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Abstract. This paper proposes several new tests for structural change in the
multivariate linear regression model. One of the most popular alternatives are Sup-
Wald type tests along the lines of Bai, Lumsdaine and Stock (1998), which Bernard,
Idoudi, Khalaf and Yélou (2007) show to have very large size distortions, especially for
high dimensional systems. They propose the use of Monte Carlo type tests to control for
size in finite samples along the lines of Dufour and Khalaf (2002) and Dufour (2006). In
this paper we propose several procedures that find a balance between the two previous
approaches. We first estimate the break point using alternating observations, and then
use the estimated breakpoint to create a test statistic either with the whole sample or
with the observations not used for the breakpoint estimation. We show that these tests
are optimal in the sense that it is possible to obtain the same local asymptotic power
as we would obtain if the breakpoint was known. In addition, when observations used
to estimate the breakpoint are not re-used for the testing, it is possible to use Monte
Carlo methods to control size perfectly. In contrast to the Sup-Wald type tests, which
have non-standard asymptotic distributions, we show that our tests are asymptotically
distributed Chi-square using methods similar to those in Andrews (2004). Additionally,
our tests stay asymptotically valid even when the distributional assumption made for
the Monte Carlo adjustments is incorrect. We illustrate the new test statistics in the
univariate context of discount rates and changes in the interest rates, and also in the
multivariate setting of the Capital Asset Pricing Model.
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1. Introduction

In this paper we consider tests for a single structural change in the multivariate linear

regression model. Qu and Perron (2007) consider tests for multiple structural changes,

however in this paper, for simplicity reasons, we will focus on a single break, although our

methodology could also be extended to the multiple setting. Currently one of the most

commonly used tests of structural change in these models is the procedure introduced

in Bai, Lumsdaine and Stock (1998).1 The test statistics used are sup-Wald tests and

exponential Wald type tests which have non-standard but pivotal asymptotic distributions.

Recently, Bernard et al (2007) have demonstrated that the sup-Wald tests can have severe

size distortions, especially for high dimensional systems. To alleviate the size distortions,

they propose using Monte Carlo type tests along the lines of Dufour and Khalaf (2002).

While this approach does indeed provide excellent control for size, it requires knowledge

of the finite sample distribution of the errors, and the test is not robust to incorrect

assumptions about the distribution.

We propose new likelihood-ratio-based-procedures that find a balance between the two

previous approaches. As Dufour and Khalaf (2002) note, there are some cases in which

Monte Carlo tests will be asymptotically valid even under failure of the distributional

assumptions. For that purpose, we need that: (1) “the assumptions used to derive an

asymptotic distribution include as a special case the parametric distributional assumptions

imposed in order to perform the Monte Carlo tests”, and also that (2) “the asymptotic

distribution of the test statistic does not involve unknown nuisance parameters”. We design

a test, LRpart, to exactly conform to these two desiderata.

Our proposed procedure is to first find an estimate of the break point with alternating

observations, and then use it to create a likelihood ratio test either with the whole sample

(LRall) or only with the observations not used in the first step (LRpart). Both the

resulting test statistics are asymptotically Chi-squared distributed. The advantage of LRall

1This procedure builds on a long literature on breaks in the parameters of regression models, going back

to Quandt (1960) and followed by, among many others, Davies (1977), Banerjee, Lumsdaine and Stock

(1992), Zivot and Andrews (1992), Hansen (1992), Andrews (1993), Bai (1997) and Bai and Perron (1998).
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is increased power resulting from the additional data used in the second step. In addition,

our simulations show that LRall has much less size distortions than the tests in Bai et al

(1998). The advantage of LRpart is that it allows the use of Monte Carlo tests to control

the size of the test; this is needed mainly in the multivariate setting. Both these new test

statistics provide significantly less size distortion than the sup-Wald test. While LRpart

has significantly reduced power in moderately sized samples, the LRall test has power

quite similar to the standard sup-Wald test.

One of the key arguments that we use to develop our new test procedures has been

applied before in the literature (Andrews (2004)). As Andrews (2004, page 675) points out,

in the context of the block bootstrap where N is the sample size, l is the size of the block

and π ∈ (0, 1) , we can design a setting where “...The last nonzero summand in one block is
separated from the first summand in the next block by [πl] time periods, where [πl]→∞ as

N → ∞. In consequence, for an asymptotically weakly dependent time series...the blocks

are asymptotically independent”. We use the same type of argument to create and prove

the asymptotic independence that we need in our setting. In our case, in the first stage,

we employ a shrinking function π of the observations to obtain an initial estimate of the

breakpoint, and use this estimate for Chow (1960)-type tests of the stability hypothesis

in the second stage. The fact that the initial estimate is based on a shrinking fraction

of the overall sample ensures asymptotic independence of the first stage estimator from

the randomness of the statistic in the second stage. One thus obtains standard asymptotic

chi-squared distributions of the test statistic under the null hypothesis. Because the tests

can be interpreted as Chow tests with asymptotically known breakpoints, it is possible to

show that they are optimal, and in fact simulations demonstrate that they can obtain the

same local asymptotic power as would obtain if the breakpoint was known.

One important remark is the simplicity of our test procedures versus alternative ones,

and the generality of our setting. For example, Elliott and Müller (2006) provide conditions

under which the precise form of unstable processes is asymptotically irrelevant. However,

they focus their attention in linear models with Gaussian errors. Andrews and Ploberger

(1994) and Sowel (1996) have also derived optimal break tests, but they are also sup-type
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tests, and as such, they too are subject also to the large size distortions in finite samples

reported in Bernard et al (2007). Moreover, an important final remark is that our likelihood

ratio based tests allow for standard trending regressors of polynomial form, and they still

have the asymptotic chi-squared distribution.

We perform extensive simulations to evaluate the performance of the new test statistics

under various circumstances. Relying on these simulations, we recommend that in the single

equation environment, the researcher should use LRall. In multidimensional systems, given

the large size distortions, the researcher should use LRpart combined with a Monte Carlo

type procedure. The LRpart statistic combined with the Monte Carlo procedure does

require that we assume a distribution on the errors, but we have demonstrated that if

the distributional assumption is wrong, the test statistic will stay asymptotically valid. In

fact, simulations indicate that LRpart has excellent size control even when the distribution

differs from the assumed one.

In addition to the likelihood-ratio based statistics, we also verify the asymptotic distri-

bution of the equivalent Wald tests with alternating observations. These have the advan-

tage of allowing the use of nonparametric heteroscedasticity and autocorrelation consistent

(HAC) estimators (see e.g. Newey and West (1987)) if serial correlation is present.

