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Abstract. We provide a nearly complete analysis of the problem
of recovering an expected utility maximizing forecasters’ prefer-
ences from a sequence of forecasts, realizations, and covariates used
in producing the forecasts. There are essentially different expected
utility functions that lead to the same forecasts in all situations.
We show that these are non-generic in a very strong sense, and
the “nearly complete” aspect of the analysis arises only from the
non-generic cases. We also give set identification results when the
forecaster uses covariates not observed by the econometrician.
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1. Introduction

The purpose of this paper is to examine how much can be learned
about an expected utility maximizing forecaster’s utility function from
a sequence of forecasts, the corresponding sequence of realizations, and
a sequence of covariates used in producing the forecasts. In the non-
parametric case, a necessary condition for forecasters with different
utility functions to be distinguishable from each other is that there be
an immense amount of variability both in the conditional distributions
of the variable to be forecast and set of available forecasts. Outside
of a small (i.e. non-generic) set of utility functions, these conditions
are also sufficient. By contrast, for all but a small (i.e. non-generic)
set of parametrizations, it takes a minimal amount of variability in the
conditional distributions and none in the set of available forecasts to
be able to distinguish different utility functions.

1.1. Testing the Rationality of Forecasts. The existing economet-
ric literature on the problem of recovering forecaster preferences is
rather slim. The only papers we know of that address this question
explicitly are Elliott et al. (2003, 2007) and, partly, Patton and Tim-
mermann (2005). There is a much larger related literature concerned
with testing the rationality of forecasts that dates back to at least
Mincer and Zarnowitz (1969).

Empirical work in this area typically relies on the assumption that
the forecaster’s objective is to minimize mean squared error loss.1 In-
deed, the square loss function is technically convenient and has very
sharp observable implications concerning the properties of optimal fore-
casts, including unbiasedness, uncorrelatedness of one-step-ahead fore-
cast errors, increasing forecast error variance as the forecast horizon
expands, etc.

However, as argued by Granger (1969), economic forecasts are often
produced in an environment where the square loss function or, more
generally, any symmetric loss function, does not adequately capture the
costs resulting from overprediction vs. underprediction. Under general
loss functions, all of the optimality properties listed above can be lost,
and, as pointed out by Elliott et al. (2003), purported tests of forecast
rationality based on the implications of minimizing mean squared error
are more appropriately viewed as joint tests of forecaster rationality and
the mean square loss function.

1Patton and Timmermann (2005) cite the following URL for a collec-
tion of papers concerned with testing the rationality of economic forecasts:
www.Phil.frb.org/econ/spf/spfbib.html
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Given that the notion of forecast rationality is inextricably linked to
the objective that the forecaster is presumably trying to achieve, there
are two ways to study individual forecasters’ behavior. If interest con-
tinues to center on testing for optimizing (rational) behavior, then one
needs to explore further the properties of optimal forecasts under gen-
eral classes of loss functions that allow for asymmetries and functional
forms other than square loss. This approach is outlined by Patton
and Timmermann (2005). Alternatively, one can focus on the inverse
problem: maintain the assumption of optimizing behavior, identify and
estimate a loss function, or a class of loss functions, consistent with the
properties of the observed forecasts. This is the approach taken by
Elliott et al. (2003) and this paper.

1.2. Outline and Summary. The next section sets notation and as-
sumptions. The subsequent section studies the identification of non-
parametric utility functions, showing that a weak form of identification
is all that is generally achievable, and that for all but a small (i.e. non-
generic) set of utility functions, this form of identification is achievable.
The form of identification is weak because it requires, first, that the
conditional distributions of the predicted variable that the forecaster
faces be extremely rich, and second, that there also be nearly complete
variability in the set of allowable forecasts.

The penultimate section studies ‘identification by parametric as-
sumption,’ and the results are much more positive. For all but a small
(i.e. non-generic) set of parametrizations, identification is possible un-
der minimal conditions on the set of conditional distributions of the
predicted variable that the forecaster faces. Throughout, we first anal-
yses the case of a compact set of possible realizations and forecasts,
and then treat the generalizations.

The last section contains conclusions and sketches possible extensions
of the results given here.

2. Basics

We begin with the model of forecaster behavior, then examine the
possibilities and difficulties of recovering forecaster preferences in the
binary case. Of particular import is our assumption that the forecasters
are happiest when they make no error, a “no bias in case of certainty”
assumption. In the general case, this leads to a canonical form of the
utility functions. After we give this, we gather some notation and
preliminary results.
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2.1. The Model of Forecaster Behavior. The variable to be fore-
cast at time t is a random scalar Yt+1 that takes values in a set D ⊂ R.
The forecaster possesses a jointly continuous utility function on D×D,
(ŷ, y) 7→ u(ŷ, y). The first argument, ŷ, denotes the value of the fore-
cast, and the second, y, the actual realization of Yt+1.

∆(D) denotes the set of (countably additive Borel) probabilities
on D with the Prokhorov metric2 and the associated σ-field, and let
∆2(D) = ∆(∆(D)) denote the (countably additive Borel) probabilities
on ∆(D). Let pt ∈ ∆(D) be the conditional distribution of Yt+1 given
the information held by the forecaster at time t, and let ft denote fore-
cast of Yt+1 made at time t. We assume that ft is an element of the
set

(1) Br (pt | F, u) := arg max
ŷ∈F

∫
u(ŷ, y)pt(dy),

where F is a subset of D. A leading case is F = D, but we will need
more generality.

We assume that pt depends on the information available at time t
only through a finite dimensional vector (Xt, X

′
t) ∈ R`+m whereXt both

Xt and X ′t are observed by the forecaster, but Xt is all that is observed
by the econometrician. The vector Xt may contain current and lagged
values of Y , e.g. Xt = (Yt, . . . , Yt−k), and X ′t may be constant, i.e.
m = 0.

We also assume that (Yt+1, (Xt, X
′
t)) is a strictly stationary process,

defined on a probability space (Ω,F , P ), with limit distribution de-

fined by Q(A × B) = limT
1
T

∑T
t=1 1A(Yt+1) · 1B(Xt, X

′
t). The mar-

ginal distributions of Q are denoted QY and QX,X′ . Thus, pXt,X′t
(·) =

Q(·|Xt, X
′
t) ∈ ∆(D) is the (regular) conditional distribution, and Q ∈

∆2(D) denotes the asymptotic distribution over conditional distribu-
tions that the forecaster faces.

If, in addition, the maximum in (1) is unique, or if the forecaster
uses a fixed tie-breaking rule, then there will be a time-invariant, non-
random mapping linking the possible values of (Xt, X

′
t) and ft; denote

this behavioral mapping by f(·), ft = f(Xt, X
′
t). If X ′t is constant,

2The Prokhorov metric is ρ(p, q) = inf{ε ≥ 0 : ∀A, p(A) ≤ q(Aε)+ε, and q(A) ≤
p(Aε)+ε}. The distance between point masses, ρ(δy, δy′), is equal to min{|y−y′|, 1},
and ρ(pn, p) → 0 iff

∫
h dpn →

∫
h dp for all bounded continuous h. The Borel σ-

field on ∆(D) generated by ρ is the smallest one containing all sets of the form
{Q ∈ ∆(D) : Q(E) ≤ r}, E measurable and r ∈ [0, 1].
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then, over time, it is in principle possible to recover the function f over
the support of Xt.

3

The function f(·) is the composition of two other functions. First,
(Xt, X

′
t) is mapped into pXt,X′t

. Second, pXt,X′t
is mapped into the

forecast ft in a way that depends on the forecaster’s utility function
u, i.e. ft = Br

(
pXt,X′t

| F, u
)
. Since (Yt+1, Xt) is observed and sta-

tionary, Xt 7→ pXt is nonparametrically identifiable, but contains no
information on u. In the case m = 0 where the econometrician ob-
serves all of the covariates used by the forecaster, it is the mapping
pXt 7→ Br (pXt | F, u) from which one can hope to learn about u. In
the case m > 0 where the forecaster uses information not observed by
the ecnometrician, it is the mapping pXt 7→ ∆(Br

(
pXt,X′t

| F, u
)

from
which one can hope to learn about u.

2.2. The Binary Case. Many of the basic results can be seen in
trying to recover the preferences of a forecaster who forecasts a binary
random variable. The questions are,

(1) What is the maximal information about a utility function that
can be recovered when we observe all of the variables used in
making the forecast?

