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Abstract

This paper develops a joint test for the exogeneity and the relevance of instrumental

variables using an approach similar to Vuong’s (1989) model selection test. The test

statistic is derived from the likelihood ratio of two competing models: one with exoge-

nous and possibly relevant instruments and the other with irrelevant and even possibly

endogenous instruments. The joint test is asymptotically pivotal under the null hy-

pothesis that the instruments are exogenous and irrelevant, and is consistent against

the alternative hypothesis that the instruments are exogenous and relevant. Hence,

non-rejection of the joint test should be taken as an evidence suggesting instruments of

poor quality. Another salient feature of the test is that its asymptotic null distribution

is the same under both the conventional and the weak instruments asymptotic frame-

works, which implies it has better size control than the commonly used overidentifying

restrictions tests.
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1 Introduction

A set of instrumental variables is said to be relevant if they are correlated with the endoge-

nous regressors and exogenous if uncorrelated with the errors. It is a common practice in

empirical researches to check these two conditions since the standard inference results on

the structural parameters hold only when these conditions hold. The overidentifying restric-

tions (OID) test (e.g., Anderson and Rubin, 1949; Sargan, 1958; Basmann, 1960) is widely

used for the exogeneity condition, and the first stage F and Wald tests are mostly used

for the relevance condition while Hall, Rudebusch and Wilcox (1996), and Stock and Yogo

(2005) are more recently developed relevance tests. All aforementioned testing procedures

are, however, designed for only one of the two conditions and there is no test considering

both conditions simultaneously to the best of our knowledge. More surprisingly, it has not

been discussed much in the econometrics literature how to combine and interpret these two

types of tests.1

Most notably, the null distribution of the OID test is approximated by the Chi-square

distribution under the implicit assumption that the instruments are relevant. As Staiger and

Stock (1997) point out, however, the Chi-square distribution is a good approximation only if

the instruments are strongly correlated with the endogenous regressors. Therefore, without

the knowledge of the relevance of the instruments, we cannot be sure about the legitimacy

of the Chi-square approximation. One may consider a two-stage testing procedure−testing

for the relevance first and continuing to test for the exogeneity if the first stage relevance

test rejects no or weak relevance. However, the distribution of the OID test conditional on

the rejection of the relevance test can be quite different from the unconditional distribution

and we are really not sure, even asymptotically, what the exact error probability is when we

use the conventional critical values. See Section 4 for some Monte Carlo experiment results.

The testing procedure developed in this paper considers the relevance and exogeneity

conditions at the same time by taking an approach similar to Vuong’s (1989) model selection

1Recently, Moreira (2003) among others, propose an inferential method that is robust to arbitrarily
weak instruments. This weak instruments robust inference, however, requires exogenous instruments and
the necessity to check the exogeneity of instruments still remains (e.g., Doko and Dufour, 2008).
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test. From a structural equation and its associated reduced form equation, we consider two

competing models: one imposing the instruments to be exogenous and the other imposing

the instruments to be completely irrelevant. Assuming normality, we show that the like-

lihood ratio of these two models is equivalent to the difference of the standard first stage

Wald statistic and the OID test statistic. We propose a new QIV test based on this like-

lihood ratio, and it can be viewed as providing a formal way of interpreting the difference

between the commonly used relevance test and the OID test.

More precisely, we set the null hypothesis as the intersection of the two models described

above so that the instruments are exogenous and irrelevant. Then, theQIV statistic is shown

to be asymptotically pivotal under the null hypothesis, whereas it diverges to the positive

infinity when the instruments are relevant and exogenous. This implies that the probability

of rejecting the QIV test with a large positive value approaches one as the sample size grows

if the instruments are indeed exogenous and relevant. Another salient feature of our test

statistic is that its asymptotic null distribution is invariant to the asymptotic framework:

the limiting distribution is the same either under the conventional or under Staiger and

Stock’s (1997) weak instruments asymptotic framework. This is a very important property

since it implies that our test has better size control than the commonly used OID test.

One caveat is that the QIV statistic could diverge to the positive infinity even when the

instruments are not exogenous to the structural error. A leading case of this instance is when

the instruments slightly violate the exogeneity condition while they retain strong correlation

with the endogenous regressors, so that the asymptotic bias of the instrumental variables

estimator is smaller than that of the ordinary least squares estimator. If a set of instruments

indeed reduces the asymptotic bias relative to the OLS estimator, it should be deemed to

be of good quality and the QIV test also concludes to that direction. Nevertheless, it should

be noted that rejection of the QIV test with a large positive value should not be taken as

a strong evidence of exactly exogenous and relevant instruments, while non-rejection of the

QIV test should still be taken as an evidence that the set of instruments is of questionable

quality.
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This paper is organized as follows. Section 2 describes the model and the new test

statistic QIV . Section 3 presents the asymptotic properties of the QIV test under the null

and the alternative hypotheses. Section 4 contains Monte Carlo experiment results. Section

5 concludes with some remarks. All the technical proofs and simulation results are provided

in Appendix.

2 Model and Test Statistic

We consider a structural equation and an associated reduced form equation given by

y = Y β +Xα+ ε (1)

Y = ZΠ+XΦ+ V , (2)

where y is a T × 1 vector, Y is a T × n matrix of n endogenous variables, X is a T ×K1

matrix of (included) exogenous variables, and Z is a T ×K2 matrix of (excluded) exogenous

variables to be used as instruments. The number of instruments, K2, satisfies n < K2 < T

and it is assumed to be fixed. ε and V are, respectively, a T × 1 vector and a T × n matrix

of random disturbances.

In the standard setup, the set of instrumental variables, Z, is assumed to be uncorrelated

with both ε and V , so that Y is correlated with ε only through the correlation between

ε and V . We, however, allow for a more general framework using the following structure,

under which Z and ε could be also linearly correlated.

Assumption 1 ε = Zω + u in (1), where u is correlated with V .

Using Assumption 1, we can rewrite the structural equation (1) as (e.g., Basmann, 1960)

y = Y β +Xα+ Zω + u. (3)

The set of instrumental variables Z is said to be exogenous if ω = 0 so that it is orthogonal
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to the structural error ε. Z is said to be relevant if Π 6= 0 or more precisely Π is of full

column rank, and thus correlations between the instruments and the endogenous regressors

are nonzero. Based on (3), we can rewrite the model in a system of equations given by

Ȳ

⎛⎜⎝ 1 0

−β In

⎞⎟⎠ = Z̄

⎛⎜⎝ω Π

α Φ

⎞⎟⎠+ V̄ , (4)

where In is the identity matrix with rank n, Ȳ = [y, Y ], V̄ = [u, V ] and Z̄ = [Z,X]. If

we define PW = W (W 0W )−1W 0 and MW = I − PW for any given matrix W , we can also

concentrate out X from (2) and (3) to have y⊥ = Y ⊥β +Z⊥ω+ u⊥ and Y ⊥ = Z⊥Π+ V ⊥,

where A⊥ =MXA for any matrix A.

The main interest of this paper is to develop a joint test for the exogeneity and the

relevance of a set of instruments by considering the following two conditions at the same

time:2

ω = 0 and Π 6= 0. (5)

Obviously, the composite hypothesis in (5) cannot be tested in the standard testing frame-

work. We instead take an approach similar to the model selection test of Vuong (1989). To

this end, we consider the following two non-nested models:

Model µω : Ȳ

⎛⎜⎝ 1 0

−β In

⎞⎟⎠ = Z̄

⎛⎜⎝0 Π

α Φ

⎞⎟⎠+ V̄ ;

Model µΠ : Ȳ

⎛⎜⎝ 1 0

−β In

⎞⎟⎠ = Z̄

⎛⎜⎝ω 0

α Φ

⎞⎟⎠+ V̄ .

The first model µω is (4) with a restriction ω = 0, whereas the second model µΠ is (4) with a

restriction Π = 0. Note that under the first model µω, the instruments are exogenous though

2It may be more useful to test for the exogeneity (i.e., ω = 0) and strength of instruments (i.e., each
element of Π is far enough from zero.) However, the weak instruments are formulated under the local-to—zero
asymptotics and thus it is hard to test the strength of the instruments using the standard testing setup.
See Stock and Yogo (2005) for a possible approach of testing for weak instruments under the exogeneity
assumption.

4



its relevance is not verified. Under the second model µΠ, the instruments are irrelevant and

could be even endogenous depending on the value of ω. The key idea is that the likelihood

ratio between the two models, µω and µΠ, can be used as a model selection test. More

formally, we set the null hypothesis as

H0 : ω = 0 and Π = 0, (6)

which implies that two specifications are equally close to the true data generating model.

