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Abstract

This paper considers optimal testing of model comparison hypotheses for misspeci�ed

unconditional moment restriction models. We adopt the generalized Neyman-Pearson

optimality criterion, which focuses on the convergence rates of the type I and II error

probabilities under �xed global alternatives, and derive an optimal but practically

infeasible test. We then propose feasible approximation test statistics to the optimal

one. For linear instrumental variable regression models, the conventional empirical

likelihood ratio test statistic emerges. For general nonlinear moment restrictions, we

propose a new test statistic based on an iterative algorithm. We derive the asymptotic

properties of these test statistics.

JEL classi�cation: C12; C14; C52

Keywords: Moment restriction; Model comparison; Misspeci�cation; Generalized

Neyman-Pearson optimality; Empirical likelihood; GMM



1 Introduction

Econometric models are often de�ned in the form of moment restrictions and es-

timated by the generalized method of moments (GMM) (Hansen, 1982), empirical

likelihood (EL) (Qin and Lawless, 1994), or their generalizations (see, e.g., Newey

and Smith (2004)). In many applications, it is natural to assume that the model is

misspeci�ed. While such a model will be rejected with probability approaching one

by a consistent overidentifying restriction test, it nevertheless can be of interest as

an approximation to the true data generating process. For example, Prescott (1991)

argues that a model is only an approximation and should not be regarded as a null

hypothesis to be statistically tested. Thus, choosing a model closest to the truth in

some sense among several misspeci�ed models is of great importance for practitioners.

Misspeci�ed models and inference procedures for such models have been discussed

extensively in the econometric literature. White (1982) studies the properties of the

maximum likelihood estimator under misspeci�cation. Vuong (1989) proposes a test

of the null hypothesis that two misspeci�ed parametric models provide an equivalent

approximation to the true distribution in terms of their Kullback-Leibler information

criteria (KLIC). Rivers and Vuong (2002) extend such tests to a more general setting

that allows to compare misspeci�ed moment restriction models. Kitamura (2000)

develops an information theoretic test that compares misspeci�ed moment restriction

models by closeness to the true distribution in terms of the KLIC. Kitamura (2003)

extends the information theoretic approach to compare misspeci�ed conditional mo-

ment restriction models. Corradi and Swanson (2007) propose a Kolmogorov-type

test to compare misspeci�ed dynamic stochastic general equilibrium models. Hall

and Inoue (2003) discuss inference for misspeci�ed moment restriction models esti-

mated by the GMM.

This paper considers optimal testing of model comparison hypotheses for misspec-

i�ed unconditional moment restriction models. Our focus is not on the choice of the

measure of �t to set up the model comparison hypotheses but on the choice of the

test given the measure of �t. We adopt a GMM-type distance between a model and

the true data generating process. To compare di¤erent tests, we employ the large de-

viation approach.1 In particular, we adopt the generalized Neyman-Pearson (GNP)

optimality criterion, which focuses on the convergence rates of the type I and II error

1See, e.g., Dembo and Zeitouni (1998) for a review on large deviation theory.
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probabilities under �xed global alternatives, and derive an optimal test. The large

deviation approach is a natural choice for evaluating the e¢ ciency of an testing pro-

cedure when the models are globally misspeci�ed and there is an essential di¢ culty

with formulating Pitman-type local alternatives.

Based on Hoe¤ding�s (1965) seminal work on the large deviation optimality for

testing multinomial models, Zeitouni and Gutman (1991), ZG91 hereafter, develop the

notion of the GNP optimality and apply it to parameter hypothesis testing problems.

Kitamura (2001), K01 hereafter, shows that the EL test is GNP �-optimal for testing

overidenti�cation restrictions. This paper extends their GNP optimality approach

to model comparison testing problems. Based on a modi�ed version of the GNP

optimality criterion, we derive an optimal test that is de�ned by the KLIC. However,

since the derived optimal test is generally infeasible, we consider approximate tests

for speci�c cases. The approximate test turns out to be the empirical likelihood ratio

(ELR) type test (see, for example, equation (4) of K01 for a de�nition of ELR).

We �rst consider the model comparison test for linear instrumental variable re-

gression models under the GMM-type distance. In this case, we have an explicit form

for the pseudo-true values of the parameters in each model. The approximate GNP

optimal test statistic is obtained by solving an EL problem with a constraint given

by a smooth function of means. An application of the conventional EL theory (Hall

and La Scala, 1990) implies the asymptotic properties of our test.

We next consider the model comparison test for general nonlinear moment restric-

tion models under the GMM-type distance. In this case, our approximate test statistic

is de�ned as a solution to an EL maximization problem subject to a nonlinear in the

multinomial probabilities constraint, for which an asymptotic theory has not been

developed yet. Furthermore, in practice, solving such a problem can be extremely

di¢ cult: for a set of multinomial probabilities, one has to perform numerical opti-

mization to obtain the parameters�values, verify the constraint, and then select the

set of multinomial probabilities among those that satisfy the constraint. To overcome

the practical di¢ culty, following Wood, Do, and Broom (1996), WDB96 hereafter,

we propose an iterative algorithm which requires solving only a sequence of standard

linear in probabilities EL problems. We also derive the asymptotic properties of the

resulted iterated test statistic. Moreover, when the algorithm converges, it converges

to the ELR statistic corresponding to the original nonlinear in probabilities problem.

In their paper, WDB96 provide high level assumptions under which the iterated
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statistic is asymptotically equivalent to the original ELR statistic. However, the

asymptotic distribution of the original ELR statistic in a problem with a nonlinear

in probabilities constraint has not been established. On the other hand, we directly

derive the asymptotic distribution of the iterated statistic from primitive assumptions.

The problem of comparison of misspeci�ed models should be discerned from non-

nested hypothesis testing problems (Davidson and MacKinnon, 1981; MacKinnon,

1983; Smith, 1992). EL-based non-nested tests for moment restriction models are

considered by Smith (1997), Ramalho and Smith (2002), and Otsu andWhang (2008).

Suppose that the two alternative models are non-nested and therefore cannot be both

true at the same time. According to our model comparison null hypothesis, the models

have equal measures of �t and, consequently, the null hypothesis implies that they are

both misspeci�ed. However, in the literature on non-nested hypothesis testing, the

null hypothesis is that one of the models is true. Thus, the two approaches, the non-

nested testing and the model comparison testing of misspeci�ed models in the spirit

of Vuong (1989), are not competing but rather complementary. The �rst approach

can be used in a search for the true speci�cation, while the later approach can be

adopted when the econometrician believes that all alternative models are misspeci�ed

or when they all have been rejected by the overidenti�ed restrictions or non-nested

tests.

The rest of the paper is organized as follows. Section 2 describes our setup and

de�nes basic concepts. Section 3 discusses the GNP optimality. Section 4 considers

linear instrumental variable regression models and derives an approximate optimal

test. Section 5 considers general nonlinear moment restriction models and derives

a new approximate optimal test. Section 6 concludes. All proofs are given in the

Appendix.

We use the following notation. Let E� be the expectation under a probability

measure �, Pr fA : �g be the probability of an event A under a probability measure
�, Ia be the a � a unit matrix, kzk =

p
tr (zz0) be the Euclidean norm for a vector

or matrix z, kzkW =
p
z0Wz for a vector z and a symmetric positive de�nite matrix

W , and cl (A) and int (A) be the closure and interior of a set A, respectively.
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2 Setup and De�nitions

Suppose that we observe an iid sample fwigni=1 that is drawn from the true and un-

known distribution law �0 for the random vector w with the support in Rq. Consider
the unconditional moment restriction model implied by some economic theory:

E�0g (w; �0) = 0; (1)

where g : Rq��! Rlg is a known function up to the unknown parameters �0 2 � �
Rpg with lg > pg (overidenti�ed). In this paper, we denote moment restriction models
by their corresponding moment functions. For example, the model (1) is called the

model g. If the model g is correctly speci�ed, i.e., (1) is satis�ed at some parameter

value of �0, then we can apply the standard GMM theory for estimation and inference

on �0.

The focus of this paper is to compare two (or more) misspeci�ed moment restric-

tion models. To formalize our idea, we introduce some notation. LetM be the space

of all probability measures on Rq and de�ne

Pg� = f� 2M : E�g (w; �) = 0g ; Pg = [�2�Pg� ;

i.e., Pg� is a set of measures satisfying the moment restriction by g at �, and Pg is a set
of measures satisfying the moment restriction at some � 2 �. Then misspeci�cation
of the model (1) is de�ned as follows.