(2) What variability of the data is required in order to recover this
maximal amount of information?

(3) What about when we do not observe all of the variables used
in making the forecast?

2.2.1. The Most That Can Be Recovered. Modulo a dominance require-
ment, the most that can be recovered about a utility function is which
generalized affine equivalence class it belongs to.

Example 1 Suppose that D = {0, 1}, Xt = Yt, that the {Yt : t ∈ N}
are i.i.d. with P (Yt = 1) = r, P (Yt = 0) = 1 − r for some r ∈ [0, 1],
that the forecaster starts with e.g. a uniform [0, 1] prior for r, and
forms pt by updating. At time t, the posterior over [0, 1] is a Beta
distribution, Beta(Nt + 1,Mt + 1) where Nt =

∑
s≤tXt is the number

of 1’s that have been observed at times 1, 2, . . . , t, and Mt = t − Nt.
Thus, pt(Yt+1 = 1) = pt(1) = (Nt + 1)/(t+ 2).

Given utility function u(ŷ, y), ŷ, y ∈ {0, 1}, the forecaster solves

(2) max

{∫
u(0, y) dpt(y),

∫
u(1, y) dpt(y)

}
for the optimal forecast, ft.

3The support of a random variable X is the smallest closed set C with P (X ∈
C) = 1.
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Throughout, we will make the dominance assumption that the fore-
caster is happiest being correct. In this binary case, this corresponds
to u(0, 0) > u(1, 0) and u(1, 1) > u(1, 0). These two assumptions are
equivalently formulated as there being no bias in the case of cer-
tainty (nbcc), i.e. Br (δy | D, u) = {y} where δy is point mass on y.
In this, the binary case, this reduces to [pt(Yt+1 = 1) = 1] ⇒ [ft = 1]
and [pt(Yt+1 = 0) = 1]⇒ [ft = 0].

Given nbcc, there is a critical value c ∈ (0, 1) for the problem in
(2). Specifically, ft = 1 if pt(1) > c and ft = 0 if pt(1) < c where

c = [u(0,0)−u(0,1)]
[u(0,0)−u(0,1)]+[u(1,1)−u(1,0)]

. Further, this critical value c is all that

can be recovered from the utility function u(·, ·).
The utility function v is a generalized affine transformation of

u if for some r > 0 and function y 7→ g(y), v(ŷ, y) = r · u(ŷ, y) + g(y).
In the binary case, v is a generalized affine transformation of u iff u
and v have the same critical value.4

2.2.2. The Requisite Variability. The extent to which c can be recov-
ered depends on the random sequence {pt : t ∈ N} and the relation
between true probability r and the critical value c:

1. If r = c, then for all ε > 0, pt(1) ∈ (c − ε, c) infinitely often and
pt(1) ∈ (c, c + ε) infinitely often with probability 1. In this case, c
is identified and as much as can be possibly recovered of the utility
function is recovered.

2. If r 6= c, then with probability 1, d(c, {pt(1) : t ∈ N}) > 0, and all
that will be recovered is some random interval containing the true
value of c.

What is needed to recover the critical value is sufficient variability
of the set of pt’s.

Example 2 Now suppose in Example 1 that there is a sequence of
covariates Xt such that (Xt, Yt+1) is i.i.d., Yt is Bernoulli(r) as above,
and the support of the random variable P (Yt+1 = 1|Xt) is [0, 1].

Here, for all c, d(c, {pt(1) : t ∈ N}) = 0 with probability 1, and as
much information about u as is possible to recover is recovered with
probability 1. More generally, c needs to be in the interior of the
support of P (Yt+1 = 1|Xt) for complete recoverability.

4The set of utility functions on {0, 1} × {0, 1} is 4-dimensional. The reduction
to a 1-dimensional scale c happens as follows: one dimension is lost to the positive
affine rescaling by r; and another two are lost by the addition of g, which belongs
to the 2-dimensional set of functions on {0, 1}.
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When D is finite, non-parametric recovery of the utility function is
a finite dimensional problem, when D is infinite, recoverability is no
longer finite dimensional.

2.2.3. When Some Covariates Are Not Observed. We now suppose that
the forecaster uses a vector of variables (X,X ′) ∈ R`+m in producing
forecasts, but that the econometrian observes only X ∈ R`.

Example 3 Now suppose in Example 1 that there is a sequence of
covariates Xt such that ((Xt, X

′
t), Yt+1) is i.i.d., Yt is Bernoulli(r) as

above, and the support of the random variable P (Yt+1 = 1|(Xt, X
′
t)) is

[0, 1].

For each value px = P (Yt+1 = 1|Xt = x), the proportion of the time,
Qx, that the forecaster chooses ŷ = 1 is identified. For each such px, let
Rx ∈ [0, 1] be the random variable P (Yt+1 = 1|(x,X ′t)), so that iterated
expectations delivers E Rx = px a.e.

If Rx > c, the Forecaster will choose ŷ = 1, if Rx < c, they will
choose ŷ = 0. The bounds on the probability Qx that ŷ = 1 when
Xt = x that are implied by the value of the unknown c arise from
finding

(3) apx = inf P (Rx > c) and Apx = supP (Rx > c)

subject to the conditions that Rx ∈ [0, 1] and E Rx = px. For px ≤ c,
these bounds are [apx , Apx ] = [0, p

c
], and for px > c, they are [apx , Apx ] =

[p−c
1−c , 1].

Let Lc denote the set of (p,Q) pairs with 0 ≤ Q ≤ p
c

for p ≤ c

and p−c
1−c ≤ Q ≤ 1 for p > c. The set of (px, Qx) pairs that arise is

observable, and the identification set is the interval {c ∈ (0, 1) :
(px, Qx) ∈ Lc a.e.}.

In the extreme case that Xt is stochastically idependent of (X ′t, Yt+1),
then σ(pX) is the trivial σ-field, and the covariates that the econome-
trician observes are entirely useless for producing forecasts. Even in
this case, there may be some identifying power. There will be none if
the single observed pair (px, Qx) is on the diagonal, because the diag-
onal is a subset of every Lc. However, the further the pair is from the
diagonal, the smaller is the identification set.

With more variability, it is even possible that the identification set
is a singleton. If there are two (or more) observed (px, Qx) pairs, then
σ(pX) contains at least a non-trivial partition of Ω. In this case, if one
of the (px, Qx takes its value on the upper sloped part of the boundary
of the true Lc and another takes its value on the lower sloped part of the
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boundary, then there is a unique c with Lc containing the (p,Q) pairs
a.e. (See Figure 2.) In general, the richer σ(pX) and the greater the
variability of the random variables Rx, the smaller is the identification
set.

2.3. The Utility Functions. C = C(D×D) is the set of continuous
functions on D ×D. To rule out some mathematically perverse cases
such as D being the set of rationals, we assume throughout that D is a
countable union of open sets having compact closure, i.e. is a strongly
σ-compact subset of R (see e.g. Corbae, Stinchcombe, Zeeman (2009,
§6.10.b) for properties of such set).

One cannot determine the tradeoffs between different possible fore-
casts if one, or both, of the forecasts is never made. The following
condition rules out the existence of completely dominated forecasts.

Definition 1. We say that u(ŷ, y) ∈ C has no bias in case of cer-
tainty (nbcc) if for all y ∈ D, Bru(δy | D) = {y}. The set of
utility functions in C with the nbcc property will be written as Cnbcc =
Cnbcc(D ×D).

Equivalently, u ∈ Cnbcc means that for any fixed y ∈ D, the function
ŷ 7→ u(ŷ, y) has a unique global maximum at ŷ = y, i.e. u(ŷ, y) ≤ 0 with
equality if and only if ŷ = y. If the forecaster is certain that a given
value of Y will be realized, then nbcc requires that the unique optimal
point forecast coincides with that value. Granger and Machina (2005)
show that if u(ŷ, y), the utility associated with a forecast-realization
pair, derives from an underlying decision problem, then u(ŷ, y) will
possess the nbcc property almost automatically.5

Definition 2. u, v ∈ C(D ×D)

(a) are affinely equivalent, written u ∼aff v, if there exists a con-
tinuous y 7→ g(y) and r > 0 such that v(ŷ, y) = r · u(ŷ, y) + g(y),
and

(b) are forecast equivalent, written u ∼Br v. if the have the same
forecasts on compact sets, (∀ compact F ⊂ D)(∀p ∈ ∆(F )[Br (p | F, u) =
Br (p | F, v)].

