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Abstract

This paper develops a joint test for the exogeneity and the relevance of instrumental
variables using an approach similar to Vuong’s (1989) model selection test. The test
statistic is derived from the likelihood ratio of two competing models: one with exoge-
nous and possibly relevant instruments and the other with irrelevant and even possibly
endogenous instruments. The joint test is asymptotically pivotal under the null hy-
pothesis that the instruments are exogenous and irrelevant, and is consistent against
the alternative hypothesis that the instruments are exogenous and relevant. Hence,
non-rejection of the joint test should be taken as an evidence suggesting instruments of
poor quality. Another salient feature of the test is that its asymptotic null distribution
is the same under both the conventional and the weak instruments asymptotic frame-
works, which implies it has better size control than the commonly used overidentifying

restrictions tests.
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1 Introduction

A set of instrumental variables is said to be relevant if they are correlated with the endoge-
nous regressors and exogenous if uncorrelated with the errors. It is a common practice in
empirical researches to check these two conditions since the standard inference results on
the structural parameters hold only when these conditions hold. The overidentifying restric-
tions (OID) test (e.g., Anderson and Rubin, 1949; Sargan, 1958; Basmann, 1960) is widely
used for the exogeneity condition, and the first stage F' and Wald tests are mostly used
for the relevance condition while Hall, Rudebusch and Wilcox (1996), and Stock and Yogo
(2005) are more recently developed relevance tests. All aforementioned testing procedures
are, however, designed for only one of the two conditions and there is no test considering
both conditions simultaneously to the best of our knowledge. More surprisingly, it has not
been discussed much in the econometrics literature how to combine and interpret these two
types of tests.!

Most notably, the null distribution of the OID test is approximated by the Chi-square
distribution under the implicit assumption that the instruments are relevant. As Staiger and
Stock (1997) point out, however, the Chi-square distribution is a good approximation only if
the instruments are strongly correlated with the endogenous regressors. Therefore, without
the knowledge of the relevance of the instruments, we cannot be sure about the legitimacy
of the Chi-square approximation. One may consider a two-stage testing procedure—testing
for the relevance first and continuing to test for the exogeneity if the first stage relevance
test rejects no or weak relevance. However, the distribution of the OID test conditional on
the rejection of the relevance test can be quite different from the unconditional distribution
and we are really not sure, even asymptotically, what the exact error probability is when we
use the conventional critical values. See Section 4 for some Monte Carlo experiment results.

The testing procedure developed in this paper considers the relevance and exogeneity

conditions at the same time by taking an approach similar to Vuong’s (1989) model selection

'Recently, Moreira (2003) among others, propose an inferential method that is robust to arbitrarily
weak instruments. This weak instruments robust inference, however, requires exogenous instruments and
the necessity to check the exogeneity of instruments still remains (e.g., Doko and Dufour, 2008).



test. From a structural equation and its associated reduced form equation, we consider two
competing models: one imposing the instruments to be exogenous and the other imposing
the instruments to be completely irrelevant. Assuming normality, we show that the like-
lihood ratio of these two models is equivalent to the difference of the standard first stage
Wald statistic and the OID test statistic. We propose a new Q- test based on this like-
lihood ratio, and it can be viewed as providing a formal way of interpreting the difference
between the commonly used relevance test and the OID test.

More precisely, we set the null hypothesis as the intersection of the two models described
above so that the instruments are exogenous and irrelevant. Then, the QQ1y statistic is shown
to be asymptotically pivotal under the null hypothesis, whereas it diverges to the positive
infinity when the instruments are relevant and exogenous. This implies that the probability
of rejecting the Qry test with a large positive value approaches one as the sample size grows
if the instruments are indeed exogenous and relevant. Another salient feature of our test
statistic is that its asymptotic null distribution is invariant to the asymptotic framework:
the limiting distribution is the same either under the conventional or under Staiger and
Stock’s (1997) weak instruments asymptotic framework. This is a very important property
since it implies that our test has better size control than the commonly used OID test.

One caveat is that the Qry statistic could diverge to the positive infinity even when the
instruments are not exogenous to the structural error. A leading case of this instance is when
the instruments slightly violate the exogeneity condition while they retain strong correlation
with the endogenous regressors, so that the asymptotic bias of the instrumental variables
estimator is smaller than that of the ordinary least squares estimator. If a set of instruments
indeed reduces the asymptotic bias relative to the OLS estimator, it should be deemed to
be of good quality and the @7y test also concludes to that direction. Nevertheless, it should
be noted that rejection of the Qry test with a large positive value should not be taken as
a strong evidence of exactly exogenous and relevant instruments, while non-rejection of the
Qv test should still be taken as an evidence that the set of instruments is of questionable

quality.



This paper is organized as follows. Section 2 describes the model and the new test
statistic QQry. Section 3 presents the asymptotic properties of the QQry test under the null
and the alternative hypotheses. Section 4 contains Monte Carlo experiment results. Section
5 concludes with some remarks. All the technical proofs and simulation results are provided

in Appendix.

2 Model and Test Statistic

We consider a structural equation and an associated reduced form equation given by

y = YB+Xa+e (1)

Y = ZI+X®+4V, (2)

where y is a T' x 1 vector, Y is a T' x n matrix of n endogenous variables, X is a T' x K;
matrix of (included) exogenous variables, and Z is a T x K9 matrix of (excluded) exogenous
variables to be used as instruments. The number of instruments, K5, satisfies n < Ko < T
and it is assumed to be fixed. € and V' are, respectively, a T x 1 vector and a T X n matrix
of random disturbances.

In the standard setup, the set of instrumental variables, Z, is assumed to be uncorrelated
with both € and V, so that Y is correlated with ¢ only through the correlation between
e and V. We, however, allow for a more general framework using the following structure,

under which Z and € could be also linearly correlated.
Assumption 1 ¢ = Zw + u in (1), where u is correlated with V.

Using Assumption 1, we can rewrite the structural equation (1) as (e.g., Basmann, 1960)

y=YpB+Xa+ Zw+ u. (3)

The set of instrumental variables Z is said to be exogenous if w = 0 so that it is orthogonal



to the structural error ¢. Z is said to be relevant if II # 0 or more precisely II is of full
column rank, and thus correlations between the instruments and the endogenous regressors

are nonzero. Based on (3), we can rewrite the model in a system of equations given by

1 0

&
=
|

=7 +V, (4)
-6 I, a P
where I, is the identity matrix with rank n, Y = [y,Y], V = [u,V] and Z = [Z, X]. If
we define Py = W(W’ W)W’ and My = I — Py for any given matrix W, we can also
concentrate out X from (2) and (3) to have y* = Y18+ Ztw +ut and Y+ = ZHT + VL,
where AT = My A for any matrix A.
The main interest of this paper is to develop a joint test for the exogeneity and the
relevance of a set of instruments by considering the following two conditions at the same
time:?

w =0 and IT # 0. (5)

Obviously, the composite hypothesis in (5) cannot be tested in the standard testing frame-
work. We instead take an approach similar to the model selection test of Vuong (1989). To

this end, we consider the following two non-nested models:

(1 0 _ [0 II _

Model p,, : Y =7 +V;
-8 I, a ¢

(1 0 _|w O _

Model pp @ Y =7 +V
-6 I, a ¢

The first model p,, is (4) with a restriction w = 0, whereas the second model iy is (4) with a

restriction II = 0. Note that under the first model p,,, the instruments are exogenous though

Tt may be more useful to test for the exogeneity (i.e., w = 0) and strength of instruments (i.e., each
element of IT is far enough from zero.) However, the weak instruments are formulated under the local-to—zero
asymptotics and thus it is hard to test the strength of the instruments using the standard testing setup.
See Stock and Yogo (2005) for a possible approach of testing for weak instruments under the exogeneity
assumption.



its relevance is not verified. Under the second model pgg, the instruments are irrelevant and
could be even endogenous depending on the value of w. The key idea is that the likelihood
ratio between the two models, p,, and pr, can be used as a model selection test. More

formally, we set the null hypothesis as

Hp:w=0andII =0, (6)

which implies that two specifications are equally close to the true data generating model.