De�nition 1 (Misspeci�cation) The model g is said to be misspeci�ed if �0 62 Pg.

Remark. By De�nition 1 and because lg > pg, it follows that inf�2� kE�0g (w; �)k >
0, if g is misspeci�ed.

The alternative moment restriction model is de�ned similarly to g:

E�0h (w; �0) = 0; (2)

where h : Rq�B ! Rlh is another moment restriction function with B � Rph and lh >
ph. For the model h, we also de�ne the sets of measures Ph� = f� 2M : E�h (�) = 0g
and Ph = [�2BPh� .
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We consider the situation where the both models g and h are misspeci�ed, and

we want to compare these misspeci�ed models in terms of their closeness to the true

measure �0. Let D (g; �0) (or D (h; �0)) be the distance between the model g (or h)

and the true measure �0. For example, Vuong (1989) and Kitamura (2000) adopt the

KLIC to de�ne the distance. The KLIC-based distance DKLIC is de�ned as

DKLIC (g; �0) = inf
�2Pg

I (�0k�) ; DKLIC (h; �0) = inf
�2Ph

I (�0k�) ;

where I (�0k�) is the KLIC from �0 to �:

I (�0k�) =
( R

log
�
d�0
d�

�
d�0; if �0 � �;

1; otherwise.

Given a distance D, based on Vuong (1989) and Rivers and Vuong (2002), the

model comparison test is de�ned as follows.

De�nition 2 (Model comparison test) The model comparison test between the
models g and h under the distance D is to test the null hypothesis

H0 : D (g; �0) = D (h; �0) ; (3)

against the alternative hypothesis H1 = fHg or Hhg, where

Hg : D (g; �0) < D (h; �0) (g is preferred over h);

Hh : D (g; �0) > D (h; �0) (h is preferred over g):

When all competing models are misspeci�ed, their comparison and relative ranking

depend crucially on the choice of the distance: di¤erent de�nitions of the distance

can lead to di¤erent ranking of the models. In this paper (in Sections 4 and 5) we

focus on the GMM-type distance. For given symmetric and positive de�nite matrices

Wg and Wh, the GMM-type distance between the model g and the true distribution

�0 (and h and �0) is de�ned as

DGMM (g; �0) = inf
�2�

kE�0g (w; �)k
2
Wg
; DGMM (h; �0) = inf

�2B
kE�0h (w; �)k

2
Wh
: (4)

We focus on the GMM-type distance rather than the KLIC becauseDGMM directly
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punishes for the magnitude of the violation of the moment condition. In the case of

DKLIC , the model h is preferred over g if the family of measures Ph is closer to
�0 than Pg in terms of KLIC. However, the magnitude of violation of the moment
restrictions is not considered directly when the models are compared. We believe that

comparison in terms of DGMM is more attractive than comparison in terms of the

KLIC distance when inf�2� kE�0g (w; �)kWg
is meaningful from the economic theory

perspective.

Once the distance is chosen and the null hypothesis is de�ned, one can address

the issue of optimal testing for the selected distance D. In the case of DGMM , the

null hypothesis can be tested by using the di¤erence between the sample analogues

of inf�2� kE�0g (w; �)k
2
Wg
and inf�2B kE�0h (w; �)k

2
Wh
:

inf
�2�

1n
nX
i=1

g (wi; �)


2

Wg

� inf
�2B

1n
nX
i=1

h (wi; �)


2

Wh

: (5)

This approach was considered by Rivers and Vuong (2002). In this paper, we develop

an alternative testing procedure motivated by the notion of the GNP optimality. The

GNP optimality and its corresponding testing rule are discussed in the next section.

3 GNP Optimal Test

In this section, we investigate optimality for the model comparison test in De�nition 2.

Our optimality criterion is based on the global properties test statistics, in particular

the behaviors of error probabilities under �xed alternatives. If a test is consistent, the

type I and II error probabilities of the test typically decrease to zero at an exponential

rate under �xed alternatives, and competing tests can be compared by the convergence

rates of their error probabilities.

An alternative way to evaluate test statistics is to compute their local power func-

tions under a sequence of (Pitman-type) drifting local alternatives, which converges

to some measure satisfying H0 in (3). However, since we are interested in the case

where both models are globally misspeci�ed, it is natural to investigate the global

behaviors of tests under the �xed true measure.

Among several optimality criteria based on global properties of tests (see, for

example, Chapter 12 of Ser�ing (1980)), we adopt the GNP optimality criterion
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developed by ZG91 and K01, among others. Let �n be the empirical measure based

on the sample fwigni=1:

�n (A) =
1

n

nX
i=1

1A (wi) ;

for a set A in the Borel �-�eld on Rq, where 1A is the indicator function of A, and

de�ne

P0 = f� 2M : D (g; �) = D (h; �)g :

Note that P0 is the set of measures satisfying the null hypothesis H0. Consider a test

 = (
0;
1) based on �n de�ned by the partition (
0;
1) forM, that is2

accept H0 if �n 2 
0;
reject H1 if �n 2 
1 =Mn 
0:

Then the type I and II error probabilities are de�ned as

Pr f�n 2 
1 : �0g for �0 2 P0;
Pr f�n 2 
0 : �0g for �0 =2 P0;

respectively.

The original idea of the Neyman-Pearson optimality is to minimize the type II

error probability under a restriction on the type I error probability in �nite samples.

However, since it is generally di¢ cult to establish this original Neyman-Pearson op-

timality, we commonly focus on the large sample properties of the test. If the test

is consistent, both error probabilities converge to zero under �xed alternatives and

their convergence rates are typically exponential. By modifying the idea of the origi-

nal Neyman-Pearson optimality to the convergence rate analogs, the GNP optimality

criterion is described as

minimize limn!1
1
n
log Pr f�n 2 
0 : P1g for each P1 2M n P0; (6)

subject to supP02P0 limn!1
1
n
log Pr f�n 2 
1 : P0g � ��:

2We focus on the class of tests de�ned by a partition for the empirical measure. We conjecture
that an analogous argument to Lemma 1 of ZG91 may yield a su¢ ciency result to restrict on this class
of tests. For example, the usual GMM-type test statistic in (5) can be written as DGMM (g; �n)�
DGMM (h; �n).
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To analyze these convergence rates of the error probabilities, we can apply the

large deviation theory for the empirical measure. In particular, Sanov�s theorem is

useful for our purpose.

Lemma 3 (Sanov�s Theorem) Suppose that fwigni=1 is an iid sample from �0 2
M. Then its empirical measure �n satis�es

lim sup
n!1

1

n
log Pr f�n 2 G : �0g � � inf

�2G
I (�k�0) ;

for any closed set G �M with respect to the Lévy metric, and

lim inf
n!1

1

n
log Pr f�n 2 H : �0g � � inf

�2H
I (�k�0) ;

for any open set H �M with respect to the Lévy metric.

The proof of Sanov�s theorem can be found in Deuschel and Stroock (1989), for

example. Sanov�s theorem says that the error probabilities written in terms of the

empirical measure are determined by the KLIC between the data generating measure

�0 and the sets of interest G and H. This result is particularly useful for establishing

the bounds on the convergence rates of the type I and II errors probabilities. It also

suggests that a test based on the KLIC distance between the set of measures satisfying

H0 and the empirical measure might enjoy the GNP optimal property. On the other

hand, Sanov�s theorem has some rough nature: we can only obtain the upper (or

lower) bound for closed (or open) sets with respect to the Lévy metric. In general,

however, the rejection regions de�ned in terms of the KLIC do not have to be closed,

which makes derivation of the GNP optimality in the sense of (6) very di¢ cult (see

ZG91 and K01 for more discussions). Therefore, we consider the following modi�ed

version of the GNP optimality called the GNP �-optimality.

Let DL (�; �) denote the Lévy metric between � 2M and � 2M:

DL (�; �) = inf f� > 0 : F� (w � ��)� � � F� (w) � F� (w � ��) + � for all w 2 Rqg ;

where F� and F� are the distribution functions of � and �, respectively, and � =

(1; : : : ; 1)0 2 Rq. Let B (�; �) = f� 2M : DL (�; �) < �g be an open ball around
� 2M with radius � > 0. For a test 
 = (
0;
1), de�ne the partition 
� =

�

�0;


�
1

�
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with 
�1 = [�2
1B (�; �) and 
�0 =Mn 
�1. The set 
�1 is often called the �-blowup
(or �-smoothing) of the critical region 
1 by the Lévy ball.