Lemma 1. Affine equivalence implies forecast equivalence, but best re-
sponse equivalence does not imply affine equivalence.

5At the cost of some confusing relabelling of the set of forecasts, we could replace
this condition with the Moriss and Ui (2004, Proposition 2) condition that every
forecast be strictly optimal for some δy. Note that nbcc is not satisfied if the
forecaster has an interest in the decisions that the consumer of the forecast will
make as in the study of cheap talk games begun by Crawford and Sobel (1982).
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Proof:
∫
F
v(ŷ, y)p(dy) =

∫
F

[r·u(ŷ, y)+g(y)] p(dy) = r·
[∫
F
u(ŷ, y) p(dy)

]
+∫

F
g(y) p(dy), where

∫
F
g(y) p(dy) exists, as g(y) is continuous and

hence bounded on the compact set F . As this term does not depend
on ŷ, it is clear that ŷ∗ ∈ D solves maxŷ

∫
u(ŷ, y) p(dy) iff it also solves

maxŷ
∫
v(ŷ, y) p(dy). For the failure of the reverse implication, see Ex-

ample 4.

Each affine equivalence class contains a canonical form.

Definition 3. The canonical form of a u ∈ C(D × D) is defined
as uc(ŷ, y) = u(ŷ, y)− u(y, y). The set of utility functions in canonical
form is denoted C(D ×D) or simply C.

The canonical form of a utility function that has nbcc is characterized
by the property that uc(ŷ, y) ≤ 0 and is equal to 0 iff ŷ = y. C(D×D)
is a convex cone not containing its vertex, i.e. for all α, β > 0 and u, v ∈
C(D×D), αu+ βv ∈ C(D×D) and 0 6∈ C(D×D). If #D = M <∞,
then C is isomorphic to the strictly negative elements of RM(M−1) and
non-parametric preference recovery is a finite dimensional problem. If
D is an infinite set then C(D ×D) is infinite dimensional.

Clearly, u ∼aff uc (let r = 1 and g(y) = −u(y, y)), and so u ∼Br uc.
This means that a utility function and its canonical form cannot be
indistinguished with any data set of covariates and forecasts. We will
restrict attention to utility functions in canonical form, i.e. replace
C(D × D) with C(D × D). To simplify notation, we will drop the
superscript c in referring to the elements of C. Note that for u and v
in C, u ∼aff v if and only if v = r · u for some r > 0.

2.4. Useful Notation and Definitions. At various points, we will
use the following.

(1) For y ∈ D, δy ∈ ∆(D) denotes point mass on y, i.e. δy(E) =
1E(y).

(2) For y ∈ D and ε > 0, Bε(y) = {y′ ∈ D : |y′ − y| < ε} is the
ε-ball around y.

(3) For p ∈ ∆(D) and ε > 0, Bρ
ε (p) = {q ∈ ∆(D) : ρ(p, q) < ε}

denotes the ε-ball around p in the Prokhorov metric.
(4) For p ∈ ∆(D), the support of p is the smallest closed set having

p-mass 1, i.e. ∩{F : F closed, p(F ) = 1}.
(5) K(D) denotes the class of compact subsets of D.
(6) For F ∈ K(D), ∆(F ) denotes the set of (countably additive

Borel) probabilities on F .
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(7) ∂∆(F ) denotes the boundary of ∆(F ) within the set of measures
on F with absolute variation of 1.6

(8) For A ⊂ D, [A]ε = ∪y∈ABε(y), denotes the ε-ball around the
set A.

(9) For A ⊂ ∆(D), [A]ε = ∪p∈ABρ
ε (p). denotes the Prokhorov ε-ball

around the set A.
(10) dH(A,B) = inf{ε ≥ 0 : A ⊂ [B]ε, B ⊂ [A]ε} denotes the

(Hausdorff) distance between compact sets.

At various points, we will show that some results hold except for
a “small” set of “rare” exceptional cases. Our notion of smallness
combines Baire’s (1899) topological and Anderson and Zame’s (2001)
measure theoretic definitions.

Definition 4. If C is a separable, topologically complete, convex subset
of a topological vector space, we say that a set S ⊂ C is totally small
if it is both Baire small and relatively shy. A set is totally large if it
is the complement of a totally small set.

A set is small in Baire’s sense if it is the countable union of closed
sets having no interior, and is large in Baire’s sense it its complement
is small. If {qn : n ∈ N} enumerates the points in Rk with rational
coordinates, then E(ε) := ∪nBε/2n(qn) is an open dense subset having
Lebesgue measure ε, and F (ε), the complement of E(ε) is a closed set
having no interior. Therefore, ∩nE(1/n) is a Baire large set having
Lebesgue measure 0 and ∪nF (1/n) is a Baire small set having full
Lebesgue measure.

Since there is no Lebesgue measure on infinite dimensional spaces, we
use Anderson and Zame’s extension of Lebesgue measure 0 to convex
subsets of an infinite dimensional metric vector space V . A set S
is shy relative to C if for all c ∈ C, all neighborhoods Uc of c, and
all ε > 0, there exists a compactly supported η ∈ ∆(C) such that
η(Uc ∩ [εC + (1 − ε)c]) = 1 and (∀x ∈ V )[η(S ′ + x) = 0]. A useful
sufficient condition for shyness is finite shyness, which involves η
being the continuous affine image of the uniform distribution on the
unit ball in Rk for some k.

The class of totally small sets is closed under countable unions, a
totally small set has a non-empty interior, and if C is finite dimensional,
a totally small set must have Lebesgue measure 0, though this is not
sufficient.

6If F is finite, this is the set of probabilities assign mass 0 to at least one point
in F , more generally, it is the set of probabilities with supports that are a strict
subset of F .
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2.5. Preliminary Results. A compact-valued correspondence Γ is
upper hemicontinuous (uhc) if for every r and every ε > 0 there
exists δ > 0 such that [d(r, r′) < δ] ⇒ [Γ(r′) ⊂ [Γ(r)]ε]. The Theorem
of the Maximum (e.g. Corbae, Stinchcombe, Zeeman (2009), Theorem
4.10.2 (p. 151)) delivers the following.

Lemma 2. The mapping (p, F, u) 7→ Br (p | F, u) from ∆(D)×K(D)×
C to K(F ) is uhc.

Expected utility maximization yields a useful property of the sets of
beliefs leading to a particular forecast being optimal.

Lemma 3. For F ∈ K(D) and ŷ ∈ D, then {p ∈ ∆(F ) : ŷ ∈
Br (p | F, u)} is closed and convex.

Proof: Closure comes from Lemma 2. For convexity, suppose that for
all ŷ′ ∈ F ,∫

u(ŷ, y) dp(y) ≥
∫
u(ŷ′, y) dp(y) and

∫
u(ŷ, y) dq(y) ≥

∫
u(ŷ′, y) dq(y).

By linearity of the integral,
∫
u(ŷ, y) d(αp+(1−α)q)(y) ≥

∫
u(ŷ′, y) d(αp+

(1− α)q)(y) for any α ∈ [0, 1].

Upper hemicontinuous correspondences can ‘explode.’ In the nbcc
context, the degree of explosion is limited. The following tells us that
if ŷ is an optimal forecast at p, then there are q’s arbitrarily close to p
for which ŷ is the unique optimal forecast.

Lemma 4. If F ∈ K(D), u has nbcc, and ŷ ∈ Br (p | F, u), then
for all ε > 0, there exists q ∈ ∆(F ), q 6= p, ρ(p, q) < ε such that
Br (q | F, u) = {ŷ}.

Proof: Since u has nbcc, Br (δŷ | F, u) = {ŷ}, that is,
∫
u(ŷ, y) dδŷ(y) >∫

u(ŷ′, y) dδŷ′(y) for all ŷ′ 6= ŷ. Since ŷ ∈ Br (p | F, u),
∫
u(ŷ, y) dp(y) ≥∫

u(ŷ′, y) dp(y) for all ŷ′ 6= ŷ. Therefore, for any α ∈ (0, 1),
∫
u(ŷ, y) d(αδŷ+

(1− α)p)(y) >
∫
u(ŷ′, y) d(αδŷ + (1− α)p)(y) for all ŷ′ 6= ŷ. For α suf-

ficiently close to 0, ρ(αδŷ + (1− α)p, p) < ε.