When the null hypothesis is rejected in favor of the alternative hypothesis

H1 : ω = 0 and Π 6= 0 (7)

(i.e., the first specification µω is closer to the true model), we may expect the set of in-

struments to be exogenous and relevant or likely to be so. It should be noted that, though

this testing idea looks very similar to Vuong (1989), there is a fundamental difference be-

tween these two approaches. For Vuong’s (1989) model selection test, each competing

model is required to have a unique value of the model parameter vector that minimizes the

Kullback-Leibler distance between the given model and the true distribution. This con-

dition is necessary for selecting the model closer to the true distribution with probability

approaching one as the sample size grows. In our setup, this condition is not satisfied be-

cause some parameters in the model µΠ are not properly identified. However, this lack of

identification in the model µΠ is not critical because the main purpose of the test in this

paper is not selecting a model between µω and µΠ but to reject the null hypothesis H0 in

favor of the model µω. In other words, it is of little interest to tell the model µΠ from the

null hypothesis H0.
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To derive a test statistic, we assume that (ut, V 0t )
0|Zt,Xt ∼ i.i.d.N (0,Σ),3 where

Σ =

⎛⎜⎝σuu ΣuV

ΣV u ΣV V

⎞⎟⎠
with ΣuV 6= 0 and the partition is conformable with (ut, V 0t )

0. The likelihood function

is denoted as L(θ) with θ = (β0, ω0, vec(Π)0, vec(Φ)0, vec(Σ)0)0. Then, the likelihood ratio

between the non-nested models µω and µΠ can be derived as

2LR = 2 max
θ:ω=0

logL(θ)− 2 max
θ:Π=0

logL(θ)

= T

µ
log

¯̄̄̄
In +

1

T
GT

¯̄̄̄
− log(1 + 1

T
φ(β̂LIML))

¶
' tr (GT )− φ(β̂LIML), (8)

where tr (·) is the trace operator,

GT = Σ̂
−1/2
V V

³
Y ⊥0PZ⊥Y

⊥
´
Σ̂
−1/2
V V and φ(β̂LIML) =

ε̂⊥0PZ⊥ ε̂
⊥

ε̂⊥0MZ⊥ ε̂
⊥/T

with Σ̂V V = Y ⊥0MZ⊥Y
⊥/T , ε̂⊥ = y⊥ − Y ⊥β̂LIML and β̂LIML being the standard LIML

estimator. The detailed derivation of (8) is given in Appendix. Notice that the first com-

ponent of (8), tr (GT ), is nothing but the Wald statistic testing for Π = 0. The commonly

used first stage F statistic is equivalent to this statistic when there is only one endogenous

regressor; Hall, Rudebusch and Wilcox’s (1996), and Stock and Yogo’s (2005) statistics are

its variants. On the other hand, the second component of (8), φ(β̂LIML), is the standard

overidentifying restrictions (OID) test statistic. For example, it is Anderson-Rubin (1949)

statistic when the true value of β is used instead of β̂LIML and is the Basmann’s (1960)

OID test when the two stage least squares (TSLS) estimator β̂TSLS is used.

From the model selection point of view, a large positive value of the LR statistic in (8)

indicates that the model µω has a Kullback-Leibler distance to the true model smaller than

3The normality assumption is not needed for our main asymptotic results presented in the next section.
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that of the model µΠ. In addition, as the sample size grows, we can show the LR statistic

tends to the positive infinity when the model µω is true with Π 6= 0, whereas it shifts to

the opposite direction if the model µΠ is true with ω 6= 0. Under the intersection of the

two models (i.e., both ω = 0 and Π = 0), the LR statistic is asymptotically pivotal. (See

the remark following Theorem 1.) It is thus natural to consider a testing procedure which

concludes that a given set of instruments is closer to being exogenous and relevant (i.e., of

good quality) when the LR in (8) takes a large positive value. More formal discussions can

be found in the following section.

The new joint test statistic developed in this paper has basically the same structure

as the LR statistic in (8). Specifically, the test statistic (on the quality of instrumental

variables: QIV ) that we consider is defined as4

QIV = λmin
¡
G0T
¢
− φ(β̂(kT )), (9)

where λmin (·) is the minimum eigenvalue of a given matrix and

G0T = Σ̃
−1/2
V V

³
Y ⊥0PZ⊥Y

⊥
´
Σ̃
−1/2
V V with Σ̃V V =

1

T
Y ⊥0Y ⊥,

φ(β̂(kT )) =
ε̃⊥0P⊥

Z⊥ ε̃
⊥

ε̃⊥0MZ⊥ ε̃
⊥/T

with ε̃⊥ = y⊥ − Y ⊥β̂(kT ).

Here we compute the covariance matrix of the reduced form error V with assuming Π = 0.

G0T and GT are asymptotically equivalent if Π = 0, and λmin(GT ) is the test statistic for

instrument weakness suggested by Stock and Yogo (2005), which is based on Cragg and

Donald’s (1993) statistic. β̂(kT ) is the standard k-class estimator defined as

β̂(kT ) = (Y
⊥0(IT − kTMZ⊥)Y

⊥)−1Y ⊥0(IT − kTMZ⊥)y
⊥, (10)

in which kT = 1 for the TSLS estimator; kT = k̂T for the LIML estimator; and kT =

4Apparently, QIV is a modified version of LR. The justification for such modification is given after
Theorem 2 in the next section.
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k̂T − 1/(T −K1 −K2) for the Fuller-k estimator with k̂T being the smallest root satisfying

|Ȳ 0MX Ȳ − k̂T Ȳ
0MZ̄ Ȳ | = 0. An interesting point is that the new test statistic QIV is the

difference between a weak instrument test statistic (e.g., Stock and Yogo, 2005; Cragg and

Donald, 1993) and the standard OID test statistic. Therefore, our test procedure can also

be viewed as providing a formal way of interpreting the difference between the commonly

used relevance test and the OID test.

3 Asymptotic Results

We first derive the asymptotic distribution of the QIV statistic (9) under the null hypothesis

(6). We let ρ = Σ−1/2V V ΣV uσ
−1/2
uu and Ω = SZZ − SZXS

−1
XXSXZ , where

S = E
¡
Z̄tZ̄

0
t

¢
=

⎛⎜⎝SZZ SXZ

SZX SXX

⎞⎟⎠
with Z̄ 0t being the t-th row of Z̄. We make the high level assumptions following Staiger and

Stock (1997).

Assumption 2

(a) T−1V̄ 0V̄
p→ Σ and T−1Z̄ 0Z̄

p→ S as T →∞, where both Σ and S are positive definite

and finite.

(b) (X 0u,Z 0u,X 0V,Z 0V )/
√
T

d→ (ΨXu,ΨZu,ΨXV ,ΨZV ) as T →∞,

where (Ψ0Xu,Ψ
0
Zu, vec(ΨXV )

0, vec(ΨZV )
0)0 ∼ N (0,Σ⊗ S).

Based on Assumption 2, we also define Gaussian random matrices zu = Ω
−1/2(ΨZu −

SZXS
−1
XXΨXu)σ

−1/2
uu and zV = Ω

−1/2(ΨZV − SZXS
−1
XXΨXV )Σ

−1/2
V V so that (z0u, vec(zV )

0)0 ∼

N
¡
0,Σ⊗ IK2

¢
with Σ =

¡
1 ρ0

ρ In

¢
. The first theorem derives the asymptotic distribution of

the QIV statistic under the null hypothesis (6).
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Theorem 1 We suppose ω = 0 and Π = 0. Under Assumptions 1 and 2, κT = T (k̂T−1)
d→

κ∗ as T → ∞, where κ∗ is the smallest root satisfying |(η, zV )0(η, zV ) − κ∗In+1| = 0 and

η = (zu − zV ρ) /
√
1− ρ0ρ so that (η0, vec(zV )0)0 ∼ N

¡
0, I(n+1)K2

¢
. Furthermore,

QIV
d→ Q0IV = λmin(z

0
V zV )−

η0(IK2 − zV (z
0
V zV − κIn)

−1z0V )
2η

1 + η0zV (z0V zV − κIn)−2z0V η
,

where κ = 0 for the TSLS estimator; κ = κ∗ for the LIML estimator; and κ = κ∗ − 1 for

the Fuller-k estimator.

The limiting null distribution of the QIV statistic is nuisance parameter free; it depends only

on the number of instrumental variables (K2) and the number of endogenous regressors (n).

Tables 1.A to 1.C in Appendix report the relevant quantiles of Q0IV . It is also evident from

Theorem 1 that the LR statistic in (8) is asymptotically pivotal. The following theorem

derives the asymptotic behavior of the QIV statistic under various hypotheses including the

alternative hypothesis (7).

Theorem 2 Under Assumptions 1 and 2, as T → ∞ we have the following asymptotic

results:

(i) If ω = 0 and Π 6= 0, then QIV
p→∞.

(ii) If ω 6= 0 and Π = 0, then κT = T (k̂T − 1) = Op(1). Moreover, let κT
d→ κ∗, then

QIV
d→ Qω

IV , where

Qω
IV = λmin(z

0
V zV )−

ω0Ω1/20
¡
IK2 − zV (z

0
V zV − κIn)

−1z0V
¢2
Ω1/2ω

ω0Ω1/20zV (z0V zV − κIn)−2z0VΩ
1/2ω

with κ = 0 for the TSLS estimator; κ = κ∗ for the LIML estimator; and κ = κ∗ − 1 for the

Fuller-k estimator.