We apply our test statistic to two empirical examples, one univariate and one multi-

variate. The univariate illustration replicates part of the work of Bai (1997) in which he

examines the impact of changes in the discount rate on the market interest rate. The mul-

tivariate illustration examines, for the first time, simultaneous breaks in a 5-variate CAPM

model. Our main finding here is that our statistics definitely find fewer breaks than the

statistic of Bai et al (1998), as is expected considering the inflated size of the sup-Wald

statistic. In the univariate framework our test statistic and that of Bai et. al (1998) are

not too different in their behavior, but when we move to the multivariate framework, the

sup-Wald type test finds 15 breakpoints in 954 observations, whereas we find only 6 with

the LR-based tests. The breaks found with the sup-Wald statistic are spread over the

entire series, whereas the breaks we locate are all in the first quarter of the sample, where

the data is clearly more unstable. Furthermore, LRpart and LRall are in agreement in
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spite of their differing size and power properties.

The outline of the paper is as follows. Section 2 sets up the model, provides the assump-

tions and the asymptotic distributions of the test statistics, Section 3 provides simulation

results, Section 4 provides several empirical applications and Section 5 concludes. Proofs

are relegated to the appendices.

2. Theory

2.1. The Framework. We consider the multiple linear regression model

Y = XB + U (1)

where Y = [Y1, Y2, ..., YT ]́ is a T ×n matrix of T observations on n dependent variables, X

is a T × k full column rank matrix of regressors, where we can allow for lagged dependent

variables and U = [U1, ..., UT ]́ is a T × n matrix of error terms.

Bai, Lumsdaine and Stock (1998), as a generalization of Bai (1997), use the following

augmented version of (1) to test for change points

Y = XB +Ds∆s + U = ZsΘs + U, Zs =
h
X Ds

i
, Θs =

⎡⎣ B

∆s

⎤⎦ , (2)

where Ds is a matrix with typical row equal to Ds
tX t́, where Ds

t is the dummy variable

given by

Ds
t = 1, t > s

= 0, t ≤ s,

and X t́ is the t0th row of X = XQX with QX being the k × qX selection matrix (of zeros

and ones) which specifies which regression coefficients are tested for constancy. Finally

s ∈ [[τT ] + 1 : T − [τT ]] is the break date and τ < 1
2 is a trimming parameter typically

between 0.05 and 0.3. We will denote the true breakdate s0 and assume that there exists

a λ0 such that 0 < λ0 < 1 and s0 = [λ0T ] ([.] is the integer part function). Finally, we

denote Zs0 by Z0.
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To test for the presence of a change point in this model, we have to test the null

hypotheses

Hs∗
0 : ∆s = 0⇐⇒ R∗Θs = 0,

where R∗ =
h
0qX×k IqX

i
and 0l×m and IqX×k denotes an l×m matrix of zeros and the

identity matrix respectively. Combining these hypotheses into a single null, they can be

written as

H∗
0 : ∆

s = 0 ∀s⇐⇒ ∩s∈[T∗+1:T−T∗] (Hs∗
0 ) .

There are a number of test statistics currently available to test this hypothesis. Their

expressions are given below.

First the likelihood ratio based test can be written as

Λ∗ = sup
s∈[[τT ]+1:T−[τT ]]

{−T ln (Λs)} , Λs = |Ss| /
¯̄
S0
¯̄
,

where

Ss = bUs b́Us, S0 = bU0 b́U0,
and bU0 and bUs are the ordinary least squares (OLS) residuals from (1) and (2) respectively.

Similarly, the test based on the Wald statistic can be written as

F∗ = sup
s∈[[τT ]+1:T−[τT ]]

{Fs} ,

where

Fs = T · trace
³
(Ss)−1

¡
S0 − Ss

¢´
,

or, for a more standard Wald representation that allows for serial correlation and het-

eroscedasticity in the data

W s = T
³
R∗Θ̂s

´0⎛⎝R∗
Ã
T−1

TX
t=1

Zs
t

³
Σ̂s
´−1

(Zs
t )
0
!−1

(R∗)0

⎞⎠−1 ³R∗Θ̂s
´
,
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and Σ̂s is the estimator of Σ, the variance covariance matrix of U, based on OLS residuals

under the alternative hypothesis, given s, Zs
t refers to the t

0th row of the matrix Z
³
Σ̂s
´−1

containing the regressors and

W ∗ = sup
s∈[[τT ]+1:T−[τT ]]

{W s} .

Bernard et al (2007) suggest using a test statistic which can be written as

LP (Λ) = −2
X

s∈[[τT ]+1:T−[τT ]]
ln (pv [Λs]) ,

where

pv [Λs] = GF

Ã"
1− (Λs)1/m2

(Λs)1/m2

m1m2 − 2m3

nqX

#
|nqX ,m1m2 − 2m3

!
,

m1 = T − (k + qX)−
n− qX + 1

2
, m2 =

s
n2q2X − 4

n2 + q2X − 5
, m3 =

nqX − 2
4

,

and GF (x|v1, v2) is the survival function, evaluated at point x, of the F distribution with

(v1, v2) degrees of freedom.

Bernard et al (2007) examine the properties of the Bai et. al. (1998) tests and show that

these tests have very large size distortions. Therefore, they propose that exact versions

of the test statistics should be used. Specifically, Bernard et al (2007) propose Monte

Carlo (MC) exact tests of Λ∗ and LP (Λ) (which we will denote as Λ∗MC and LP (ΛMC)

respectively), where we have to draw N realizations under the null hypothesis from the

distributional assumption we impose on the residuals, and then we derive the (empirical)

p-values:

bpN (.) = N bGN (.) + 1

N + 1

where N bGN (.) is the number of simulated values greater than or equal to the observed

value of the test statistics. See Dufour (2006) for more details.

The proposal of Bernard et al (2007) provides a large improvement when the distrib-

utional assumptions about the errors are correct. As they show in their simulations, the
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gains of controlling for size in this setting can be huge in relation to Bai et al (1998) test.

However, the Bernard et al (2007) proposal have one main drawback: if their distribu-

tional assumptions are wrong, then in general their tests are not valid. We overcome this

problem by introducing tests that are valid asymptotically, even if the assumption about

the distribution is incorrect. In the next section we present our test statistics and their

asymptotic distributions.

2.2. The test statistics. In this paper we propose a set of test statistics, that can

be considered a “middle position” between Bai et al (1998) and Bernard et al (2007)

statistics. We design two types of split-sample LR-based tests. Both tests follow a chi-

square distribution asymptotically; additionally one allows control for size in small samples.