When the null hypothesis is rejected in favor of the alternative hypothesis

Hy:w=0and II#0 (7)

(i.e., the first specification pu,, is closer to the true model), we may expect the set of in-
struments to be exogenous and relevant or likely to be so. It should be noted that, though
this testing idea looks very similar to Vuong (1989), there is a fundamental difference be-
tween these two approaches. For Vuong’s (1989) model selection test, each competing
model is required to have a unique value of the model parameter vector that minimizes the
Kullback-Leibler distance between the given model and the true distribution. This con-
dition is necessary for selecting the model closer to the true distribution with probability
approaching one as the sample size grows. In our setup, this condition is not satisfied be-
cause some parameters in the model ppg are not properly identified. However, this lack of
identification in the model pyp is not critical because the main purpose of the test in this
paper is not selecting a model between i, and p but to reject the null hypothesis Hy in
favor of the model . In other words, it is of little interest to tell the model pyy from the

null hypothesis Hy.



To derive a test statistic, we assume that (uz, V/)|Z;, Xy ~ i.i.d.N(0,X),> where

5 Ouu 2V

Xvu Xvv

with X,y # 0 and the partition is conformable with (us V}/)’. The likelihood function
is denoted as L(f) with = (8',w,vec(Il), vec(®)’,vec(X)'). Then, the likelihood ratio

between the non-nested models 1, and pg can be derived as

2LR = 2;31}6 log L(6) — 2 Inax log L(6)
1 1 -
= T <log In + fGT — log(1 + f¢(5L1ML))>

~ tr(Gr) — ¢(Briar), (8)

where tr (-) is the trace operator,

ol

&H—1/2 &H—1/2 >
GT = EVV/ <YJJP21_YJ_> ZVV/ and ¢(BLIML) = W

with Syy = YYM, YL/ T, &+ =yt — Y13, and B,y being the standard LIML
estimator. The detailed derivation of (8) is given in Appendix. Notice that the first com-
ponent of (8), tr (Gr), is nothing but the Wald statistic testing for II = 0. The commonly
used first stage F' statistic is equivalent to this statistic when there is only one endogenous
regressor; Hall, Rudebusch and Wilcox’s (1996), and Stock and Yogo’s (2005) statistics are
its variants. On the other hand, the second component of (8), ¢(By 1), is the standard
overidentifying restrictions (OID) test statistic. For example, it is Anderson-Rubin (1949)
statistic when the true value of § is used instead of 875, and is the Basmann’s (1960)
OID test when the two stage least squares (TSLS) estimator BTS s 1s used.

From the model selection point of view, a large positive value of the LR statistic in (8)

indicates that the model p,, has a Kullback-Leibler distance to the true model smaller than

3The normality assumption is not needed for our main asymptotic results presented in the next section.



that of the model pp. In addition, as the sample size grows, we can show the LR statistic
tends to the positive infinity when the model p,, is true with II # 0, whereas it shifts to
the opposite direction if the model py is true with w # 0. Under the intersection of the
two models (i.e., both w = 0 and II = 0), the LR statistic is asymptotically pivotal. (See
the remark following Theorem 1.) It is thus natural to consider a testing procedure which
concludes that a given set of instruments is closer to being exogenous and relevant (i.e., of
good quality) when the LR in (8) takes a large positive value. More formal discussions can
be found in the following section.

The new joint test statistic developed in this paper has basically the same structure
as the LR statistic in (8). Specifically, the test statistic (on the quality of instrumental

variables: Qry) that we consider is defined as*
Qrv = Amin (G%) — ¢(B(kr)), 9)

where Apip (+) is the minimum eigenvalue of a given matrix and

- - - 1
G = S (YVPuY ) S/ with Svy = Sy,
Py &t

o(B(kr)) = ZUM,. 2T with &5 =y — VB (k).
ZL

Here we compute the covariance matrix of the reduced form error V' with assuming II = 0.
GY and Gt are asymptotically equivalent if IT = 0, and Amin(Gr) is the test statistic for
instrument weakness suggested by Stock and Yogo (2005), which is based on Cragg and

Donald’s (1993) statistic. 5(kr) is the standard k-class estimator defined as
Blkr) = (Y (Ir — kp My )Y 2) Y (I — ke My )y, (10)

in which kr = 1 for the TSLS estimator; kr = l;:T for the LIML estimator; and kpr =

4 Apparently, Qv is a modified version of LR. The justification for such modification is given after
Theorem 2 in the next section.



I%T —1/(T — K; — K3) for the Fuller-k estimator with l;:T being the smallest root satisfying
Y MxY — kTY’MZY| = 0. An interesting point is that the new test statistic Qv is the
difference between a weak instrument test statistic (e.g., Stock and Yogo, 2005; Cragg and
Donald, 1993) and the standard OID test statistic. Therefore, our test procedure can also
be viewed as providing a formal way of interpreting the difference between the commonly

used relevance test and the OID test.

3 Asymptotic Results

We first derive the asymptotic distribution of the Qy statistic (9) under the null hypothesis

(6). We let p= Z‘_/%,mzvuaq;}ﬂ and Q =Sz, — SZXS)_(&SXZ, where

_ S S
S—E(22) - 77z OXzZ

Szx Sxx

with Z; being the t-th row of Z. We make the high level assumptions following Staiger and
Stock (1997).

Assumption 2

(a) TYV'V 25 and T712'Z 2 S as T — oo, where both ¥ and S are positive definite

and finite.
(b) (X"u, Z'u, X'V, Z'V)INT % (¥ xtu, U0, Uxv, U 1) as T — o0,

where (¥, ¥, vec(Vxy ), vec(¥zy)) ~N(0,2® S).

Based on Assumption 2, we also define Gaussian random matrices z, = QY 2(Wyy —
SZXs)_(AIX\I/Xu)U;JD and 2y = 971/2(\112{/ - SZXs)_(k\I/X\/)E‘_/%/ﬂ so that (Zz/“ UGC(ZV)/)/ ~
N (O,i ® 1 Kz) with ¥ = (pl Z/L) The first theorem derives the asymptotic distribution of

the Qv statistic under the null hypothesis (6).



Theorem 1 We supposew = 0 and I = 0. Under Assumptions 1 and 2, k7 = T(I%T—l) -,

k* as T — oo, where K* is the smallest root satisfying |(n,zv) (n,zv) — K*Int1] = 0 and
n=(zu — 2vp) [VIT—=pp so that (0 ,vec(zv)') ~ N (0,1(n11)K,). Furthermore,

0 (I, — zv(zy2v — k1) t2),)n

L+ n'zv(2y,2v — kl,) 2201

d
QIV - Q?V = )\min(Z{/ZV) -

K

where Kk = 0 for the TSLS estimator; k = k* for the LIML estimator; and k = k* — 1 for

the Fuller-k estimator.