3. Nonparametric Identification

We wish to recover an arbitrary continuous expected utility function
by observing optimal choices in response to different conditional dis-
tributions of the variable to be forecast. As we will show, this requires
essentially full variability in the conditional distributions and the sets
of available forecasts.
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3.1. Potential Identifiability. It is only possible to distinguish util-
ity functions if they sometimes lead to different behavior.

Definition 5. u, v ∈ C(D ×D) are potentially identifiable if they
are not forecast equivalent, that is, if there exists a compact F ⊂ D and
some distribution p ∈ ∆(F ) for which Br (p | F, u) 6= Br (p | F, v).

Affine equivalence implies that utility functions are not potentially
identifiable. The reverse is not true, very different preferences may not
be observationally distinguishable.

Example 4 For D = {1, 2, 4}, the following utility functions depend
only on |y − ŷ|,

(4) u(ŷ, y) =

 0 -1 -3
-1 0 -2
-3 -2 0

 and v(ŷ, y) =

 0 -3 -4
-3 0 -1
-4 -1 0


where m,n entry in each matrix corresponds to the utility of (ŷ, y) =
(m,n).

If one deletes row i and column i from both u and v, then the result-
ing 2×2 matrices are positive scalar multiples. As the scalar multiples
differ, u and v are not strictly equivalent, and represent very different
preferences over ∆(D ×D). However,

• for p = (1
2
, 1

2
, 0), Br (p | D, u) = Br (p | D, v) = {1, 2},

• for q = (0, 1
2
, 1

2
), Br (q | D, u) = Br (q | D, v) = {2, 4}, and

• for r = (1
2
, 0, 1

2
), Br (r | D, u) = Br (r | D, v) = {1, 2, 4}.

By Lemma 3 and nbcc, for all p ∈ ∆(D), Br (p | D, u) = Br (p | D, v).
(See Figure 1. NOTE THAT THIS EXAMPLE IS CHANGED FROM
PREVIOUS VERSION)

If forecaster preferences are like those in Example 4, then the inter-
section in the following definition cannot be a singleton set, that is, the
forecaster’s preferences cannot be pinned down.

Definition 6. Let A(D) ⊂ K(D)×∆(D) be the set of (F, p) pairs with
p ∈ ∆(F ). A sequence ((Fn, pn), ŷn) pins down an affine equiva-
lence class if there is a unique canonical u consistent with the data,
that is, if

⋂
n{v ∈ C(D ×D) : ŷn ∈ Br (p | F, v)} = {u}.

3.2. A Totally Large Set of Preferences are Potentially Iden-
tifiable. The utility functions in Example 4 are special in a very deli-
cate fashion — there is a point, specifically r = (1

2
, 0, 1

2
), in ∂∆(F ), the

boundary of ∆(F ), at which every point in F is a best response.
13



Definition 7. Let G = G(D×D) denote the collection of u in Cnbcc(D×
D) for which there exists a dense D′ ⊂ D such that for any three-point
set F = {y1, y2, y3} ⊂ D′, there is no p ∈ ∂∆(F ) with Br (p | F, u) =
F .

Theorem 1. If u ∈ G(D × D), then for all v ∈ Cnbcc, [u ∼Br v] ⇔
[u ∼aff v], and for any dense sequence (Fn, pn) in A(D) and any ŷn ∈
Br (pn | Fn, u), ((Fn, pn), ŷn) pins down u. Further, G(D × D) is a
totally large subset of Cnbcc(D ×D),

The set G(D × D) has a rather abstract definition. We turn to
sufficient conditions for a utility function to belong to it.

Definition 8. For convex D, a utility function u ∈ Cnbcc(D × D) is
almost nowhere piecewise linear if for all y1, y2 ∈ D, y1 6= y2, for
all α ∈ (0, 1), and for all κ, λ({ŷ ∈ D : αu(ŷ, y1) + (1 − α)u(ŷ, y2) =
κ}) = 0 (where λ is Lebesgue measure).

This asks that no convex combination of any pair u(·, y1) and u(·, y2)
be flat on a set having positive measure. If u(·, y1) has a linear interval
with positive slope that overlaps with a linear interval of u(·, y2) having
negative slope, the condition fails. More generally, it fails if u(·, y1) =
b− ru(·, y2) on some interval for some b ∈ R and r > 0.

Lemma 5. The following are sufficient for u ∈ Cnbcc(D×D) to belong
to G(D ×D):

(a) #D = 2;
(b) D is convex and for all y ∈ D, u(·, y) is strictly concave; and
(c) D is convex and u is almost nowhere piecewise linear.

The risk averse (strictly concave) case covers generalized mean squared
loss utility functions u(ŷ, y) = −h(y)(ŷ − y)2 where h(·) is contin-
uous and strictly positive, and generalized check functions, −[|ŷ −
y|α1(ŷ−y)<0 + |ŷ − y|β1(ŷ−y)≥0], so long as α, β > 1. We do not know
whether or not piecewise linear functions are potentially identifiable in
the case of a convex D.
Proof: If #D = 2, then D has no three point subsets, so every u ∈
Cnbcc(D ×D) must belong to G(D ×D).

If each u(·, y) is strictly concave, then it is almost nowhere piecewise
linear, so the second sufficient condition follows from the third.7

6The proof of Theorem 1 is in Appendix A.
7For a direct proof of the strictly concave case, note that for any ya 6= yb ∈ D

and α ∈ (0, 1), V (ŷ) := αu(ŷ, ya) + (1 − α)u(ŷ, yb) is strictly concave, so that if
V (ya) = V (yb), then no yc 6= ya, yb is indifferent to ya and yb.

14



Let {Rn}n∈N be an i.i.d. sequence of random variables defined on a
probability space (Ω,F , P ) and having a continuous, strictly positive
density with respect to Lebesgue measure on D. We will show that for
any u that is nowhere piecewise linear, there exists a probability 1 set
of ω such that the dense set {Rn(ω)}n∈N serves as the D′ in Definition
7.

Step 1: Since the Rn have a strictly positive density, there is an
Ω′ ∈ F with P (Ω′) = 1, for all ω ∈ Ω′ and n 6= n′, Rn(ω) 6= Rn′(ω),
and {Rn(ω)}n∈N is dense in D.

Step 2: Let n1, n2, n3 be one of the countably many subsets of N
containing three distinct points, and condition on Rn1 = y1 and Rn2 =
y2, y1 6= y2. By nbcc, the unique probability on {y1, y2} making y1 and

y2 indifferent as forecasts is αδy1 +(1−α)δy2 where α = u(y1,y2)
u(y1,y2)+u(y2,y1)

∈
(0, 1). Letting κ = αu(y2, y1) = (1 − α)u(y1, y2), u being nowhere
piecewise linear implies that

(5) P ({Rn3 : αu(Rn3 , y1) + (1− α)u(Rn3 , y2) = κ}) = 0

because Rn3 has a density with respect to Lebesgue measure. Since we
conditioned on arbitrary y1 6= y2, there is a probability 1 set of ω, call it
Ω(n1, n2, n3), for which there exists no p ∈ ∆(F ) with Br (p | u, F ) = F
where F = {Rn1 , Rn2 , Rn3}. Define Ω′′ =

⋂
Ω(n1, n2, n3) where the

intersection is taken over three point subsets of N so that P (Ω′∩Ω′′) =
1.

Step 3: For all ω in Ω′ ∩ Ω′′, and for all three point subsets, F =
{y1, y2, y3} of the dense set D′ = {Rn(ω)}n∈N, there is no p ∈ ∂∆(F )
with Br (p | F, u) = F .

3.3. The Observational Requirements. The denseness of the se-
quence (Fn, pn) in A(D) of Theorem 1 is sufficient to pin down a utility
function in G(D ×D). It is not necessary, but, as was already seen in
the binary case, Example 2, a great deal of variability is required.

3.3.1. Necessary Variability in the Set of Conditional Distributions.
Evaluating how a forecaster makes tradeoffs between a given ŷ and
another ŷ′ requires that ŷ at least be in the closure of the set of ob-
served forecasts.8

Lemma 6. For a compact D and S ⊂ ∆(D), cl (Br (S | D, u)) = D
for all u ∈ G(D ×D) iff for all ŷ ∈ D, δŷ ∈ cl (S).

8In case of a discrete D, this is the requirement that every ŷ be observed as a
forecast.
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To give some sence of the richness that this entails, in the convex D
case, if S is dominated (say by Lebesgue measure), then S must be a
complete class of distributions.