De�nition 4 (GNP �-optimality) A test de�ned by the partition � = (�0;�1),

which may depend on �, is called GNP �-optimal if for each � > 0,

(a) supP02P0 lim supn!1
1
n
log Pr

�
�n 2 ��1 : P0

	
� �� for some � > 0,

(b) for any test 
 = (
0;
1) satisfying

sup
P02P0

lim sup
n!1

1

n
log Pr

n
�n 2 


��
1 : P0

o
� �� for some �� > �;

we have

lim sup
n!1

1

n
log Pr

�
�n 2M n ��1 : P1

	
� lim sup

n!1

1

n
log Pr

�
�n 2M n 
�1 : P1

	
;

for all P1 2M n P0.

Based on ZG91, we consider the following (� dependent) KLIC-based test �� =

(�0;�;�1;�):

accept H0 if �n 2 �0;� =
�
� 2M : inf

�2P0
inf

�02cl(B(�;c�))
I (� 0k�) � �

�
;

reject H0 if �n 2 �1;� =Mn �0;�;

for some c > 1. In other words, we test H0 by the test statistic

Tn;� = inf
�2P0

inf
�2cl(B(�n;c�))

I (�k�) ; (7)

with the critical value �. The following theorem provides the GNP �-optimality of

the KLIC-based test ��.

Theorem 5 (GNP �-optimal test) Suppose that fwigni=1 is iid and the set

f� 2M : inf�2P0 I (�k�) � �g is compact with respect to the Lévy metric. Then the
KLIC-based test �� is GNP �-optimal to test the model comparison hypothesis H0
against H1.
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Remarks. (a) The iid assumption on the data fwigni=1 is required to apply Sanov�s
theorem. Under weakly dependent data, large deviation properties of the empirical

measure can be analyzed by the Gärtner-Ellis theorem (Dembo and Zeitouni, 1998,

Theorem 2.3.6), where the convergence rate is characterized by the long-run limit of

the moment generating function instead of the KLIC. Although it is beyond the scope

of this paper, we conjecture that a test statistic based on this rate function can yield

an analogous optimality result.

(b) To prove the GNP optimality of a test in the sense of (6) by Sanov�s theorem,
one needs closedness of the rejection region f� 2M : inf�2P0 I (�k�) � �g which is
generally not true (see the discussion on page 287, Section III in ZG91). For GNP �-

optimality, we impose a weaker condition that the set f� 2M : inf�2P0 I (�k�) � �g
is compact. The later condition holds if, for example, if inf�2P0 I (�k�) is lower
semicontinuous in � under the Lévy metric.

(c) The compactness assumption on the set f� 2M : inf�2P0 I (�k�) � �g re-
stricts the form of the null hypothesis P0, i.e., not only the forms of the moment
functions g and h, but also the form of the distance D. For example, suppose that

the distances D (g; �0) and D (h; �0) are continuous in �0 under the Lévy metric,

which is satis�ed if g and h are bounded and the GMM-type distance DGMM in (4) is

adopted. In this case, applications of the maximum theorem (Leininger, 1984) com-

bined with the lower semicontinuity of the KLIC (Chaganty and Karandikar, 1996)

imply the lower semicontinuity of inf�2P0 I (�k�) in � under the Lévy metric, which
in turn implies the compactness of f� 2M : inf�2P0 I (�k�) � �g under the Lévy
metric. Note that the KLIC distance DKLIC does not guarantee the continuity of

DKLIC (g; �0) and DKLIC (h; �0) in �0 in general even if g and h are bounded.

(d) Although the GNP �-optimality can be considered as an weaker de�nition of
optimality than the original Neyman-Pearson or the GNP optimality in the sense of

(6), this theorem is insightful: we should take the minimum distance between the null

space P0 and the closed Lévy ball cl (B (�n; 2�)) around the empirical measure �n by
using the KLIC.

(e) The obvious limitation of this theorem is the fact that both the optimal test

�� and alternative test 
� depend on the blowup constant �. For the optimal test

��, we can apply a similar argument to Corollary 3 of ZG91 and construct a positive

and monotone decreasing sequence f�ngn2N with �n ! 0 such that the n-dependent

test
�
��n
	
n2N satis�es the GNP �-optimality. On the other hand, for the alternative
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test 
�, suppose that the test 
� is �regular�in the sense of ZG91, i.e.

lim
�!0

lim sup
n!1

1

n
log Pr

�
�n 2 
�1 : P0

	
= lim sup

n!1

1

n
log Pr f�n 2 
1 : P0g ;

for each P0 2 P0, which is satis�ed when inf�2int(
1) I (�kP0) = inf�2cl(
1) I (�kP0)
(see Lemma 4 of ZG91). Then we can replace the blowup critical regions 
��1 and 


�
1

in De�nition 4 with the original one 
1.

(f) It is generally di¢ cult to compute the test statistic Tn;� in practice. However,
inspired by this optimality result, we can consider feasible approximations to the

GNP �-optimal test Tn;�. In particular, we remove the �-blowup and focus on the

approximate test statistic

Tn = inf
�2P0

I (�nk�) : (8)

(g) When �0 is discrete, the approximate statistic Tn is GNP �-optimal and no
smoothing is required (see Section II in ZG91). The GNP optimality of the likelihood

ratio test in multinomial models is established by Hoe¤ding (1965).

(h) The approximate statistic Tn is actually equivalent to the ELR statistic. Let
p be a discrete measure that assigns strictly positive probabilities to the observations

fwigni=1, i.e. p (A) =
Pn

i=1 pi1A (wi), where pi > 0 is the probability assigned by p to

wi. The ELR statistic is de�ned as

ELRn = �2 log
�
LconstrainedEL =LunconstrainedEL

�
;

where LconstrainedEL is the constrained EL:

LconstrainedEL = maxp1;:::;pn
nQ
i=1

pi;

s.t. pi > 0;
Pn

i=1 pi = 1; D (g; p) = D (h; p)

(9)

and LunconstrainedEL is the maximum of EL without the constraint D (g; p) = D (h; p):

LunconstrainedEL = n�n

(when there is no p that satis�es the constraint, set ELRn =1). Let p� be a solution
to the maximization problem in (9). Due to the de�nition of the KLIC, one only has
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to consider the discrete measures p when solving (8). Now,

Tn =
1

n

nX
i=1

log
1=n

p�i

=
1

2n
ELRn:

The ELR statistic has an asymptotic �2 null distribution when the constraint is linear

in probabilities (Owen, 2001) or can be expressed as a smooth function of means (Hall

and La Scala, 1990). In our case, the constraint is generally nonlinear in probabilities.

The next two sections investigate implementation and the statistical properties of

the approximate optimal test based on Tn.

4 Approximate Optimal Test: Linear Case

This section considers a comparison of linear instrumental variable regression models.

The linear case is particularly illustrating since the testing problem can be expressed

in a closed form in terms of smooth functions of means, and the asymptotic null

distribution of the test statistic can be obtained directly from the existing results in

the EL literature.

Let w =
�
yg; xg0; zg0; yh; xh0; zh0

�0
, where yg, xg, and zg denote the dependent vari-

able, endogenous regressors, and instruments in the model g; and yh, xh, and zh

denote the dependent variable, endogenous regressors, and instruments in the model

h. There can be overlapping variables between the two models; for example, it is

possible that the two models have the same dependent variables (yg = yh = y) and

regressors (xg = xh = x) but di¤erent sets of instruments. The moment restrictions

are:

E�0g (w; �0) = E�0z
g (yg � xg0�0) = 0; (10)

E�0h (w; �0) = E�0z
h
�
yh � xh0�0

�
= 0; (11)

where �0 2 � � Rpg and �0 2 B � Rph, and it is assumed that for no value of the
parameters the moment conditions (10) and (11) are satis�ed. We consider the model

comparison test under the GMM-type distance DGMM in (4), i.e., the null hypothesis

is

12



H0 : inf
�2�

kE�0zg (yg � xg0�)k
2

Wg
= inf

�2B

E�0zh �yh � xh0��2Wh
: (12)

An important condition is that the models are overidenti�ed, otherwise, in the exactly

identi�ed case, the null restriction is trivially satis�ed with zeros on both sides.

Assumption 6 (a) The models are overidenti�ed: rank (E�0zgxg0) = lg > pg and

rank
�
E�0z

hxh0
�
= lg > pg.