The limiting null distribution of the Q) 1y statistic is nuisance parameter free; it depends only
on the number of instrumental variables (K3) and the number of endogenous regressors (n).
Tables 1.A to 1.C in Appendix report the relevant quantiles of Q?V. It is also evident from
Theorem 1 that the LR statistic in (8) is asymptotically pivotal. The following theorem
derives the asymptotic behavior of the Qjy statistic under various hypotheses including the

alternative hypothesis (7).

Theorem 2 Under Assumptions 1 and 2, as T — oo we have the following asymptotic
results:

(i) If w =0 and T1 # 0, then Qv % cc.

(ii) If w # 0 and I = 0, then kp = T(kp — 1) = Op(1). Moreover, let kr <, K*, then
Qrv 4, QY%,, where

WOV (IK2 — zv(zy2v — nfn)_lz{/f 0/24
WV 2y (2 2y — KI,) 220,01 2w

Q‘}]V = )\min(z{/ZV) -

with k = 0 for the TSLS estimator; k = k* for the LIML estimator; and k = k* — 1 for the
Fuller-k estimator.

(iii) If w # 0 and I # 0, then kr 2 k* with k* being the smallest root satisfying



0 — (k* = 1)Z| = 0 with © = (2 « U and

Qrv

'Q "TUQIID (k) — 20/QI1

Oyu + b (k‘)/ Zvvb (k‘) — 2Euvb (k‘) ’
(11)

where b (k) = plimp_, o (B(kr) — 8) = (IWQI — kXyy) " (I'Qw — kXyy,) with k =0 for the

TSLS estimator; and k = k* — 1 for the LIML and the Fuller-k estimators.

Theorem 2-(i) indicates that the @y statistic diverges to the positive infinity with exoge-
nous and relevant instruments (i.e., under Hjp), and thus the probability to reject the null
hypothesis approaches one as the sample size grows. This result is the basic building block
of our new test Qry: we reject Hy (w = 0 and IT = 0) in (6) in favor of H; (w = 0 and
IT #0) in (7) if Qv is large enough. Furthermore, Monte Carlo experiments indicate that
the distribution of Qv shifts to the left when w # 0 and IT = 0 (i.e., Q% in Theorem 2-(ii))
and the probability to erroneously reject Hy in favor of Hj remains under the controlled
level, though it does not diverge to the negative infinity as the sample size grows. See
Section 4 for the relevant simulation results.

One caveat is that the result in Theorem 2-(iii) implies that the @y statistic could
diverge to the positive infinity provided plims_, . Qv /T > 0, even when the instruments
are correlated with the structural error (w # 0) as long as they are correlated strongly
enough with the endogenous regressors (II # 0). Therefore, it is important to emphasize
that rejection of the Qv test with a large positive value should not be taken as a strong
evidence of good instruments. Rather, non-rejection of the @y test should be taken as an
evidence that the set of instruments is of questionable quality.

However, the sign of plimp_, Qv /T is not completely arbitrary. It is roughly linked
to the relative magnitude of the biases between S(kr) and the OLS estimator Borg:
plimy . Qv /T is more likely positive when the asymptotic bias of 3(kr) is smaller than
that of BO g (i.e., the instruments works properly to reduce the endogeneity problem).

More precisely, with k& = 0 (i.e., the TSLS estimator Spgrg is used for 3(kr)), note that

10



plimy_, . Qrv/T > 0 implies

Amin (A'A) W'Qwtb (0)' T’'QIIb (0) — 2w’ QT (0)
L+ Amin (NA) = 0y +5(0) Syvd (0) — 258,15 (0)
W' Qw — W QII(TTQIT) ~ T Qw
O — 22y (TVQIT) 1T Quw + 2wQIT(TTVQIT) ~1 Xy (TFVQIT) T Qw
§' Mg

T T2 (NA)INE+ EANA)ZNE (12)

from (11), where A = Q215,12 ¢ = QY20w0,."% and My = I — A(NA)'A. In
comparison, for BOLS RN (I'QIT + Syy )~ (IT'Qw + By, the relative magnitude of the

biases between BTS g and B’O s With respect to II'QII is given by®

(BTSLS - B)/(H'QH)(@TSLS —B)
(Bors — B)' UL (Bors — B)
B W QIL(ITQIT) ~ T Qw
S (WL + X, ) (IVQIL + Sy ) L (IVOQID) (IVOQI + Sy )~ (IVQw + Sy,
B §'Ppé
"~ p'Bap+ 20 BANE + EABANE

RB = plimp_,

(13)

where Py = A (AA)"' A’ and By = (A + 1)1 (A’A)(A’A + I)~1. Now, suppose none of
¢ Pp€ and ¢’ M€ is zero but the cross products p’ BAA'€ and p/(A’A)~1A’¢ are close to zero.
Then, both expressions in (12) and (13) have the same structure: they are non-negative
and increasing in [|£]|. It thus suggests that for a given pair of (p,A), small-enough ¢ will
satisfy the inequality in (12), which is also likely to satisfy RB < 1 as well (i.e., TSLS
has a smaller bias than OLS). In this sense, roughly speaking, the sign of plim;_, Qv /T
is related to the relative bias RB. Therefore, when a set of instruments slightly violates
the exogeneity condition but its correlation with the endogenous regressors remains strong
enough, so that the asymptotic bias of the instrumental variables estimator is smaller than

that of the ordinary least squares estimator, the quality of the instruments should be deemed

°It is similar to the relative magnitude of the biases with respect to Y'Y+ (e.g., Stock and Yogo, 2005).
Note that YY'YL /T & II'QII + Sy and II'QII only considers the pure signal from the IV.

11



to be good enough and the Qry test concludes to that direction.’

In addition, as extreme cases, if £ is in the null space of A, BTS 1 has no asymptotic
bias but we do not necessarily conclude that the instruments are valid. This implies that
the Qv test is unnecessarily tough. If £ is in the range space of A (or equivalently w = Ilc
for some vector ¢), we always conclude that the instruments are valid even when w # 0
regardless of the relative bias. Recall that the standard OID tests share the same feature
so that it has no power against such a violation of the exogeneity condition (e.g., Newey,
1985).

Finally, in order to investigate the local power property of the new test statistic Qry,

we assume the following local-to-zero assumptions similarly as Staiger and Stock (1997).
Assumption 3 w = d/\/T and II = C/\/T for some 0 < d,C < oo.

One of the novelties of the @y statistic is that its limiting distribution under w = 0 and
II = 0 is invariant to the asymptotic framework. That is the limiting distribution is the same
either under the conventional or under Staiger and Stock’s weak instruments framework.
This is a very important feature because the error probabilities of our test is controlled

much better than the standard OID tests.

Theorem 3 Under Assumptions 1, 2 and 8, we have Qv 4, QZI"‘E as T — oo, where

(zu = (2v + Ac)A¢(K)) (2 = (2v + Ac)A¢(K))
1-— Qp’Ag(li) + AE(H)/Ag(K,) ’

Qllo\g = )\min((z\/ + AC’)/(ZV + AC)) -

Ae(r) = ((zv + Ac)(zv + Ac) = K1) (2v + Ac) (zu + €4) — spl. Ao = QY208
and &; = Ql/Qdaq;}ﬂ. k = 0 for the TSLS estimator; k = &* for the LIML estima-

8The LR statistic in (8) also satisfies the same asymptotic behavior as the Qrv statistic. Particularly
when w # 0 and II # 0, we can show that

W' Qw + b, Wb, — 20Qb L L
Ouu + b Xvvboivr — 2Xwvbrivme

phmpwg = tr(Sy QM) —

where briar = plimg (B, arn — B)- Note that tr(Xy3 QD) is the sum of all the eigenvalues of A’A
and therefore, it is not only larger than Amin (A’A) /(1 4+ Amin (A’A)) but also could be unbounded above.
Consequently, it is more difficult to find any relationship between the sign of plim,_, . LR/T and the relative
bias RB. In this point of view, the Qv statistic is more preferable but it is also true that the non-rejection
of the LR test is a stronger indication that the set of instruments is of questionable quality.