(iii) If ω 6= 0 and Π 6= 0, then k̂T
p→ k∗ with k∗ being the smallest root satisfying
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|Θ− (k∗ − 1)Σ| = 0 with Θ =
¡ω0Ωω ω0ΩΠ
Π0Ωω Π0ΩΠ

¢
, and

plimT→∞
QIV

T
= λmin((Π

0ΩΠ+ΣV V )
−1Π0ΩΠ)− ω0Ωω + b (k)0Π0ΩΠb (k)− 2ω0ΩΠb (k)

σuu + b (k)0ΣV V b (k)− 2ΣuV b (k)
,

(11)

where b (k) = plimT→∞(β̂(kT )− β) = (Π0ΩΠ− kΣV V )
−1(Π0Ωω − kΣV u) with k = 0 for the

TSLS estimator; and k = k∗ − 1 for the LIML and the Fuller-k estimators.

Theorem 2-(i) indicates that the QIV statistic diverges to the positive infinity with exoge-

nous and relevant instruments (i.e., under H1), and thus the probability to reject the null

hypothesis approaches one as the sample size grows. This result is the basic building block

of our new test QIV : we reject H0 (ω = 0 and Π = 0) in (6) in favor of H1 (ω = 0 and

Π 6= 0) in (7) if QIV is large enough. Furthermore, Monte Carlo experiments indicate that

the distribution of QIV shifts to the left when ω 6= 0 and Π = 0 (i.e., Qω
IV in Theorem 2-(ii))

and the probability to erroneously reject H0 in favor of H1 remains under the controlled

level, though it does not diverge to the negative infinity as the sample size grows. See

Section 4 for the relevant simulation results.

One caveat is that the result in Theorem 2-(iii) implies that the QIV statistic could

diverge to the positive infinity provided plimT→∞QIV /T > 0, even when the instruments

are correlated with the structural error (ω 6= 0) as long as they are correlated strongly

enough with the endogenous regressors (Π 6= 0). Therefore, it is important to emphasize

that rejection of the QIV test with a large positive value should not be taken as a strong

evidence of good instruments. Rather, non-rejection of the QIV test should be taken as an

evidence that the set of instruments is of questionable quality.

However, the sign of plimT→∞QIV /T is not completely arbitrary. It is roughly linked

to the relative magnitude of the biases between β̂(kT ) and the OLS estimator β̂OLS :

plimT→∞QIV /T is more likely positive when the asymptotic bias of β̂(kT ) is smaller than

that of β̂OLS (i.e., the instruments works properly to reduce the endogeneity problem).

More precisely, with k = 0 (i.e., the TSLS estimator β̂TSLS is used for β̂(kT )), note that
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plimT→∞QIV /T > 0 implies

λmin (Λ
0Λ)

1 + λmin (Λ0Λ)
≥ ω0Ωω + b (0)0Π0ΩΠb (0)− 2ω0ΩΠb (0)

σuu + b (0)0ΣV V b (0)− 2ΣuV b (0)

=
ω0Ωω − ω0ΩΠ(Π0ΩΠ)−1Π0Ωω

σuu − 2ΣuV (Π0ΩΠ)−1Π0Ωω + 2ωΩΠ(Π0ΩΠ)−1ΣV V (Π0ΩΠ)−1Π0Ωω

=
ξ0MΛξ

1− 2ρ0(Λ0Λ)−1Λ0ξ + ξ0Λ(Λ0Λ)−2Λ0ξ
(12)

from (11), where Λ = Ω1/2ΠΣ
−1/2
V V , ξ = Ω1/2ωσ−1/2uu and MΛ = I − Λ (Λ0Λ)−1Λ0. In

comparison, for β̂OLS − β
p→ (Π0ΩΠ+ΣV V )−1(Π0Ωω+ΣV u), the relative magnitude of the

biases between β̂TSLS and β̂OLS with respect to Π
0ΩΠ is given by5

RB = plimT→∞
(β̂TSLS − β)0(Π0ΩΠ)(β̂TSLS − β)

(β̂OLS − β)0(Π0ΩΠ)(β̂OLS − β)

=
ω0ΩΠ(Π0ΩΠ)−1Π0Ωω

(ω0ΩΠ+Σ0V u)(Π
0ΩΠ+ΣV V )−1(Π0ΩΠ)(Π0ΩΠ+ΣV V )−1(Π0Ωω +ΣV u)

=
ξ0PΛξ

ρ0BΛρ+ 2ρ0BΛΛ0ξ + ξ0ΛBΛΛ0ξ
(13)

where PΛ = Λ (Λ0Λ)
−1Λ0 and BΛ = (Λ

0Λ + I)−1(Λ0Λ)(Λ0Λ + I)−1. Now, suppose none of

ξ0PΛξ and ξ0MΛξ is zero but the cross products ρ0BΛΛ
0ξ and ρ0(Λ0Λ)−1Λ0ξ are close to zero.

Then, both expressions in (12) and (13) have the same structure: they are non-negative

and increasing in kξk. It thus suggests that for a given pair of (ρ,Λ), small-enough ξ will

satisfy the inequality in (12), which is also likely to satisfy RB < 1 as well (i.e., TSLS

has a smaller bias than OLS). In this sense, roughly speaking, the sign of plimT→∞QIV /T

is related to the relative bias RB. Therefore, when a set of instruments slightly violates

the exogeneity condition but its correlation with the endogenous regressors remains strong

enough, so that the asymptotic bias of the instrumental variables estimator is smaller than

that of the ordinary least squares estimator, the quality of the instruments should be deemed

5It is similar to the relative magnitude of the biases with respect to Y ⊥0Y ⊥ (e.g., Stock and Yogo, 2005).
Note that Y ⊥0Y ⊥/T

p→ Π0ΩΠ+ΣV V and Π0ΩΠ only considers the pure signal from the IV.
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to be good enough and the QIV test concludes to that direction.6

In addition, as extreme cases, if ξ is in the null space of Λ, β̂TSLS has no asymptotic

bias but we do not necessarily conclude that the instruments are valid. This implies that

the QIV test is unnecessarily tough. If ξ is in the range space of Λ (or equivalently ω = Πc

for some vector c), we always conclude that the instruments are valid even when ω 6= 0

regardless of the relative bias. Recall that the standard OID tests share the same feature

so that it has no power against such a violation of the exogeneity condition (e.g., Newey,

1985).

Finally, in order to investigate the local power property of the new test statistic QIV ,

we assume the following local-to-zero assumptions similarly as Staiger and Stock (1997).

Assumption 3 ω = d/
√
T and Π = C/

√
T for some 0 < d,C <∞.

One of the novelties of the QIV statistic is that its limiting distribution under ω = 0 and

Π = 0 is invariant to the asymptotic framework. That is the limiting distribution is the same

either under the conventional or under Staiger and Stock’s weak instruments framework.

This is a very important feature because the error probabilities of our test is controlled

much better than the standard OID tests.

Theorem 3 Under Assumptions 1, 2 and 3, we have QIV
d→ Qloc

IV as T →∞, where

Qloc
IV ≡ λmin((zV + ΛC)

0(zV + ΛC))−
(zu − (zV + ΛC)∆ξ(κ))

0(zu − (zV + ΛC)∆ξ(κ))

1− 2ρ0∆ξ(κ) +∆ξ(κ)0∆ξ(κ)
,

∆ξ(κ) = ((zV + ΛC)
0(zV + ΛC) − κIn)

−1 [(zV + ΛC)0(zu + ξd)− κρ], ΛC = Ω1/2CΣ
−1/2
V V

and ξd = Ω
1/2dσ

−1/2
uu . κ = 0 for the TSLS estimator; κ = κ∗ for the LIML estima-

6The LR statistic in (8) also satisfies the same asymptotic behavior as the QIV statistic. Particularly
when ω 6= 0 and Π 6= 0, we can show that

plimT→∞
LR

T
= tr(Σ−1V VΠ

0ΩΠ)− ω0Ωω + b0LIMLΠ
0ΩΠbLIML − 2ωΩΠbLIML

σuu + b0LIMLΣV V bLIML − 2ΣuV bLIML
,

where bLIML = plimT→∞(β̂LIML − β). Note that tr(Σ−1V VΠ
0ΩΠ) is the sum of all the eigenvalues of Λ0Λ

and therefore, it is not only larger than λmin (Λ
0Λ) /(1 + λmin (Λ

0Λ)) but also could be unbounded above.
Consequently, it is more difficult to find any relationship between the sign of plimT→∞LR/T and the relative
bias RB. In this point of view, the QIV statistic is more preferable but it is also true that the non-rejection
of the LR test is a stronger indication that the set of instruments is of questionable quality.
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tor; and κ = κ∗ − 1 for the Fuller-k estimator with κ∗ being the smallest root satisfying¯̄
(zu + ξd, zV + ΛC)

0(zu + ξd, zV + ΛC)− κ∗Σ
¯̄
= 0.

Obviously, Qloc
IV depends on a nuisance parameter ρ unless ω = 0 and Π = 0. Furthermore,

if there are multiple endogenous variables (n ≥ 2), Qloc
IV depend on all the eigenvalues of

Λ0CΛC , as Stock and Yogo (2005) point out. Therefore, this asymptotic distribution cannot

be directly used for inferences. See Section 4 where we report the local power of the QIV

test obtained from simulating Qloc
IV .