(b) The models g and h are misspeci�ed.

By part (a) of the assumption, we have closed-form solutions for the minimization

problems in (12):

�� (�0) = ((E�0x
gzg0)Wg (E�0z

gxg0))
�1
(E�0x

gzg0)Wg (E�0z
gyg) ;

with a similar expression for �� (�0). Thus, the null hypothesis in (12) can be written

as a function of the means:

H0 : f (� (�0)) = 0;

where

� (�0) =
�
E�0z

gxg0; E�0z
gyg; E�0z

hxh0; E�0z
hyh
�
;

f (� (�0)) = kE�0zgyg � (E�0zgxg0) �� (�0)k
2

Wg
�
E�0zhyh � �E�0zhxh0� �� (�0)2Wh

:

In this case, our approximate GNP �-optimal test statistic in (8) takes the following

form:

TLn = inf
f�2M:f(�(�))=0g

I (�nk�)

= min
f�:f(�)=0g

` (�) ; (13)

where ` (�) = `
�
�g1 ; �

g
2 ; �

h
1 ; �

h
2

�
and

`
�
�g1 ; �

g
2 ; �

h
1 ; �

h
2

�
= � maxfpigni=1

1
n

Pn
i=1 log (npi)

s.t. pi > 0;
Pn

i=1 pi = 1;Pn
i=1 piz

g
i x

g0
i = �

g
1 ;

Pn
i=1 piz

g
i y
g
i = �

g
2 ;Pn

i=1 piz
h
i x

h0
i = �

h
1 ;

Pn
i=1 piz

h
i y

h
i = �

h
2 :

13



Note that the derived test statistic TLn is equivalent to the ELR statistic for a smooth

function of means by Hall and La Scala (1990). Therefore, in this setup, the ELR

test has a rationale as an approximation to the GNP �-optimal test discussed in the

last section. To derive the asymptotic property of the test statistic, we can directly

apply the existing result by Hall and La Scala (1990). To this end, we impose the

following assumption.

Assumption 7 The vector
�
vec (zgxg0)0 ; (zgyg)0 ; vec

�
zhxh0

�0
;
�
zhyh

�0�0
excluding the

overlapping elements has a �nite and positive de�nite variance matrix.

From Theorem 2.1 of Hall and La Scala (1990), we have the following result:

Theorem 8 (Approximate optimal test for linear models) Consider the dis-
tance DGMM , and suppose that Assumptions 6 and 7 hold. Then the model comparison

test statistic TLn between the models (10) and (11) satis�es 2nTLn !d �
2
1 under H0,

and 2nTLn !1 almost surely under H1.

5 Approximate Optimal Test: General Case

This section considers general nonlinear moment restriction models (1) and (2). As in

the last section, we consider the model comparison test under the GMM-type distance

DGMM . However, in contrast to the linear case, the solutions �� (�0) and �� (�0) to

inf�2� kE�0g (w; �)k
2
Wg
and inf�2B kE�0h (w; �)k

2
Wh
, respectively, cannot be expressed

in a closed form.

Hereafter for brevity we also use the notation

gi (�) = g (wi; �) and hi (�) = h (wi; �) :

Similarly to (13), the approximate GNP �-optimal test can be written as

TGn = inf
�2
n
�2M:inf�2�kE�g(w;�)k2Wg

=inf�2BkE�h(w;�)k2Wh

o I (�nk�)
= � maxfpigni=1

1
n

Pn
i=1 log (npi)

s.t. pi > 0;
Pn

i=1 pi = 1;

inf�2� k
Pn

i=1 pigi (�)k
2

Wg
= inf�2B k

Pn
i=1 pihi (�)k

2

Wh
:

(14)

14



Note that since the last restriction in the above maximization problem is nonlinear

in pi, we cannot apply the standard implementation and asymptotic theory of EL.

The di¢ culties of EL in the case of nonlinear in probabilities constraints have

been addressed by WDB96. They proposed an iterative algorithm based on the ap-

proximate linearization of the constraints. Instead of solving the EL problem with

a nonlinear in probabilities constraint, the econometrician solves a sequence of EL

problems with linear in probabilities constraints that hold approximately. The lin-

earization is obtained by a Taylor expansion of the original constraint. A similar idea

can be used in our case as well. However, unlike WDB96, we do not rely on a Taylor

expansion to obtain a linearization, and the linearization is exact in our case in some

sense clari�ed later (see Remark (b) following Lemma 10 below).

De�ne the Hessians of the GMM objective functions:

Hg (�; �) =

�
E�
@g (w; �)

@�0

�0
Wg

�
E�
@g (w; �)

@�0

�
+

+
�
Ipg 
 (WgE�g (w; �))

�0�
E�

@

@�0
vec

�
@g (w; �)

@�0

��
;

and

Hh (�; �) =

�
E�
@h (w; �)

@�0

�0
Wh

�
E�
@h (w; �)

@�0

�
+

+ (Iph 
 (WhE�h (w; �)))
0
�
E�

@

@�0
vec

�
@h (w; �)

@�0

��
:

To characterize the solution to the likelihood maximization problem (14), we make

the following assumption.

Assumption 9

(a) � and B are compact.

(b) The model g is misspeci�ed and kE�0gi (�)k
2
Wg
has a unique minimum at �� 2

int (�); the model h is misspeci�ed and kE�0hi (�)k
2
Wh
has a unique minimum

at �� 2 int (B).

(c) gi (�) is twice continuously di¤erentiable on � almost surely; hi (�) is twice con-
tinuously di¤erentiable on B almost surely.

15



(d) Hg (�0; �) is nonsingular in a neighborhood N�� of ��; Hh (�0; �) is nonsingular
in a neighborhood N�� of ��.

Assumptions 9(a) and (c) are standard for nonlinear models. Assumptions 9(b)

requires uniqueness of the pseudo-true values, which is often assumed in the literature

of misspeci�cation analysis (Vuong, 1989; Kitamura, 2000; Rivers and Vuong, 2002;

Hall and Inoue, 2003). Assumptions 9(d) requires that the Hessians of the GMM

objective functions are nonsingular. Such an assumption appears, for example, in

Hall and Inoue (2003). Note that, in comparison to the standard correctly speci�ed

case, the Hessian involves an extra term when the model is misspeci�ed. For example,

the second summand in the de�nition of Hg is di¤erent from zero even when Hg is

evaluated at �0 and ��.

Let p̂ = (p̂1; : : : ; p̂n) be the solution to (14), � be the Lagrange multiplier associated

with the last constraint in (14), � (p) = arg inf�2� k
Pn

i=1 pigi (�)k
2

Wg
, and � (p) =

arg inf�2B k
Pn

i=1 pihi (�)k
2

Wh
. The following lemma characterizes the solution p̂ and

the associated parameter values �̂ = � (p̂) and �̂ = � (p̂) as a solution to an EL

maximization problem with a linear moment restriction.

Lemma 10 (Linearization) Under Assumption 9,
�
p̂; �̂; �̂

�
satis�es

�
�̂; �̂; �̂

�
= arg inf

�2�;�2B
max
�2R

nX
i=1

log
�
1 + �di

�
�; �; p̂; �̂; �̂

��
; (15)

where

di

�
�; �; p̂; �̂; �̂

�
= gi (�)

0Wg

 
nX
j=1

p̂jgj

�
�̂
�!

� hi (�)0Wh

 
nX
j=1

p̂jhj

�
�̂
�!

;

and

p̂i =
1

n
�
1 + �̂di

�
�̂; �̂; p̂; �̂; �̂

�� :
Remarks. (a) Lemma 10 represents �̂, �̂, and p̂ as a solution to the �xed point
problem. Given �̂, �̂, and p̂, one can construct a linear in probabilities EL problem

that has �̂ and �̂ as a solution. The probabilities p̂ that solve the original EL problem

can be also recovered obtained as a by-product of solving the linearized EL problem

in (15).
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(b) Unlike the case considered in WDB96, here the solution does not depend on
the derivatives @� (p) =@pi and @� (p) =@pi. Our linearization is exact in this sense.

This is due to the fact that we have quadratic functions in the constraint in (14).

Since �̂, �̂, and p̂ are solutions to a �xed point problem, Lemma 10 leads to the

following iterative algorithm.