12



tor; and Kk = k* — 1 for the Fuller-k estimator with k* being the smallest root satisfying

{(zu +&p2v +Ac) (zu+ &g, 2v + Ac) — n*i‘ =0.

Obviously, lﬂ? depends on a nuisance parameter p unless w = 0 and II = 0. Furthermore,

if there are multiple endogenous variables (n > 2), Qlf{ﬁ depend on all the eigenvalues of
A Ac, as Stock and Yogo (2005) point out. Therefore, this asymptotic distribution cannot
be directly used for inferences. See Section 4 where we report the local power of the Qry

test obtained from simulating Qlﬁﬁ

4 Monte Carlo Simulation

4.1 Null rejection probability of the standard OID test

In this subsection, we demonstrate via Monte Carlo experiments the difficulties arising
when the relevance test and exogeneity test are used in the conventional manner. First,
we show the dependence of the limiting null distribution of the standard OID test on the
correlation between the instruments and endogenous variables. In particular, the size of
the OID test can depart from the nominal level by a large margin when the correlation
between the instruments and endogenous variables is weak. One may consider a two-stage
testing procedure—testing for the relevance first and continuing to test for the exogeneity
if the first stage relevance test rejects no or weak relevance. In this case, we show that the
dependence on the instrumental strength gets intensified causing even larger size distortion
of the OID test.

Let ¢(B(kr)) and Apin(G7) be the standard OID test and Stock and Yogo’s (2005) weak

instruments test, respectively, as defined in (8), where B (kr) is the k-class estimator as in

(10). From Theorem 3, the limit expressions for these statistics are

. d _ (2= (v + A0)Ac(R) (2 = (2v + Ao)Ac(r))
O(B(kr)) = ¢0 = T2 Ae(n) T Ac(n) A () (14)
Amin (G7) % goo = Amin((2v + Ac) (2v + Ac)) (15)

13



with £; = 0. We simulate the limiting quantities ¢, and g, in order to avoid any other
finite sample complications.

Tables 2.A and 2.B. in Appendix report the rejection probabilities of the OID test based
on several different testing procedures, where Tables 2.A is based on the TSLS estimator
and Tables 2.B is based on the Fuller-k estimator. The case of one endogenous regressor
(n = 1) and 3, 9 instrumental variables (K3 = 3,9) are presented but the results remain
qualitatively unchanged for other values of n and Ks. For each value of K5, there are three

columns: “rej,” “

n-rej,” and “uncond.” Each of these three columns corresponds to the
rejection probabilities of ¢, conditional on the rejection of g (i.e., P(¢o, > X%(Z—n,o.%’goo
rejects)), conditional on the non-rejection of g (i.€., P(do, > X%(2_n70.05|goo not reject)) and
unconditionally (i.e., P(¢o, > X%Q_n70_05)), respectively. The numbers in the parenthesis
next to “rej” are P(go rejects) and those next to “n-rej” are P(go, not rejects). Note that
the first-stage weak IV tests using (15) are based on the 10% TSLS/Fuller-k bias (see Stock
and Yogo, 2005, for the precise definition) at the 5% significance level. The second-stage
OID tests using (14) are based on the Chi-square distribution. Three values of Ai;A¢ are
simulated:” 0.5, 0.8, and 1.2 times of A%, , where A%, is the boundary value for the weak
instruments set based on the 10% TSLS/Fuller-k bias. Hence, the cases of 0.5 and 0.8
correspond to the weak instruments, while 1.2 to the strong instruments. For each value of
ApAc, p=0.1,0.3, 0.5, 0.8 and 1.0 are considered.

The first observation in Table 2.A is that the size distortion of ¢, increases (e.g., see the
“uncond.” columns) as the instruments get weaker, which shows the danger of applying the
standard OID test without knowing the strength of the instruments. Note that the actual
sizes vary from less than 4% to more than 20% when the instruments are weakly correlated
with the endogenous variables. The second observation is that the sequential procedure
creates more size distortion in that the rejection probabilities of ¢, conditional on the

rejection of goo is always greater than their unconditional counterparts. Also, the size of

@ 18 very liberal near p = 1, while it is mildly conservative near p = 0. Table 2.B reports

TALAc is the weak instrument limit of the concentration matrix: SY/?I1ZY Z+1IEY2 2 AL Ac.

14



the results obtained using the Fuller-k estimator instead of the TSLS estimator. Overall,
Table 2.B exhibits a great deal of similarity to Table 2.A and the general conclusions from
Table 2.A remain valid. One notable difference is that the largest size distortion is not

associated with p = 1 but with p = 0.1.

4.2 Size and power properties of the (), test

We also conduct Monte Carlo experiments for the finite sample size and power of the @y

test. The model we simulate is based on (2) and (3) without X:

y=YpB+Zw+u and Y =ZI1+V.

We consider the number of endogenous variables n = 1, 2, 3 and the number of instruments

Ky=n+1,n+3,n+5. The errors (us, V)" are specified as

U = €ex + Z/VuEt and V; = Ey,

where (e, E}) ~ 1.i.d. N(0, I,,+1) and Xy, is a vector of ones multiplied by 0.5/y/n. Z; is
from a multivariate normal with unit mean and identity variance covariance matrix. Also,
we let 8 = 0 since the Qry test is exactly invariant to the value of . The number of
replications is 5,000. The sample size is T' = 50, 100, 200 and 300.

For the finite sample size simulation, we assume w = 0 and II = 0. The results are
reported in Tables 3.A and 3.B. For any sample size T, the Qy test shows that actual sizes
are very close to the nominal 5% whether it is based on the TSLS or Fuller-k estimator.

For the finite sample power simulation, we set w = 0 and II = 0.25R,, k,, where the
columns of R, g, are a set of orthonormalized vectors which are randomly selected from
a uniform distribution for each value of n and Ks. Tables 4.A and 4.B report the results.
They show that the probability rejecting the null hypothesis (i.e., Hy : w = 0 and II = 0)
with a large positive value of 1y quickly approaches one as the sample size grows. The last

power experiments assume II = 0 while w is a vector of zeros except for the last element,
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which is equal to 0.5. This particular shape of w reflects that only one or two instruments
violate the exogeneity condition, which is very likely if the researcher is careful enough.
Tables 5.A and 5.B show that the rejection probabilities are much smaller than the nominal
5% for all n and ky. The last row in Table 5.A corresponds to the limiting case which are
obtained from simulating )%, given in Theorem 2. Note that the power does not collapse
to zero because Qry does not diverge to the negative infinity.

Finally, we simulate QZI"‘S to see the local power of the Qry test. QZI"‘S depends on p and
we consider three cases: p is proportional to a vector of ones with ||p|| = 0.2, 0.5 and 0.8.
We present only the results of the Fuller-k estimator since the TSLS and LIML estimators
give very similar results. Also, the results are quite stable across different pairs of (n, K2)
and we report three cases (n, K2) = (1,3), (2,5), and (3,7). The number of replications is
20,000.