Proof. The definition of u having nbcc directly implies that if δŷ ∈ S
for all ŷ ∈ D, then Br (S | D, u) = D. The upper hemicontinuity of
the correspondence p 7→ Br (p | D, u) and its single-valuedness at δŷ
imply that if ρ(pn, δŷ)→ 0, then dH(Br (pn | D, u) , ŷ)→ 0.

Now suppose that for all u ∈ Cnbcc(D × D), Br (S | D, u) = D for
some closed S ⊂ ∆(D), and that δŷ 6∈ S. Since S is closed, for some
ε > 0, Bρ

ε (δŷ) ∩ S = ∅. This means that p(Bε(ŷ)) < ε for all p ∈ S.
The utility functions un(ŷ, y) = −e−n|ŷ−ŷb||ŷ − y|β, β > 1, belong to
G(D×D) (because they are strictly concave in ŷ for each fixed y), and
have nbcc. For sufficiently large n, Br (p | D, un) does not contain ŷ
for any p satisfying p(Bε(ŷ)) < ε.

3.3.2. Differences on Smaller Sets of Probabilities. The definition of
potential identifiability seems to require observation of Br (p | F, u) for
every p ∈ ∆(F ). A universal separability result is behind needing only
a dense set in Theorem 1.

Lemma 7. For u ∈ Cnbcc(D × D) and F a compact subset of D,
Br (p | F, u) 6= Br (p | F, v) for some p ∈ ∆(F ) iff there exists a non-
empty open G ⊂ ∆(F ) with Br (p | F, u) ∩ Br (p | F, v) = ∅ for all
p ∈ G.

In particular, the difference between correspondences p 7→ Br (p | F, u)
and p 7→ Br (p | F, v) are universally separable — any countable dense
set of p will contain an element p′ with Br (p′ | F, u)∩Br (p′ | F, v) = ∅.
Proof: Suppose that Br (p | F, u) ∩ Br (p | F, v) = ∅ for all p in a
non-empty open G ⊂ ∆(F ). Since F is compact and both u and v are
continuous, neither Br (p | F, u) nor Br (p | F, v) are empty. Therefore
Br (p | F, u)∩Br (p | F, v) = ∅ implies thatBr (p | F, u) 6= Br (p | F, v)
for any p ∈ G.

Now suppose that for some p ∈ ∆(F ), Br (p | F, u) 6= Br (p | F, v).
Interchanging u and v if necessary, there exists ŷ ∈ Br (p | F, u) with
d(ŷ, Br (p | F, v)) = 2ε > 0. By upper-hemicontinuity, for some δ > 0
and every q ∈ Bρ

δ (p), Br (q | F, v) ⊂ [Br (p | F, v)]ε. Since u ∈ Cnbcc,
for every η ∈ (0, 1) and qη = (1−η)p+ηδŷ, Br (qη | F, u) = {ŷ}. Pick η
such that qη ∈ Bρ

δ (p). By upper-hemicontinuity again, for some δ′ > 0,
Bρ
δ′(qη) ⊂ Bρ

δ (p) and for every p′ ∈ Bρ
δ′(qη), dH({ŷ}, Br (p′ | F, u)) <

ε. Therefore, for every p′ in the ρ-open set Bρ
δ′(qη), Br (p′ | F, u) and

Br (p′ | F, v) are disjoint.
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3.3.3. Variability in the Set of Allowable Forecasts. In consumer de-
mand theory, preference relations are defined by their behavior on two
point sets. Restricting the F ⊂ D that the forecaster must choose from
to have only two points will not work in our context.

Example 5 For D = {1, 2, 3} and any r > 0, consider the utility
function

(6) ur(ŷ, y) =

 0 −1 −10
−1 0 −r
−10 −r 0


where, as before, m,n entry in the matrix corresponds to the utility of
(ŷ, y) = (m,n). For any r, r′ > 0 and two point F = {y1, y2} ⊂ D and
any p ∈ ∆(F ), Br (p | F, ur) = Br (p | F, ur′), even though changes in
r change when one would make which forecast if F = D.

The last example showed that we must have subsets of D with car-
dinality larger than 2. The next example shows that we must have
subsets of the larger sets. It hinges on the existence of a forecast so
much better than the others that it swamps the tradeoffs between them.

Example 6 For D = {1, 2, 3, 4} and any r, s > 0, consider the utility
function

(7) ur,s(ŷ, y) =


0 −100 −100 −100
−100 0 −r −100
−100 −s 0 −100
−1 −1 −1 0


The forecasts ŷ = 1, 2, 3 are not dominated by ŷ = 4, but they are
‘nearly’ dominated. For all but a small set of q ∈ ∆(D) near the
vertices δ1, δ2, and δ3, Br (q | D, u) = {4}. Further, this set of best
responses does not vary as r and s vary. Thus, best forecasts given
q ∈ ∆(D) are not sufficient to recover information about the values of
r and s. If the forecaster is restricted to making forecasts in the set
F = {1, 2, 3}, then different values of r and s have a large impact on
p 7→ Br (p | F, ur,s), p ∈ ∆(F ).

The following parametric class of utility functions on a convex D
have the property that for any p ∈ ∆(D), their best response in the
set D is the same, though no two elements of the class are strictly
equivalent and the preferences are different on finite sets.
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Example 7 For θ > 0, consider the utility function

u(ŷ, y; θ) =
1

1 + θ
ŷ−(1+θ)y − 1

2 + θ
ŷ−(2+θ)y2

on D ×D where D = (0, 1].
For p ∈ ∆(D), the forecaster’s problem is

(8) max
ŷ∈(0,1]

∫
u(ŷ, y) dp(y) =

1

1 + θ
ŷ−(1+θ)EY − 1

2 + θ
ŷ−(2+θ)EY 2

where Y is a random variable with distribution p. Setting the first
order conditions equal to 0 yields

(9) −ŷ−(2+θ)EY + ŷ−(3+θ)EY 2 = 0,

which one solves for ŷ∗ = EY 2/EY . The second order conditions are

(10) (2 + θ)ŷ−(3+θ)EY − (3 + θ)ŷ−(4+θ)EY 2 < 0,

satisfied if 2+θ
3+θ

ŷ < EY 2/EY , i.e. if 2+θ
3+θ

< 1. If p = δr, then EY 2/EY =
r, so this class of utility functions has nbcc.

As can be directly observed, the canonical form of u(ŷ, y; θ) is not a
linear multiple of u(ŷ, y; θ′) if θ 6= θ′, so no distinct pair of θ’s lead to
strictly equivalent preferences. The utility functions differ in their best
responses when F ⊂ D, e.g. if F = {0.5, 1}, a little algebra shows that
for p = 1

2
δ0.5 + 1

2
δ1,
∫
u(0.5, y; θ) dp(y) >

∫
u(1, y; θ) dp(y) is positive

for small θ, and the inequality reverses for large θ.

It is worth bserving how delicate the results in this example are —
small changes in the parametric specification of the the utility functions
would obviate it.

4. Identification for Parametric Classes

The first part of this section define the parametric classes of util-
ity function that we study and summarizes the identification results.
The results concern weak identification, identification by fitting best
response curves when all covariates are observed, and the FOC ap-
proach to identification when some covariates are not observed by the
econometrician.

For simplicity, we give the results for parametrized classes of utility
functions in the case D = R, the utility functions u(ŷ, y) are of the
form u(y − ŷ), i.e. depend on the error in the forecast only.9 Thus,
we say that u(·) is best response equivalent to v(·) if the associated
functions u◦(ŷ, y) := u(y − ŷ) and v◦(ŷ, y) := v(y − ŷ) are.

9At the end of the section, we briefly sketch the analysis and results in other
cases.
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4.1. Parametrizations. We assume throughout that the conditional
distributions p have densities satisfying three regularity conditions: for
some probability µ having a smooth density with respect to Lebesgue
measure, each density px,x′ is (a) smooth, (b) strictly positive, and
(c) belongs to L2(R,R, µ). This implies that each px has the same
properties.

Further, we assume that all utility functions u(·) also belong to
L2(R,R, µ) so that

∫
u(y− ŷ) dpx,x′(y) is well-defined. At a fairly large

cost in the complexity of the arguments, we could change the “smooth”
in most of the following to “locally Lipschitz.”

