulae given in (17). Since these matrices contain a

finite number of elements, it is clear that even for nonparametric specifications of H(s, t),

the effective parameter space for low-frequency tests based on (Y,X) is finite dimensional.

We collect these nuisance parameters in a vector θ ∈ Θ.

We now discuss convenient parameterizations of Σ(Y,X) for the unrestricted stochastic

trend model, and the five restrictions discussed in Section 2: the first restricts H(s, t) =

G(s, t)Sv as in (6), the second further restricts G(s, t) to be diagonal, and the third imposes

a stationarity restriction on the diagonal model. The final two models impose the local-to-

unity and I(1) parametric restrictions on the trend process.

The following lemma provides the basis for parameterizing Σ(Y,X) when H(s, t) is unre-

stricted.

Lemma 1 (a) For any (r+k)q× (r+k)q positive definite matrix Σ∗ with upper left rq× rq

block equal to Irq, there exists an unrestricted trend model with H(s, t) = 0 for t < 0 such

that Σ∗ = E[vec(Z, V )(vec(Z, V ))0].

(b) If r ≤ k, this H(s, t) can be chosen of the form H(s, t) = G(s, t)Sv, where (S0z, S
0
v)

has full rank.

Thus, when H(s, t) is unrestricted or r ≤ k and H(s, t) = G(s, t)Sv, the only restriction that

the null hypothesis imposes on Σ(Y,X) is that ΣY Y = Irq. In other words, since ΣZV and

ΣV V have rkq2+kq(kq+1)/2 distinct elements, an appropriately chosen θ of that dimension
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determines Σ(Y,X) under the null hypothesis in the unrestricted model, and in the model

where H(s, t) = G(s, t)Sv for r ≤ k.

WhenH(s, t) = G(s, t)Sv and r > k, and when G(s, t) = diag(g1(s, t), · · · , gk(s, t)), there
are additional restrictions on Σ(Y,X), which are most easily parametrized be taking invariance

considerations into account. We discuss these restrictions in the appendix. In the stationary

diagonal model where G(s, t) = diag(gS1 (s− t), · · · , gSk (s− t)), we set gSj to be step functions

gSj (x) =

ngX
i=1

ξj,i1

∙
i− 1
ng + 1

≤ x

1 + x
<

i

ng + 1

¸
(26)

for ng = 40 and some scalar parameters ξj,i, j = 1, · · · , k, i = 1, · · · , ng. The steps occur at
the points i/(ng + 1− i), so that more flexibility is allowed for small values of x (half of the

points are associated with values of x less than 1, for example). The values of ΣZV and ΣV V

then follow from (17). In this specification θ contains the kng coefficients ξj,i and the rk

coefficients in the correlation matrix R. While the specification (26) only captures a subset of

all possible covariance matrices Σ(Y,X) in the (nonparametric) stationary model, any test that

controls size for all functions H(s, t) of the form H(s, t) = diag(gS1 (s − t), · · · , gSk (s − t))Sv

a fortiori has to control size for the specification (26). The upper bounds on power of tests

that control size for all values of θ under (26) are therefore also upper bounds for tests that

control size for the generic stationary stochastic trend model.

In the local-to-unity model, a straightforward (but tedious) calculation determines the

value of Σ(Y,X) as function of the r× r matrix C and the r× k correlation matrix R, so that

θ is of dimension r2+rk. Finally, the I(1) model is a special case of the local-to-unity model

with C = 0.

5.3 A General Result about Power Bounds

The general version of the hypothesis testing problem we are facing is a familiar one: Let

U denote a single observation of dimension m× 1. (In our problem, the maximal invariant
discussed in Theorem 2 plays the role of U .) Under the null hypothesis U has probability

density fθ(u) with respect to some measure μ, where θ ∈ Θ is a vector of nuisance parameters.

(In our problem, the vector θ describes the stochastic trend process under the null hypothesis

and determines Σ(Y,X) via (17) and (20) as discussed in the last subsection). Under the
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alternative, U has known density h(u). (Choices for h(u) were discussed in Subsection

5.2.1.) Thus, the null and alternative hypothesis are

H0 : The density of U is fθ(u), θ ∈ Θ

H1 : The density of U is h(u),
(27)

and possibly randomized tests are (measurable) functions ϕ : Rm 7→ [0, 1], where ϕ(u) is the

probability of rejecting the null hypothesis when observing U = u, so that size and power

are given by supθ∈Θ
R
ϕfθdμ and

R
ϕhdμ, respectively. The aim is to construct an efficient

test ϕ∗. Unfortunately, there does not exist a general method to construct such an efficient

test ϕ∗ in the presence of the nuisance parameter θ.

Thus, to make further progress, this subsection shows how to derive a set of upper bounds

on the power of all level α tests of (27). In general, an upper power bound may be useful

for at least two purposes: First, one might know that some ad hoc test is of level α (i.e. its

size is at most α). If the power of this ad hoc test happens to be close to the upper bound,

then one can conclude that the ad hoc test is close to efficient, since by definition of the

upper bound, no test exists with higher power. (This reasoning will be used to argue for the

approximate efficiency of the JW statistic derived in Section 4 in the unrestricted stochastic

trend model). Second, when the dimension of θ is small, one can numerically search for a

level α test with high power. An upper bound on the power of all level α tests is useful

in this approach, because if the numerical search has identified a test with almost as much

power as the upper bound, one has identified a test that is efficient for all practical purposes.

Subsection 5.4.1 below discusses such an algorithm.

A standard device for problems such as (27) is to consider a Neyman-Pearson test for a

related problem in which the null hypothesis is replaced with a mixture

HΛ : The density of U is
Z

fθdΛ(θ)

where Λ is a probability distribution for θ. The following lemma shows that the power of

the Neyman-Pearson test of HΛ versus H1 provides an upper power bound for tests of H0

versus H1.

Lemma 2 Let ϕΛ be the best level α test of HΛ against H1. Then for any level α test ϕ of

H0 against H1,
R
ϕΛhdμ ≥

R
ϕhdμ.
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Proof. Since ϕ is a level α test of H0,
R
ϕfθdμ ≤ α for all θ ∈ Θ. Therefore,R R

ϕfθdμdΛ(θ) =
R R

ϕfθdΛ(θ)dμ ≤ α (where the change in the order of integration is

allowed by Fubini’s Theorem), so that ϕ is also a level α test of HΛ against H1. The result

follows by the definition of a best test.

This result is closely related to Theorem 3.8.1 of Lehmann and Romano (2005) which

provides conditions under which a least upper bound on the power for tests H0 versus H1

is associated with a “least favorable distribution” for θ, and that using this distribution

for Λ produces the least upper power bound. The least favorable distribution Λ∗ has the

characteristic that the resulting ϕΛ∗ is a level α test for testingH0 versusH1. Said differently,

if ϕΛ∗ is the best level α test of HΛ∗ against H1 and is also a level α test for testing

H0 versus H1, then ϕ∗ = ϕΛ∗ , that is ϕΛ∗ is the most powerful level α test of H0 versus

H1. Unfortunately, while the test associated with the least favorable distribution solves

the testing problem (27), there is no general and constructive method for finding the least

favorable distribution Λ∗ (and it does not always exist).

With this in mind, Lemma 2 is stated so that Λ is not necessarily the least favorable

distribution. That is, the bound in Lemma 2 holds for any probability distribution Λ. The

goal of the numerical analysis carried out below is to choose Λ to approximate the least upper

bound. Importantly, even if one cannot identify the least favorable distribution, Lemma 2

shows that the power of ϕΛ provides a valid bound for the power of any test of H0 versus

H1, for any Λ.