Figure 1.A shows the results when w = 0 but II = C/v/T as C gets away from zero.
More precisely, we let £; = 0 and Ac = cR,, k,, where ¢ varies from 0 to 5. In all cases,
the power increases toward one as |c| increases. Figure 1.B, on the other hand, shows
the results when IT = 0 but w = d/v/T as d gets away from zero. We let Ac = 0 and
£4=1(0,...,0,&k,)", where {, varies from 0 to 5. In all cases, the power decreases toward

zero as |, | increases.

5 Conclusion

A joint test for the relevance and the exogeneity conditions is proposed using an approach
similar to Vuong’s (1989) model selection test. In particular, the test statistic is derived
from two competing models: one imposing the instruments to be exogenous and the other
imposing the instruments to be completely irrelevant. The likelihood ratio of these two
models is shown to be equivalent to the difference of the standard first stage Wald statistic
and the OID test statistic.

The proposed Qv test is a slight modification of the likelihood ratio. The null hypoth-
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esis is set to be the intersection of the two models described above so that the instruments
are exogenous and irrelevant. Then, the Qry statistic is shown to be asymptotically piv-
otal under the null hypothesis, whereas it is consistent against the alternative hypothesis
that the instruments are relevant and exogenous. This result implies that non-rejection of
the Qv test should be taken as an evidence that the set of instruments is of questionable
quality. Furthermore, the asymptotic null distribution of the Qi test is invariant either
under the conventional or under Staiger and Stock’s (1997) weak instruments asymptotic
framework. This is an important property since it implies that our test has better size
control than the commonly used overidentifying restrictions test. Lastly, it should be noted
that the Qv statistic could diverge to the positive infinity even if the instruments are not
strictly exogenous to the structural error. Therefore, rejection of the Qry test should not be
taken as a strong evidence of exact exogeneity, while the rejection still tells the instruments
to be of good quality in the sense that the 2SLS estimator based on these instruments is

likely to have smaller asymptotic bias relative to the OLS estimator.
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Appendix

A.1 Mathematical Proofs

Likelihood Ratio (8) Derivation First, we impose w = 0 and write the log-likelihood
as

J_/gJ_

T
logL(e) = __10g|0uu’_ €

2 200

—%log Sy - ltr [(YL R | 5) o, (v -zt - aLé’)] :

1/2 1/2
where et = yL—V48, 6 = Sy /oy, and Syp, = Svv =Sy Sy /ou. = SY2 (I, — pp) 2.
We denote the estimates obtained imposing w = 0 Wlth a subscrlpt 0. From the first order

conditions, we obtain 6,0 = =¢gtlet /T, where gt =yl —v+ B LIML, and

N N /

§o = (Yi - ZLH0> S e S S0 VSN ) Ve e

ﬁU — (ZJ_lzL)—lzJ_l(YJ_ _él_gz)) — (ZJ_lzL)—lzJ_l(YJ_ —éLéL/MzJ_YL(éJJMzLéL)_l)
. 1 . Y. . )
S = = (YL . é%@) (Yi — 7M1 - gasg)

1 1
— TYLMzLYL - TYL/MzJ_éL(éL/MzLéL)_léJJMzLYL.

Note that
Svpuo| = == [PV M V| = P, v
|u, A éL/MzL é‘J‘ Tn Z AJ_/M L& AJ_ ’
where I' = ( BleML In) We then have (up to a constant addition)
T . A
max log L(0) = ——log (’%u,o\ ‘EV\U,O )
0:w=0 2
T etet Iy N
= —Elog (éJ—/M AJ_ Tn+1 ‘Y MzLY )
T 1 - T 1 _
= -3 log(1 + Td’(BLIML)) — 5 log TYL/MZLYL
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Now, we impose 1I = 0 and write

T !
log L(#) = ) log }JUW‘ - (yL — Ztw— YJ‘go) (yJ‘ — Ztw— YJ'(p>

20u|V

T 1
—5 log[Syv| = 5tr iyt

where ¢ = v+ B, oy)v = ouu — EUVZ(/%/ZVU and v = Z(/%/Zvu. We use a subscript 1 to
all estimates obtained with II = 0 restriction. Similarly as the first case, we have

A 1
EVV,I — TYJJYL
wl —_ (ZJ_lzJ_)—lzJ_/ (yJ_ o YJ_()bl) — (Zj_lzJ_)—lzJ_/ (yJ_ o YL(yJ_/MZlyL)—lyL/MZlyJ_)
pr = (YHYhHThyd (yl - lel) = (VY M YY) Y Y My, gt
. 1 . Y . .
Oulv,l — T (yJ_ - ZLWl - YJ_(P1> (yL — Zj‘wl — YJ‘(pl)
I IR Y Ly Ls 1N—1y L1s 1 1 }YL/MZLYH
= —y'M — =y~ M Y (Y"M,.Y Y-'M ==
7Y zZL+Y 7Y 72+Y( z:Y™) zZL+Y T YT, Y
Moreover,
3 1 Ly L 1 W 1 1 1
Zvv,l( - vty ‘:ﬁjy My Ytyvylp,y )
1 1
= (VMY )20+ R Gr) (VMY )
1 1 A1 1
= ﬁ In‘i‘TGT ‘Y MzLY s

which yields (up to a constant addition)

T )
nax log L(0) = —510g(}0u|v,1}

T 1. _
= —log <'f1/L'MZJL

)

1

)2

)
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Therefore, the LR statistic can be derived as
2LR = 2 log L(0) — 2 log L(6
R max log L(0) — 2 max log L(0)
1 1,4
=T <log I, + ?GT —log(1 + f¢(ﬁL1ML))>

~ tr(Gr) — ¢(BLinr),

where the last approximation is valid since, by construction, |G| is small under II = 0
and so is ¢(Brrarr) under w =0. W

Proof of Theorem 1 This is a special case of Theorem 3 with C' =0 and d = 0. Note
that z, = (1 — p/p)Y/2n + z1p and

No(k) = (v — kI (220 — kp)
= p+ 1 —p )22y — k) 2,

which implies

2= 2vBo(r) = (1=pp)*(L = 2v(z2v — D)7 2 )
No(k)Do(k) = plo+(1=pp)n'zv(zev — k) 22m+ 21— p'p) 20 (24,20 — k1) 24
PAo(k) = pp+ (1 —pp)V2 (Zzy — kD)L 2.
Therefore,

(2u — 2vAo(K)) (2u — 2v Ao (k)
1 —2p/Ao(k) + Ao(k) Ao(k)

d
Q1v = Amin(2y2v) —

in which the second component is given by

(20 — 2v Do (K)) (20 — 2vDo(k) _ (1= p'p)n'(I — 2v (2 2v — KI) " ()%
1—2p'Ag(k) + Do(k)Do(k)  1=p'p+ (1= pp)nzv(eyzy — kD) "22yn’

where x = 0 for the TSLS estimator; x = x* for the LIML estimator; and k = £* —1 for the
Fuller-k estimator with x* being the smallest root satisfying |(zy, 2v)'(2u, 2v) — £*%| = 0.
Note that ’(’ZUWZV)I(ZWZV) - H*Z’ = ‘D,(nv Zv),(’l’],Z\/)D - H*D,D‘ = ‘("77 ZV)/(Tlv ZV) -
K*Lnpa| = 0, where D = (C=7/2"* 0 m

n

Proof of Theorem 2 Part (i) is trivial and omitted. For part (ii), the limit of the first
component Amin (_G%) is t}ie same as in Theorem 1. For the sec_ond_component,_since the_roots
of Y'Y+ — kpY Y M, Y| = 0 are the same as those of |J'Y YT — kpJ'Y Y M, Y| =
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0 with J = (—1ﬁ ?n), we consider
0 = |JYYYHT —kpJ'YY M, VLT
_ _ . 1 - _
= | JYYP YT —T(kr - 1)fJ’YL’MZLYlJ\
V2 Yy p, YR ST k],

where k7 is the smallest root and ¥ = T-1J'Y Y M, Y+J. Under w # 0 and II = 0, we
have ¥ = T 1YY M, Y+ £ 3 and we can write

PyuY1tJ =Py, YT = [Z1w, 0] 4 [Pyiut, P, V] = Ay + As.