Definition 9. A parametrization is a smooth function θ 7→ uθ from
an open neighborhood of the compact parameter set Θ ⊂ RK to
L2(R,R, µ) with norm ‖ · ‖2. For a given Θ, the set of all parametriza-
tions is denoted Par(Θ) = Par(Θ;L2(R,R, µ)), and the set of parametriza-
tions taking values in T ⊂ L2(R,R, µ) is denote Par(Θ;T ). The dis-
tance between parametrizations u, v ∈ Par(Θ) is the C1-norm,

d(u, v) := max
θ
‖uθ − vθ‖2 +

K∑
k=1

‖Dθk
u(θ)−Dθk

v(θ)‖2.

Because µ has a smooth density, the functions u(·; θ) from R to R
need not be smooth for the function θ 7→ uθ from Θ to L2(R,R, µ) to
be.

4.2. Identifying Parameters Within a Parametrization. The first
question to ask of a parametrization is whether it is weakly identified,
that is, whether or not θ 6= θ′ implies that uθ 6∼Br uθ′ . As seen in Ex-
ample 7, a parametrization may be weakly identified even if forecasts
the unrestricted set D provide no identifying power at all. Theorem 2
a totally large set of parametrizations are weakly identified. Theorem
3 goes further, and shows that a totally large set of parametrizations
are identified by the unrestricted forecasts.

When the forecaster uses covariates (X,X ′) with X ′ not observed
by the econometrician, then, provided that Dxu(x; θ) exists almost
everywhere with respect to Lebesgue measure, one can infer θ from the
forecaster first order conditions (FOC),

(11) E (Dŷu(Y − ŷ; θ)|X,X ′) = 0 a.e.

By iterated expectations, E (Dŷu(Y − ŷ; θ)|X) = 0. Provided σ(pX)
is sufficiently rich, this locally identifies θ, but global identification
happens for a set of parametrizations that is neither totally large nor
totally small.
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4.3. Potential Identifiability of Parametrizations. Here we sup-
pose that m = 0, i.e. the econometrician observes all of the covariates
used in producing the forecast.

Definition 10. A parametrization is weakly identified if for all θ 6=
θ′ ∈ Θ, uθ 6∼Br uθ′

Typically, parameter sets Θ are connected (even convex). In this
case, the set uΘ := {uθ : θ ∈ Θ} is connected. Therefore, if T is not a
connected set, the set Par(Θ;T ) may be very restricted.

Theorem 2. If T ⊂ G∩L2(R,R, µ) is an infinite dimensional, topolog-
ically complete, convex cone, then the set of weakly identified elements
of Par(Θ;T ) is totally large.

Proof: Pick v1, . . . , vJ linearly independent points in the algebraic
interior of T , J ≥ 2K + 2, let V be the span of the J points, and set
v =

∑
j vk. For each n ∈ N, let Parn denote the set of parametrizations

with projV ( 1
n
uΘ + (1 − 1

n
)v) ⊂ V ∩ T . Because v is in the algebraic

interior of T , Par(Θ;T ) = ∪nParn. The proof will be complete once we
show that for all n ∈ N, all but a totally small subset of Parn is weakly
identified.

Because T ⊂ G, to show weak identifiability of a parametrization, it
is sufficient to show that it is an embedding. For any parametrization
θ 7→ uθ in Parn, the mapping θ 7→ fn,θ := projV ( 1

n
uθ + (1 − 1

n
)v) is

smooth, as is the mapping θ 7→ gn,θ := fn,θ/‖fn,θ‖2. For each θ, gn,θ
belongs to the set of points in V ∩ T having norm 1, and J − 1 dimen-
sional manifold. If θ 7→ uθ is not an embedding, then θ 7→ gn,θ cannot
be an embedding. However, since J − 1 ≥ 2K + 1, the open denseness
of the set of parametrizations that have θ 7→ gn,θ being an embedding
follows from classical results related to Whitney’s immersion theorem
(e.g. Bröcker and Jänich, 1982, Lemma 7.6 (p. 65)), and the prevalence
result from Kaloshin (1997, Lemma 1) because smooth maps are locally
Lipschitz.

4.4. Distance Minizing Identification. Since the (Xt, Yt+1) are ob-
served, the mapping px 7→ f(px) is identified. For any parametrization,
θ 7→ uθ, we define ŷθ(px) = Br (px | D, uθ). The distance minimizing
approach solves the problem

(12) min
θ∈Θ
‖f − ŷθ‖2.

For a fixed parametrization, the set of possible f leading to multiple
optima in (12) is {f ∈ L2(σ(pX)) : # argminθ∈Θ ‖f − ŷθ‖ ≥ 2}.
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Theorem 3. If T ⊂ G∩L2(R,R, µ) is an infinite dimensional, topolog-
ically complete, convex cone, and the dimensionality of L2(σ(pX)) ≥ K,
then the following dual pair of results hold for Par(Θ;T ).

A. There is a totally large set of parametrizations θ 7→ uθ that are
weakly identified, and for which the set

{f ∈ L2(σ(pX)) : # argmin
θ∈Θ

‖f − ŷθ‖ ≥ 2}

is totally small.
B. For any f ∈ L2(σ(pX)), the set of θ 7→ uθ in Par(Θ;T ) for which

# argminθ∈Θ ‖f − ŷθ‖ ≥ 2 is totally small.

Proof. A. Since θ 7→ uθ takes values in G and is weakly identified,
it is an embedding. The mapping θ 7→ ŷθ is continuous. Since the
dimensionality of L2(σ(pX)) is at least K, then for all but a totally
small set of parametrizations, θ 7→ ŷθ is also an embedding. Pick an
arbitrary parametrization in this totally large set.

For ε > 0, let Tε be the compact set of (θ, θ′) with ‖θ − θ′‖ ≥ ε.
By compactness and continuity, the set of Kε = {(ŷθ, ŷθ′) ∈ L2 × L2 :
(θ, θ′) ∈ Tε} is compact. Therefore the set of Fε of (f, f) ∈ L2×L2 that
minimize the distance to Kε is compact because orthogonal projection
is continuous. Being compact in L2 it has no interior and is finitely
shy. Finally, the set of f such that there exists θ 6= θ′ with d(f, ŷθ) =
d(f, ŷθ′) ≥ d(f, ŷΘ) is a subset of ∪εFε where the union is taken over
the countable set of strictly positive rational ε.

B. Fix an arbitrary f ∈ L2(σ(pX)). It is immediate that the set of
parametrizations θ 7→ uθ such that # argminθ∈Θ ‖f− ŷθ‖ ≥ 2} is closed
and has no interior. Since the dimensionality of L2(σ(pX)) is at least
K, there are K different pxk

∈ ∆(Y ) with disjoint open neighborhoods
having positive probability. A TINY LAST STEP IS NEEDED HERE.

Part A. of the previous immediately yields the following.

Corollary 3.1. Under the conditions of Theorem 3, for a totally large
set of parametrizations in Par(Θ;T ), if f = ŷθ◦, then θ◦ is the unique
solution to minθ∈Θ ‖f − ŷθ‖2.

In summary, generic parametrizations produce a unique best fitting
forecast function whether or not the parametrization bears any resem-
blance to the forecaster’s utility function, but if the forecaster’s utility
function belongs to the parametrization, then, generically, the utility
function is recovered.
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4.5. FOC Local Identification. By the law of iterated expectations
and equation (11), we are interested in finding a value of θ for which

(13) E (Dŷu(Y − ŷ; θ)|X) = 0.

Provided that u(·; θ) is differentiable enough and σ(pX) is rich enough,
the solution to (13) is locally unique, i.e. locally identified. To handle
the differentiability issue, we suppose that the utility functions take
values in the Sobolev space W 1,2(R,R, µ), which is the set of elements
of L2(R,R, µ) with weak derivatives of order 1.

Theorem 4. If T ⊂ G∩W 1,2(R,R, µ) is an infinite dimensional, topo-
logically complete, convex cone, and the dimensionality of L2(σ(pX)) ≥
K, then for a totally large subset of Par(Θ;T ), the solutions to E (Dŷu(Y−
ŷ; θ)|X) = 0 are locally unique.

Proof. Pick K linearly independent elements, ψk, k = 1, . . . , K, of
L2(σ(pX)), and consider the K smooth equations

(14) hk(θ) =

∫
Dŷu(Y − ŷ; θ)ψk(pX) dP,

k = 1, . . . , K. Since the equations are depend smoothly on the parametriza-
tion, Kaloshin (1997, Lemma 1) delivers the shyness, and textbook
standard results (e.g. Bröcker and Jänich, 1982, Lemma 7.6 (p. 65)),
deliver the Baire smallness.