Step 1: Given
�
�̂(s�1); �̂(s�1); p̂(s�1)

�
, update the estimators of � and � by solving

the minimax problem:

�
�̂(s); �̂(s); �̂(s)

�
= arg inf

�2�;�2B
max
�2R

nX
i=1

log
�
1 + �di

�
�; �; p̂(s�1); �̂(s�1); �̂(s�1)

��
:

(16)

Step 2: Update p̂ using �̂(s), �̂(s), and �̂(s) obtained at Step 1:

p̂
(s)
i =

1

n
�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�� :
Iterate Steps 1 and 2 until convergence of the sequence

n�
�̂(s); �̂(s)

�
: s 2 N

o
is

achieved or the maximum allowed number of iterations is reached.

Remarks. (a) At each iteration, we solve a standard linear in probabilities EL
maximization problem with the moment function di

�
�; �; p̂(s�1); �̂(s�1); �̂(s�1)

�
. Since

the Lagrangian � is scalar, it is cheap to implement the maximization in (16).

(b) The iterated test statistic to approximate TGn in (14) is obtained as

TG(s)n =
1

n

nX
i=1

log
�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��
: (17)

(c)We suggest terminating the algorithm by checking a convergence criterion on�
�̂(s); �̂(s)

�
rather than on the value of the objective function in (16) or TG(s)n because

the constraint changes from iteration to iteration. Thus, in the absence of convergence

of the sequence
�
�̂(s); �̂(s)

�
, we suggest setting TGn =1.

(d) As we show in the proof of Lemma 10, the original and linearized problems
satisfy the same �rst-order conditions. Therefore, if the algorithm converges, the

sequence of the iterated statistics TG(s)n converges to the original statistic TGn .
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(e) Similar algorithms motivated by �xed point problems have been considered in
the econometric literature in the context of discrete dynamic games (Aguirregabiria

and Mira, 2002, 2007; Kasahara and Shimotsu, 2008).

Next, we discuss the asymptotic property of the test statistic obtained from the

iterated procedure described above. We add the following assumptions.

Assumption 11

(a) 0 < E�0d
2
i (�

�; ��;�0; �
�; ��) <1.

(b) In a neighborhood N�� of �� and for some " > 0, E�0 sup�2N�� kgi (�)k
2+" < 1;

in a neighborhood N�� of ��, E�0 sup�2N�� khi (�)k
2+" <1.

(c) E�0 sup�2N��
@gi(�)@�0

2 <1; E�0 sup�2N�� @hi(�)@�0

2 <1.
(d) E�0 sup�2N��

 @
@�0vec

�
@gi(�)
@�0

� <1; E�0 sup�2N��  @
@�0vec

�
@hi(�)
@�0

� <1.
(e) The matrix

�
Ipg 
WgE�0gi (�

�)
�0
E�0

@
@�0vec

�
@gi(�

�)
@�0

�
is nonsingular; the matrix

(Iph 
WgE�0hi (�
�))0E�0

@
@�0vec

�
@hi(�

�)
@�0

�
is nonsingular.

Assumption 11(a) implies that the weighted di¤erence of gi (��) and hi (��) is not

a degenerate random variable, i.e.

Pr
�
gi (�

�)0WgE�0gi (�
�)� hi (��)0WhE�0hi (�

�) = 0 : �0
	
= 0:

Assumption 11(b)-(d) assume that the moment functions g and h are su¢ ciently

smooth in some neighborhoods of �� and �� respectively, and the distribution of the

data has su¢ ciently thin tails; they are similar to Assumption 2(f) of Kitamura (2000).

Assumption 11(e) is a condition on the weighted matrices of the second derivatives

of g and h.

We have the following result.

Theorem 12 (Approximate optimal test for nonlinear models) Suppose that
Assumptions 9 and 11 hold. Assume further that

Ep̂(s�1)gi ��̂(s�1)�� E�0gi (��) =
Op
�
n�1=2

�
and

Ep̂(s�1)hi ��̂(s�1)�� E�0hi (��) = Op �n�1=2� for some s2 N. Then,
18



(a) 2nTG(s)n !d �
2
1 under H0, and 2nT

G(s)
n !1 almost surely under H1,

(b)
Ep̂(s)gi ��̂(s)�� E�0gi (��) = Op

�
n�1=2

�
and

Ep̂(s)hi ��̂(s)�� E�0hi (��) =
Op
�
n�1=2

�
, provided that H0 is true.

Remarks. (a) According to part (a) of the theorem, if Ep̂(s�1)gi
�
�̂(s�1)

�
and

Ep̂(s�1)hi

�
�̂(s�1)

�
are n�1=2 distant from E�0gi (�

�) and E�0hi (�
�), then the statistic

computed after s iteration has a �21 asymptotic distribution under the null. Further-

more, at iteration s, the estimated expectations of gi and hi are also n�1=2 distant

from their true expected values, provided that H0 is true.

(b) For 2nTG(s)n to have a �21 asymptotic null distribution at each iteration s, it

is su¢ cient to initialize the algorithm with the starting values that are n�1=2 distant

from their corresponding population counterparts. Thus, one should pick starting

values
�
�̂(0); �̂(0); �̂(0); p̂(0)

�
satisfying

Pn
i=1 p̂

(0)
i gi

�
�̂(0)
�
� E�0gi (��)

 = Op �n�1=2�,Pn
i=1 p̂

(0)
i hi

�
�̂(0)
�
� E�0hi (��)

 = Op �n�1=2�, and �̂(0) = op (1). For example, un-
der mild regularity conditions, these conditions are satis�ed by

p̂
(0)
i =

1

n
; �̂(0) = 0;

�̂(0) = �
�
p̂(0)
�
= arg inf

�2�

 1n
nX
i=1

gi (�)


2

Wg

;

�̂(0) = �
�
p̂(0)
�
= arg inf

�2B

 1n
nX
i=1

hi (�)


2

Wh

:

(c) As we mention in the introduction, our result di¤ers from that of WDB96.

In their paper, WDB96 provide high level assumptions under which the iterative and

ELR statistics are asymptotically equivalent; however, the distribution of the ELR

statistic in the case of a nonlinear in probabilities constraint remains unknown. On

the other hand, we derive the asymptotic null distribution of the iterated statistic

at each iteration by relying on the more primitive assumptions. Furthermore, our

result implies that the ELR statistic corresponding to the nonlinear in probabilities

problem has a �2 asymptotic null distribution, because the sequence TG(s)n converges

to TGn when it converges.
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6 Conclusion

In this paper, we consider optimality in model comparison hypothesis testing for

misspeci�ed unconditional moment restriction models. Based on the generalized

Neyman-Pearson optimality criterion, which focuses on the convergence rates of the

type I and II error probabilities under �xed global alternatives, we �nd an optimal test

statistic that is de�ned by the Kullback-Leibler information criterion. We propose

approximate test statistics to the optimal test for linear and nonlinear models. For

linear instrumental variable regression models, we obtain the conventional empirical

likelihood ratio test. For general nonlinear moment restrictions, we develop a new

test statistic based on an iterative algorithm. The asymptotic properties are derived

for these test statistics.

A Proofs

A.1 Proof of Theorem 5

First, we check De�nition 4 (a). Without loss of generality, we set as c = 2 in (7).

Pick any � > 0 and P0 2 P0. We start by showing that for each �0 2 (0; �=2),

cl
�
��1;�

�
� ��01;�0 : (18)

Pick any and � 2 cl
�
��1;�

�
. It is su¢ cient for (18) to show that

inf
�2P0

I (� 0k�) > � for each � 0 2 cl (B (�; 2�0)) : (19)

Since � 2 cl
�
��1;�

�
, there exists ! 2 M such that DL (�; !) � � + (� � 2�0) =2 and

inf�2P0 I (!
0k�) > � for each !0 2 cl (B (!; 2�)). Thus, it is su¢ cient for (19) to show

that � 0 2 cl (B (!; 2�)) for each � 0 2 cl (B (�; 2�0)). This can be shown by the triangle
inequality:

DL (�
0; !) � DL (�

0; �) +DL (�; !)

� 2�0 + � + (� � 2�0) =2
< 2�;
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for each � 0 2 cl (B (�; 2�0)). Therefore, we obtain (18). Now, observe that

lim sup
n!1

1

n
log Pr

�
�n 2 ��1;� : P0

	
� lim sup

n!1

1

n
log Pr

�
�n 2 cl

�
��1;�

�
: P0
	

� � inf
P2cl(��1;�)

I (PkP0)

� � inf
P2��0

1;�0

I (PkP0)

� ��;

where the �rst inequality follows from a set inclusion relationship, the second inequal-

ity follows from Sanov�s theorem, the third inequality follows from (18), and the last

inequality follows from the de�nition of ��
0
1;�0. Therefore, the test � satis�es De�nition

4 (a).