The two tests (denoted LRpart and LRall, depending on whether or not we use the whole

sample in the second stage) are defined below, but first we need the following notation:

Select J observations by picking out alternating observations that correspond to a fraction

of π1T of the total sample size (for example, if π
1
T = 1/3 and T = 99, pick observations

3, 6, 9, ..., 99 for a total of J = 33 observations). Denote this set of observations NJ . Now

let NR denote the remaining R = T − J observations. Then we construct the following

statistics:

LRpart. Use the observations in NJ to get a consistent estimate of λ = [sJ ]. With

this estimate of the break,
³
λ̂J

´
, apply a traditional LR test using the remaining R ob-

servations, such that

LRpart
³
SNR

³
λ̂J

´
, S0NR

´
= −R ln

⎛⎝
¯̄̄
Sλ̂J
NR

¯̄̄
¯̄̄
S0NR

¯̄̄
⎞⎠ ,

where the NR in the subscript signifies that the observations in NR are used for calculating

the sum of squared residuals.

LRall. Use the observations in NJ to get a consistent estimate of λ = [sJ ]. With this

estimate of the break,
³
λ̂J

´
, apply a traditional LR test using all the observations, such
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that

LRall
³
S
³
λ̂J

´
, S0

´
= −T ln

⎛⎝
¯̄̄
Sλ̂J

¯̄̄
|S0|

⎞⎠ ,

where we do not use any subscript on S0 and Sλ̂J since all the observations are used.

In addition to these two test statistics, we introduce a third test statistic, LRblock,

which is constructed purely for use in the proofs of Theorem 2 and 3.

LRblock. Use the observations in NJ to get a consistent estimate of λ = [sJ ]. Now

calculate the LR statistic on a subset NC of NR. Let 0 < π2T ≤ 1
2 . Then NC is the

observations in NR, except for the
£
Rπ2T

¤
observations which are closest (before and after)

to the observations in NJ (see Figure 1 for an example of how to choose NJ , NR and NC).

Thus LRblock is defined as

LRblock
³
SNC

³
λ̂J

´
, S0NC

´
= −

¡
R−

£
Rπ2T

¤¢
ln

⎛⎝
¯̄̄
Sλ̂J
NC

¯̄̄
¯̄̄
S0NC

¯̄̄
⎞⎠ . (3)

Wblock, Wall and Wpart are defined in a parallel way and their exact expressions can be

found in Appendix C.

To obtain asymptotic distributions and use the finite sample Monte Carlo methods, we

need various combinations of the following assumptions:

A1 a) {Ut}Tt=1 is iid with finite-valued covariance terms.

A1 b) With {Fi : i = 1, 2, ...} a sequence of increasing σ-fields assume that {Ui,Fi} forms a
Lr-mixingale sequence with r = 4 + δ for some δ > 0 (McLeish (1975) and Andrews

(1993)) with finite-valued covariance terms.

A2 Assume that there exists an l0 > 0 such that for all l > l0, the minimum eigenvalues

of A1l = 1
l

Pl
t=1XtX

0
t, A1lJ =

1
l

Pl
t=1, t∈NJ XtX

0
t, A1lR =

1
l

Pl
t=1, t∈NR XtX

0
t, A2l =

1
l

P[λ0T ]+l
t=[λ0T ]

XtX
0
t, A2lJ = 1

l

P[λ0T ]+l
t=[λ0T ], t∈NJ XtX

0
t, A2lR = 1

l

P[λ0T ]+l
t=[λ0T ], t∈NR XtX

0
t are

bounded away from zero in probability. Finally we assume that the matrix Blk =



Testing for Breaks Using Alternating Observations 10

Pk
l XtXt

0 is invertible for l − k ≥ qX . Furthermore, if a breakpoint exists, let Z̄0 =

diag(Z01 , Z
0
2), where Z

0
1 and Z

0
2 partitions Z at the true breakpoint. We assume that¡

Z01
¢0 ¡

Z01
¢
/ [λT ] and

¡
Z02
¢0 ¡

Z02
¢
/ (T − [λT ]) as well as the corresponding matrices

formed with alternating observations converge in probability to non-random positive

definite matrices. Finally, we assume that the errors Ut are independent of the

regressors Xs for all t, s.2

A3 J =
£
π1TT

¤
, R =

£¡
1− π1T

¢
T
¤
, 0 < π1T < 1, (J,R)→∞.

A4
£
T ln(1 + π1T )

¤
→ 0,

£
π1TT

¤
→∞.

A5
h
Rπ2T
J

i
→∞, 0 < π2T ≤ 1/2 and π2T → 0.

A6 The (Quasi-) log-likelihood function is regular.3

A7 T−1
P[vT ]

t=1 XtΣ
−1X

0
t

p→ Q (v) and T−1
P[vT ]

t=1 ZtΣ
−1Z 0t

p→ Q0 (v) uniformly in v ∈
[0, 1] , where Q (v) and Q0 (v) are positive definite for v > 0 and strictly increasing in

v.

A8 ∆s0 depends on T and can be written as ∆s0 = ∆0 ·vT where vT is a positive number
such that vT −→ 0 and

£
π1TT

¤(1/2−α)
vT →∞ for some α ∈ (0, 1/2) and ∆0 6= 0.

Assumption 1 specifies the assumptions on the errors. A1 a) is typically not valid for

time series data, but the proof using the simple assumption is instructive and it is an

assumption often made when using finite sample Monte Carlo methods. The alternative

assumption, A1 b) follows Bai and Perron (1998). This assumption is fairly general in that

it allows for broad ranges of serial correlation and heteroscedasticity, and we can also allow

for lagged dependent variables in the regression. Note that the crucial assumption is that

we need to have an error term that is weakly dependent. For a detailed definition of the Lr-

mixingale see Bai and Perron (1998). Assumption A2 contains the standard assumptions

2Note that this assumption along with A1 b) can be easily replaced by an assumption that the errors

form a martingale difference sequence, along with an imposition of a minimum partion length. See Bai and

Perron (1998, Assumption A4 and related discussion).
3See for example Greene (2003) for specific conditions.
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on the regressors of a multivariate regression model as well as assumptions ensuring that

there is enough data surrounding the breakpoint for the breakpoint to be identified. A3

states that J and R go to infinity and that both J and R are fractions of the sample size. In

the proofs we may allow for going to infinity sequentially, although this assumption can be

relaxed due to the asymptotic independence. A4 ensures that the number of observations

used to estimate the breakpoint goes to infinity, but sufficiently slowly to ensure asymptotic

irrelevance. A5 ensures that the number of observations left out when calculating LRblock

goes to infinity, but sufficiently slowly to allow the test statistic to remain consistent. A6 is

required to ensure that we can apply the standard Taylor expansion to the various (quasi)

log-likelihood functions. A7 is required to ensure that the Wald statistic converges to the

correct limit when the observations are not iid. This is required because, in that case, the

Wald statistic cannot be based purely on residuals, and as a result we need restrictions

on our regressors. Note that this assumption allows for trending regressors written as any

function of the time trend g (t/T ) as in Bai (1997). Finally A8 is needed to obtain the

rate of convergence of the breakpoint estimator and, as a result, root T convergence of the

regression parameter estimates when a break is present.