More than local uniqueness cannot be guaranteed without addition
of extra structure to the equations in (14). In the one dimensional
case K = 1, Elliot et. al. add monotonicity in θ of the expected value
of the derivative. Even in this case, the set of parametrizations for
which the expected value of the derivative crosses 0 more than once
has non-empty interior. More generally, see Gale and Nikaido (1965)
for sufficient conditions for uniqueness in (14).
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Appendix: Proofs

For shyness and Baire smallness to be useful, we must show that the
space Cnbcc(D ×D) is separable and topologically complete.

Lemma 8. Cnbcc(D ×D) is separable and topologically complete.

Proof. If D is finite, separability and topological completeness aretriv-
ial, though the proof for general strongly σ-compact D can also be
applied. The outline of the proof is as follows:

(a) define a metric on Cnbcc(D ×D) for compact D,
(b) show that it is topologically equivalent to the sup norm metric d∞

for compact D,
(c) show that Cnbcc(D ×D) is complete in the metric for compact D,

and
(d) show that this carries over to strongly σ-compact D.

(a) Defining a metric for Cnbcc(D × D) for compact D. For m ∈ N
and u ∈ Cnbcc(D×D), let rm(u) = min|ŷ−y|≥1/m |u(ŷ, y)|, and for u, v ∈
Cnbcc(D ×D), let fm(u, v) = min

{
1,
∣∣∣ 1
rm(u)

− 1
rm(v)

∣∣∣}. Define

d(u, v) = d∞(u, v) +
∑

m
1

2mfm(u, v).

Remarks: (i) u(ŷ, y) = 0 iff ŷ = y implies rm(u) > 0, so d is well
defined. (ii) It is straightforward to verify that d is a metric. (iii)
|rm(u) − rm(v)| ≤ d∞(u, v). To see this, note that the set {(ŷ, y) ∈
D ×D : |ŷ − y| ≥ 1/m} ⊂ R2 is compact; hence, we can choose from
it (ŷ0, y0) such that |v(ŷ0, y0)| = rm(v). Further, we can write

rm(u) ≤ |u(ŷ0, y0)| ≤
∣∣∣|u(ŷ0, y0)| − |v(ŷ0, y0)|

∣∣∣+ |v(ŷ0, y0)|

≤ |u(ŷ0, y0)− v(ŷ0, y0)|+ |v(ŷ0, y0)|
≤ d∞(u, v) + rm(v).

Reversing the roles of u and v gives (iii).
(b) Topological equivalence for compact D. Since d(u, v) ≥ d∞(u, v),
if d(un, u) → 0, d∞(un, u) → 0. Suppose that d∞(un, u) → 0 and pick
ε > 0. We must show that there exists N ∈ N such that for all n ≥ N ,
d(un, u) < ε. Pick N1 such that for all n ≥ N1, d∞(un, u) < ε/3. Pick
M such that

∑
m>M

1
2m < ε/3. Finally, using property (iii) above, pick

N2 such that for all n ≥ N2 and for all m ≤ M , fm(un, u) < ε/(3M).
For all n ≥ max{N1, N2},

d(un, u) = d∞(un, u) +
∑

m≤M
1

2mfm(un, u) +
∑

m>M
1

2mfm(un, u) < ε
3

+ ε
3

+ ε
3
.

(c) d-completeness for compact D. Let un be a d-Cauchy sequence in
Cnbcc(D × D), hence a d∞-Cauchy sequence in C(D × D). Since C
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is d∞-complete, there exists a u ∈ C such that d∞(un, u) → 0. All
that is left to show is that u ∈ Cnbcc. Since un(ŷ, y) ≤ 0 for all (ŷ, y),
and d∞(un, u)→ 0 implies un(ŷ, y)→ u(ŷ, y) pointwise, it follows that
u(ŷ, y) ≤ 0 for all (ŷ, y). Suppose that u /∈ Cnbcc, i.e. u(ŷ0, y0) = 0 for
some ŷ0 6= y0. Let m0 be the smallest value of m with |ŷ0− y0| ≥ 1/m.
As un(ŷ0, y0) → 0, it follows that rm(un) →n 0 for all m ≥ m0; in
fact, supm≥m0

rm(un) = rm0(un)→n 0. Therefore, for any fixed integer
n ∈ N there exists K ∈ N so that fm(un, un+k) = 1 for all k ≥ K and
m ≥ m0. Hence, for all k large enough,

d(un, un+k) ≥
∑

m≥m0

1
2mfm(un, un+k) ≥ 1

2m0
,

contradicting un being a d-Cauchy sequence.
(d) Since D is countable union of open sets with compact closure, it can
be expressed as a countable increasing union of open sets with compact
closure, Dn. For each of these compact Dn, form the metric as above,
labeled Dn. In the metric ρ :=

∑
n

1
2n min{dn, 1}, Cnbcc(D × D) is

topologically complete.

Lemma 9. G(D ×D) is totally large.

Proof. We proceed from finite D to compact D to strongly σ-compact
D.

We first show that for finite D, Cnbcc \ G is negligible. Given #D =
M , we must show that the closure of Cnbcc \ G has Lebesgue measure

0 as a subset of (the negative orthant of) RM2−M . If M = 2 then
Cnbcc \G is empty. Let M ≥ 3, and pick an arbitrary three point subset
F = {y1, y2, y3} from D. Restricted to F × F , any u ∈ Cnbcc can be
represented by 6 negative numbers, a through f , ordered clockwise as

ŷ ↓
y1 0 a b
y2 f 0 c
y3 e d 0
y → y1 y2 y3

According to Definition 7, if u fails to be in G, then there must be a
yi ∈ F such that for all p ∈ ∆(F ) with p(yi) = 0 and Br (p | F, u) =
F . Suppose, for the sake of concreteness, that yi = y2, so that p =
(α, 0, (1 − α)) for some α ∈ (0, 1). Note that Br (p | F, u) = F iff
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b(1− α) = fα + c(1− α) = eα, equivalently, iff

(15)

[
0 (1− α) (α− 1) 0 0 −α
0 0 (1− α) 0 −α α

]

a
b
c
d
e
f

 =

[
0
0

]

For each α ∈ [0, 1], let Sα be the set of (a, b, c, d, e, f) ∈ R6 satisfying
(15). Since the 2 × 6 matrix is of full row rank for all α, each Sα is
a 4-dimensional linear subspace of R6. Since α smoothly parametrizes
the Sα, S := ∪αSα is a closed manifold of dimension at most 5. Since
Cnbcc is convex and has non-empty interior in R6, S∩Cnbcc is negligible.
This argument, repeated two more times, covers the cases where yi = y1

and yi = y3. Finally, the result follows as there are only finitely many
subsets of D that are of size 3, and a finite union of negligible sets is
negligible.

We now show that for infinite compact D, C \G is totally small. Let
D′ be an arbitrary, countable dense subset of D (which exists because
D is compact). There is a countable class of three point sets, F ⊂ D′.
For each F , the previous step showed that there are at most 3 closed
5-dimensional manifolds for which u fails the conditions in Definition
7. Such a set is necessarily totally small. By Lemma 8, Cnbcc is topo-
logically complete. This in turn implies that the countable union of
totally small sets is totally small.10

Finally, for strongly σ-compact D, apply the previous result to each
Dn, where Dn is an increasing sequence of open sets with compact
closure and D = ∪nDn.

C. Proof of Theorem 1. By Lemmas 2, 3, 4, 8, and 9, all that is left
to show is that if u ∈ G(D × D), then for all v ∈ Cnbcc, [u ∼Br v] ⇔
[u ∼aff v].

Outline of the proof: (I) Show result for #D = 3; (II) use induction
to show result for #D = M < ∞; (III) use continuity and denseness
of D′ in D to show result when D is a general compact set.

Additional notation: For F ⊂ D and u ∈ C, we will denote the
restriction of u onto F × F by u|F . It follows immediately from the
definition of best response equivalence that u ∼Br v implies u|F ∼Br
v|F .