4 Monte Carlo Simulation

4.1 Null rejection probability of the standard OID test

In this subsection, we demonstrate via Monte Carlo experiments the difficulties arising

when the relevance test and exogeneity test are used in the conventional manner. First,

we show the dependence of the limiting null distribution of the standard OID test on the

correlation between the instruments and endogenous variables. In particular, the size of

the OID test can depart from the nominal level by a large margin when the correlation

between the instruments and endogenous variables is weak. One may consider a two-stage

testing procedure−testing for the relevance first and continuing to test for the exogeneity

if the first stage relevance test rejects no or weak relevance. In this case, we show that the

dependence on the instrumental strength gets intensified causing even larger size distortion

of the OID test.

Let φ(β̂(kT )) and λmin(GT ) be the standard OID test and Stock and Yogo’s (2005) weak

instruments test, respectively, as defined in (8), where β̂(kT ) is the k-class estimator as in

(10). From Theorem 3, the limit expressions for these statistics are

φ(β̂(kT ))
d→ φ∞ ≡ (zu − (zV + ΛC)∆ξ(κ))

0(zu − (zV + ΛC)∆ξ(κ))

1− 2ρ0∆ξ(κ) +∆ξ(κ)0∆ξ(κ)
(14)

λmin (GT )
d→ g∞ ≡ λmin((zV + ΛC)

0(zV + ΛC)) (15)

13



with ξd = 0. We simulate the limiting quantities φ∞ and g∞ in order to avoid any other

finite sample complications.

Tables 2.A and 2.B. in Appendix report the rejection probabilities of the OID test based

on several different testing procedures, where Tables 2.A is based on the TSLS estimator

and Tables 2.B is based on the Fuller-k estimator. The case of one endogenous regressor

(n = 1) and 3, 9 instrumental variables (K2 = 3, 9) are presented but the results remain

qualitatively unchanged for other values of n and K2. For each value of K2, there are three

columns: “rej,” “n-rej,” and “uncond.” Each of these three columns corresponds to the

rejection probabilities of φ∞ conditional on the rejection of g∞ (i.e., P(φ∞ > χ2K2−n,0.05|g∞

rejects)), conditional on the non-rejection of g∞ (i.e., P(φ∞ > χ2K2−n,0.05|g∞ not reject)) and

unconditionally (i.e., P(φ∞ > χ2K2−n,0.05)), respectively. The numbers in the parenthesis

next to “rej” are P(g∞ rejects) and those next to “n-rej” are P(g∞ not rejects). Note that

the first-stage weak IV tests using (15) are based on the 10% TSLS/Fuller-k bias (see Stock

and Yogo, 2005, for the precise definition) at the 5% significance level. The second-stage

OID tests using (14) are based on the Chi-square distribution. Three values of Λ0CΛC are

simulated:7 0.5, 0.8, and 1.2 times of λ∗min, where λ
∗
min is the boundary value for the weak

instruments set based on the 10% TSLS/Fuller-k bias. Hence, the cases of 0.5 and 0.8

correspond to the weak instruments, while 1.2 to the strong instruments. For each value of

Λ0CΛC , ρ = 0.1, 0.3, 0.5, 0.8 and 1.0 are considered.

The first observation in Table 2.A is that the size distortion of φ∞ increases (e.g., see the

“uncond.” columns) as the instruments get weaker, which shows the danger of applying the

standard OID test without knowing the strength of the instruments. Note that the actual

sizes vary from less than 4% to more than 20% when the instruments are weakly correlated

with the endogenous variables. The second observation is that the sequential procedure

creates more size distortion in that the rejection probabilities of φ∞ conditional on the

rejection of g∞ is always greater than their unconditional counterparts. Also, the size of

φ∞ is very liberal near ρ = 1, while it is mildly conservative near ρ = 0. Table 2.B reports

7Λ0CΛC is the weak instrument limit of the concentration matrix: Σ1/20ΠZ⊥0Z⊥ΠΣ1/2
p→ Λ0CΛC .
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the results obtained using the Fuller-k estimator instead of the TSLS estimator. Overall,

Table 2.B exhibits a great deal of similarity to Table 2.A and the general conclusions from

Table 2.A remain valid. One notable difference is that the largest size distortion is not

associated with ρ = 1 but with ρ = 0.1.

4.2 Size and power properties of the QIV test

We also conduct Monte Carlo experiments for the finite sample size and power of the QIV

test. The model we simulate is based on (2) and (3) without X:

y = Y β + Zω + u and Y = ZΠ+ V .

We consider the number of endogenous variables n = 1, 2, 3 and the number of instruments

K2 = n+ 1, n+ 3, n+ 5. The errors (ut, V 0t )
0 are specified as

ut = et +Σ
0
V uEt and Vt = Et,

where (et, E0t)
0 ∼ i.i.d.N (0, In+1) and ΣV u is a vector of ones multiplied by 0.5/

√
n. Zt is

from a multivariate normal with unit mean and identity variance covariance matrix. Also,

we let β = 0 since the QIV test is exactly invariant to the value of β. The number of

replications is 5,000. The sample size is T = 50, 100, 200 and 300.

For the finite sample size simulation, we assume ω = 0 and Π = 0. The results are

reported in Tables 3.A and 3.B. For any sample size T , the QIV test shows that actual sizes

are very close to the nominal 5% whether it is based on the TSLS or Fuller-k estimator.

For the finite sample power simulation, we set ω = 0 and Π = 0.25Rn,K2 , where the

columns of Rn,K2 are a set of orthonormalized vectors which are randomly selected from

a uniform distribution for each value of n and K2. Tables 4.A and 4.B report the results.

They show that the probability rejecting the null hypothesis (i.e., H0 : ω = 0 and Π = 0)

with a large positive value of QIV quickly approaches one as the sample size grows. The last

power experiments assume Π = 0 while ω is a vector of zeros except for the last element,
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which is equal to 0.5. This particular shape of ω reflects that only one or two instruments

violate the exogeneity condition, which is very likely if the researcher is careful enough.

Tables 5.A and 5.B show that the rejection probabilities are much smaller than the nominal

5% for all n and k2. The last row in Table 5.A corresponds to the limiting case which are

obtained from simulating Qω
IV given in Theorem 2. Note that the power does not collapse

to zero because QIV does not diverge to the negative infinity.

Finally, we simulate Qloc
IV to see the local power of the QIV test. Qloc

IV depends on ρ and

we consider three cases: ρ is proportional to a vector of ones with ||ρ|| = 0.2, 0.5 and 0.8.

We present only the results of the Fuller-k estimator since the TSLS and LIML estimators

give very similar results. Also, the results are quite stable across different pairs of (n,K2)

and we report three cases (n,K2) = (1, 3), (2, 5), and (3, 7). The number of replications is

20,000.

Figure 1.A shows the results when ω = 0 but Π = C/
√
T as C gets away from zero.

More precisely, we let ξd = 0 and ΛC = cRn,K2 , where c varies from 0 to 5. In all cases,

the power increases toward one as |c| increases. Figure 1.B, on the other hand, shows

the results when Π = 0 but ω = d/
√
T as d gets away from zero. We let ΛC = 0 and

ξd = (0, . . . , 0, ξK2
)0, where ξK2

varies from 0 to 5. In all cases, the power decreases toward

zero as |ξK2
| increases.

5 Conclusion

A joint test for the relevance and the exogeneity conditions is proposed using an approach

similar to Vuong’s (1989) model selection test. In particular, the test statistic is derived

from two competing models: one imposing the instruments to be exogenous and the other

imposing the instruments to be completely irrelevant. The likelihood ratio of these two

models is shown to be equivalent to the difference of the standard first stage Wald statistic

and the OID test statistic.

The proposed QIV test is a slight modification of the likelihood ratio. The null hypoth-
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esis is set to be the intersection of the two models described above so that the instruments

are exogenous and irrelevant. Then, the QIV statistic is shown to be asymptotically piv-

otal under the null hypothesis, whereas it is consistent against the alternative hypothesis

that the instruments are relevant and exogenous. This result implies that non-rejection of

the QIV test should be taken as an evidence that the set of instruments is of questionable

quality. Furthermore, the asymptotic null distribution of the QIV test is invariant either

under the conventional or under Staiger and Stock’s (1997) weak instruments asymptotic

framework. This is an important property since it implies that our test has better size

control than the commonly used overidentifying restrictions test. Lastly, it should be noted

that the QIV statistic could diverge to the positive infinity even if the instruments are not

strictly exogenous to the structural error. Therefore, rejection of the QIV test should not be

taken as a strong evidence of exact exogeneity, while the rejection still tells the instruments

to be of good quality in the sense that the 2SLS estimator based on these instruments is

likely to have smaller asymptotic bias relative to the OLS estimator.
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Appendix

A.1 Mathematical Proofs

Likelihood Ratio (8) Derivation First, we impose ω = 0 and write the log-likelihood
as

logL(θ) = −T
2
log |σuu|−

1

2σuu
ε⊥0ε⊥

−T
2
log
¯̄
ΣV |u

¯̄
− 1
2
tr

∙³
Y ⊥ − Z⊥Π− ε⊥δ0

´0
Σ−1V |u

³
Y ⊥ − Z⊥Π− ε⊥δ0

´¸
,

where ε⊥ = y⊥−Y ⊥β, δ = ΣV u/σuu andΣV |u = ΣV V−ΣV uΣuV /σuu = Σ
1/2
V V (In − ρρ0)Σ1/2V V .