Note that )\min(i]_l/Q’A’lAlil_lﬂ) = 0 for all T. We denote by v4, the eigenvector of
i’l/Q’AﬁAli’1/2 corresponding to the zero eigenvalue. Also, i’l/Q’A'QAQi’I/Q = 0p(1),
which implies that the largest eigenvalue of 71/ A, Ay3~1/2 is Op(1) as well. We let v 4,
be the eigenvector of S/ A’QAgi*l/ 2 corresponding to the largest eigenvalue. Let v be the
eigenvector of Y2 J'Y /P, V1 5:71/2 associated with k7. Then, for a nonzero vector
x?

Kp = HII|1|iI11 $/271/2/J1Yllsz yigs—2g
I/,i}_l/Q/J,YLlpzj_YLJi]_l/21/
VST (AL Ay + A Ag + AL Ay + AQAy) 7120

< VST (AL AL + AbAs + AL Ay + AQAL) ST 0y,
= 0+ STV AL AT 20y 4 2 STV AL ATy,

~ ~ ~ ~ 1/2 ~ ~ 1/2
< V;le_l/WA'QAQZ_l/QVAz +2 <V£412_1/2'A'1A12_1/2y141> / <V£412_1/2'A'2A22_1/2y141> /

= 0,(1)+0.
Now, for B(kr) = 8+ (VY (Ip — kp My )V WY (Ir — kp My ) (Z1w + ut), we have
T2 (Blkr) — B) % S/ (v — al) QM
because

VH(Ip = kpMy )V = VHVE — kpV Y My vV
1/2/ /

= VYPLVE = (b — DV M VE S SY2 022 — kS
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and

T2V = kp My ) (Zhw + ut)
T—l/2vJ_l(zJ_w + uJ_) o T_1/2]€TVJJM2J_ (ZJ_W + uJ_)
= TP, (Z w+ut) - Ty — DT3PV M, (74w + ut) S Y2 2,02,

where k = 0 for the TSLS estimator, x = k* for the LIML estimator and x = x* — 1 for
the Fuller-k estimator if we let xkp 2 g+ In addition, &+ =yt — YLB(kT) =Z w4 ut -
V+(B(kr) — B) since Y+ = VL. We thus have

TeVp, et = T ZY Z e+ TN (Blkr) — B)' VY P,V (B(kr) — B)
2T ZAV (Blhr) — B) + op(1)
L w + WY 2y (2 2y — kD) V2 2y (2 2y — kI 72,0 20

—2wQY? 2y (2 2y — k)12 QY 2w

and
T2V My et = T2 1 o,(1)
= T2(Bkr) = B)YVH'VE(B(kr) — B) + 0p(1)
A WML (2 — kD) 722,020
Therefore,

S(3(k)) EL’PE‘LEL g WYY (I —zv(zf2v — /@I)*lz{/)2Q1/2w
= —
g EVMy )T W' Q22 (2, 2y — KI)722(, Q1 2w

For part (iii), note that Assumption 2 implies that T-'VYVE B sy, 7oyl 2
Svu, T vt L oy, T712H 25 2, 7120yt oo, 712y B Qu, and
Syy B QI + Syy. Hence, Amin(G9/T) 2 Ain(IVQIT + Syy) HIT'QID). Recall that
Blkr) = YY(Ip — kpM, )Y H) WYY (Ip — kpM . )yt, where kp = 1 for the TSLS esti-
mator; kr = kr for the LIML estimator; and kp = kp — 1/(T — K1 — K>) for the Fuller-k
estimator with kr being the smallest root of [Y'MxY — krY' MY | = 0. For any T, the
roots of [Y'MxY —krY' MY | = 0 are the same as those of [TV MxY —krT-1Y'M;Y| =
0. Thus, plimr_ekr = k* where k* is the smallest root of Iplimy_ T Y MxY —
E*plimy_ T YY'MzY| = |[© + % — k*Y| = |© — (k* — 1)3| = 0 with © as defined in
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the theorem, and plimy_,,.kr = k* for both the LIML and Fuller-k estimators. Hence,

A

Blkr) = (YYPuLYt —(kr — )Y YM YY) Y YYP oyt — (kr — )Y Y Myt
LB+ AUQI — (k* — DZyy) AT Qw — (k* — 1)Sy).

Now, &+ =yt — Y1 3(kr) = Z+w +ut — YL (B(kr) — B) and

o(B(kr)) &Py EtT p, W+ b (k) TIQIIb (k) — 20" QIIb (k)
T eV Myet)T Ouu + 0 (k) Sy (k) — 28,vb (k)

Proof of Theorem 3 Obvious from Theorems 1 and 3 in Staiger and Stock (1997) and
thus omitted. W
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A.2 Simulation Results

TABLE 1.A. Critical Values for the Qv test, TSLS

n=1 n=2 n=

.90 .95 975 99 .90 .95 975 99 90 95 975 .99

Ko=21| 397 535 674 8.60
3 493 646 799 10.06 [ 1.88 2.57 3.24 4.16

4 5.70 737 9.03 11.21 243 324 401 5.03 |1.21 165 211 2.72
5 6.45 828 10.09 1240|290 3.82 472 583 |1.62 219 274 345
6 703 899 1089 13.19 (331 434 530 6.57 | 194 259 3.22 3.99
7 7.60 9.69 11.64 14.14 | 3.68 4.8 593 733 | 222 298 3.70 4.59
8 8.13 1039 1245 15.05|4.01 528 6.51 792 | 248 333 415 5.14
9 8.59 1094 13.12 1583 | 4.35 5.70 6.98 857 | 2.71 3.67 4.55 5.63
10 9.02 1142 13.66 16.30 [ 456 6.00 737 9.07 | 291 3.94 489 597
11 949 1199 14.33 17.26 | 483 6.41 780 9.56 | 3.10 4.23 5.28 6.50
12 9.89 1249 1489 1780 | 5.11 6.78 826 10.04 | 3.28 4.51 5.61 6.91
13 10.28 13.02 15.50 18.59 | 5.34 7.07 8.63 1048 | 3.40 4.72 590 7.32
14 10.65 13.50 16.09 19.21 | 5,55 7.38 9.06 11.00 | 3.57 4.95 6.18 7.69
15 11.06 13.96 16.58 19.74|5.76 7.68 9.37 1146 | 3.63 5.12 6.39 7.87
16 11.38 14.36 17.14 20.27 | 597 798 9.78 11.87 | 3.76 5.33 6.73 8.33
17 1171 1481 1761 20.88 | 6.15 817 10.05 12.35| 3.88 5.50 6.95 8.63
18 12.04 1523 18.11 21.61|6.29 848 10.38 12.66 | 4.00 5.72 7.20 9.01
19 12.36  15.55 18.47 22.05|6.53 876 10.72 13.03 | 4.08 5.88 7.45 9.26
20 1271 16.04 1899 2254 | 6.69 9.01 11.01 1341 |4.18 6.09 7.79 9.62
21 12.98 16.39 19.50 23.24 | 6.78 9.20 11.29 13.78 | 420 6.13 7.90 9.84
22 13.16 16.60 19.80 23.53 | 7.06 949 11.65 14.19 | 440 6.44 8.16 10.24
23 13.50 17.02 20.29 23.94 | 7.18 9.67 11.89 14.54 | 4.38 6.48 8.23 10.35
24 13.84 1746 20.67 24.82 | 728 991 1214 14.84 | 442 6.60 8.48 10.71
25 1417 1786 21.08 25.11 | 7.41 10.04 1237 15.17 | 4.62 6.82 874 11.02