5.4 Numerical Implementation

This paper relies on Lemma 2 in two distinct ways. On the one hand, we develop an algorithm

that simultaneously determines a low upper bound on power, and a level α test whose power

is close to that bound. This algorithm is entirely generic in the sense that it does not exploit

any specificities of the low-frequency robust cointegration testing problem; in practice, it only

requires that the densities fθ and h can be quickly evaluated numerically. The computational

complexity is such, however, that it can only be applied when θ is low-dimensional; as such,

it is useful for our problem only in the I(1) and local-to-unity stochastic trend model for

r = k = 1.
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On the other hand, we discuss how to numerically determine a reasonably low upper

bound for cases where θ is of high dimension, to be compared to the power of the JW

statistic in Section 6 below. This latter approach exploits both the multivariate normal

nature of the inference problem, and the existence of an ad hoc test that is known to control

size, and is thus more specific to the cointegration testing problem.

5.4.1 Low Dimensional Nuisance Parameter

Suppose that LRΛ = h(U)/
R
fθ(U)dΛ(θ) is a continuous random variable for any Λ, so

that by the Neyman-Pearson Lemma, ϕΛ is of the form ϕΛ = 1[LRΛ > cvΛ], and cvΛ is

chosen so that ϕΛ is level α under HΛ, i.e. α =
R R

ϕΛfθdμdΛ(θ). Then by Lemma 2, the

power of ϕΛ, βΛ =
R
ϕΛhdμ, is an upper bound on the power of any test that is level α

under H0. If Λ is not the least favorable distribution, then ϕΛ is not of size α under H0,

i.e. supθ∈Θ
R
ϕΛfθdμ > α. Now consider a version of ϕΛ with a size corrected critical value

cvcΛ > cvΛ, that is ϕc
Λ = 1[LRΛ > cvcΛ] with supθ∈Θ

R
ϕc
Λfθdμ = α. The size adjusted test ϕc

Λ

is of level α under H0 by construction, so if its power β
c
Λ =

R
ϕc
Λhdμ is only marginally less

than βΛ, then it is an almost efficient test, since βΛ is an upper power bound for all level

α tests. Also, by definition, the least upper bound on the power of level α tests must be

sandwiched between βcΛ and βΛ, so that we would also have identified a good approximation

to the least upper bound.

The challenge is thus to find an appropriate Λ. This is difficult because, in general, no

closed form solutions are available for the size and power of tests, so that these must be

approximated by Monte Carlo integration. Brute force searches for an appropriate Λ are

thus not computationally feasible. The idea is to exploit numerical advantages of discrete

distributions for Λ, that have point masses at only N points, and to smooth out the Monte

Carlo integration estimates of size and power, so that gradient methods can be employed.

The suggested algorithm is related to, but distinct from those developed in Nelson (1966),

Kempthorne (1987) and Sriananthakumar and King (2006), and is described in detail in the

appendix.
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5.4.2 High Dimensional Nuisance Parameter

The dimension of θ can be very large in our problem: even when r = k = 1, the model with

unrestricted stochastic trend leads to θ of dimension q2 + q(q + 1)/2 so that θ contains 222

elements when q = 12. Approximating the least upper power bound directly then becomes

a numerically intractable problem. This motivates a computationally practical method for

computing a low (as oppose to least) upper power bound.

The method restricts Λ so that it is degenerate with all mass on a single point, say

θ∗, which is chosen so that the null distribution of the maximal invariant of Theorem 2 is

close to its distribution under the alternative. Since the density of the maximal invariant is

quite involved, θ∗ is usefully approximated by a choice that makes the multivariate normal

distribution of vec(Y,X) under the null close to its distribution under the alternative, as

measured by a convenient metric. To be specific, let Σ1 denote the covariance matrix of

vec(Y,X) under a specific I(1) alternative as described in Subsection 5.2.1 above (that is,

for specific values of B = B1 and R = R1), let Σ0(θ) with θ ∈ Θ be the covariance matrix of

vec(Y,X) under the null for the relevant restrictions on the stochastic trend, and define the

nq × nq matrix (recall that n = r + q)

A(γ) =

"
γyz ⊗ Iq 0

γxz ⊗ Iq γxv ⊗ Iq

#

where γyz is r×r, γxz is k×r, and γxv is k×k. This yieldsA(γ) vec(Y,X) ∼ N (0, A(γ)Σ0(θ)A(γ)0).
Denote the Kullback-Leibler divergence between the nq × 1 distributions N (0,Σ1) and
N (0,Σ0) as K(Σ1,Σ0) = 1

2
ln(detΣ1/detΣ0) +

1
2
tr(Σ−10 Σ1)− nq. The value of θ∗ is chosen

to numerically solve

min
γ∈Rr2+k2+kr

K(Σ1, A(γ)Σ0(θ
∗)A(γ)0) = min

θ∈Θ,γ∈Rr2+k2+kr
K(Σ1, A(γ)Σ0(θ)A(γ)

0), (28)

that is, θ∗ numerically minimizes the Kullback-Leibler divergence (or KLIC) between the

null and alternative densities of (Y,X), allowing for transformations as described by A(γ)

under the null. While these transformations do not affect the implied distribution of the

maximal invariant, they do in general lead to a different θ∗, which we found to yield a slightly

lower upper bound. The minimization problem is over a high dimensional parameter, but

the objective function is quickly computed and well behaved, so that numerical minimization
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is feasible. (And of course, the validity of the power bound from Lemma 2 based on the

(degenerate) distribution Λ that puts all mass on the numerical minimizer does not require

that the numerical minimizer coincides with the global minimizer. Said differently, numerical

error in the solution of (28) will not invalidate the resulting bound.)

The power of the Neyman-Pearson test of HΛ : vec(Y,X) ∼ N (0,Σ0(θ∗)) against H1 :

vec(Y,X) ∼ N (0,Σ1) based on the maximal invariant of Theorem 2 is not necessarily a

least upper power bound for invariant tests of H0 : vec(Y,X) ∼ N (0,Σ0(θ)), θ ∈ Θ, against

H1. Lemma 2, however, implies that it is an upper power bound, and the numerical results

in the next section suggest that it is reasonably close to the least upper power bound in

models with low-dimensional nuisance parameter θ, where the least upper bound can be

directly approximated. Moreover, in many other cases it is close to the power of the JW

test, so again it is close the least upper power bound, as the least upper bound cannot be

below the power of the JW test. Thus, the power bound associated with minimizing the

Kullback-Leibler divergence (28) proves to be a practical and useful approximation to the

least upper power bound in this problem.

Note that the upper bound on power that results from this approach follows only from

the constraint that tests need to control size for the particular value θ = θ∗. The range of

the models allowed under a particular stochastic trend model, as described by the size of the

set Θ, does not play any role. Thus, even if one were to weaken the robustness constraint of

tests to control size over a much smaller set Θs ⊂ Θ, one would still obtain the same bound

as long as θ∗ ∈ Θs. The crucial question for the appeal of the robustness constraint is thus

whether it makes sense to insist on size control for the particular stochastic trend model that

leads to vec(Y,X) ∼ N (0,Σ0(θ∗)).
A natural question to ask is whether, as an empirical matter, a realization of the trend

from the Σ0(θ∗) model looks, in some sense, reasonable. In this regard, it useful to remark

that θ∗ is chosen precisely to minimize KLIC relative to the standard I(1) model under the

alternative. Ignoring the transformation induced by A(γ), since vecY ∼ N (0, Irq) for any
value of θ under the null hypothesis, the KLIC criterion can usefully be thought of as at-

tempting to approximate the conditional distribution of X given Y in the alternative model.

In fact, in the unrestricted model, Lemma 1 implies that one can precisely replicate this

conditional distribution under the null hypothesis.8 Draws from vec(Y,X) ∼ N (0,Σ0(θ∗))
8Without the invariance restriction (21), this observation would lead to an analytic least favorable dis-
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are thus approximately rationalizable as draws from the model with standard I(1) stochastic

trends, except for the difference in the marginal distribution of Y .

5.5 Power Bounds for r = 1 and k > 2

In the next section we will calculate power bounds for selected values of r and k including

r = 1 and k = 2. In this subsection we show that the resulting bounds also serve as power

bounds for models with r = 1 and all values of k > 2.