We denote the estimates obtained imposing ω = 0 with a subscript 0. From the first order
conditions, we obtain σ̂uu,0 = ε̂⊥0ε̂⊥/T , where ε̂⊥ = y⊥ − Y ⊥β̂LIML, and

δ̂0 =
³
Y ⊥ − Z⊥Π̂0

´0
ε̂⊥(ε̂⊥0ε̂⊥)−1 = Y ⊥0MZ⊥ ε̂

⊥(ε̂⊥0MZ⊥ ε̂
⊥)−1

Π̂0 = (Z⊥0Z⊥)−1Z⊥0(Y ⊥ − ε̂⊥δ̂
0
0) = (Z

⊥0Z⊥)−1Z⊥0(Y ⊥ − ε̂⊥ε̂⊥0MZ⊥Y
⊥(ε̂⊥0MZ⊥ ε̂

⊥)−1)

Σ̂V |u,0 =
1

T

³
Y ⊥ − Z⊥Π̂0 − ε̂⊥δ̂

0
0

´0 ³
Y ⊥ − Z⊥Π̂0 − ε̂⊥δ̂

0
0

´
=

1

T
Y ⊥MZ⊥Y

⊥ − 1

T
Y ⊥0MZ⊥ ε̂

⊥(ε̂⊥0MZ⊥ ε̂
⊥)−1ε̂⊥0MZ⊥Y

⊥.

Note that

¯̄̄
Σ̂V |u,0

¯̄̄
=

1

Tn

¯̄̄
Γ̂0Ȳ ⊥0MZ⊥ Ȳ

⊥Γ̂
¯̄̄ 1

ε̂⊥0MZ⊥ ε̂
⊥ =

1

Tn

¯̄̄
Ȳ ⊥0MZ⊥Ȳ

⊥
¯̄̄ 1

ε̂⊥0MZ⊥ ε̂
⊥ ,

where Γ̂ =
¡ 1 0
−β̂LIML In

¢
. We then have (up to a constant addition)

max
θ:ω=0

logL(θ) = −T
2
log
³
|σ̂uu,0|

¯̄̄
Σ̂V |u,0

¯̄̄´
= −T

2
log

Ã
ε̂⊥0ε̂⊥

ε̂⊥0MZ⊥ ε̂
⊥

1

Tn+1

¯̄̄
Ȳ ⊥0MZ⊥Ȳ

⊥
¯̄̄!

= −T
2
log(1 +

1

T
φ(β̂LIML))−

T

2
log

¯̄̄̄
1

T
Ȳ ⊥0MZ⊥Ȳ

⊥
¯̄̄̄
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Now, we impose Π = 0 and write

logL(θ) = −T
2
log
¯̄
σu|V

¯̄
− 1

2σu|V

³
y⊥ − Z⊥ω − Y ⊥ϕ

´0 ³
y⊥ − Z⊥ω − Y ⊥ϕ

´
−T
2
log |ΣV V |−

1

2
tr
h
Σ−1V V Y

⊥0Y ⊥
i
,

where ϕ = γ + β, σu|V = σuu − ΣuVΣ−1V VΣV u and γ = Σ−1V VΣV u. We use a subscript 1 to
all estimates obtained with Π = 0 restriction. Similarly as the first case, we have

Σ̂V V,1 =
1

T
Y ⊥0Y ⊥

ω̂1 = (Z⊥0Z⊥)−1Z⊥0
³
y⊥ − Y ⊥ϕ̂1

´
= (Z⊥0Z⊥)−1Z⊥0

³
y⊥ − Y ⊥(Y ⊥0MZ⊥Y

⊥)−1Y ⊥0MZ⊥y
⊥
´

ϕ̂1 = (Y ⊥0Y ⊥)−1Y ⊥0
³
y⊥ − Z⊥ω̂1

´
= (Y ⊥0MZ⊥Y

⊥)−1Y ⊥0MZ⊥y
⊥

σ̂u|V,1 =
1

T

³
y⊥ − Z⊥ω̂1 − Y ⊥ϕ̂1

´0 ³
y⊥ − Z⊥ω̂1 − Y ⊥ϕ̂1

´
=

1

T
y⊥0MZ⊥y

⊥ − 1

T
y⊥0MZ⊥Y

⊥(Y ⊥0MZ⊥Y
⊥)−1Y ⊥0MZ⊥y

⊥ =
1

T

¯̄
Ȳ ⊥0MZ⊥Ȳ

⊥¯̄
|Y ⊥0MZ⊥Y

⊥| .

Moreover,

¯̄̄
Σ̂V V,1

¯̄̄
=

1

Tn

¯̄̄
Y ⊥0Y ⊥

¯̄̄
=

1

Tn

¯̄̄
Y ⊥0MZ⊥Y

⊥ + Y ⊥0PZ⊥Y
⊥
¯̄̄

=
1

Tn

¯̄̄̄
(Y ⊥0MZ⊥Y

⊥)1/2(In +
1

T
GT )(Y

⊥0MZ⊥Y
⊥)1/2

¯̄̄̄
=

1

Tn

¯̄̄̄
In +

1

T
GT

¯̄̄̄ ¯̄̄
Y ⊥0MZ⊥Y

⊥
¯̄̄
,

which yields (up to a constant addition)

max
θ:Π=0

logL(θ) = −T
2
log
³¯̄
σ̂u|V,1

¯̄ ¯̄̄
Σ̂V V,1

¯̄̄´
= −T

2
log

µ¯̄̄̄
1

T
Ȳ ⊥0MZ⊥Ȳ

⊥
¯̄̄̄¶
− T

2
log

µ¯̄̄̄
In +

1

T
GT

¯̄̄̄¶
.

19



Therefore, the LR statistic can be derived as

2LR = 2 max
θ:ω=0

logL(θ)− 2 max
θ:Π=0

logL(θ)

= T

µ
log

¯̄̄̄
In +

1

T
GT

¯̄̄̄
− log(1 + 1

T
φ(β̂LIML))

¶
' tr (GT )− φ(β̂LIML),

where the last approximation is valid since, by construction, kGTk is small under Π = 0

and so is φ(β̂LIML) under ω = 0. ¥

Proof of Theorem 1 This is a special case of Theorem 3 with C = 0 and d = 0. Note
that zu = (1− ρ0ρ)1/2η + zV ρ and

∆0(κ) = (z0V zV − κI)−1(z0V zu − κρ)

= ρ+ (1− ρ0ρ)1/2(z0V zV − κI)−1z0V η,

which implies

zu − zV∆0(κ) = (1− ρ0ρ)1/2(I − zV (z
0
V zV − κI)−1z0V )η

∆0(κ)
0∆0(κ) = ρ0ρ+ (1− ρ0ρ)η0zV (z

0
V zV − κI)−2z0V η + 2(1− ρ0ρ)1/2ρ0(z0V zV − κI)−1z0V η

ρ0∆0(κ) = ρ0ρ+ (1− ρ0ρ)1/2ρ0(z0V zV − κI)−1z0V η.

Therefore,

QIV
d→ λmin(z

0
V zV )−

(zu − zV∆0(κ))
0(zu − zV∆0(κ))

1− 2ρ0∆0(κ) +∆0(κ)0∆0(κ)
,

in which the second component is given by

(zu − zV∆0(κ))
0(zu − zV∆0(κ))

1− 2ρ0∆0(κ) +∆0(κ)0∆0(κ)
=

(1− ρ0ρ)η0(I − zV (z
0
V zV − κI)−1z0V )

2η

1− ρ0ρ+ (1− ρ0ρ)η0zV (z0V zV − κI)−2z0V η
,

where κ = 0 for the TSLS estimator; κ = κ∗ for the LIML estimator; and κ = κ∗−1 for the
Fuller-k estimator with κ∗ being the smallest root satisfying |(zu, zV )0(zu, zV ) − κ∗Σ̄| = 0.
Note that |(zu, zV )0(zu, zV ) − κ∗Σ̄| = |D0(η, zV )0(η, zV )D − κ∗D0D| = |(η, zV )0(η, zV ) −
κ∗In+1| = 0, where D =

¡(1−ρ0ρ)1/2 0
ρ In

¢
. ¥

Proof of Theorem 2 Part (i) is trivial and omitted. For part (ii), the limit of the first
component λmin(G0T ) is the same as in Theorem 1. For the second component, since the roots
of
¯̄
Ȳ ⊥0Ȳ ⊥ − kT Ȳ

⊥0MZ⊥ Ȳ
⊥¯̄ = 0 are the same as those of ¯̄J 0Ȳ ⊥0Ȳ ⊥J − kTJ

0Ȳ ⊥0MZ⊥Ȳ
⊥J
¯̄
=

20



0 with J =
¡ 1 0
−β In

¢
, we consider

0 = |J 0Ȳ ⊥0Ȳ ⊥J − k̂TJ
0Ȳ ⊥0MZ⊥ Ȳ

⊥J |

= |J 0Ȳ ⊥0PZ⊥ Ȳ ⊥J − T (k̂T − 1)
1

T
J 0Ȳ ⊥0MZ⊥ Ȳ

⊥J |

= |Σ̂−1/20J 0Ȳ ⊥0PZ⊥Ȳ ⊥JΣ̂−1/2 − κT In+1|,

where κT is the smallest root and Σ̂ = T−1J 0Ȳ ⊥0MZ⊥Ȳ
⊥J . Under ω 6= 0 and Π = 0, we

have Σ̂ = T−1J 0Ȳ ⊥0MZ⊥Ȳ
⊥J

p→ Σ and we can write

PZ⊥Ȳ
⊥J = PZ⊥ [y

⊥, Y ⊥]J = [Z⊥ω, 0] + [PZ⊥u
⊥, PZ⊥V

⊥] ≡ A1 +A2.