We now consider the following theorems, where the first is for independent identically

distributed data and the second and third are more general. Note that "⇒" denotes
convergence in distribution.

Theorem 1. (a) Under (1), and under A1a), A2, A3 and A6 the LRpart test

LRpartJ,R

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

(b) Under (1) and under A1a), A2, A3, A4 and A6 the LRall test

LRallJ,T

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

(c) Under (1) and if Ut = HWt where t = 1, ..., T and H is unknown, nonsingular and

the distribution of the error w = vec (W1, ...WT ) is known, a Monte Carlo version of the
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LRpart test based on the ratio of residual sums of squares will be invariant to the choice

of the parameters in B and it will be exact in small samples.

Proof. Given in Appendix A.

Part (a) of this Theorem is very clear. Since the observations used to obtain a con-

sistent estimate of the breakpoint and the observations used to test for the presence of

a breakpoint are independent, it is no surprise that we obtain a Chi-squared distribu-

tion asymptotically. Part (b) is proven simply by verifying that LRpart and LRall are

asymptotically identical in a probabilistic sense. Part (c) states the invariance property

of LRpart and that this test has all the characteristics required to be exact when MC is

applied. We now present the parallel theorem for the dependent case. We make use of a

Feasible Generalized Least Squares (FGLS) procedure that can take into account possible

serial correlation and heteroskedasticity.

Theorem 2. (a) Under (1) estimated with Feasible Generalized Least Squares (FGLS)4

and A1b), A2, A3, A4, A5 and A6, the LRblock test

LRblockJ,R−[Rπ2T ]

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

(b) Under (1) estimated with FGLS, and under A1b), A2, A3, A4 and A6, the LRpart

test

LRpartJ,R

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

(c) Under (1) estimated with FGLS and under A1b), A2, A3, A4 and A6, the LRall

test

LRallJ,T

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

4For a thorough description of FGLS see Greene (2003, Chapter 15)
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Proof. Given in Appendix B.

In part (a) of this Theorem it is again easy to obtain the asymptotic Chi-squared

distribution. By construction, the number of observations separating the observations

used for estimating the breakpoint and the observations used to calculate LRblock goes to

infinity. As a result, the observations in NC and NJ are asymptotically independent, and

the Chi-square distribution follows easily. Parts (b) and (c) are then proven by verifying

that the test statistics are asymptotically identical in a probabilistic sense. An important

observation is that we do not require A7 in Theorems 1 and 2, and thus we allow for

standard trending regressors of polynomial form.

It is worth noting in the theorem above that we require the use of FGLS. This is because

we are limiting ourselves to the LR form of the statistic. In the next theorem, we provide

the asymptotic distributions of the Wald form of the test statistic. The Wald form is

important because it allows use of non-parametric covariance matrix estimates such that

the serial correlation can be of completely unknown form (allowing for HAC estimation).

On the other hand, the Wald form of the statistic only allows for trending regressors of the

form g(t/T ), hence the LR form has an advantage in that dimension. Note also that this

statistic is what the literature calls the robust likelihood-ratio-based test (see for example

Stock and Watson (1996)).

Theorem 3. (a) Under (1) and A1b), A2, A3, A4, A5 and A7, the Wblock test defined in

Appendix C

Wblock J,R−[Rπ2T ]

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

(b) Under (1), and under A1b), A2, A3, A4 and A7„ theWpart test defined in Appendix

C

Wpart J,R

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.



Testing for Breaks Using Alternating Observations 14

(c) Under (1), and under A1b), A2, A3, A4 and A7,, the Wall test defined in Appendix

C

Wall J,T

³
λ̂J

´
⇒ χ2 (qX)

where χ2 (qX) denotes a chi-square distribution with qX degrees of freedom.

Proof. Given in Appendix C.

The theorems above confirm that LRpart, LRall, Wpart, andWall provide test statistics

with standard asymptotic distributions under fairly general assumptions. The finite sample

Monte Carlo procedure will produce exact results for LRpart in the independent case,

providing that we know the correct distributional assumptions of the disturbances. In

some cases, we can also get exact finite sample results when we apply the MC procedure to

LRpart with dependent data. What is required in that case is that we must choose NJ in

such a way that conditional on NJ , the observations in NR are independent. For example,

if we have an AR(1) process, but we use the odd observations for the first stage and the

even observations in the second stage, then we will still have an exact test after applying

the MC method (we can adopt the results of Dufour and Jasiak (2001) and Dufour and

Kiviet (1996) directly). It is important to remember, however, that even if we have a

type of dependence in the data that does not produce an exact test, the test will still be

asymptotically valid when we apply the MC method.

The main advantages of the new test statistics are the following: (1) they follow an

asymptotic χ2 distribution. (2) LRpart allows a Monte Carlo version that will control for

size in case the distributional assumption that we impose on the errors is correct; and more

importantly, in case the distributional assumption that we impose is incorrect, we will fall

back on the asymptotic distribution if we do not have any additional nuisance parameters.

(3) LRall has better size control than the Bai et al test (1998) both in univariate and

multivariate settings with similar power (see next section for this result).

Finally, in relation to asymptotic power, note that under Assumption A8 we trivially

have power against alternatives of order
¡
π1TT

¢− 1
2 . It takes a little more to demonstrate

that we have power against the (T )−
1
2 alternative, which is standard in the literature. The
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reason is that we only obtain consistent estimates of the breakpoint if α as defined in A8

is restricted to (0, 1/4) . In this case it is straightforward to verify that the tests presented

in this paper have power against alternatives of order (T )−
1
2 and in fact that the tests are

asymptotically locally optimal. These results are gathered in the following Theorem, which

is proven in the appendix. In the next section, we provide a simulation study of the power

and size properties of these procedures.

Theorem 4. (a) Under (1) estimated with Feasible Generalized Least Squares (FGLS)

and A1b), A2, A3, A4, A5, A6 and A8 where α ∈ (0, 1/2), the LRblock test has power
greater than size against alternatives of order (T )−

1
2 and is asymptotically locally optimal

when α ∈ (0, 1/4) such that the estimate of the break point in the first stage is consistent.
(b) Under (1) estimated with FGLS, and under A1b), A2, A3, A4, A6 and A8 where

α ∈ (0, 1/2), the LRpart test has power greater than size against alternatives of order

(T )−
1
2 and is asymptotically locally optimal when α ∈ (0, 1/4) such that the estimate of

the break point in the first stage is consistent.