To see why, first consider the alternative I(1) model as described in subsection 5.2.1,

Y = Z + V B0 and X = V . Let P be a k × k orthonormal matrix whose last k − 2 rows are
orthogonal to R and B, and whose second row is orthogonal to R. PartitionX = (X12,X3k),

whereX12 contains the first two columns ofX andX3k contains the remaining k−2 columns.
By invariance, there is no loss in generality in setting X = X̃P = (X̃12, X̃3k)P, so that

Y = Z + X̃PB0 = Z + X̃12B
0
12, where X̃12 and B12 are the first two columns of X̃ and B,

respectively, and the last k − 1 columns of X̃ (and thus X̃3k) are independent of Z. The

group of transformations

(Y, X̃12, X̃3k)→ (Y Ayy, X̃12Ãxx + Y Axy, X̃3k) (29)

for nonsingular Ayy and Ãxx is a subset of the transformations (Y, X̃) → (Y Ayy, X̃Axx +

Y Axy), so the best invariant test to (29) is as least as powerful as the best invariant test

to (21). Let Q̃12 be a maximal invariant to (Y, X̃12) → (Y Ayy, X̃12Ãxx + Y Axy), such that

{Q̃12, X̃3k} is a maximal invariant to (29). Since X̃3k is independent of (Y, X̃12), the density

of {Q̃12, X̃3k} under the alternative factors as fa,Q̃12 · fa,X̃3k
.

For all null models discussed in subsection 5.2.2, it is possible to chooseX = (X12,X3k) =

V in a way such that X3k is independent of X12 with marginal distribution f0,X3k
= fa,X̃3k

,

(i.e. it corresponds to the I(1) model) and the possibilities for X12 and its relationship with

Z are the same as in the version of the model with k = 2. Thus, with this choice, the term

fa,X̃3k
cancels in the likelihood ratio test of the maximal invariant to (29), and the testing

tribution result: Factor the density of (Y,X) into a the product of the density of Y , and the density of X

given Y . Since the latter cancels with the appropriate choice of θ under the conditions of Lemma 1, this

shows that the Neyman-Pearson test is a function of Y only.
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problem corresponds precisely to the model with k = 2.9 An upper bound for the model

with r = 1 and k = 2 is therefore also an upper bound for the model with r = 1 and k > 2.

5.6 Deterministic trends

Thus far, the analysis has ignored deterministic linear trends, and for the sake of brevity

we will not offer a detailed treatment of tests that incorporate them. That said, it is useful

to offer a brief outline. In this regard, it is useful to distinguish between the usual notion

of cointegration in which zt is I(0) and what has been called “stochastic cointegration” by

Ogaki (1988) and Ogaki and Park (1998) in which zt may contain a linear trend in addition

to an I(0) component. In this latter case, it is reasonable to consider tests that are invariant

to adding linear trends to the data, and Müller and Watson (2007) show how this additional

invariance can be handled by an alternative choice of Ψ functions used to compute the low-

frequency transformations of the data. Thus, incorporating stochastic cointegration is quite

straightforward.

Perhaps the more relevant notion of cointegration maintains the assumption that zt is I(0)

under the null, but allows vt to contain a linear trend. This introduces two considerations:

First, under the null hypothesis, Y -only tests remain unaffected, but the additional constraint

that tests have to control size for any value of the linear trend coefficient can only further

reduce the upper bounds on tests involving (Y,X). Second, it may desirable to specify the

alternative so that the test maximizes power for stochastic trend processes that include linear

trends. With a Gaussian weighting function over the trend coefficient, maximizing weighted

average power becomes equivalent to maximizing power against different Σ1 values, and

associated power bounds could be computed using the methods outlined above.

9This is not strictly true for the stationary G-model, which excludes I(1) stochastic trends. But the low-

frequency transformation of the suitably scaled stationary local-to-unity model converges in mean squared

to the I(1) model as the local-to-unity parameter approaches zero (cf. Section 2.4 of Müller and Watson

(2007)), so that the additional discriminatory power from X3k can be made arbitrarily small, and the

conclusion continues to hold.
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6 Results

This section provides numerical results for bounds on the power of 5% level tests based on

(Y,X) against the I(1) alternative that control size for various restrictions on the stochastic

trend model, as discussed in Section 5. These bounds are compared to power of Y -only tests

against this alternative, as derived in Section 4.

Table 2 summarizes power bounds for various models with q = 12, and with r = 1 and

k = 1 (panel A), r = 1 and k = 2 (panel B), and r = 2 and k = 1 (Panel C). Numerical results

for larger values of n = r + k are not reported because of the large number of calculations

required to evaluate the density in large models.

Power depends on the values of B and R under the alternative, and results are presented

for various values of these parameters. Because of invariance, when r = 1 (as in panels A

and B), or k = 1 (as in panel C), the distribution of the maximal invariant depends on B

and R only through ||B||, ||R||, and, if ||R|| > 0, on tr(R0B)/(||B|| · ||R||). Thus, in panel A,
where r = k = 1, results are shown for two values of |B|, three values of |R| and for R ·B < 0

and R · B > 0, while panels B and C show results for three values of tr(R0B)/(||B|| · ||R||)
when ||R|| > 0. As discussed in subsection 5.5 above, the power bounds in panel B for r = 1
and k = 2 also carry over to models with r = 1 and arbitrary k > 2.

Looking first at panel A, the first four columns of the table summarize the power bounds

computed using θ∗, the KLIC minimizing value for θ as described in subsection 5.4.2. Only

four columns are needed to summarize all of the models because theGmodel and the diagonal

G model are identical when k = 1, and Lemma 1 shows the G-model imposes no additional

restrictions on Σ(Y,X) when r ≤ k. The final two columns of the table show the results for

a direct numerical approximation to the least upper power bound, based on the algorithm

discussed in subsection 5.4.1. This algorithm can only be implemented when the number of

nuisance parameters is small, and results are shown for the local-to-unity model (where C

and R are the only scalar nuisance parameters) and the I(1) models (where R is the only

nuisance parameter). As discussed in the appendix, the upper bounds are constructed so

that they are at most 2.5 percentage points above the actual least upper bounds (ignoring

Monte Carlo integration error), and thus roughly correspond to the power of optimal tests

for testing H0 versus H1.

Looking across the entries in panel A, three results are evident. First, and not sur-
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prisingly, restricting tests so that they control size for the unrestricted trend process has a

non-negligible power cost. For example, when |B| = 7, and R = 0, the power bound is 0.36,

for tests that control size for unrestricted trends, the bound increases to 0.41 for tests that

control size for stationary trends, and increases to 0.50 for tests that control size for local-to-

unity or I(1) trend processes. Second, as noted by Stock and Watson (1996), Jansson and

Moreira (2006), and others, the local-to-unity model yields asymmetric power functions when

R 6= 0. For example in the local-to-unity model with |R| = 0.9 and |B| = 7, the power bound
is 0.67 for alternatives with R ·B > 0, but increases to 0.96 when R ·B < 0. This asymmetry

is also present in the stationary model, but not in the I(1) or general trend model. Third,

the power bounds associated with the KLIC minimizing value for θ are only slightly larger

than the (approximate) least upper power bounds computed for the I(1) and local-to-unity

models, at least for |B| = 7. Evidently then, in these cases the KLIC minimizers provide a
good approximation to the least upper power bound.

Panel B shows results when r = 1 and k > 1. This panel does not include entries for

approximate least upper power bounds, because of the computational burden associated

with the additional nuisance parameters. Because k > 1, the diagonal-G trend imposes

restrictions on Σ(Y,X) under the null, and results are presented for tests that control size

under this restriction. The power bounds for the restricted models shown in panel B are

lower than the bounds shown in panel A because, for example, the tests must control size

for the nuisance parameters in the k×1 correlation vector R, and k is larger in panel B than
in panel A.