Note that λmin(Σ̂−1/20A01A1Σ̂
−1/2) = 0 for all T . We denote by νA1 the eigenvector of

Σ̂−1/20A01A1Σ̂
−1/2 corresponding to the zero eigenvalue. Also, Σ̂−1/20A02A2Σ̂

−1/2 = Op(1),
which implies that the largest eigenvalue of Σ̂−1/20A02A2Σ̂

−1/2 is Op(1) as well. We let νA2
be the eigenvector of Σ̂−1/20A02A2Σ̂

−1/2 corresponding to the largest eigenvalue. Let ν be the
eigenvector of Σ̂−1/20J 0Ȳ ⊥0PZ⊥Ȳ

⊥JΣ̂−1/2 associated with κT . Then, for a nonzero vector
x,

κT = min
kxk=1

x0Σ̂−1/20J 0Ȳ ⊥0PZ⊥ Ȳ
⊥JΣ̂−1/2x

= ν 0Σ̂−1/20J 0Ȳ ⊥0PZ⊥Ȳ
⊥JΣ̂−1/2ν

= ν 0Σ̂−1/20
¡
A01A1 +A02A2 +A01A2 +A02A1

¢
Σ̂−1/2ν

≤ ν 0A1Σ̂
−1/20 ¡A01A1 +A02A2 +A01A2 +A02A1

¢
Σ̂−1/2νA1

= 0 + ν 0A1Σ̂
−1/20A02A2Σ̂

−1/2νA1 + 2ν
0
A1Σ̂

−1/20A01A2Σ̂
−1/2νA1

≤ ν 0A2Σ̂
−1/20A02A2Σ̂

−1/2νA2 + 2
³
ν 0A1Σ̂

−1/20A01A1Σ̂
−1/2νA1

´1/2 ³
ν 0A1Σ̂

−1/20A02A2Σ̂
−1/2νA1

´1/2
= Op(1) + 0.

Now, for β̂(kT ) = β + (V ⊥0(IT − kTMZ⊥)V
⊥)−1V ⊥0(IT − kTMZ⊥)(Z

⊥ω + u⊥), we have

T−1/2(β̂(kT )− β)
d→ Σ−1/2V V (z0V zV − κIn)

−1z0VΩ
1/2ω

because

V ⊥0(IT − kTMZ⊥)V
⊥ = V ⊥0V ⊥ − kTV

⊥0MZ⊥V
⊥

= V ⊥0PZ⊥V
⊥ − (kT − 1)V ⊥0MZ⊥V

⊥ d→ Σ1/20V V z0V zVΣ
1/2
V V − κΣV V
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and

T−1/2V ⊥0(I − kTMZ⊥)(Z
⊥ω + u⊥)

= T−1/2V ⊥0(Z⊥ω + u⊥)− T−1/2kTV
⊥0MZ⊥(Z

⊥ω + u⊥)

= T−1/2V ⊥0PZ⊥(Z
⊥ω + u⊥)− T (kT − 1)T−3/2V ⊥0MZ⊥(Z

⊥ω + u⊥)
d→ Σ1/20V V z0VΩ

1/2ω,

where κ = 0 for the TSLS estimator, κ = κ∗ for the LIML estimator and κ = κ∗ − 1 for
the Fuller-k estimator if we let κT

d→ κ∗. In addition, ε̃⊥ = y⊥ − Y ⊥β̂(kT ) = Z⊥ω + u⊥ −
V ⊥(β̂(kT )− β) since Y ⊥ = V ⊥. We thus have

T−1ε̃⊥0PZ⊥ ε̃
⊥ = T−1ω0Z⊥0Z⊥ω + T−1(β̂(kT )− β)0V ⊥0PZ⊥V

⊥(β̂(kT )− β)

−2T−1ω0Z⊥0V ⊥(β̂(kT )− β) + op(1)

d→ ω0Ωω + ωΩ1/20zV (z
0
V zV − κI)−1z0V zV (z

0
V zV − κI)−1z0VΩ

1/2ω

−2ωΩ1/20zV (z0V zV − κI)−1z0VΩ
1/2ω

and

T−2ε̃⊥0MZ⊥ ε̃
⊥ = T−2ε̃⊥0ε̃⊥ + op(1)

= T−2(β̂(kT )− β)0V ⊥0V ⊥(β̂(kT )− β) + op(1)

d→ ω0Ω1/20z0V (z
0
V zV − κI)−2z0VΩ

1/2ω.

Therefore,

φ(β̂(kT )) =
ε̃⊥0P⊥

Z⊥ ε̃
⊥

ε̃⊥0MZ⊥ ε̃
⊥/T

d→
ω0Ω1/20

¡
I − zV (z

0
V zV − κI)−1z0V

¢2
Ω1/2ω

ω0Ω1/20z0V (z
0
V zV − κI)−2z0VΩ

1/2ω
.

For part (iii), note that Assumption 2 implies that T−1V ⊥0V ⊥
p→ ΣV V , T−1V ⊥0u⊥

p→
ΣV u, T−1u⊥0u⊥

p→ σuu, T−1Z⊥0Z⊥
p→ Ω, T−1Z⊥0Y ⊥

p→ ΩΠ, T−1Z⊥0y⊥
p→ Ωω, and

Σ̃V V
p→ Π0ΩΠ + ΣV V . Hence, λmin(G0T/T )

p→ λmin((Π
0ΩΠ + ΣV V )−1Π0ΩΠ). Recall that

β̂(kT ) = (Y
⊥0(IT − kTMZ⊥)Y

⊥)−1Y ⊥0(IT − kTMZ⊥)y
⊥, where kT = 1 for the TSLS esti-

mator; kT = k̂T for the LIML estimator; and kT = k̂T − 1/(T −K1 −K2) for the Fuller-k
estimator with k̂T being the smallest root of |Ȳ 0MX Ȳ − k̂T Ȳ

0MZ̄ Ȳ | = 0. For any T , the
roots of |Ȳ 0MX Ȳ −k̂T Ȳ 0MZ̄ Ȳ | = 0 are the same as those of |T−1Ȳ 0MX Ȳ −k̂TT−1Ȳ 0MZ̄ Ȳ | =
0. Thus, plimT→∞k̂T = k∗ where k∗ is the smallest root of |plimT→∞T

−1Ȳ 0MX Ȳ −
k∗plimT→∞T

−1Ȳ 0MZ̄ Ȳ | = |Θ + Σ − k∗Σ| = |Θ − (k∗ − 1)Σ| = 0 with Θ as defined in
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the theorem, and plimT→∞kT = k∗ for both the LIML and Fuller-k estimators. Hence,

β̂(kT ) = (Y ⊥0PZ⊥Y
⊥ − (kT − 1)Y ⊥0MZ⊥Y

⊥)−1(Y ⊥0PZ⊥y
⊥ − (kT − 1)Y ⊥0MZ⊥y

⊥)
p→ β + (Π0ΩΠ− (k∗ − 1)ΣV V )−1(Π0Ωω − (k∗ − 1)ΣV u).

Now, ε̂⊥ = y⊥ − Y ⊥β̂(kT ) = Z⊥ω + u⊥ − Y ⊥(β̂(kT )− β) and

φ(β̂(kT ))

T
=

ε̂⊥0PZ⊥ ε̂
⊥/T

ε̂⊥0MZ⊥ ε̂
⊥/T

p→ ω0Ωω + b (k)0Π0ΩΠb (k)− 2ω0ΩΠb (k)
σuu + b (k)0ΣV V b (k)− 2ΣuV b (k)

. ¥

Proof of Theorem 3 Obvious from Theorems 1 and 3 in Staiger and Stock (1997) and
thus omitted. ¥
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A.2 Simulation Results