We now check De�nition 4 (b). Without loss of generality, we set as �� = 6�. Pick

any � > 0 and P1 2M n P0. We start by showing that

�2:1�0;2:1� � 
�0: (20)

Suppose otherwise. Then there exists a sequence f�mgm2N such that �m 2 �2:1�0;2:1�

and �m 2 
�1 for all m 2 N. Since �m 2 �2:1�0;2:1�, there exists f�0mgm2N such that
DL (�m; �

0
m) < 4:2� and inf�2P0 I (�

0
mk�) � �. The set f� 2M : inf�2P0 I (�k�) � �g

is assumed to be compact, and therefore there exists a subsequence
�
�0mk

	
k2N such

that �0mk
! �0 2 f� 2M : inf�2P0 I (�k�) � �g as k ! 1. Also, from �m 2 
�1 and

DL (�m; �
0
m) < 4:2� for all m 2 N, we have �0mk

2 
5:2�1 and thus B
�
�0mk
; �=2

�
� 
6�1

for all k 2 N, which implies that the limit �0 satis�es B (�0; �=4) � 
6�1 . Thus, Sanov�s
theorem implies

sup
P02P0

lim inf
n!1

1

n
log Pr

�
�n 2 
6�1 : P0

	
� sup

P02P0
lim inf
n!1

1

n
log Pr f�n 2 B (�0; �=4) : P0g

� � inf
P02P0

inf
P2B(�0;�=4)

I (PkP0)

� ��:

21



Since this contradicts with the requirement for 
, we obtain (20). Now, observe that

lim sup
n!1

1

n
log Pr

�
�n 2 
�0 : P1

	
� lim sup

n!1

1

n
log Pr

�
�n 2 �2:1�0;2:1� : P1

	
� lim inf

n!1

1

n
log Pr

�
�n 2 int

�
�2:1�0;2:1�

�
: P1
	

� � inf
P2int(�2:1�0;2:1�)

I (PkP1)

� � inf
P2��0;�

I (PkP1)

� lim sup
n!1

1

n
log Pr

�
�n 2 ��0;� : P1

	
;

where the �rst inequality follows from (20), the second inequality follows from a set

inclusion relationship, the third inequality follows from Sanov�s theorem, the fourth

inequality follows from (18), and the last inequality follows from Sanov�s theorem.

Therefore, the test � satis�es De�nition 4 (b). �

A.2 Proof of Lemma 10

Consider the optimization problem in (14); its Lagrangian is

L =
nX
i=1

log (npi) + 

 
nX
i=1

pi � 1
!

� n�
2

 
nX
i=1

pigi (� (p))

!0
Wg

 
nX
i=1

pigi (� (p))

!

+
n�

2

 
nX
i=1

pihi (� (p))

!0
Wh

 
nX
i=1

pihi (� (p))

!
:

The �rst-order condition corresponding to pi is

0 = p̂�1i + ̂ � n�̂
" 
gi (� (p̂)) +

nX
j=1

p̂j
@gj (� (p̂))

@�0
@� (p̂)

@pi

!0
Wg

 
nX
j=1

p̂jgj (� (p̂))

!

�
 
hi (� (p̂)) +

nX
j=1

p̂j
@hj (� (p̂))

@�0
@� (p̂)

@pi

!0
Wh

 
nX
j=1

p̂jhj (� (p̂))

!#
: (21)
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The �rst-order conditions for � (p̂) and � (p̂) are 
nX
j=1

p̂j
@gj (� (p̂))

@�0

!0
Wg

 
nX
j=1

p̂jgj (� (p̂))

!
= 0; (22)

 
nX
j=1

p̂j
@hj (� (p̂))

@�0

!0
Wh

 
nX
j=1

p̂jhj (� (p̂))

!
= 0: (23)

Thus, by the implicit function theorem, the derivatives @� (p) =@pi and @� (p) =@pi
can be obtained as

@� (p̂)

@pi
= �H�1

g (p̂; � (p̂))

�
@gi (� (p̂))

@�0

�0
Wg

 
nX
j=1

p̂jgj (� (p̂))

!
�

�H�1
g (p̂; � (p̂))

 
nX
j=1

p̂j
@gj (� (p̂))

@�0

!0
Wggi (� (p̂)) :

From Assumption 9(d), @� (p̂) =@pi exists with probability approaching one. We can

obtain a similar expression for @� (p̂) =@pi.

Next, note that by (22), 
nX
j=1

p̂j
@gj (� (p̂))

@�0
@� (p̂)

@pi

!0
Wg

 
nX
j=1

p̂jgj (� (p̂))

!

=
@� (p̂)0

@pi

 
nX
j=1

p̂j
@gj (� (p̂))

@�0

!0
Wg

 
nX
j=1

p̂jgj (� (p̂))

!
= 0;

and similarly,  
nX
j=1

p̂j
@hj (� (p̂))

@�0
@� (p̂)

@pi

!0
Wh

 
nX
j=1

p̂jhj (� (p̂))

!
= 0:

Thus, the �rst-order condition for p̂ in (21) simpli�es to

p̂�1i = ̂ � n�̂
"
gi (� (p̂))

0Wg

 
nX
j=1

p̂jgj (� (p̂))

!
� hi (� (p̂))0Wh

 
nX
j=1

p̂jhj (� (p̂))

!#
:
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By multiplying p̂�1i and taking summation to the both sides, we have ̂ = �n and
then

n�1p̂�1i = 1 + �̂di (� (p̂) ; � (p̂) ; p̂; � (p̂) ; � (p̂)) ; (24)

where �̂ solves
nX
i=1

di (� (p̂) ; � (p̂) ; p̂; � (p̂) ; � (p̂))

1 + �̂di (� (p̂) ; � (p̂) ; p̂; � (p̂) ; � (p̂))
= 0: (25)

Suppose �̂d, �̂d, and �̂d solve the minimax problem in (15). Further, de�ne p̂d;i
such that

n�1p̂�1d;i = 1 + �̂ddi

�
�̂d; �̂d; p̂; � (p̂) ; � (p̂)

�
:

The �rst-order conditions for �̂d, �̂d, and �̂d are0@ nX
j=1

p̂d;j
@gj

�
�̂d

�
@�0

1A0

Wg

 
nX
j=1

p̂jgj (� (p̂))

!
= 0; (26)

0@ nX
j=1

p̂d;j
@hj

�
�̂d

�
@�0

1A0

Wh

 
nX
j=1

p̂jhj (� (p̂))

!
= 0; (27)

nX
i=1

di

�
�̂d; �̂d; p̂; � (p̂) ; � (p̂)

�
1 + �̂ddi

�
�̂d; �̂d; p̂; � (p̂) ; � (p̂)

� = 0: (28)

By comparing (22), (23), and (25) with (26)-(28), it follows that �̂, �̂, and �̂ solve

the dual problem. Furthermore, by Assumption 9(b), the solution is unique with

probability approaching one. �

A.3 Proof of Theorem 12

Proof of (a). Pick any s 2 N. The following steps yield the conclusion:

2nTG(s)n = 2

nX
i=1

log
�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��

=

�Pn
i=1 di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��2
Pn

i=1 d
2
i

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� + op (1) (29)
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=
(
Pn

i=1 di (�
�; ��;�0; �

�; ��))
2

E�0d
2
i (�

�; ��;�0; ��; ��)
+ op (1) (30)

!d �
2
1: (31)

First, we show (29). An expansion of the �rst-order condition for �̂(s) around

�̂(s) = 0 yields

0 =
nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
=

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�

� �̂(s)
nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�2
�
1 + ��di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��2 ; (32)

where �� is a point on the line joining �̂(s) and 0. Assumption 11(b) implies that

max
1�i�n

sup
�2N��

kgi (�)k = op
�
n1=2

�
; (33)

max
1�i�n

sup
�2N��

khi (�)k = op
�
n1=2

�
; (34)

(see the proof of (2.4) on page 701 of Guggenberger and Smith (2005)). By Lemma

13, �̂(s) and �̂(s) are in the n�1=2 neighborhoods of �� and �� respectively, and �̂(s) =