The most important conclusion to be drawn form panels A and B is that, for all practical

purposes, the JW test introduced in Section 4 achieves the power bound of the best invariant

test that controls size for the unrestricted trend process. Power results are reported for the

JW (||B||) statistic, which yields the power envelope for Y -only tests, and for JW (10/√r),
the feasible point-optimal test with critical values tabulated in Table 1. From the results in

panels A and B, the power of these two tests are very close, which indicates that there is

only a small loss in power associated with not knowing B under the alternative. Because

the JW test essentially achieves the power bound associated with tests that control size for

unrestricted trends for r = 1 and any value of k, the test is approximately optimal test in

this case.10

10Recall from the discussion in Section 4 that the power of the JW test depends on B only through ||B||
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While computational limits prevent us for showing power bounds with r > 1 and arbitrary

k, panel C shows results for the model with r = 2 and k = 1. Because r > k, this model

has two important features not present in panels A and B. First, the null covariance matrix

Σ(Y,X) is restricted when H(s, t) = G(s, t)Sv, so that this restricted trend specification is

added to the table. (Because k = 1, G(s, t) is diagonal, and this restriction is dropped from

the table.) Second, the efficient Y -only test is not the JW test. Rather, as was evident

in Figure 1, the efficient Y -only test exploits the restriction that k < r, and, from the

expression for ΣY Y given in (25), the test now depends on R. The final column of panel C

shows the power-envelope for the best Y -only test. In contrast to results with r = 1, there

is now some power gain associated with exploiting the X data, even for tests that control

size for the unrestricted trend model. That is, the power bound shown in the first column

of the table (for the (X,Y )-test with an unrestricted trend under the null) is higher than

the power-envelope for the Y -only test shown in the final column. The difference in power

is small when ||R|| is small, but is non-negligible when ||R|| is large.
As a by-product of the direct approximations of the least upper power bound in the low-

dimensional models for r = k = 1, the algorithm described in subsection 5.4.1 also yields a

5% level test (that is, size is at most 5%) whose power is within 2.5 percentage points of the

bound. These tests could thus in principle be employed for inference in the bivariate model

with local-to-unity local or I(1) stochastic trends, and they (approximately) maximize power

against the I(1) point alternative for a specific value of R (and B). Since R is unknown

in practice, this is of limited appeal. But the algorithm can also be employed to determine

tests that approximately maximize weighted average power against a set of alternatives in

these models. Table 3 displays the power of 5% level tests whose equally weighted average

power against alternatives with B = 7 and the 20 values of R = −0.95,−0.85, · · · , 0.95 is
within 2.5 percentage points of the power bound on that weighted average power, along with

the bounds on the power envelope from Table 2. The approximately weighted average power

maximizing test statistics are of the form
P20

j=1
1
20
f1(Rj, 7)/

PN
j=1 pjf0(θj), where f1(R,B)

is the density of the maximal invariant of Theorem 2 under the local alternative in the

I(1) model, f0 is the density under the null model for a particular value of the nuisance

parameter θ describing R and, in local-to-unity model, C, and N , θj and pj are numerically

when r = 1, for any value of k.
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determined by the algorithm.11 It is apparent that there is some cost to not knowing R under

the alternative, as the power of the (approximately) weighted average power maximizing test

falls up to 11 percentage points short of the power envelope for both stochastic trend models,

even against the alternative with B = 7.

We performed the same set of computations shown in Tables 2 and 3 also for q = 6, 9, 15

and 24, but do not report detailed results for brevity. All qualitative conclusions continue

to hold: The JW test almost achieves the power bound in the unrestricted model for r = 1

and any value of k, there are substantial gains in power for highly restricted stochastic trend

models, and the power bounds obtained through minimizing KLIC are relatively close to

those obtained by directly approximating the least upper bound.

7 Concluding Remarks

This paper studies inference about the cointegrating vector in a framework in which the

common stochastic trends, and their interaction with the error correction terms, is modelled

in a flexible way beyond the standard I(1) framework. The problem is studied with the

low-frequency transformation approach suggested by Müller and Watson (2007). The paper

derives bounds on the power of tests that control size over flexible stochastic trend specifi-

cations, and which maximize power against alternatives with the usual I(1) trend. We find

that a low-frequency version of Wright’s (2000) test (JW ) essentially achieves the upper

power bound in the model with r = 1 cointegrating vectors.

The implication for applied work is that, at least in the model with r = 1, approximately

efficient robust inference about the cointegrating vector may be carried out using this test.

The test is simple to compute and is robust in two ways. First, it is robust to arbitrary

autocorrelation properties in the error correction term above the pre-specified low-frequency

band. Second, it is robust to the precise nature of persistence, as its rejection probability

under the null hypothesis does not depend on the nature of the stochastic trend. As inWright

(2000), confidence sets for the cointegrating vector can easily be obtained be inverting the

test.
11For instance, with the I(1) stochastic trend under the null hypothesis, θ = R, N = 4, (p1, θ1) =

(0.8170, 0.35), (p2, θ2) = (0.1596, 0.75), (p3, θ3) = (0.0228, 0.85) and (p4, θ4) = (0.0006, 0.97).
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This paper also provides a partial solution to the question of efficient inference about

the value of cointegrating vectors if strong a priori knowledge about the stochastic trend

is available: with a tightly parametrized model for the stochastic trend, we show how an

approximately (weighted average) power maximizing test can be determined numerically.

The suggested method is generic in the sense that it computes an approximately efficient

test in the presence of a low dimensional nuisance parameters under the null hypothesis.

This type of problem arises naturally in nonstandard testing problems, so we would expect

the method to be useful also in other contexts.

The construction of efficient tests for the value of the cointegrating vector that control

size for an unrestricted trend model when r > 1 remains an open question. However, the

power bounds computed here provide a useful check for the efficiency of ad hoc tests that

might be suggested for this problem.

As we have shown, the JW test for the value of the cointegrating vectors is approximately

efficient against alternatives where the system under consideration is cointegrated, but the

hypothesized value of the cointegrating vector is wrong. A different kind of alternative arises

from a system that is not cointegrated. A local deviation from cointegration is naturally

modelled by a putative error correction term that is the sum of an I(0) component and a

small trend component. Power bounds for these alternatives can also be studied using the

methods developed in this paper, although the details will depend on the structure of the

additional stochastic trends that are present under the alternative.
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A Appendix

A.1 Proof of Theorem 1

The proof to part (a) mimics the proof to Theorem 2 and is omitted. To prove part (b),

note that because of invariance, we can set ṼY Y = Ir without loss of generality, so that

detΣY Y = (det Σ̃Y Y )
r, ΩY = (Ir ⊗ Y 0Σ̃−1Y Y Y ) and (detΩY )

−1/2 = det(Y 0Σ̃−1Y Y Y )
−r/2. Since

(vecωY )
0ΩY (vecωY ) = tr(ω

0
Y Y

0Σ̃−1Y Y Y ωY ), the density in part (a) of the Theorem becomes

proportional to

(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−r/2
Z
| detωY |q−r exp[−12 tr(ω

0
Y Y

0Σ̃−1Y Y Y ωY )]d(vecωY ).

Let ω̃Y = (Y 0Σ̃−1Y Y Y )
1/2ωY , so that |detωY |q−r = det(Y 0Σ̃−1Y Y Y )

−(q−r)/2|det ω̃Y |q−r and
vecωY = (Ir ⊗ (Y 0Σ̃−1Y Y Y )

−1/2) vec ω̃Y , and the Jacobian determinant of the transformation

from ωY to ω̃Y is det(Ir⊗(Y 0Σ̃−1Y Y Y )
−1/2) = (Y 0Σ̃−1Y Y Y )

−r/2. Thus, the density is proportional

to

(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−q/2
Z
| det ω̃Y |q−r exp[−12 tr(ω̃

0
Y ω̃Y )]d(vec ω̃Y ),

and the result follows.

A.2 Proof of Theorem 2

Write Y = (Y 0
1 , Y

0
2 , Y

0
3)
0 and X = (X 0

1,X
0
2, X

0
3)
0, where Y1 and X1 have r rows, and Y2 and

X2 have k rows. Consider the one-to-one mapping h : Rq×n 7→ Rq×n with

h(Y,X) = Q =

⎛⎜⎜⎝
QY 1 QX1

QY 2 QX2

QY 3 QX3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Y1 Y −11 X1

Y2(Y1)
−1 X2 − Y2Y

−1
1 X1

Y3(Y1)
−1 (X3 − Y3Y

−1
1 X1)(X2 − Y2Y

−1
1 X1)

−1

⎞⎟⎟⎠ .