(c) Under (1) estimated with FGLS and under A1b), A2, A3, A4, A6 and A8 where

α ∈ (0, 1/2), the LRall test has power greater than size against alternatives of order (T )−
1
2

and is asymptotically locally optimal when α ∈ (0, 1/4) such that the estimate of the break
point in the first stage is consistent.

Proof. Given in Appendix D.

3. Simulation Results

Note that in the asymptotics we require π1T be chosen such that
£
π1TT

¤
→∞ and π1T → 0.

In practice we select π1T ≤ 1/2. For the purpose of these simulations, we choose π1T = 1/3
(see how Dufour and Jasiak (2001) and Dufour and Iglesias (2008) also select a smaller

sample size for the first part of their split sample procedure). The simulation results are

produced using GAUSS with 5000 repetitions for the general simulations and 99 artificial

datasets for the Monte Carlo simulations. For all simulations and procedures, the trimming

parameter, τ , is set to 0.15. The tables containing the simulation results can be found in

Appendix E. Tables 1 and 2 correspond to Tables 1 and 2 in Bernard et al (2007). The
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model considered is a special case of (2) where only an intercept and a time trend (Table

1) and an intercept and a standard normal variate (Table 2) are present. The break may

occur in the regression intercept, and the parameter ξ0 controls the magnitude of the break.

The values that we consider are 1.5, 5 and 10. The regression errors are drawn as standard

multivariate normal in all the experiments except in Table 11 where we use a t-distribution.

In all our simulations, we consider a one time break at dates s0 = [.5T ] + 1, [.85T ] and

[.95T ], where [.] is the integer part function. Tables 1 and 2 clearly show the dangers of

applying the Bai et al (1998) test, especially for n > 1, and how Λ∗MC of Bernard et al

(2007) allow for full control of the size in finite samples. We have also augmented those

tables to show the performance of the LRpart statistic with MC finite sample adjustments,

when the distributional assumption imposed in the errors is correct, and as expected this

statistic allows for full control of size. Both in the case of LRpart and LRall, we estimate

the breakpoint with ordinary least squares with the first part of the sample.

Tables 3 and 4 show the power results comparing the procedure of Bernard et al (2007)

and our LRpart with the Monte Carlo procedure applied. Basically, LRpart needs around

180 observations, to start to have similar power to that of Bernard et al (2007) with 80

observations. However, note that with 180 observations the asymptotic Bai et al (1998)

test still has very large size distortions (Tables 1 and 2) and the results of Bernard et

al (2007) are not robust to failures in the distributional assumption. Specifically, the

power gains of Bernard et al (2007) demonstrated in Tables 3 and 4 can be viewed as the

power that is gained from using the knowledge of the finite sample distribution. Clearly,

any procedure which does not presume such knowledge cannot hope to obtain similar

power. As demonstrated by Tables 1-4, our procedure finds a balance between the finite

sample approach, which assumes knowledge of the finite sample distribution and the purely

asymptotic approach, which leads to severe finite sample size distortions.

Tables 5 and 6 show that LRpart (w/o the MC correction) and LRall produce much

less size distortions than the procedure of Bai, Lumsdaine and Stock (1998) (compare with

Table 2). But even so, size distortions are non-trivial, especially for n > 1, which justifies

the need for the MC procedure in finite samples. Therefore, our recommendation is to use
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LRall for systems where n = 1 and LRpart with the MC method for n > 1.5

Tables 7 and 8 show the asymptotic power results of LRpart and LRall. We have

already noted that the size control of LRpart and LRall is much better than the Bai et

al (1998) test. Table 7 shows that in general Bai et al (1998) test has a virtually identical

power performance to LRall. Note also that Bai et al test (1998) requires the use of

different critical values depending on whether we have a time trend or a normal regressor.6

The distribution of our LR tests remains the same in both cases.

To explore the effect of choosing different π1T values, in Table 9 we show power results

of LRall and LRpart with different values of π1T . Here we have chosen a sample size of

1000 for several reasons. First, when we have very few observations, π1T must be
1
2 or

1
3 .

If it is any smaller, there will not be enough observations left to estimate the breakpoint,

therefore the choice of π1T only becomes interesting when we have more observations. 1000

was chosen because our second empirical application in Section 4.2 has 950 observations, so

simulations with 1000 observations could potentially provide some guidance about which

value of π1T to choose. The table demonstrates that the power does not vary much with π
1
T ,

and hence the applied econometrician does not need to worry too much about the specific

value of π1T . This is a very nice result, since the theory cannot guide our choice of π
1
T for

any individual sample size.

Another issue we examine is what happens when we assume an incorrect distribution of

the errors. In our simulations reported in Table 10, we assume that the disturbance follows

a N(0,1) distribution when in fact it follows a t-distribution. This assumption affects the

statistic when we use the MC procedure. The first thing to note is that, at least for this

example, the Λ∗MC of Bernard et al (2007) becomes highly conservative. We run three cases

for samplesizes 40, 80, 120, 180, they are: n = 1 and t(5) errors, n = 5 and t(5) errors, and

n = 5 and t(35) errors. For each of those cases, even when we use the t(35) errors which

are reasonable close to a normal distribution, the Λ∗MC has actual size 0. The standard

sup-Wald statistic, Λ∗, actually has somewhat better size in small samples than when the

5 If sample size is high, it might be sensible to use LRall for slightly higher n as well.
6Critical values for models without trending regressors are tabulated in Andrews (1993, 2003). To our

knowledge tables of critical values for models with trending regressors are not available.



Testing for Breaks Using Alternating Observations 18

errors are normal, indicating that with the t−distribution we have chanced upon a data
generating process where the asymptotic distribution is a better approximation than with

the normal distribution data generating process. The actual size of Λ∗ seems not to change

much as the degrees of freedom in the t−distribution changes, but it still does substantially
better when the system is unidimensional. The LRall statistic, which also relies solely on

the asymptotic distribution, performs similarly or slightly worse than the Λ∗ statistic.

LRpart with the MC procedure applied performs perfectly with the t(35) distribution, and

for small sample sizes and n = 5, t(5) it performs better than the asymptotic statistics.

It is noteworthy however that the convergence to the nominal size is slower as sample size

increases. When n = 1, the purely asymptotic tests have a slight advantage. In conclusion,

Table 10 demonstrates that LRpart strikes the balance we were hoping for: When the

distribution is sufficiently close to the one we assume for the simulations we get very,

very good size performance, and even in the cases where the distribution is wrong, the

asymptotics kick in and the performance is still decent.