Table 1.A. Critical Values for the QIV test, TSLS

n = 1 n = 2 n = 3

.90 .95 .975 .99 .90 .95 .975 .99 .90 .95 .975 .99

K2 = 2 3.97 5.35 6.74 8.60

3 4.93 6.46 7.99 10.06 1.88 2.57 3.24 4.16

4 5.70 7.37 9.03 11.21 2.43 3.24 4.01 5.03 1.21 1.65 2.11 2.72

5 6.45 8.28 10.09 12.40 2.90 3.82 4.72 5.83 1.62 2.19 2.74 3.45

6 7.03 8.99 10.89 13.19 3.31 4.34 5.30 6.57 1.94 2.59 3.22 3.99

7 7.60 9.69 11.64 14.14 3.68 4.85 5.93 7.33 2.22 2.98 3.70 4.59

8 8.13 10.39 12.45 15.05 4.01 5.28 6.51 7.92 2.48 3.33 4.15 5.14

9 8.59 10.94 13.12 15.83 4.35 5.70 6.98 8.57 2.71 3.67 4.55 5.63

10 9.02 11.42 13.66 16.30 4.56 6.00 7.37 9.07 2.91 3.94 4.89 5.97

11 9.49 11.99 14.33 17.26 4.83 6.41 7.80 9.56 3.10 4.23 5.28 6.50

12 9.89 12.49 14.89 17.80 5.11 6.78 8.26 10.04 3.28 4.51 5.61 6.91

13 10.28 13.02 15.50 18.59 5.34 7.07 8.63 10.48 3.40 4.72 5.90 7.32

14 10.65 13.50 16.09 19.21 5.55 7.38 9.06 11.00 3.57 4.95 6.18 7.69

15 11.06 13.96 16.58 19.74 5.76 7.68 9.37 11.46 3.63 5.12 6.39 7.87

16 11.38 14.36 17.14 20.27 5.97 7.98 9.78 11.87 3.76 5.33 6.73 8.33

17 11.71 14.81 17.61 20.88 6.15 8.17 10.05 12.35 3.88 5.50 6.95 8.63

18 12.04 15.23 18.11 21.61 6.29 8.48 10.38 12.66 4.00 5.72 7.20 9.01

19 12.36 15.55 18.47 22.05 6.53 8.76 10.72 13.03 4.08 5.88 7.45 9.26

20 12.71 16.04 18.99 22.54 6.69 9.01 11.01 13.41 4.18 6.09 7.79 9.62

21 12.98 16.39 19.50 23.24 6.78 9.20 11.29 13.78 4.20 6.13 7.90 9.84

22 13.16 16.60 19.80 23.53 7.05 9.49 11.65 14.19 4.40 6.44 8.16 10.24

23 13.50 17.02 20.29 23.94 7.18 9.67 11.89 14.54 4.38 6.48 8.23 10.35

24 13.84 17.46 20.67 24.82 7.28 9.91 12.14 14.84 4.42 6.60 8.48 10.71

25 14.17 17.86 21.08 25.11 7.41 10.04 12.37 15.17 4.62 6.82 8.74 11.02

Note: n is the number of endogenous regressors and K2 is the number of instruments.
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Table 1.B. Critical Values for the QIV test, LIML

n = 1 n = 2 n = 3

.90 .95 .975 .99 .90 .95 .975 .99 .90 .95 .975 .99

K2 = 2 3.99 5.37 6.76 8.60

3 4.96 6.49 8.01 10.08 1.90 2.58 3.25 4.17

4 5.76 7.42 9.05 11.23 2.48 3.28 4.05 5.05 1.23 1.67 2.13 2.73

5 6.52 8.33 10.12 12.42 2.99 3.89 4.76 5.87 1.68 2.23 2.78 3.47

6 7.13 9.06 10.94 13.24 3.43 4.44 5.37 6.64 2.03 2.66 3.28 4.04

7 7.73 9.78 11.71 14.20 3.87 4.98 6.05 7.40 2.37 3.10 3.79 4.68

8 8.28 10.49 12.53 15.11 4.25 5.45 6.64 8.04 2.70 3.49 4.28 5.23

9 8.77 11.07 13.22 15.89 4.64 5.90 7.13 8.70 3.00 3.88 4.71 5.75

10 9.25 11.57 13.75 16.40 4.91 6.28 7.57 9.21 3.28 4.21 5.09 6.11

11 9.73 12.16 14.46 17.34 5.26 6.72 8.02 9.74 3.55 4.57 5.54 6.71

12 10.17 12.66 15.03 17.91 5.61 7.13 8.52 10.25 3.82 4.88 5.90 7.15

13 10.57 13.23 15.68 18.70 5.92 7.47 8.94 10.73 4.04 5.19 6.25 7.56

14 10.97 13.71 16.26 19.35 6.17 7.84 9.41 11.27 4.29 5.48 6.59 8.02

15 11.41 14.21 16.78 19.88 6.47 8.19 9.76 11.76 4.47 5.71 6.87 8.25

16 11.77 14.63 17.34 20.42 6.75 8.53 10.20 12.18 4.70 6.03 7.28 8.74

17 12.14 15.10 17.85 21.06 6.99 8.80 10.51 12.68 4.92 6.28 7.54 9.09

18 12.50 15.56 18.35 21.79 7.24 9.12 10.93 13.05 5.12 6.55 7.88 9.53

19 12.85 15.92 18.74 22.27 7.49 9.48 11.28 13.46 5.31 6.80 8.17 9.79

20 13.23 16.37 19.25 22.81 7.73 9.75 11.63 13.89 5.53 7.12 8.56 10.23

21 13.52 16.77 19.76 23.47 7.93 10.03 11.95 14.27 5.66 7.26 8.76 10.53

22 13.75 17.04 20.12 23.77 8.26 10.39 12.36 14.75 5.93 7.58 9.11 10.96

23 14.10 17.43 20.59 24.17 8.44 10.60 12.63 15.08 6.06 7.73 9.27 11.11

24 14.47 17.92 21.00 25.07 8.63 10.88 12.96 15.45 6.23 7.95 9.55 11.50

25 14.80 18.31 21.50 25.36 8.83 11.11 13.19 15.85 6.49 8.25 9.88 11.87

Note: n is the number of endogenous regressors and K2 is the number of instruments.
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Table 1.C. Critical Values for the QIV test, Fuller-k

n = 1 n = 2 n = 3

.90 .95 .975 .99 .90 .95 .975 .99 .90 .95 .975 .99

K2 = 2 3.96 5.35 6.74 8.60

3 4.94 6.47 8.00 10.07 1.80 2.52 3.20 4.12

4 5.73 7.40 9.04 11.23 2.40 3.22 4.00 5.01 1.06 1.55 2.03 2.65

5 6.50 8.32 10.12 12.41 2.92 3.84 4.73 5.84 1.54 2.13 2.70 3.42

6 7.11 9.05 10.93 13.24 3.37 4.39 5.34 6.61 1.91 2.57 3.21 3.99

7 7.71 9.77 11.70 14.19 3.81 4.94 6.02 7.38 2.25 3.02 3.73 4.63

8 8.26 10.48 12.52 15.10 4.19 5.42 6.61 8.02 2.60 3.42 4.22 5.18

9 8.76 11.06 13.21 15.89 4.59 5.87 7.11 8.68 2.91 3.81 4.66 5.72

10 9.23 11.56 13.75 16.39 4.87 6.25 7.54 9.20 3.19 4.15 5.04 6.08

11 9.72 12.15 14.45 17.34 5.21 6.69 8.00 9.72 3.47 4.51 5.49 6.67

12 10.15 12.65 15.02 17.91 5.57 7.10 8.50 10.23 3.73 4.83 5.86 7.12

13 10.55 13.22 15.67 18.69 5.88 7.44 8.92 10.72 3.97 5.13 6.21 7.53

14 10.96 13.71 16.25 19.35 6.12 7.81 9.40 11.26 4.22 5.43 6.56 7.99

15 11.40 14.20 16.77 19.88 6.43 8.16 9.74 11.74 4.41 5.66 6.83 8.22

16 11.76 14.63 17.34 20.41 6.71 8.51 10.18 12.16 4.64 5.99 7.26 8.72

17 12.13 15.09 17.84 21.05 6.95 8.77 10.49 12.67 4.86 6.25 7.51 9.07

18 12.49 15.55 18.35 21.79 7.21 9.10 10.91 13.04 5.06 6.51 7.85 9.51

19 12.84 15.91 18.73 22.27 7.46 9.45 11.26 13.45 5.24 6.75 8.14 9.76

20 13.22 16.37 19.24 22.81 7.70 9.73 11.61 13.87 5.47 7.08 8.53 10.20

21 13.51 16.76 19.76 23.47 7.89 10.01 11.93 14.25 5.60 7.22 8.73 10.50

22 13.74 17.03 20.12 23.77 8.23 10.37 12.35 14.75 5.88 7.54 9.08 10.94

23 14.09 17.43 20.59 24.17 8.41 10.58 12.61 15.07 6.01 7.69 9.23 11.09

24 14.46 17.92 21.00 25.07 8.60 10.87 12.94 15.44 6.18 7.92 9.53 11.48

25 14.79 18.31 21.49 25.36 8.80 11.09 13.18 15.84 6.44 8.22 9.85 11.84

Note: n is the number of endogenous regressors and K2 is the number of instruments.
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Table 2.A. Rejection Probabilities of the Overidentifying Restrictions Test, TSLS

n = 1 K2 = 3 K2 = 9

Λ0CΛC/λ
∗
min ρ rej (0.01) n-rej (0.99) uncond. rej (0.00) n-rej (0.99) uncond.

0.5 0.1 0.0550 0.0364 0.0365 0 0.0450 0.0450

0.3 0.0661 0.0410 0.0411 0 0.0506 0.0506

0.5 0.0752 0.0530 0.0531 0.1667 0.0660 0.0660

0.8 0.1229 0.1142 0.1143 0.1667 0.1179 0.1179

1.0 0.3321 0.2008 0.2016 0.3333 0.1880 0.1880

Λ0CΛC/λ
∗
min ρ rej (0.03) n-rej (0.97) uncond. rej (0.01) n-rej (0.99) uncond.