Op
�
n�1=2

�
. It follows now by (33) and (34),

������ max
1�i�n

���di ��̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)���� = op (1) : (35)

Also note that by a standard consistency argument using the assumptions of the

theorem on Ep̂(s�1)gi
�
�̂(s�1)

�
and Ep̂(s�1)hi

�
�̂(s�1)

�
, Lemma 13(a), Assumption 11(b)-

(c), and Cauchy-Schwarz inequality:

1

n

nX
i=1

d2i

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
p! E�0d

2
i (�

�; ��;�0; �
�; ��) ; (36)
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Thus, under (35) and (36) with Assumption 11(a), we can solve (32) for �̂(s) as

�̂(s) =

Pn
i=1 di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
Pn

i=1 d
2
i

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� + op (1) ; (37)

with probability approaching one. On the other hand, an expansion of

2
Pn

i=1 log
�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��
around �̂(s) = 0 yields

2
nX
i=1

log
�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

��
= 2�̂(s)

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
� �̂(s)2

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�2

+
2

3
�̂(s)3

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�3
1 + _�di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� ; (38)

where _� is a point on the line joining �̂(s) and 0. Ignoring the constant, the absolute

value of the third term in (38) is bounded by

����̂(s)���3 max
1�i�n

������ 1

1 + _�di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
������

� max
1�i�n

���di ��̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)����
�
�����
nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�2�����
= Op

�
n�3=2

�
Op (1) op

�
n1=2

�
Op (n) = op (1) ;

where the equality follows from Lemma 13(b), (35), and (36). Therefore, from (37)

and (38), we obtain (29).
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Next, we show (30). It is su¢ cient to show that

1p
n

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
� 1p

n

nX
i=1

di (�
�; ��;�0; �

�; ��)
p! 0: (39)

Observe that

1p
n

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
� 1p

n

nX
i=1

di (�
�; ��;�0; �

�; ��)

=
1p
n

nX
i=1

di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

�
� 1p

n

nX
i=1

di

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
+

1p
n

nX
i=1

di

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
� 1p

n

nX
i=1

di
�
��; ��; p̂(s�1); ��; ��

�
+

1p
n

nX
i=1

di
�
��; ��; p̂(s�1); ; ��; ��

�
� 1p

n

nX
i=1

di (�
�; ��;�0; �

�; ��)

= T1 + T2 + T3:

For T1, an expansion around
�
�̂(s); �̂(s)

�
= (��; ��) yields

T1 =
1p
n

nX
i=1

@di

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
@�0

�
�̂(s) � ��

�

+
1p
n

nX
i=1

@di

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
@�0

�
�̂(s) � ��

�
+ op (1) (40)

=

 
nX
j=1

p̂
(s�1)
j gj

�
�̂(s�1)

�!0
Wg

 
1

n

nX
i=1

@gi (�
�)

@�0

!
p
n
�
�̂(s) � ��

�

+

 
nX
j=1

p̂
(s�1)
j hj

�
�̂(s�1)

�!0
Wh

 
1

n

nX
i=1

@hi (�
�)

@�0

!
p
n
�
�̂(s) � ��

�
+ op (1)

= (E�0gi (�
�))0Wg

 
1

n

nX
i=1

@gi (�
�)

@�0

!
p
n
�
�̂(s) � ��

�
+ (E�0hi (�

�))0Wh

 
1

n

nX
i=1

@hi (�
�)

@�0

!
p
n
�
�̂(s) � ��

�
+ op (1)

= (E�0gi (�
�))0Wg

�
E�0

@gi (�
�)

@�0

�p
n
�
�̂(s) � ��

�
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+ (E�0hi (�
�))0Wh

�
E�0

@hi (�
�)

@�0

�p
n
�
�̂(s) � ��

�
+ op (1)

= op (1) ;

where the second equality follows from the de�nition of di
�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
,

the third equality follows from the conditions of the theorem on Ep̂(s�1)gi
�
�̂(s�1)

�
and

Ep̂(s�1)hi

�
�̂(s�1)

�
, the fourth equality follows from the weak law of large numbers,

and the last equality follows from the �rst order conditions of �� and ��. The reminder

term in (40) is bounded by

kWgk
Ep̂(s�1)gi ��̂(s�1)��̂(s) � ��2 1p

n

nX
i=1

sup
�2N��

 @@�0vec
�
@gi (�)

@�0

�
+ kWhkEp̂(s�1)hi

�
�̂(s�1)

��̂(s) � ��2 1p
n

nX
i=1

sup
�2N��

 @@�0vec
�
@hi (�)

@�0

� ;
which is op (1) by Lemma 13(a) and Assumption 11(d).

Similarly, for T2, an expansion around
�
�̂(s�1); �̂(s�1)

�
= (��; ��) yields

T2 =
1p
n

nX
i=1

@di
�
��; ��; p̂(s�1); ��; ��

�
@�0

�
�̂(s�1) � ��

�
+

1p
n

nX
i=1

@di
�
��; ��; p̂(s�1); ��; ��

�
@�0

�
�̂(s�1) � ��

�
+ op (1)

=

 
1

n

nX
i=1

gi (�
�)

!0
Wg

 
nX
j=1

p̂
(s�1)
j

@gj (�
�)

@�0

!
p
n
�
�̂(s�1) � ��

�

+

 
1

n

nX
i=1

hi (�
�)

!0
Wh

 
nX
j=1

p̂
(s�1)
j

@hj (�
�)

@�0

!
p
n
�
�̂(s) � ��

�
+ op (1)

= (E�0gi (�
�))0Wg

�
E�0

@gi (�
�)

@�0

�p
n
�
�̂(s�1) � ��

�
+ (E�0hi (�

�))0Wh

�
E�0

@hi (�
�)

@�0

�p
n
�
�̂(s) � ��

�
+ op (1)

= op (1) ;

where the second equality follows from the de�nition of di
�
��; ��; p̂(s�1); ��; ��

�
, and

the last equality follows from the �rst order conditions of �� and ��. For the third
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equality, using the de�nition of p̂(s),
nX
j=1

p̂
(s�1)
j

@gj (�
�)

@�0
� 1

n

nX
j=1

@gj (�
�)

@�0


�
����̂(s�1)���

1n
nX
j=1

dj

�
�̂(s�1); �̂(s�1); p̂(s�2); �̂(s�2); �̂(s�2)

�
1 + �̂(s�1)dj

�
�̂(s�1); �̂(s�1); p̂(s�2); �̂(s�2); �̂(s�2)

� @gi (��)
@�0


=
����̂(s�1)��� sup

1�i�n

���1 + �̂(s�1)di ��̂(s�1); �̂(s); p̂(s�2); �̂(s�2); �̂(s�2)�����1
� 1

n

nX
i=1

@gi (��)@�0

2 1n
nX
i=1

d2i

�
�̂(s�1); �̂(s�1); p̂(s�2); �̂(s�2); �̂(s�2)

�
: (41)

Similarly to (35), we have����̂(s)��� sup
1�i�n

���di ��̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)���� = op (1) ;
and thus, by Assumption 11(c) and (36),

nX
j=1

p̂
(s�1)
j

@gj (�
�)

@�0
� 1

n

nX
j=1

@gj (�
�)

@�0

 � Op �n�1=2�Op (1)Op (1)Op (1) :
By this and the weak law of large numbers,

nX
j=1

p̂
(s�1)
j

@gj (�
�)

@�0
= E�0

@gj (�
�)

@�0
+ op (1) ,

and a similar result holds for the h model.

For T3, as above, we have that
Pn

i=1 p̂
(s)
i gi (�

�)� n�1
Pn

i=1 gi (�
�)
 is bounded by

����̂(s)��� sup
1�i�n

���1 + �̂(s)di ��̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)�����1
� n�1

nX
i=1

kgi (��)k2 sup
�2N��

sup
�2N��

n�1
nX
i=1

d2i

�
�; �; p̂(s�1); �̂(s�1); �̂(s�1)

�
= Op

�
n�1=2

�
Op (1)Op (1)Op (1) :
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Thus,

nX
i=1

p̂
(s)
i gi (�

�) = E�0gi (�
�) +Op

�
n�1=2

�
; (42)

nX
i=1

p̂
(s)
i hi (�

�) = E�0hi (�
�) +Op

�
n�1=2

�
;

and

T3 =

 
1

n

nX
i=1

gi (�
�)

!0
Wg

 
nX
j=1

p̂
(s�1)
j gj (�

�)� E�0gi (��)
!