A straightforward calculation shows that (vecQ0
Y 2, vecQ

0
Y 3, vecQ

0
X3) is a maximal invariant

to (21). The inverse of h is given by

h−1(Q) =

⎛⎜⎜⎝
QY 1 QY 1QX1

QY 2QY 1 QX2 +QY 2QY 1QX1

QY 3QY 1 QX3QX2 +QY 3QY 1QX1

⎞⎟⎟⎠ .
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Using matrix differentials (cf. Chapter 9 of Magnus and Neudecker (1988.)), a calculation

shows that the Jacobian determinant of h−1 is equal to (detQY 1)
q−r+k(detQX2)

q−k−r. The

density of Q is thus given by

(2π)−qn/2(detΣ(Y,X))
−1/2|detQY 1|q−r+k|detQX2|q−k−r exp[−12(vech

−1(Q))0Σ−1(Y,X)(vech
−1(Q))]

and we are left to integrate out QY 1, QX1 and QX2 to determine the density of the maximal

invariant.

Now consider the change of variables from QY 1, QX1, QX2 to ωY , ωX and ωY X

QY 1 = Y1ωY

QX1 = ω−1Y Y −11 X1ωX − ω−1Y ωY X

QX2 = (X2 − Y2Y
−1
1 X1)ωX

with Jacobian determinant (detY1)r(det(X2 − Y2Y
−1
1 X1))

k det(−ωY )
−k. Noting that with

this change, h−1(Q) = (Y ωY ,XωX − Y ωY X), we find that the density of the maximal

invariant is equal toZ
(2π)−qn/2(detΣ(Y,X))

−1/2| detY1|q+k| det(X2 − Y2Y
−1
1 X1)|q−r|detωY |q−r| detωX |q−k−r

·exp[−1
2
vec(Y ωY ,XωX−Y ωY X)

0Σ−1(Y,X) vec(Y ωY ,XωX−Y ωY X)]d(vecω
0
Y , vecω

0
X , vecω

0
Y X)

0.

Since vec(Y ωY ,XωX − Y ωY X) = DY X vec(ωY , ωX)− V0Y vec(ωY X), we have

vec(Y ωY ,XωX − Y ωY X)
0Σ−1(Y,X) vec(Y ωY , XωX − Y ωY X)

= vec(ωY , ωX)
0D0

Y XΣ
−1
(Y,X)DY X vec(ωY , ωX)

− 2 vec(ωY , ωX)D
0
Y XΣ

−1
(Y,X)V0Y vec(ωY X) + vec(ωY X)

0V 0
0YΣ

−1V0Y vec(ωY X).

The result now follows from integrating out ωY X by ’completing the square’.

A.3 Proof of Lemma 1

We first establish a preliminary result.

Lemma 3 For any t > 0 and integer κ, the functions Ψl : [0, t] 7→ R with Ψl(s) =√
2 cos(πls), l = 1, · · · , κ are linearly independent.
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Proof. Choose any real constants cj, j = 1, · · · , κ, so that
Pκ

j=1 cjΨj(s) = 0 for all

s ∈ [0, t]. Then also
Pκ

j=1 cjΨ
(i)
j (0) = 0 for all i > 0, where Ψ

(i)
j (0) is the ith (right)

derivative of Ψj at s = 0. A direct calculation shows Ψ
(i)
j (0) = (−1)i/2

√
2(πj)i for even i. It

is not hard to see that the κ × κ matrix with j,ith element (−1)i/2(πj)i is nonsingular, so
that

Pκ
j=1 cjΨ

(i)
j (0) = 0 for i = 2, 4, · · · , 2κ can only hold for cj = 0, j = 1, · · · , κ.

For the proof Lemma 1 we construct H(s, t) such vecZ =
R 1
0
(Ir ⊗ Ψ(t))SzdW (t) and

vecV =
R 1
0

R 1
t
(H(s, t) ⊗ Ψ(s))ds dW (t) have the specified covariance matrix. The proof

of the slightly more difficult part (b), where H(s, t) = G(s, t)Sv, is based on the following

observations:

(i) Ignoring the restriction on the form of vecV , it is straightforward to construct an

appropriate multivariate normal vector vecV from a linear combination of vecZ and

ζ, where ζ ∼ N (0, Ikq×kq) independent of Z.

(ii) Suppose that R = S was allowed, where S = (Ir, 0r×(k−r)). Then Sz = SSv, vecZ ∼R 1
0
FZ(t)SvdW (t) for FZ(t) = S ⊗ Ψ(t), and one can also easily construct ζ as in (i)

via ζ =
R 1
0
Fζ(t)SvdW (t) by an appropriate choice of Fζ. Since Ito-Integrals are linear,

one could thus write vecV =
R 1
0
F (t)SvdW (t) with F a linear combination of FZ and

Fζ, using observation (i).

(iii) For any matrix function F : [0, 1] 7→ Rkq×k that is equal to zero on the interval

(1 − ε, 1] for some ε > 0, one can set G(s, t) = (Ik ⊗ Ψ(s)0J(t)−1)F (t), where J(t) =R 1
t
Ψ(s)Ψ(s)0ds and obtain

R 1
0

R 1
t
(G(s, t)⊗Ψ(s))ds SvdW (t) =

R 1
0
F (t)SvdW (t), since

for any matrix A with k rows and vector v, A⊗ v = (Ik ⊗ v)A.

The following proof follows this outline, but three complications are addressed: R = S

is not allowed; the matrix function F needs to be zero on the interval (1 − ε, 1], which

does not happen automatically in the construction in (ii); one must verify that the processR s
0
G(s, t)SvdW (t) admits a cadlag version.

Set Sz to be the first r rows of In. Since Ψl(1 − s) = (−1)lΨl(s) for all l ≥ 1, Lemma
3 implies that J(t) =

R 1
t
Ψ(s)Ψ(s)0ds and Iq − J(t) are nonsingular for any t ∈ (0, 1). The

rq×1 random vector vecZε =
R 1−ε
0
(Sz⊗Ψ(s))dW (s) thus has nonsingular covariance matrix
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Ir ⊗Σε
q, where Σ

ε
q = Iq − J(1− ε). Also, since

Σ∗ =

Ã
Ir ⊗ Iq Σ12

Σ21 Σ22

!

is positive definite, so is Irq − Σ12Σ
−1
22 Σ21, so that we can choose 0 < ε < 1 such that

Ir⊗Σε
q−Σ12Σ

−1
22 Σ21 is positive definite. With that choice of ε, also Σ22−Σ21(Ir⊗Σε

q)
−1Σ12

is positive definite.

For part (a) of the lemma, define the [0, 1] 7→ Rkq×n function Fa(t) = Aa(In⊗Ψ(t)), where
Aa = (Aa1, Aa2) with Aa1 = Σ21(Ir ⊗ Σε

q)
−1 and Aa2 = (Σ22 − Σ21(Ir ⊗ Σε

q)
−1Σ12)

1/2(Ik ⊗
(Σε

q)
−1/2).

For part (b) of the lemma, choose 0 < ρ < 1 so that Σ22−ρ−2Σ21(Ir⊗Σε
q)
−1Σ12 is positive

definite. Choose Sv to be the first k rows of In multiplied by ρ, so that R = SzS
0
v = ρS.