Note: n is the number of endogenous regressors and Ko is the number of instruments.
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TABLE 1.B. Critical Values for the Qry test, LIML

n=1 n=2 n=3
.90 .95 975 .99 .90 .95 975 99 90 95 975 .99
Ko=21| 399 537 6.76 8.60

3 496 6.49 8.01 10.08 190 258 3.25 4.17

4 576 742 9.05 11.23 | 248 328 4.05 5.05 |1.23 1.67 213 2.73
5 6.52 833 10.12 1242|299 389 476 587 | 1.68 2.23 2.78 3.47
6 713  9.06 1094 1324|343 444 537 6.64 |2.03 2.66 3.28 4.04
7 773 9.78  11.71 14.20 | 3.87 498 6.05 7.40 | 237 3.10 3.79 4.68
8 8.28 1049 1253 15.11 425 545 6.64 8.04 | 270 3.49 4.28 5.23
9 877 11.07 13.22 1589|464 590 7.13 870 | 3.00 3.88 4.71 5.75
10 9.25 11.57 13.75 16.40 | 491 6.28 757 9.21 |3.28 421 5.09 6.11
11 9.73 1216 14.46 1734|526 6.72 8.02 9.74 | 3.55 4.57 554 6.71
12 10.17 12,66 15.03 1791 | 561 7.13 852 10.25|3.82 4.88 590 7.15
13 10.57 13.23 15.68 18.70 | 5.92 7.47 894 10.73|4.04 5.19 6.25 7.56
14 1097 13.71 16.26 19.35 | 6.17 7.84 9.41 11.27 | 429 5.48 6.59 8.02
15 1141 1421 16.78 19.88 | 6.47 819 9.76 11.76 | 447 5.71 6.87 8.25
16 1177 1463 1734 2042 | 6.75 853 10.20 1218 | 470 6.03 7.28 8.74
17 12.14 15.10 1785 21.06 | 6.99 &880 10.51 12.68 | 4.92 6.28 7.54 9.09
18 1250 1556 18.35 21.79 | 7.24 9.12 1093 13.05| 5.12 6.55 7.88 9.53
19 12.85 1592 18.74 2227|749 948 11.28 1346 | 531 6.80 8&8.17 9.79
20 13.23 16.37 19.25 2281|773 9.75 11.63 13.89 |5.53 7.12 856 10.23
21 13.52 16.77 19.76 23.47 | 7.93 10.03 11.95 14.27|5.66 7.26 8.76 10.53
22 1375 17.04 20.12 23.77 | 826 10.39 1236 14.75| 593 7.58 9.11 10.96
23 14.10 1743 20.59 24.17 | 844 10.60 12.63 15.08 | 6.06 7.73 9.27 11.11
24 1447 1792 21.00 25.07 | 8.63 10.88 12.96 1545 |6.23 7.95 9.55 11.50
25 14.80 1831 21.50 25.36 | 8.83 11.11 13.19 1585|649 8.25 9.88 11.87

Note: n is the number of endogenous regressors and K5 is the number of instruments.
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TABLE 1.C. Critical Values for the Qv test, Fuller-k

n=1 n=2 n=3
.90 .95 975 .99 .90 .95 975 99 90 95 975 .99
Koy=21| 39 535 674 8.60

3 494 6.47 8.00 10.07 (180 252 3.20 4.12

4 573 740 9.04 11.23 240 322 4.00 5.01 |1.06 1.55 2.03 2.65
5 6.50 832 10.12 1241|292 384 473 584 | 154 213 270 3.42
6 711 9.06 1093 13.24 | 337 439 534 6.61 | 191 257 321 3.99
7 771 977 1170 14.19 | 3.81 494 6.02 7.38 | 225 3.02 3.73 4.63
8 8.26 1048 12,52 15.10 | 4.19 542 6.61 8.02 | 2.60 3.42 4.22 5.18
9 8.76 11.06 13.21 1589|459 587 711 868 |291 3.81 4.66 5.72
10 9.23 1156 13.75 16.39 | 487 6.25 754 9.20 | 3.19 4.15 5.04 6.08
11 9.72 1215 14.45 1734|521 6.69 800 9.72 | 347 451 549 6.67
12 10.15 12.65 15.02 1791 | 557 7.10 850 10.23 | 3.73 4.83 586 T7.12
13 10.55 13.22 15.67 18.69 | 5.88 7.44 892 10.72 | 3.97 5.13 6.21 7.53
14 1096 13.71 16.25 19.35 | 6.12 7.81 9.40 11.26 | 4.22 5.43 6.56 7.99
15 11.40 14.20 16.77 19.88 | 6.43 816 9.74 11.74 | 441 5.66 6.83 8.22
16 1176 1463 1734 2041 | 6.71 851 10.18 1216 | 4.64 599 7.26 8.72
17 12.13 15.09 17.84 21.05|6.95 877 1049 12.67| 4.8 6.25 7.51 9.07
18 1249 1555 1835 21.79 | 721 9.10 1091 13.04 | 5.06 6.51 7.85 9.51
19 12.84 1591 18.73 2227 | 746 9.45 11.26 1345|524 6.75 814 9.76
20 13.22 16.37 19.24 2281|770 9.73 11.61 13.87 547 7.08 853 10.20
21 13.51 16.76 19.76 23.47 | 7.89 10.01 11.93 14.25|5.60 7.22 8.73 10.50
22 13.74 17.03 20.12 23.77 | 823 10.37 12.35 14.75 | 588 7.54 9.08 10.94
23 14.09 1743 20.59 24.17 | 841 10.58 12.61 15.07 | 6.01 7.69 9.23 11.09
24 14.46 1792 21.00 25.07 | 8.60 10.87 12.94 1544 | 6.18 7.92 9.53 11.48
25 1479 1831 2149 2536 | 880 11.09 13.18 15.84 | 6.44 822 9.85 11.84

Note: n is the number of endogenous regressors and K5 is the number of instruments.
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TABLE 2.A. Rejection Probabilities of the Overidentifying Restrictions Test, TSLS

n=1 Ky =3 Ky =9

AAc/Nyin P | 1ej (0.01)  n-rej (0.99) uncond. | rej (0.00) n-rej (0.99) uncond.
0.5 0.1 0.0550 0.0364 0.0365 0 0.0450 0.0450

0.3 | 0.0661 0.0410 0.0411 0 0.0506 0.0506

0.5 0.0752 0.0530 0.0531 0.1667 0.0660 0.0660

0.8 | 0.1229 0.1142 0.1143 0.1667 0.1179 0.1179

1.0 | 0.3321 0.2008 0.2016 0.3333 0.1880 0.1880

AcAc/Nyi  p | 1ej (0.03) n-rej (0.97) uncond. | rej (0.01) n-rej (0.99) uncond.
0.8 0.1 0.0419 0.0395 0.0395 0.0442 0.0465 0.0465