0.8 0.1 0.0419 0.0395 0.0395 0.0442 0.0465 0.0465

0.3 0.0498 0.0437 0.0438 0.0549 0.0508 0.0508

0.5 0.0613 0.0545 0.0547 0.0869 0.0617 0.0619

0.8 0.0972 0.0986 0.0985 0.1631 0.0943 0.0948

1.0 0.2328 0.1472 0.1494 0.3125 0.1335 0.1347

Λ0CΛC/λ
∗
min ρ rej (0.10) n-rej (0.90) uncond. rej (0.19) n-rej (0.81) uncond.

1.2 0.1 0.0473 0.0413 0.0419 0.0486 0.0472 0.0475

0.3 0.0516 0.0449 0.0455 0.0542 0.0500 0.0508

0.5 0.0600 0.0536 0.0542 0.0663 0.0570 0.0587

0.8 0.0996 0.0825 0.0841 0.1046 0.0756 0.0810

1.0 0.1808 0.1092 0.1161 0.1609 0.0933 0.1058

Note: n is the number of endogenous regressors; K2 is the number of instruments; ρ represents the
degree of endogeneity; Λ0CΛC corresponds to the weak limit of the concentration matrix; and λ

∗
min is

the boundary value of the minimum eigenvalue for the weak instruments set based on the 10% TSLS
bias. The numbers in parenthesis next to rej. are P(g∞ rejects) and those next to n-rej. are P(g∞
not rejects). The column rej. shows P(φ∞ > χ2K2−n,0.05|g∞ rejects), n-rej P(φ∞ > χ2K2−n,0.05|g∞
not reject), and uncond. P(φ∞ > χ2K2−n,0.05).
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Table 2.B. Rejection Probabilities of the Overidentifying Restrictions Test, Fuller-k

n = 1 K2 = 3 K2 = 9

Λ0CΛC/λ
∗
min ρ rej (0.01) n-rej (0.99) uncond. rej (0.01) n-rej (0.09) uncond.

0.5 0.1 0.1027 0.1745 0.1739 0.1887 0.2830 0.2823

0.3 0.1655 0.1817 0.1815 0.3032 0.2887 0.2888

0.5 0.2240 0.1786 0.1789 0.4218 0.2769 0.2779

0.8 0.2924 0.1438 0.1449 0.5782 0.1878 0.1907

1.0 0.2753 0.1062 0.1074 0.5040 0.0749 0.0780

Λ0CΛC/λ
∗
min ρ rej (0.03) n-rej (0.97) uncond. rej (0.03) n-rej (0.97) uncond.

0.8 0.1 0.0906 0.1454 0.1440 0.1667 0.2440 0.2420

0.3 0.1309 0.1404 0.1402 0.2427 0.2316 0.2319

0.5 0.1666 0.1266 0.1277 0.3304 0.2026 0.2060

0.8 0.2115 0.0867 0.0900 0.4147 0.1067 0.1147

1.0 0.1939 0.0668 0.0702 0.3380 0.0502 0.0578

Λ0CΛC/λ
∗
min ρ rej (0.09) n-rej (0.91) uncond. rej (0.09) n-rej (0.91) uncond.

1.2 0.1 0.0933 0.1216 0.1192 0.1520 0.2071 0.2023

0.3 0.1183 0.1082 0.1091 0.2044 0.1803 0.1824

0.5 0.1420 0.0901 0.0945 0.2495 0.1411 0.1505

0.8 0.1572 0.0581 0.0665 0.2670 0.0618 0.0796

1.0 0.1466 0.0476 0.0560 0.2172 0.0363 0.0520

Note: n is the number of endogenous regressors; K2 is the number of instruments; ρ represents
the degree of endogeneity; Λ0CΛC corresponds to the weak limit of the concentration matrix;
and λ∗min is the boundary value of the minimum eigenvalue for the weak instruments set based on
the 10% TSLS bias. The numbers in parenthesis next to rej. are P(g∞ rejects) and those next
to n-rej. are P(g∞ not rejects). The column rej. shows P(φ∞ > χ2K2−n,0.05|g∞ rejects), n-rej

P(φ∞ > χ2K2−n,0.05|g∞ not reject), and uncond. P(φ∞ > χ2K2−n,0.05).
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Table 3.A. Finite Sample Sizes of the QIV test, TSLS

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .0428 .0374 .0324 .0504 .0560 .0478 .0560 .0552 .0476

100 .0524 .0526 .0402 .0518 .0494 .0478 .0550 .0516 .0500

200 .0442 .0498 .0458 .0542 .0544 .0538 .0560 .0504 .0530

300 .0458 .0488 .0458 .0500 .0432 .0474 .0568 .0520 .0514

Table 3.B. Finite Sample Sizes of the QIV test, Fuller-k

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .0430 .0374 .0324 .0492 .0554 .0478 .0532 .0536 .0482

100 .0522 .0532 .0396 .0510 .0488 .0468 .0552 .0526 .0500

200 .0438 .0502 .0468 .0528 .0552 .0528 .0550 .0502 .0530

300 .0460 .0488 .0454 .0490 .0436 .0476 .0578 .0516 .0516

Table 4.A. Finite Sample Powers of the QIV test, ω = 0 and Π 6= 0, TSLS

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .7102 .3568 .1642 .4856 .2152 .2780 .3790 .1978 .1758

100 .9624 .4042 .4724 .7594 .5534 .4808 .6376 .5252 .4130

200 .8978 .8006 .8326 .9474 .8888 .8040 .9172 .8116 .7262

300 1.000 .9690 .9966 .9872 .9602 .9472 .9838 .9426 .8948

Note: T is the sample size, n is the number of endogenous regressors and K2 is the
number of instruments.
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Table 4.B. Finite Sample Powers of the QIV test, ω = 0 and Π 6= 0, Fuller-k

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .7112 .3602 .1668 .4884 .2200 .2904 .3798 .1998 .1850

100 .9642 .4106 .4794 .7626 .5662 .5018 .6434 .5416 .4350

200 .8996 .8104 .8450 .9502 .8996 .8202 .9238 .8320 .7628

300 1.000 .9732 .9980 .9890 .9676 .9532 .9860 .9586 .9156

Table 5.A. Finite Sample Powers of the QIV test, ω 6= 0 and Π = 0, TSLS

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .0186 .0070 .0036 .0350 .0178 .0102 .0450 .0270 .0152

100 .0186 .0092 .0020 .0274 .0126 .0044 .0384 .0184 .0118

200 .0174 .0044 .0036 .0294 .0134 .0038 .0362 .0180 .0076

300 .0192 .0040 .0016 .0304 .0114 .0054 .0404 .0140 .0110

∞ .0168 .0034 .0000 .0290 .0099 .0037 .0344 .0118 .0058

Table 5.B. Finite Sample Powers of the QIV test, ω 6= 0 and Π = 0, Fuller-k

n = 1 n = 2 n = 3

K2 2 4 6 3 5 7 4 6 8

T = 50 .0186 .0080 .0046 .0310 .0192 .0124 .0352 .0278 .0178

100 .0198 .0114 .0032 .0254 .0132 .0080 .0310 .0178 .0130

200 .0184 .0060 .0048 .0244 .0154 .0072 .0258 .0200 .0090

300 .0194 .0060 .0032 .0266 .0122 .0076 .0296 .0152 .0150

Note: T is the sample size, n is the number of endogenous regressors and K2 is the
number of instruments.
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Figure 1.A. Local Power of the QIV test, ΛC 6= 0 and ξd = 0.
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Figure 1.B. Local Power of the QIV test, ΛC = 0 and ξd 6= 0.

32



References

[1] Anderson, T. W. and H. Rubin (1949). Estimation of the Parameters of a Single Equa-
tion in a Complete System of Stochastic Equations, Annals of Mathematical Statistics,
20, 46-63.

[2] Basmann, R. L. (1960). On Finite Sample Distributions of Generalized Classical Linear
Identifiability Test Statistics, Journal of the American Statistical Association, 55, 650-
659.

[3] Cragg, J. G. and S. G. Donald (1993). Testing Identifiability and Specification in
Instrumental Variable Models, Econometric Theory, 9, 222-240.

[4] Doko, F. and J-M. Dufour (2008). Instrumental Endogeneity and Identification-robust
Tests: Some Analytical Results, Journal of Statistical Planning and Inference, 138,
2649-2661.

[5] Hall, A. R., G. D. Rudebusch and D. W. Wilcox (1996). Judging Instrument Relevance
in Instrumental Variables Estimation, International Economic Review, 37, 283-298.

[6] Moreira, M. J. (2003). A Conditional Likelihood Ratio Test for Structural Models,
Econometrica, 71, 1027-1048.

[7] Newey, W. K. (1985). Maximum likelihood specification testing and conditional mo-
ment tests, Econometrica, 53, 1047—1070.

[8] Sargan, J. D. (1958). The estimation of economic relationships using instrumental
variables, Econometrica, 26, 393—415.

[9] Staiger, D. and J. H. Stock (1997). Instrumental Variables Regression with Weak In-
struments, Econometrica, 65, 557-586.

[10] Stock, J. H. and M. Yogo (2005). Testing for Weak Instruments in Linear IV Regression,
in Identification and Inference for Econometric Models, Essays in Honor of Thomas
Rothenberg, ed. by D. W. K. Andrews and J. H. Stock, 80-107.

[11] Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-nested Hy-
potheses, Econometrica, 57, 307-333

33