Table 11 considers what happens when lagged dependent variables are present in the

system. It shows the asymptotic size of LRpart when we use the critical values from a

χ2 distribution and we use a model with an intercept, a normal regressor and a lagged

dependent variable (an autoregressive process of order 1: AR(1)). The simulations demon-

strate that for a nominal size of 5%, even with 80 observations LRpart does not present

large size distortions. Note that to deal with moving average processes of finite order, the

block-statistics defined in Section 2 would be useful in practice.

Finally, in Figure 2 we consider the local asymptotic power of our LRpart test. Theorem

4 in the previous section states the optimal properties of the local asymptotic power of our

tests. Figure 2 shows the local asymptotic power characterized using an alternative of the

form CONSTANT/
√
T of the SupWald test (SUPWALD), the test with known breakpoint

(KNOWNBREAK) and the value of π1T (denoted PI) that gives same power for the LRpart

as the SupWald test. As expected, the power envelope for the test with known break point

is larger than that of the Sup-Wald test. The true break is simulated in the middle of

the sample. The number of replications is 10000 and T = 1000. The nominal size in the
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simulations is 5%. As we can see from Figure 2, the value of π1T is mostly around 1/3.

This indicates that using 1/3 in practice may be a good rule of thumb if one is satisfied

with the level of power of the Sup Wald test. 1/3 will provide the same asymptotic power,

but improved size properties. The value of CONSTANT in Figure 2 is from 0 to 15.7

Our general recommendations for application of the statistics based on the simulation

results presented above is as follows: Since LRpart involves loses in power in finite samples

in relation to LRall, and according to our simulations, for n = 1, LRall provides good size

control in finite samples, we advice that LRall be used in practice for n = 1, while LRpart

with the Monte Carlo procedure be used for higher dimensional systems.

4. Empirical Illustrations

We consider two examples. The first example is a univariate framework, where we re-

estimate the breaks in the data of Bai (1997). He estimates the relations between changes

in discount rates and changes in the market interest rate. In the other example, we es-

timate the Capital Asset Pricing Model (CAPM) on 5 different return series and test for

simultaneous breaks in these 5 series.

4.1. Interest rate changes. We consider the empirical example in Bai (1997) where

the following linear regression describes the relationship between the change in the discount

rate for the ith observation (∆DRi) and the change in the market interest rate (∆TBi)

∆TBi = α+ β∆DRi + εi

Bai (1997) considers the same data as given in Dueker (1992), where the sample period

covers from 1973 to 1989 and there are in total 56 observations. Bai (1997) applies his

Wald type test detecting breaks at positions (in terms of observation numbers) 28, 38 and

42 at the 10% nominal size.

Since we have the reference of the breakpoints detected by Bai (1997), our objective in

this section is to find out if we can verify them with our LR-based tests. We therefore apply

our LRall and LRpart tests to the same sample (the critical value from the χ2 distribution

7We are very grateful to Tim Vogelsang his guidance with these simulations.
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is 4.60 at 10% nominal size). Given the very small sample size, we use π1T = 1/2, and given

that in this case n = 1 we simply apply the asymptotic versions of our tests.

When we use the whole sample size, we get a value for LRpart equal to 0.0439 and

LRall 0.1987, with the most likely breakdate being 14 and therefore, we are not able to

detect any break. Bai (1997) obtains 28 as the most likely but insignificant breakdate, and

thus also is not able to verify a break on the whole sample. He explains this rejection with

the fact that his Wald-test (and the same in this case with the LR-based tests) has low

power when multiple breaks exist. Bai (1997) continues his analysis assuming a break at

position 28, and detects a significant break at 38. Bai then looks at the data from 1 to

37 and detects a significant break at position 28. Finally he detects a significant break at

42 if he examines the data from 38 to 56. If we continue from the insignificant break we

found at position 14, we do not eventually detect any breaks in the data. If, however, we

follow Bai (1997) and analyze the data from position 28 onwards, we do detect a break at

position 33 since LRpart and LRall take on the values 6.6134 and 5.4665 in this period.

Moreover, when we run our tests from observations 37 until 56, our tests detect a clear

break at position 42 with LRpart equal to 8.2894 and LRall 9.5722.

Therefore, if we assume that indeed there is a break at position 28, both the Bai (1997)

test and our LR-ratio tests give very similar answers since the detection of break 42 happens

in both cases, and while Bai (1997) test detects two breaks at 28 and 38, we detect a break

in the same area around 33. In the next section we will analyze a multivariate model where

it turns out that Bai (1997) and our LR-tests give very different results.

4.2. The CAPM model. In this section we will test for breaks in the CAPM model.

Parameter constancy has been an issue in the finance literature for a while, and both models

of continuously changing parameters (see Ang and Chen (2007)) and models incorporating

discrete breaks (see Huang and Cheng (2005)) have been examined. To our knowledge,

however, we are the first to consider simultaneous breaks in all the series of the multivariate

model. Clearly if parameter changes are due to international, political or market structure

changes, it is natural to expect that all the series would break simultaneously, and hence

the multivariate CAPM model is perfectly suited to illustrate the methodology in this
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paper.

In Section 3, we demonstrated that in the multivariate framework, the Bai, Lumsdaine

and Stock (1998) test is badly oversized. Since this test tends to overreject, we would

expect the Bai, Lumsdaine and Stock (1998) test to find more breaks than our LR-based

tests.

We consider the framework given in Gibbons (1982) where, if rit, rmt and rft are the

returns of asset i, the market portfolio m and the risk free rate at time t respectively, then

Rit = αi + βiRmt + εit (4)

where Rit = rit− rft and Rmt = rmt− rft. Rmt is the excess return on the market portfolio

at time t.

We consider monthly data from July 1926 until December 2005 for five portfolios sorted

according to size.8 They are constructed at the end of each June using the June market

equity and NYSE breakpoints. rmt is the return on the market portfolio which is the

value-weighted return on all NYSE, AMEX and NASDAQ stocks and rft is the one month

Treasury Bill rate and is a proxy for the risk free interest rate. The portfolios for July

of year t to June of t + 1 include all NYSE, AMEX, and NASDAQ stocks. Figure 3 in

Appendix E shows a graph of the six time series with a sample size of 954 observations.