0.3 | 0.0498 0.0437 0.0438 0.0549 0.0508 0.0508

0.5 0.0613 0.0545 0.0547 0.0869 0.0617 0.0619

0.8 0.0972 0.0986 0.0985 0.1631 0.0943 0.0948

1.0 0.2328 0.1472 0.1494 0.3125 0.1335 0.1347

AsAc/Nyin P | rej (0.10) n-rej (0.90) uncond. | rej (0.19) n-rej (0.81) uncond.
1.2 0.1 0.0473 0.0413 0.0419 0.0486 0.0472 0.0475

0.3 0.0516 0.0449 0.0455 0.0542 0.0500 0.0508

0.5 0.0600 0.0536 0.0542 0.0663 0.0570 0.0587

0.8 | 0.0996 0.0825 0.0841 0.1046 0.0756 0.0810

1.0 | 0.1808 0.1092 0.1161 0.1609 0.0933 0.1058

Note: n is the number of endogenous regressors; Ko is the number of instruments; p represents the

degree of endogeneity; A/CAC corresponds to the weak limit of the concentration matrix; and A

*

min 18

the boundary value of the minimum eigenvalue for the weak instruments set based on the 10% TSLS
bias. The numbers in parenthesis next to rej. are P(goo rejects) and those next to n-rej. are P(goo
not rejects). The column rej. shows P(¢., > X%an 0.05]9oo Tejects), n-rej P(dy, > X%an 0.05] 900

not reject), and uncond. P(¢,, > X%an 0.05)-
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TABLE 2.B. Rejection Probabilities of the Overidentifying Restrictions Test, Fuller-k
n=1 Ky =3 Ky =9

AAc/Nyin P | 1ej (0.01) n-rej (0.99) uncond. | rej (0.01) n-rej (0.09) uncond.
0.5 0.1 0.1027 0.1745 0.1739 0.1887 0.2830 0.2823

0.3 | 0.1655 0.1817 0.1815 0.3032 0.2887 0.2888

0.5 | 0.2240 0.1786 0.1789 0.4218 0.2769 0.2779

0.8 0.2924 0.1438 0.1449 0.5782 0.1878 0.1907

1.0 | 0.2753 0.1062 0.1074 0.5040 0.0749 0.0780

AcAc/ N p | 1ej (0.03) n-rej (0.97) uncond. | rej (0.03) n-rej (0.97) uncond.
0.8 0.1 0.0906 0.1454 0.1440 0.1667 0.2440 0.2420

0.3 0.1309 0.1404 0.1402 0.2427 0.2316 0.2319

0.5 | 0.1666 0.1266 0.1277 0.3304 0.2026 0.2060

0.8 | 0.2115 0.0867 0.0900 0.4147 0.1067 0.1147

1.0 | 0.1939 0.0668 0.0702 0.3380 0.0502 0.0578

AsAc/Nyin P | 1ej (0.09) n-rej (0.91) uncond. | rej (0.09) n-rej (0.91) uncond.
1.2 0.1 0.0933 0.1216 0.1192 0.1520 0.2071 0.2023

0.3 0.1183 0.1082 0.1091 0.2044 0.1803 0.1824

0.5 | 0.1420 0.0901 0.0945 0.2495 0.1411 0.1505

0.8 0.1572 0.0581 0.0665 0.2670 0.0618 0.0796

1.0 | 0.1466 0.0476 0.0560 0.2172 0.0363 0.0520

Note: m is the number of endogenous regressors; Ko is the number of instruments; p represents
the degree of endogeneity; AizAc corresponds to the weak limit of the concentration matrix;

and \*

min

is the boundary value of the minimum eigenvalue for the weak instruments set based on

the 10% TSLS bias. The numbers in parenthesis next to rej. are P(goo rejects) and those next
to n-rej. are P(goo not rejects). The column rej. shows P(¢, > X%an 0.05/900 TEjECtS), D-TE]

P(¢oo > X%an,o,og,’goo not reject), and uncond. P(¢,, > X%(27n70'05).
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TABLE 3.A. Finite Sample Sizes of the Qry test, TSLS

n=1 n=2 n=3
K> 2 4 6 3 5 7 4 6 8
T =501 .0428 .0374 .0324 | .0504 .0560 .0478 | .0560 .0552 .0476
100 0524 .0526 .0402 | .0518 .0494 .0478 | .0550 .0516 .0500
200 0442 .0498 .0458 | .0542 .0544 .0538 | .0560 .0504 .0530
300 .0458 .0488 .0458 | .0500 .0432 .0474 | .0568 .0520 .0514
TABLE 3.B. Finite Sample Sizes of the Qv test, Fuller-k
n=1 n=2 n=3
K> 2 4 6 3 5 7 4 6 8
T =50 1|.0430 .0374 .0324 | .0492 .0554 .0478 | .0532 .0536 .0482
100 0522 .0532 .0396 | .0510 .0488 .0468 | .0552 .0526 .0500
200 0438 .0502 .0468 | .0528 .0552 .0528 | .0550 .0502 .0530
300 .0460 .0488 .0454 | .0490 .0436 .0476 | .0578 .0516 .0516

TABLE 4.A. Finite Sample Powers of the Qry test, w = 0 and II # 0, TSLS

n=1 n=2 n=23
Ky 2 4 6 3 ) 7 4 6 8
T'=50|.7102 .3568 .1642 | 4856 .2152 .2780 | .3790 .1978 .1738
100 9624 4042 4724 | 7594 5534 4808 | .6376 5252 4130
200 8978 .8006 .8326 | .9474 .8888 .8040 | .9172 .8116 .7262
300 1.000 .9690 .9966 | .9872 .9602 .9472 | 9838 .9426 .8948

Note: T is the sample size, n is the number of endogenous regressors and K> is the
number of instruments.
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TABLE 4.B. Finite Sample Powers of the Qv test, w = 0 and II # 0, Fuller-k

n=1 n=2 n=23
Ky 2 4 6 3 ) 7 4 6 8
T'=50|.7112 .3602 .1668 | .4884 .2200 .2904 | .3798 .1998 .1850
100 9642 4106 4794 | 7626 .5662 .5018 | .6434 .5416 .4350
200 8996 .8104 .8450 | .9502 .8996 .8202 | .9238 .8320 .7628
300 1.000 .9732 9980 | .9890 .9676 .9532 | .9860 .9586 .9156

TABLE 5.A. Finite Sample Powers of the Qry test, w # 0 and II = 0, TSLS

n=1 n=2 n=3
Ko 2 4 6 3 5 7 4 6 8
T =50 |.0186 .0070 .0036 | .0350 .0178 .0102 | .0450 .0270 .0152
100 0186 .0092 .0020 | .0274 .0126 .0044 | .0384 .0184 .0118
200 0174 .0044 .0036 | .0294 .0134 .0038 | .0362 .0180 .0076
300 .0192 .0040 .0016 | .0304 .0114 .0054 | .0404 .0140 .0110
00 .0168 .0034 .0000 | .0290 .0099 .0037 | .0344 .0118 .0058

TABLE 5.B. Finite Sample Powers of the Qry test, w # 0 and II = 0, Fuller-k

n=1 n=2 n=23
K, 2 4 6 3 5 7 4 6 8
T =501 .018 .0080 .0046 | .0310 .0192 .0124 | .0352 .0278 .0178
100 | .0198 .0114 .0032 | .0254 .0132 .0080 | .0310 .0178 .0130
200 | .0184 .0060 .0048 | .0244 .0154 .0072 | .0258 .0200 .0090
300 |.0194 .0060 .0032 | .0266 .0122 .0076 | .0296 .0152 .0150

Note: T is the sample size, n is the number of endogenous regressors and K is the
number of instruments.
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Figure 1.A. Local Power of the Qry test, Ac # 0 and £; = 0.
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