Let Ψ̃1(s) be scaled residuals of a continuous time projection of 1[s ≤ 1 − ε]Ψq+1(s) on

{1[s ≤ 1 − ε]Ψl(s)}ql=1 on the unit interval, and let Ψ̃j(s), j = 2, · · · , kq be the scaled
residuals of continuous time projection of 1[s ≤ 1 − ε]Ψq+j(s) on {1[s ≤ 1 − ε]Ψl(s)}ql=1
and {1[s ≤ 1 − ε]Ψ̃l(s)}j−1l=1 . By Lemma 3, Ψ̃j(s), j = 1, · · · , kq, are not identically zero,
and we can choose their scale to make them orthonormal. Let Ψ̃(s) = (Ψ̃1(s), · · · , Ψ̃kq(s))

0,

the k × 1 vector ιk = (1, 0, · · · , 0)0, and Ab = (Ab1, Ab2) with Ab1 = ρ−1Σ21(Ir ⊗ Σε
q)
−1 and

Ab2 = (Σ22 − ρ−2Σ21(Ir ⊗ Σε
q)
−1Σ12)

1/2. Now define the [0, 1] 7→ Rkq×n function

Fb(t) = Ab

Ã
S ⊗Ψ(t)

ι0k ⊗ Ψ̃(t)

!
Sv.

For both parts, that is for i ∈ {a, b}, set

Hi(s, t) = (Ik ⊗Ψ(s)0J(t)−1)Fi(t) for t ∈ [0, 1− ε]

and Hi(s, t) = 0 otherwise. With this choice

vecVi =

Z 1

0

Z 1

t

(Hi(s, t)⊗Ψ(s))ds dW (t)

=

Z 1−ε

0

Z 1

t

((Ik ⊗Ψ(s)Ψ(s)0J(t)−1)Fi(t))ds dW (t)

=

Z 1−ε

0

Fi(t)dW (t).
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Thus

E[(vecVi)(vecVi)
0] =

Z 1−ε

0

Fi(t)Fi(t)
0dt

E[(vecVi)(vecZ)
0] =

Z 1−ε

0

Fi(t)(Sz ⊗Ψ(t))0dt

since vec(Z − Zε) =
R 1
1−ε(Ir ⊗ Ψ(t))SzdW (t) is independent of vecVi. A direct calculation

now shows that
R 1−ε
0

Fa(t)Fa(t)
0dt = Aa(In⊗Σε

q)A
0
a,
R 1−ε
0

Fa(t)(Sz⊗Ψ(t))0dt = Aa(S
0
z⊗Σε

q),R 1−ε
0

Fb(t)Fb(t)
0dt = Ab diag(Ir ⊗Σε

q, Ikq)A
0
b and

R 1−ε
0

Fb(t)(Sz ⊗Ψ(t))0dt = ρAb(S
0
z ⊗Σε

q), so

that from the definitions of Ai, E[(vecVi)(vecVi)0] = Σ22 and E[(vecVi)(vecZ)
0] = Σ21, as

required.

It thus remains to show that the processes
R s
0
Hi(s, t)dW (t), i ∈ {a, b}, admit a cadlag

version.

Recall that ||A|| is the Frobenius norm of the real matrix A, ||A|| =
√
trA0A, which is

submultiplicative. If v ∼ N (0,Σ), then E[||v||4] = E[(v0v)2] = 2 tr(Σ2) + (trΣ)2 ≤ 3(trΣ)2,
so that with

R t
s
Hi(u, λ)dW (λ) ∼ N (0,

R t
s
Hi(u, λ)Hi(u, λ)

0dλ), we find

E[||
Z t

s

Hi(u, λ)dW (λ)||4] ≤ 3(tr

Z t

s

Hi(u, λ)Hi(u, λ)
0dλ)2

≤ 3(

Z t

s

||Hi(u, λ)||2dλ)2.

Thus, for 0 ≤ s < t ≤ 1, we have with ψ(s) = dΨ(s)/ds

E[||
Z t

0

Hi(t, λ)dW (λ)−
Z s

0

Hi(s, λ)dW (λ)||4]

= E[||
Z s

0

(Hi(t, λ)−Hi(s, λ))dW (λ) +

Z t

s

Hi(t, λ)dW (λ)||4]

≤ 3[

Z s

0

||Hi(t, λ)−Hi(s, λ)||2dλ+
Z t

s

||Hi(t, λ)||2dλ]2

≤ 3[k2( sup
0≤λ≤1−ε

||J(λ)−1||2||Fi(λ)||2)(||Ψ(s)−Ψ(t)||2 + (t− s) sup
0≤λ≤1

||Ψ(λ)||2)]2

≤ 3k4( sup
0≤λ≤1−ε

||J(λ)−1||4||Fi(λ)||4)( sup
0≤λ≤1

||ψ(λ)||2 + sup
0≤λ≤1

||Ψ(λ)||2)2(t− s)2

where the last inequality follows from Ψ(t)−Ψ(s) = (t− s)
R 1
0
ψ(s+ λ(t− s))dλ, so that by

Kolmogorov’s continuity theorem (p. 14 of Oksendal (2000)), there exist continuous (and

thus cadlag) versions of the stochastic processes
R s
0
Hi(s, t)dW (t), i ∈ {a, b}.
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A.4 Parameterization of Σ(Y,X) under H0 in the Diagonal G-model,

and in the G-model when r > k

G-model with r > k: Because of invariance, it is without loss of generality to assume that

the first r−k rows of R are equal to zero, so that the first r−k columns of Z are independent
of V . The joint distribution of V and the last k rows of Z are then just as in the model

with r = k, so that Lemma 1 implies that in the G-model with r > k, Σ(Y,X) is of the form

Σ(Y,X) = diag(Ir−k ⊗ Iq,Σ
∗
k) under the null hypothesis, where Σ∗k is any positive definite

k2q × k2q matrix with upper left kq × kq block equal to the identity matrix. The nuisance

parameter θ is thus of dimension k2q2 + kq(kq + 1)/2

Diagonal G-model: Let ZV and ζ be q × k random matrices with vec(Z,ZV , ζ) ∼
N (0,Σ(Z,ZV ,ζ)), where

Σ(Z,ZV ,ζ) = diag

Ã"
Ir R

R0 Ik

#
, Ik

!
⊗ Iq.

A construction as in the proof of Lemma 1 implies that the j’th column of V can be chosen

as an arbitrary linear combination of the j’th column of ZV and the j’th column of ζ,

j = 1, · · · , k (subject to the constraint that the resulting matrix is positive definite). Thus,
Σ(Y,X) may be parametrized as Σ(Y,X) = A(Z,ZV ,ζ)Σ(Z,ZV ,ζ)A

0
(Z,ZV ,ζ)

, where

A(Z,ZV ,ζ) =

Ã
Irq 0 0

0 diag(AV,1, AV,2, · · · , AV,k) diag(Lζ,1, Lζ,2, · · · , Lζ,k)

!
,

AV,j are arbitrary q×q matrices and Lζ,j are arbitrary lower diagonal q×q matrices. Including
R, θ is thus of dimension rk + kq2 + kq(q + 1)/2.

A.5 Algorithm for Approximating the Least Upper Power Bound

and Optimal Test

A computationally more convenient variation of the size adjustment idea described in the

main text is as follows: Starting from the level α test ϕΛ = 1[LRΛ > cvΛ] of HΛ against

H1, for some small ε > 0, let cvεΛ be an adjusted critical value so that the resulting test

ϕε
Λ = 1[LRΛ > cvεΛ] (with cv

ε
Λ > cvΛ) has only slightly lower power than ϕΛ, i.e.

R
ϕε
Λhdμ =

βΛ − ε. Now if ϕε
Λ is of level α under H0, i.e. supθ∈Θ

R
ϕε
Λfθdμ < α, then we have a level

38



α test of H0 against H1 with power that is only ε below βΛ, and the least upper bound is

again sandwiched between βΛ and βΛ−ε. The advantage of this method over the direct size

adjustment discussed in the text is that the size adjustment is costly to compute, while Λ

can often be quickly dismissed by checking its size control for a small number of values of θ

under H0.