We proceed to apply Bai et al (1998) test to the 5-dimensional system given in (4), and

it finds significant breaks at positions 72, 158, 166, 200, 235, 300, 432, 495, 576, 625, 650,

706, 768, 878 and 900 (15 breaks in all). If we apply our LR-based tests, both LRpart

with the MC procedure and LRall find breaks only at positions 58, 90, 117, 145, 172, and

256 (6 breaks in all). From Figure 3, it is observable that all the breaks detected by our

test statistics are at the beginning of the sample where the data seems more unstable. As

our theory predicts, the Bai et al (1998) test finds too many breaks in the 5-dimensional

system. In the reported results we used π1T = 1/5, but we also tested for breaks using

π1T = 1/3, 1/4 and 1/6, and the results are qualitatively similar.

8The data is publicy available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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5. Conclusion

In this paper we construct new tests for structural tests based on alternating observations.

While the commonly used sup-Wald tests have non-standard asymptotic distributions, we

prove that our new tests have the same asymptotic distribution as regular tests when

the breakpoint is known (namely, a chi-square). Moreover both in a univariate and a

multivariate framework, we show that in finite samples, LRpart combined with Monte

Carlo can be constructed to be exact, while LRall is shown in simulations to have much

less size distortions than Bai et al (1998) and similar power. Asymptotically, both tests

follow a chi-square distribution.

We show in a practical application how, since Bai et al (1998) test does not have very

important size distortions in the univariate case (even though LRall has even less size

distortions than Bai et al (1998)), our LR-based tests produce a very similar outcome.

However, we also show in an application with the CAPM, how in this case Bai et al (1998)

test finds many more breaks than our LR-based tests, which is a clear consequence of the

very high over-rejections of Bai et al (1998) test.
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Appendix

A. Proof of Theorem 1

(a) First note that to obtain an asymptotic χ2 distribution it is sufficient that the break-
point is asymptotically independent of the data used to calculate the test statistic. This
implies that the proof of (a) is trivial since the data is iid and λ̂J is calculated using
NJ ,while the LR statistic is calculated using NR.

(b) We will prove (b) by verifying that

plimT→∞

µ
lim
J→∞

LRpartJ,R

³
λ̂J

´
− lim

J→∞
LRallJ,T

³
λ̂J

´¶
= 0.

For notational purposes, we write plimJ→∞ (LRpartJ,T (·)) = LRpartJ,T (·) to indicate
that in the first stage we let J →∞, and in the second stage we allow T to go to infinity.
Note that the estimate of the breakpoint used in LRpart and LRall is identical, and that
by Andrews (1988, 1993) it converges to a random variable λ̃ with support [τ , (1− τ)] ,
under the null hypothesis. This implies that we can write the previous limit as

plimT→∞
³
LRpart∞,R

³
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´
− LRall∞,T
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Now, note that Sλ̃ = Sλ̃
NR +

P
j∈NJ Û

λ̃0
j Û λ̃

j and S0 = S0NR +
P

j∈NJ Û
00
j Û0j . We can now

write
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Since NJ contains only J observations, by A4,
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λ̃0
j Û λ̃
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and by A4

plimT→∞
³
LRpart∞,R

³
λ̃
´
− LRall∞,T

³
λ̃
´´
= 0. (5)

By (a) and (5), the proof of (b) is complete.

(c)Following Bernard et al (2007), the LRpart test is invariant to the parameter values
in the multiple linear regression model. Therefore, LRpart can be obtained in the second
stage without having to estimate the coefficients of the multiple linear regression model in
the first stage. The invariance results of the LRpart test when the test is a function of
residual sum of squares is proved in Bernard et al (2007), so this result applies directly to
our case with the split sample. We can adopt this invariance result in Bernard et al (2007)
only under A1a) and when the LRpart test is a ratio of residual sum of squares.¥

B. Proof of Theorem 2

(a) Note that the number of observations separating data points used to estimate λ and
observations used to construct the test statistic is

h
Rπ2T
2J

i
, and that by A5

h
Rπ2T
J

i
→ ∞.
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The mixing property implies independence between any two fixed blocks of data that are
separated by an increasing number of observations. As a result, the two sets of observa-
tions are asymptotically independent. This establishes the asymptotic independence of the
estimate of the breakpoint from the data used to calculate the test statistic. As a result,

LRblock
³
λ̂J

´
⇒ χ2 (qX) .

(b) To complete the proof of (b) it is sufficient to establish that

plimT→∞

µ
lim
J→∞

LRpartJ,R

³
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´
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J→∞
LRblockJ,T

³
λ̂J

´¶
= 0. (6)

Note that the estimate of the breakpoint used in LRpart and LRblock is identical, and that
by Andrews (1988, 1993) it converges to a random variable λ̃ with support [τ , (1− τ)] ,
under the null hypothesis. This implies that we can write the previous limit as

plimT→∞
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By definition, if LN is the likelihood under the null, and LA is under the alternative,
and the subscript provides the set of observations on which the test statistic is calculated,
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where B̂NC and B̂NR are the parameter estimates of B from model (1) using the observations
in NC and NR respectively. Now by A6 and the mean value theorem
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where HN
NC and H

N
NR are the respective Hessians and B̄ lies between B̂NC and B0 while B̌

lies between B̂NR and B0. Note that since the number of observations in NC and NR both
go to infinity as T →∞

plim lnLN
NC

³
B0, λ̃

´
− plim lnLN

NR

³
B0, λ̃

´
= 0

and

plim
³
B̂NR −B0

´
= plim

³
B̂NC −B0

´
= 0 (8)

Finally, by (8), plimB̄ =plimB̌ = B0, and therefore

plimHN
NC

³
B̄, λ̃

´
= plimHN

NR

³
B̌, λ̃

´
.

Using these results in (7), we get

plim ln
LN
NC

³
B̂, λ̃

´
LN
NR

³
B̂, λ̃

´ = 0.
By similar arguments it is possible to show that

plim ln
LA
NR

LA
NC

= 0.

Therefore (6) holds and by Theorem 2 (a) the proof is complete.

(c) To prove this part, we need to prove that

plimT→∞

³
LRpartR

³
λ̃
´
− LRallR

³
λ̃
´´
= 0.

For that

plimT→∞

³
LRallR

³
λ̃
´
− LRpartR

³
λ̃
´´

= −2plimT→∞

Ã
ln

LN

LA
− ln

LN
NR

LA
NR

!
= −2plimT→∞ ln

LNLA
NR

LALA
NR

.

By arguments similar to those employed in part (b) this limit is 0 and the result holds.¥
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C. Proof of Theorem 3

Wpart, Wblock and Wall correspond to the Wald statistics with the HAC covariance matrix
estimator (see Newey and West (1987)) using NR and NC and all the observations respec-
tively. For simplicity reasons, we refer in the proofs to the traditional variance covariance
matrix, but the extension of the proofs to the HAC context is straightforward.