10See Anderson and Zame (2001) for the relevant facts and definitions about shy
subsets of convex sets.
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Part (I): #D = 3

To keep the notation simple, let D = {1, 2, 3}. Each u ∈ Cnbcc(D ×
D) can be represented as 6 negative numbers, a through f , ordered
clockwise as

ŷ ↓
1 0 a b
2 f 0 c
3 e d 0
y → 1 2 3

Further, each u ∈ Cnbcc(D×D) can be classified according to how it
“behaves” for p ∈ ∆(D) with exactly one zero component. There are
three mutually exclusive cases:

Case 1:: For all i ∈ D, if p(i) = 0, then i /∈ Br (p | D, u). In this
case one might say that the utility function “ignores irrelevant
alternatives”. This can be violated in two ways:

Case 2:: There is an i ∈ D such that for all α in some nonempty
open interval (r, s) ⊂ (0, 1), if p(i) = 0, p(j) = α and p(k) = 1−
α, then Br (p | D, u) = {i} and, further, Br (p | D, u) = {i, j}
when α = s and Br (p | D, u) = {i, k} when α = r.

Case 3:: There is an i ∈ D such that if p(i) = 0 thenBr (p | D, u) =
{1, 2, 3}.

The third case is ruled out in the definition of the subset G; as we
assume u ∈ G, we need to consider the first two cases only.

Discussion of Case 1: Using the definition of Case 1, the nbcc prop-
erty, and the continuity of expected utility in the components of the
probability measure, it is easy to show that for each u falling under
this case there exist distributions satisfying

p = (p1, p2, 0) with Br (p | D, u) = {1, 2},
q = (q1, 0, q2) with Br (q | D, u) = {1, 3},
r = (r1, r2, r3) with Br (r | D, u) = {1, 2, 3},
s = (0, s1, s2) with Br (s | D, u) = {2, 3},

where p1, p2, q1, q2, etc., are all strictly positive. We will show that the
indifference conditions implicit in these best response sets determine u
up to a multiplicative constant. Therefore, if v ∈ G ⊂ Cnbcc is another
utility function with u ∼Br v then we must have u ∼aff v.

Let us normalize a to −1. Combining this normalization with the
five equalities that come from the indifference conditions for p, q, r and
s (there are two conditions associated with r), we obtain the following
six linear equations in the six unknowns, a, b, c, d, e and f :
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(16) 
−1 0 0 0 0 0
p2 0 0 0 0 −p1

0 q2 0 0 −q1 0
r2 r3 0 −r2 −r1 0
0 0 r3 −r2 −r1 r1

0 0 s2 −s1 0 0




a
b
c
d
e
f

 =


1
0
0
0
0
0


normalization
Br (p | D, u) = {1, 2}
Br (q | D, u) = {1, 3}
Br (r | D, u) = {1, 2, 3}
Br (r | D, u) = {1, 2, 3}
Br (s | D, u) = {2, 3}

We will show that the determinant of the 6 × 6 coefficient matrix is
non-zero, meaning that there is exactly one normalized u ∈ Cnbcc with
the best response sets determined by p, q, r and s. To do this, we first
expand into co-factors along the top row, which has only one non-zero
entry, −1. In the remaining 5 × 5 matrix, we again expand into co-
factors along the top row, which has only one non-zero entry, −p1.
Thus, we arrive at needing to show that

det


q2 0 0 −q1

r3 0 −r2 −r1

0 r3 −r2 −r1

0 s2 −s1 0

 = q2 det

 0 −r2 −r1

r3 −r2 −r1

s2 −s1 0

−r3 det

 0 0 −q1

r3 −r2 −r1

s2 −s1 0

 6= 0.

After expanding the 3× 3 matrices, this is q2r1s1r3 + r3q1r2s2− q1s1r
2
3.

Since r3 > 0, we take it out as a common factor so that we need to
show q2r1s1 + q1r2s2 − q1s1r3 6= 0. In this last expression, replace q2

with (1 − q1), s2 with (1 − s1) and rearrange, arriving at needing to
show r1s1(1 − q1) + r2q1(1 − s1) + r3q1s1 6= 0. Since each term in this
sum is strictly positive, this is indeed the case.

Discussion of Case 2: The strategy of proof is the same as in Case
1. For concreteness, suppose that in the definition of Case 2, i = 2.
There are five relevant probability distributions:

p = (p1, p2, 0) with Br (p | D, u) = {1, 2},
q = (q1, 0, q2) with Br (q | D, u) = {1, 2},
t = (t1, 0, t2) with Br (t | D, u) = {2} and Br (t | F, u) = F where
F = {1, 3},
r = (r1, 0, r2) with Br (r | D, u) = {2, 3}, and
s = (0, s1, s2) with Br (s | D, u) = {2, 3},

where p1, p2, q1, q2, etc., are all strictly positive.
Again, we normalize a to −1. Combining this normalization with the

five equalities that come from the indifference conditions for p, q, r, s
and t, we have the following six linear equations in the six unknowns,
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a, b, c, d, e and f :

(17) 
−1 0 0 0 0 0
p2 0 0 0 0 −p1

0 q2 −q2 0 0 −q1

0 t2 0 0 −t1 0
0 0 r2 0 −r1 r1

0 0 s2 −s1 0 0




a
b
c
d
e
f

 =


1
0
0
0
0
0


normalization
Br (p | D, u) = {1, 2}
Br (q | D, u) = {1, 2}
Br (t | F, u) = F, F = {1, 3}
Br (r | D, u) = {2, 3}
Br (s | D, u) = {2, 3}

Again, we will show that the determinant of the 6×6 coefficient matrix
is non-zero. We first expand into co-factors along the top row, which
has only one non-zero entry, −1. In the remaining 5 × 5 matrix, we
expand into co-factors along the third column, which has only one non-
zero entry, −s1. In the remaining 4 × 4 matrix, we expand along the
top row, which has only one non-zero entry, −p1. The remaining 3× 3
matrix isq2 −q2 0

t2 0 −t1
0 r2 −r1

 which has determinant q2

[∣∣∣∣ 0 −t1
r2 −r1

∣∣∣∣+

∣∣∣∣t2 −t10 −r1

∣∣∣∣] = q2 [t1r2 − t2r1] .

Combining all of this, the determinant of the 6 × 6 matrix is κ[t1r2 −
t2r1], where κ = −s1p2q2 < 0. The term [t1r2 − t2r1] can be re-written
as [t1(1−r1)− (1− t1)r1] = [t1−r1]. Since t 6= r, we know that t1 6= r1.

Part (II): Induction on #D

The inductive hypothesis is that Theorem 1 holds for #D ≤ M ,
where M is some fixed integer greater than or equal to three. The
inductive step is to show that the theorem also holds for #D = M + 1.

Let D ⊂ R with #D = M + 1, and suppose that for u, v ∈ G ⊂
Cnbcc(D × D), u ∼Br v. To keep the notation simple, put D =
{1, 2, . . . ,M,M + 1}. Let F1 = {1, . . . ,M} and F2 = {2, . . . ,M + 1}.
As u|F1 ∼Br v|F1 , by the inductive hypothesis there exists r1 > 0 such
that u|F1 = r1 · v|F1 . Also, as u|F2 ∼Br v|F2 , by the inductive hypothesis
there exists unique r2 > 0 such that u|F2 = r2 · v|F2 . By considering the
common part of F1 × F1 and F2 × F2, which includes points at which
u and v are both non-zero, we must have r1 = r2 := r. Therefore,
u(ŷ, y) = r · v(ŷ, y) must hold for all (ŷ, y) ∈ D × D except possibly
at the points (1,M + 1), (M + 1, 1); see Table 1. Replacing F2 with
F3 = {1, 3, 4, . . . ,M,M + 1} ⊂ D and repeating the arguments above
shows that u(ŷ, y) = r · v(ŷ, y) holds even at these points.

Part (III): General compact D
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Table 1. D ×D

(1, 1) (1, 2) ... (1,M) (1,M + 1)
F1 × F1 (2, 1) (2, 2) ... (2,M) (2,M + 1)

...
...

...
...

(M, 1) (M, 2) ... (M,M) (M,M + 1) F2 × F2

(M + 1, 1) (M + 1, 2) ... (M + 1,M) (M + 1,M + 1)

Suppose that for u, v ∈ Cnbcc(D × D), u ∼Br v. The previous two
steps have shown that there exists a unique r > 0 such that for all
finite F ⊂ D′, u|F = r · v|F . This implies that u|D′ = r · v|D′ . Since
D′ ×D′ is dense in D ×D and u and v are continuous, u = r · v.

The extension to strongly σ-compact D is immediate.
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