Now consider discrete distributions for Λ: Let ΘN = {θ1, · · · , θN} ⊂ Θ for some N > 1

and consider the restricted null hypothesis HN :The density of U is fθ, θ ∈ ΘN . In this

restricted problem, the least favorable distribution is fully described by the point masses

p∗i on θi, i = 1, · · · , N , where
PN

i=1 p
∗
i = 1. The resulting test ϕ∗N is thus of the form

ϕ∗N = 1[
PN

i=1 p
∗
i fθi/h < 1/ cvN ]. Note that by construction, the test ϕ∗N is of level α on

ΘN ⊂ Θ. The central idea of the algorithm is to identify a (hopefully not too large) set of

points ΘN so that corresponding adjusted test ϕ∗εN is of level α on the whole set Θ.

Introduce the notation ϕ(θ̄, p̄, cv)(u) for the test ϕ = 1[
PN

i=1 pifθi/h < 1/ cv] evaluated at

u, with θ̄ = (θ1, · · · , θN)0 and p̄ = (p1, · · · , pN)0, and
PN

i=1 pi = 1 (but p̄ is not necessarily the

least favorable distribution on ΘN). The rejection probability of ϕ under the alternative is

Π1(θ̄, p̄, cv) =
R
ϕ(θ̄, p̄, cv)(u)h(u)dμ(u), and it is Π0(θ̄, p̄, cv; θ)(u) =

R
ϕ(θ̄, p̄, cv)fθ(u)dμ(u)

under the null hypothesis with θ ∈ Θ. We numerically approximate Π0(θ̄, p̄, cv; θ) by

Π̂0(θ̄, p̄, cv; θ) =
1

m

mX
j=1

ΥL

ÃPN
i=1 pifθi(uj)

h(uj)
,
1

cv

!
(30)

where for some real L > 0, ΥL : R2 7→ R is defined as ΥL(x, y) = yL/(yL + xL). The

pseudo random variables uj, j = 1, · · · ,m have density fθ and are obtained by suitably

transforming some underlying pseudo random variables ξj, uj = gθ(ξj), j = 1, · · · ,m. The
variables ξj are drawn only once in the evaluation of Π̂0 at different arguments (so the

transformation gθ depends on θ). Define Π̂1(θ̄, p̄, cv) analogously, with uj given by gh(ξj).

Note that as L → ∞, ΥL(x, y) → 1[x < y] + 1
2
1[x = y], so that for L large, Π̂0(θ̄, p̄, cv; θ)

approximates the standardMonte Carlo integration for the rejection probability of ϕ(θ̄, p̄, cv).

The advantage of choosing L <∞ is that Π̂0(θ̄, p̄, cv; θ) and Π̂1(θ̄, p̄, cv) become smooth and

differentiable functions of their arguments, which greatly simplifies numerical optimizations.

The computations in this paper were performed with m = 25, 000 and L = 25.

The algorithm consists of three subroutines SR1, SR2 and SR3.

SR1 The routine takes θ̄ = (θ1, · · · , θN) as given, and returns an estimate of the least fa-
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vorable distribution on ΘN , as described by p̄ = (p1, · · · , pN). By Theorem 3.8.1 of

Lehmann and Romano (2005), the least favorable distribution p̄∗ = (p̄∗1, · · · , p̄∗N)0 has
the two properties (i)

R
ϕ(θ̄, p̄∗, cv)fθldμ ≤ α for l = 1, · · · , N ; and (ii)

R
ϕ(θ̄, p̄∗, cv)fθldμ <

α only if pl = 0. This motivates the joint determination of p̄ and cv as numerical so-

lutions to

Π̂0(θ̄, p̄, cv; θl) ≤ α and pl(Π̂0(θ̄, p̄, cv; θl)− α) = 0 for l = 1, · · · , N. (31)

Specifically, we determine appropriate p̄ and cv by minimizing the objective function

NX
l=1

(a0pl + exp[a1(Π̂0(θ̄, p̄, cv; θl)− α)])(Π̂0(θ̄, p̄, cv; θl)− α)2 (32)

where a0 = 100 and a1 = 2000. As a function of p̄ and cv, (32) is continuous and with

known first derivative, so that a standard quasi-Newton optimizer can be employed.

Also, the N2m numbers fθi(gθl(ξj))/h(gθl(ξj)) for i = 1, · · · , N , l = 1, · · · , N and

j = 1, · · · ,m can be computed and stored once to speed up the the evaluation of

Π̂0(θ̄, p̄, cv; θi) and its partial derivatives.

SR2 The routine takes (θ̄, p̄) as inputs and returns vectors (θ̄1, p̄1) of length N1 ≤ N by

eliminating pairs of values (θj, pj) with pj approximately equal to zero.

SR3 The routine takes (θ̄, p̄) as given and either identifies (θ̄, p̄) as yielding a sufficiently

precise approximation to the least favorable distribution, or it returns a parameter

value θ̂ ∈ Θ that needs to be included in the set of points ΘN . Specifically, the routine

consists of three steps:

(a) Solve for the real number cvΛ that satisfies Π̂0(θ̄, p̄, cvΛ; θl) ≤ α for all l =

1, · · · , N , so that the test ϕ(θ̄, p̄, cvΛ) is the (approximate) level α likelihood

ratio test of HΛ : U has density
PN

l=1 plfθl against H1.

(b) Compute βΛ = Π̂1(θ̄, p̄, cvΛ), and numerically solve for cvεΛ ≥ cvΛ such that

Π̂1(θ̄, p̄, cvΛ) − Π̂1(θ̄, p̄, cv
ε
Λ) = ε. By Lemma 2, βΛ is (an estimate of) a power

bound on level α tests of H0. As described above, the size adjustment as a

function of the power implies that if ϕ(θ̄, p̄, cvεΛ) is of level α under H0, then we

have found a test whose power is within ε of the bound. The computations in

this paper use ε = 2.5%.
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(c) Check on a grid of values ΘG ⊂ Θ whether ϕ(θ̄, p̄, cvεΛ) controls size, i.e. evaluate

Π̂0(θ̄, p̄, cv; θj) for all θ ∈ ΘG in the finite set ΘG. If Π̂0(θ̄, p̄, cv; θj) > α for some

j, return θ̂ = θj. Otherwise, preliminarily accept βΛ as the approximate least

upper bound, and ϕ(θ̄, p̄, cvεΛ) as an approximately efficient test. As a practical

matter, it makes sense to return θ̂j = θj even if Π̂0(θ̄, p̄, cv; θj) is below, but very

close to α. We use a threshold of 4.8% for α = 5%.

Overall the algorithm iterates between the subroutines as follows:

1. Initialize θ̄ with N = 25 values of θj that are spread out over the grid ΘG, and call

SR1.

2. Call SR2 to obtain a new N and (θ̄, p̄) pair.

3. While SR3 returns θ̂:

Add θ̂ to θ̄ (so that N is increased by one) and call SR1.

4. Call SR2 to obtain a new N and (θ̄, p̄) pair. Repeat Step 3.

5. Perform a final check on whether ϕ(θ̄, p̄, cvεΛ) is a level α test by evaluating its re-

jection probability over a fine grid of values for θj, using a different set of draws

of pseudo-random variables ξj in (30). For the correlation R, we use the grid R =

−0.99,−0.96, · · · , 0.99 in the I(1) model, and in the local-to-unity model, a square

grid of the same values of R, and C = −3,−2.5, · · · ,−.5, 0, e−1, e−0.8, · · · , e6.8, e7.