+

 
1

n

nX
i=1

hi (�
�)

!0
Wh

 
nX
j=1

p̂
(s�1)
j hj (�

�)� E�0hi (��)
!

= op (1) :

Therefore, we obtain (39).

Lastly, for (31), since according toH0, E�0di (�
�; ��;�0; �

�; ��) = 0, by Assumption

11(a) and a central limit theorem,

1p
n

nX
i=1

di (�
�; ��;�0; �

�; ��)
d! N

�
0; E�0d

2
i (�

�; ��;�0; �
�; ��)

�
:

On the other hand, under H1, the weak law of large numbers yields

1

n

nX
i=1

di (�
�; ��;�0; �

�; ��)
p! E�0di (�

�; ��;�0; �
�; ��) 6= 0;

and this implies 2nTG(s)n !1 with probability one.

Proof of (b). At iteration s we have the following �rst order condition:

nX
i=1

p̂
(s)
j

"
gi

�
�̂(s)
�0
Wg

 
nX
j=1

p̂
(s�1)
j gj

�
�̂(s�1)

�!
�

�hi
�
�̂(s)
�0
Wh

 
nX
j=1

p̂
(s�1)
j hj

�
�̂(s�1)

�!#
= 0: (43)

From (43), the null restriction kE�0gi (��)kWg
= kE�0hi (��)kWh

, and by the assump-
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tions of the theorem: 
nX
i=1

p̂
(s)
i gi

�
�̂(s)
�
� E�0g1 (��)

!0
WgE�0g1 (�

�)�

�
 

nX
i=1

p̂
(s)
i hi

�
�̂(s)
�
� E�0h1 (��)

!0
WhE�0h1 (�

�) = Op(n
�1=2): (44)

Using an expansion of gi
�
�̂(s)
�
around gi (��), we obtain

�����
 

nX
i=1

p̂
(s)
i gi

�
�̂(s)
�
� E�0g1 (��)

!0
WgE�0g1 (�

�)

�����
� kWgk kE�0g1 (��)k


nX
i=1

p̂
(s)
i gi (�

�)� E�0g1 (��)


+ kWgk kE�0g1 (��)k
�̂(s) � �� sup

�2N��

nX
j=1

p̂
(s)
j

@gj (�)@�0

 : (45)

Next, using (42) for the �rst summand and an argument similar to that in (41) and

Assumption 11(c) for the second summand, the right-hand side of (45) is Op
�
n�1=2

�
.

We obtain that the �rst term on the left-hand side of (44) is Op
�
n�1=2

�
. It follows

now that  
nX
i=1

p̂
(s)
i hi

�
�̂(s)
�
� E�0h1 (��)

!0
WhE�0h1 (�

�) = Op(n
�1=2);

or, since Wh has a full rank,
nX
i=1

p̂
(s)
i hi

�
�̂(s)
�
� E�0h1 (��)

 = Op �n�1=2� :
By similar arguments and using (43), we can show that

nX
i=1

p̂
(s)
i gi

�
�̂(s)
�
� E�0g1 (��)

 = Op �n�1=2� :
�
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B Auxiliary Lemma

Lemma 13 Under the assumptions of Theorem 12 and H0, we have the following

results.

(a)
�̂(s) � �� = Op �n�1=2� and �̂(s) � �� = Op �n�1=2�.

(b) �̂(s) = Op
�
n�1=2

�
.

Proof of (a). The �rst-order conditions at iteration s are:

0 =
1

n

nX
i=1

�
@gi

�
�̂(s)
�0
=@�

�
WgEp̂(s�1)g1

�
�̂(s�1)

�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� ; (46)

0 =
1

n

nX
i=1

�
@hi

�
�̂(s)
�0
=@�

�
WhEp̂(s�1)h1

�
�̂(s�1)

�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� ; (47)

0 =
1

n

nX
i=1

gi

�
�̂(s)
�0
WgEp̂(s�1)g1

�
�̂(s�1)

�
� hi

�
�̂(s)
�0
WhEp̂(s�1)h1

�
�̂(s�1)

�
1 + �̂(s)di

�
�̂(s); �̂(s); p̂(s�1); �̂(s�1); �̂(s�1)

� : (48)

Let �n =
�̂(s) � �� + �̂(s) � �� + �̂(s). Expanding the �rst-order conditions in

(46)-(48) around
�
�̂(s); �̂(s); �̂(s)

�
= (��; ��; 0), we obtain:

op (�n) =
1

n

nX
i=1

@gi (�
�)0

@�
WgEp̂(s�1)g1

�
�̂(s�1)

�
+

+
�
Ipg 
WgEp̂(s�1)g1

�
�̂(s�1)

��0 1
n

nX
i=1

@

@�0
vec

�
@gi (�

�)

@�0

��
�̂(s) � ��

�
;

op (�n) =
1

n

nX
i=1

@hi (�
�)0

@�
WhEp̂(s�1)h1

�
�̂(s�1)

�
+

+
�
Iph 
WhEp̂(s�1)h1

�
�̂(s�1)

��0 1
n

nX
i=1

@

@�0
vec

�
@hi (�

�)

@�0

��
�̂(s) � ��

�
;

op (�n) =
1

n

nX
i=1

di

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
+
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+ Ep̂(s�1)g1

�
�̂(s�1)

�0
Wg
1

n

nX
i=1

@gi (�
�)

@�0

�
�̂(s) � ��

�
� Ep̂(s�1)h1

�
�̂(s�1)

�0
Wh

1

n

nX
i=1

@hi (�
�)

@�0

�
�̂(s) � ��

�
+
1

n

nX
i=1

d2i

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
�̂(s):

By Assumptions 9 (b) and 11 (c) and (d), and since by the assumptions of the lemma,

Ep̂(s�1)g1

�
�̂(s�1)

�
and Ep̂(s�1)h1

�
�̂(s�1)

�
are n�1=2 distant from their respective true

values, the above equations yield

op (�n) +Op
�
n�1=2

�
=
1

n

nX
i=1

@gi (�
�)0

@�
WgE�0g1 (�

�) (49)

+ (Ip 
WgE�0g1 (�
�))0

1

n

nX
i=1

@

@�0
vec

�
@gi (�

�)

@�0

��
�̂(s) � ��

�
;

op (�n) +Op
�
n�1=2

�
=
1

n

nX
i=1

@hi (�
�)0

@�
WhE�0h1 (�

�) (50)

+ (Ir 
WgE�0h1 (�
�))0

1

n

nX
i=1

@

@�0
vec

�
@hi (�

�)

@�0

��
�̂(s) � ��

�
;

op (�n) +Op
�
n�1=2

�
=
1

n

nX
i=1

di (�
�; ��;�0; �

�; ��) (51)

+ E�0g1 (�
�)0Wg

1

n

nX
i=1

@gi (�
�)

@�0

�
�̂(s) � ��

�
� E�0h1 (��)

0Wh
1

n

nX
i=1

@hi (�
�)

@�0

�
�̂(s) � ��

�
+
1

n

nX
i=1

d2i

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
�̂(s):

By the population �rst-order conditions for �� and �� and Assumption 9(b),

E�0
@gi (�

�)0

@�
WgE�0gi (�

�) = 0; (52)

E�0
@hi (�

�)0

@�
WhE�0hi (�

�) = 0:
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Hence, the �rst terms on the right-hand sides of (49) and (50) are Op
�
n�1=2

�
. Further,

by Assumption 11 (c)-(e), the matrices

�
Ipg 
WgE�0g1 (�

�)
�0 1
n

nX
i=1

@

@�0
vec

�
@gi (�

�)

@�0

�
;

(Iph 
WgE�0h1 (�
�))0

1

n

nX
i=1

@

@�0
vec

�
@hi (�

�)

@�0

�
;

are nonsingular and �nite with probability approaching one. Thus, the conclusion

follows from the same argument as on page 318 of Qin and Lawless (1994).

Proof of (b). UnderH0, E�0di (��; ��;�0; ��; ��) = 0, and therefore the �rst sum-
mand on the right-hand side of (51) is Op

�
n�1=2

�
. The second and third summands

are Op (n�1) by (52) and part (a) of this lemma. Further, by Assumption 11 (a) and

(b),
1

n

nX
i=1

d2i

�
��; ��; p̂(s�1); �̂(s�1); �̂(s�1)

�
is strictly positive and �nite with probability approaching one. The conclusion is

followed by solving (51) for �̂(s). �
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