The advantage of the thinning operation in SR2 is that it accelerates the computation of

the test statistic, and it facilitates the numerical minimization of (32). We do not call SR2

after each call of SR1, though, because doing so can result in cycles, so that Step 3 above

could potentially result in an infinite loop. Step 4 “cleans” the feasible test and is skipped

when only an estimator of the least upper bound is required.
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Table 1: 1%, 5%, and 10% Critical Values for the JW Statistic 
 

r q 
1 2 3 4 5 

6 5.25  3.62  3.08 6.76  5.16  4.39 7.25  6.09  5.43 7.14  6.46  6.02 6.54  6.33  6.16 
7 4.33  3.08  2.68 5.52  4.20  3.63 6.05  4.95  4.37 6.15  5.35  4.92 5.89  5.48  5.20 
8 3.68  2.73  2.39 4.65  3.54  3.08 5.17  4.16  3.68 5.29  4.55  4.12 5.26  4.73  4.42 
9 3.21  2.46  2.18 4.02  3.09  2.73 4.46  3.58  3.19 4.63  3.93  3.56 4.66  4.12  3.83 
10 2.86  2.25  2.02 3.56  2.79  2.48 3.94  3.17  2.84 4.10  3.47  3.15 4.18  3.66  3.38 
11 2.62  2.10  1.90 3.16  2.54  2.29 3.53  2.87  2.59 3.71  3.12  2.84 3.78  3.30  3.03 
12 2.46  1.98  1.81 2.89  2.35  2.13 3.18  2.64  2.39 3.38  2.84  2.60 3.48  3.02  2.78 
13 2.29  1.88  1.73 2.68  2.21  2.01 2.92  2.44  2.23 3.13  2.63  2.42 3.20  2.77  2.57 
14 2.16  1.80  1.67 2.50  2.09  1.92 2.74  2.31  2.11 2.91  2.47  2.27 2.97  2.59  2.40 
15 2.07  1.74  1.61 2.36  1.99  1.84 2.56  2.18  2.01 2.69  2.32  2.15 2.80  2.44  2.27 
16 1.97  1.67  1.56 2.24  1.91  1.77 2.44  2.08  1.92 2.55  2.21  2.05 2.64  2.30  2.15 
17 1.89  1.62  1.52 2.15  1.84  1.71 2.32  1.99  1.85 2.43  2.11  1.96 2.50  2.20  2.05 
18 1.82  1.58  1.49 2.07  1.78  1.66 2.21  1.92  1.79 2.32  2.02  1.89 2.39  2.10  1.98 
 
Note: The table shows asymptotic critical for the JW(b)  statistic computed using 

10 /b r= , where JW(b) = det(Y´Y)/det(Y´(I + b2D)−1Y), with D = diag(d1,…,dk) and di = 
(iπ)–2. 

 



Table 2: Asymptotic power bounds for best invariant tests under different restrictions on the common 
trend process under the null hypothesis for q = 12 

 
A. r = k = 1 (KLIC and LUB) 

 KLIC  Minimization Least Upper Bound 
 Restriction on Trend Process Under the Null Hypothesis 
 None Stationary Local-to-Unity I(1) Local-to-Unity I(1) 
 (i) |B| = 7, JW(|B|) power = 0.36, JW(10) power = 0.36 

|R| = 0.0 0.36 0.41 0.50 0.50 0.50 0.50 
|R| = 0.5 0.36    0.54 0.40 0.66 0.59 0.65 0.65 0.66 0.58 0.65 0.65 
|R| = 0.9 0.36    0.89 0.44 0.96 0.67 0.95 0.95 0.93 0.65 0.94 0.94 

 (ii) |B| = 14, JW(|B|) power = 0.64, JW(10) power = 0.63 
|R| = 0.0 0.64 0.69 0.81 0.82 0.78 0.81 
|R| = 0.5 0.64   0.81 0.67 0.93 0.80 0.92 0.92 0.88 0.78 0.90 0.90 
|R| = 0.9 0.64   0.99 0.72 1.00 0.87 1.00 1.00 1.00 0.82 1.00 1.00 

 
B: r = 1 and k ≥ 2 (KLIC minimization for k = 2) 

 Restriction on Trend Process Under the Null Hypothesis 
 None Diagonal G(s,t)  Diagonal and 

Stationary G(s,t) 
Local-to-Unity I(1) 

 ||B|| = 7, JW(||B||) power = 0.36, JW(10) power = 0.36 
||R|| = 0.0 0.36 0.36 0.39 0.42 0.42 
||R|| = 0.5 0.36 0.36 0.37 0.36 0.47 0.42 0.38 0.54 0.48 0.51 0.54 0.47 0.54 
||R|| = 0.9 0.36 0.36 0.43 0.36 0.82 0.59 0.43 0.92 0.69 0.64 0.92 0.86 0.92 

 ||B||= 14, JW(||B||) power = 0.64, JW(10) power = 0.63 
||R|| = 0.0 0.64 0.64 0.67 0.71 0.71 
||R|| = 0.5 0.64 0.65 0.64 0.64 0.76 0.71 0.66 0.83 0.77 0.76 0.82 0.77 0.83 
||R|| = 0.9 0.64 0.66 0.74 0.66 0.97 0.84 0.71 1.00 0.85 0.85 0.99 0.98 0.99 

 
C: r = 2 and k =1 (KLIC minimization) 

 Restriction on Trend Process Under the Null Hypothesis 
 None G(s,t)  Stationary G(s,t) Local-to-Unity I(1) 

Y-only Power 
Envelope 

 ||B|| = 10, JW(10/ 2 )  power = 0.39 
||R|| = 0.0 0.43 0.43 0.49 0.54 0.55 0.41 
||R|| = 0.5 0.46 0.49 0.47 0.46 0.54 0.47 0.61 0.59 0.50 0.72 0.59 0.65 0.69 0.59 0.70 0.41 0.44 0.41
||R|| = 0.9 0.50 0.69 0.50 0.50 0.74 0.50 0.94 0.74 0.57 0.98 0.74 0.76 0.97 0.74 0.97 0.41 0.55 0.41

 ||B|| = 20, JW(10/ 2 ) power = 0.58 
||R|| = 0.0 0.68 0.68 0.71 0.78 0.83 0.64 
||R|| = 0.5 0.72 0.74 0.72 0.72 0.76 0.72 0.81 0.77 0.74 0.91 0.85 0.81 0.91 0.87 0.91 0.64 0.68 0.64
||R|| = 0.9 0.79 0.94 0.79 0.79 0.97 0.79 0.98 .097 0.83 1.00 0.97 0.90 1.00 0.97 1.00 0.64 0.86 0.64
 
Notes: Entries are power bounds for 5% level tests against I(1) alternative described by B and R, where 
tests are restricted to control size for trend process listed in the column headings.  Side-by-side entries 
correspond to R·B < 0 and R·B > 0 in Panel A, and to tr(R´B)/( ||R|| ·||B||) = {–1, 0, 1} in Panels B and C. 
KLIC minimization refers to bounds constructed using optimal tests for simple null hypotheses 
satisfying the KLIC minimization problem from section 5.4.2.  In Panel A, the bounds under the 
heading Least Upper Bound were computed using the approximation discussed in Section 5.4.1.   



Table 3: Asymptotic Power of Feasible Weighted Average Power Maximizing Tests for r = k = 1 and 
q = 12 

 Restriction on Trend Process Under the Null Hypothesis 
 I(1) Local-to-Unity 
 Feasible Test Envelope Feasible Test Envelope 
 |B| = 7 

|R| = 0.0 0.47 0.50 0.46 0.50 
|R| = 0.5 0.53 0.53 0.65 0.65 0.55 0.48 0.66 0.58 
|R| = 0.9 0.87 0.87 0.94 0.94 0.88 0.61 0.93 0.65 

 |B| =14 
|R| = 0.0 0.74 0.81 0.70 0.78 
|R| = 0.5 0.79 0.79 0.90 0.91 0.79 0.71 0.88 0.78 
|R| = 0.9 0.97 0.97 1.00 1.00 0.97 0.73 1.00 0.82 

 
Notes: Entries below Feasible Test tabulate power of two feasible 5% level tests that control size in the 
I(1) and local-to-unity model, respectively, against the I(1) alternative described by B and R. By 
construction, these two tests approximately maximize equally weighted average power against the I(1) 
trend model with parameters B = 7 and R = −0.95,−0.85,⋯,0.85, 0.95.  Entries below Envelope 
tabulate the approximate power envelopes from Table 2 for comparison. Side-by-side entries 
correspond to R·B < 0 and R·B > 0. 



 
 
 

Figure 1:  Asymptotic power of JW(b) test and power envelope for Y–only tests for I(1) alternative, R = 0 and q = 12 
 
 
 

             
 
 