(a) Note that the number of observations separating data points used to estimate λ
and observations used to construct the test statistic is

h
Rπ2T
2J

i
, and that by A5

h
Rπ2T
2J

i
→∞.

Combining this with A1 b), the two sets of observations (NJ and NC) are asymptotically in-
dependent. This establishes the asymptotic independence of the estimate of the breakpoint
from the data used to calculate the test statistic. As a result,

Wblock J,R−[Rπ2T ]

³
λ̂J

´
⇒ χ2 (qX) .

(b) To complete the proof of (b) it is sufficient to establish that

plimT→∞

µ
lim
J→∞

Wpart J,R

³
λ̂J

´
− lim

J→∞
Wblock J,R−[Rπ2T ]

³
λ̂J

´¶
= 0. (9)

Note that the estimate of the breakpoint used in LRpart and LRblock is identical, and
that by Andrews (1988, 1993) it converges to a random variable λ̃ with support [τ , (1− τ)]
under the null hypothesis. This implies that we can write the previous limit as

plimT→∞
³
Wpart ∞,R

³
λ̃
´
−Wblock ∞,R−[Rπ2T ]

³
λ̃
´´

Recall that

Wblock

³
λ̃
´

=
¡
R−

£
Rπ2T

¤¢ ³
R∗Θ̂NC

´0⎛⎝R∗

⎛⎝ 1

R−
£
Rπ2T

¤ X
t∈NC

ZtΣ̂
−1
NCZ

0
t

⎞⎠−1 (R∗)0
⎞⎠−1 ³R∗Θ̂NC´

where Θ̂NC and Σ̂
−1
NC correspond to the estimates of Θs and Σ̂−1s in relation to (2) and in

Section 2 using the set of observations NC , and

Wpart

³
λ̃
´
= R

³
R∗Θ̂NR

´0⎛⎝R∗

⎛⎝ 1
R

X
t∈NR

ZtΣ̂
−1
NRZ

0
t

⎞⎠−1 (R∗)0
⎞⎠−1 ³R∗Θ̂NR´ (10)

Note that R∗ is the restriction matrix, while R is the number of observations in NR. Now,
by A2, A5 and A7

plim

⎛⎝ 1

R−
£
Rπ2T

¤ X
t∈NC

ZtΣ̂
−1
NCZ

0
t

⎞⎠ = plim

⎛⎝ 1
R

X
t∈NR
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−1
NRZ

0
t

⎞⎠ = Q



Testing for Breaks Using Alternating Observations 28

for some p.d. matrix Q,

plimΣ̂−1NC = plimΣ̂
−1
NR = Σ

−1

and

plim

⎛⎝ 1
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0
t
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0
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Thus, we have
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Therefore, what remains to be shown is that
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³√

R Θ̂NC −
√
R Θ̂NR

´
= 0
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plim
³√

RΘ̂NR −
√
RΘ̂NC

´
= plim

³√
R
³
Θ̂NR −Θ0

´
−
√
R
³
Θ̂NC −Θ0

´´
= plim

⎛⎝ 1
R

X
t∈NR

ZtΣ̂
−1
NRZ

0
t

⎞⎠−1⎛⎝ 1√
R

X
t∈NR

ZtΣ̂
−1
NRUt

⎞⎠
−
√
Rplim

⎛⎝ 1

R−
£
Rπ2T

¤ X
t∈NC

ZtΣ̂
−1
NCZ

0
t

⎞⎠−1⎛⎝ 1

R−
£
Rπ2T

¤ X
t∈NC

ZtΣ̂
−1
NCUt

⎞⎠
= plim

⎛⎝ 1
R

X
t∈NR

ZtΣ
−1Z 0t

⎞⎠−1⎛⎝ 1√
R

X
t∈NR

ZtΣ
−1Ut

⎞⎠
−plim

Ã
R

R−
£
Rπ2T

¤!plim
⎛⎝ 1

R−
£
Rπ2T

¤ X
t∈NC

ZtΣ
−1Z 0t

⎞⎠−1⎛⎝ 1√
R

X
t∈NC

ZtΣ
−1Ut

⎞⎠
= plim

⎛⎝ 1
R

X
t∈NR

ZtΣ
−1Z 0t

⎞⎠−1 plim
⎡⎣ 1√

R

X
t∈NR

ZtΣ
−1Ut −

1√
R

X
t∈NC

ZtΣ
−1Ut

⎤⎦
= plim

⎛⎝ 1
R

X
t∈NR

ZtΣ
−1Z 0t

⎞⎠−1 plim
⎡⎣ 1√

R

X
t∈NR/NC

ZtΣ
−1Ut

⎤⎦
= plim

⎛⎝ 1
R

X
t∈NR

ZtΣ
−1Z 0t

⎞⎠−1 plim
⎛⎝s£Rπ2T ¤

R

⎞⎠plim
⎡⎣ 1q£

Rπ2T
¤ X
t∈NR/NC

ZtΣ
−1Ut

⎤⎦
Now, looking at the three terms separately,
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¶
.

Since by A5 π2T → 0, we get that

plim
³√

RΘ̂NC −
√
RΘ̂NC

´
= 0,



Testing for Breaks Using Alternating Observations 30

which verifies (9) so that by Theorem 3 (a) the result holds.
(c) To complete the proof of (c) it is then sufficient to establish that

plimT→∞

µ
lim
J→∞

Wpart J,R

³
λ̂J

´
− lim

J→∞
Wall T

³
λ̂J

´¶
= 0.

Note that the estimate of the breakpoint used in LRpart and LRblock is identical, and
that by Andrews (1988, 1993) it converges to a random variable λ̃ with support [τ , (1− τ)]
under the null hypothesis. This implies that we can write the previous limit as

plimT→∞

³
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´´

Recall that
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for some p.d. matrix Q,

plimΣ̂−1 = plimΣ̂−1NR = Σ
−1,

and
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Thus, we have
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Now, by A3 and A4, plim
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Now by A3 and A4
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Also, we know that

plim

Ã
1

T
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and using a CLT, 1√
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Plugging these three into (11) we immediately get that plim
³√

T Θ̂NR −
√
T Θ̂

´
= 0

and the proof is complete.¥
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D. Proof of Theorem 4

We prove parts (a), (b) and (c) at the same time. First note that when an alternative
cannot be detected by the test statistic, we return to the situation under the null, where
the estimated breakpoint is a draw from the distribution described in Andrews (1993). In
this case our test statistic is simply a Chow-test of a break point which is drawn from
the distribution described in Andrews (1993). Since it is drawn independently of the
observations used for testing, however, we still retain power against this alternative.

Now we turn our attention to the question of which alternatives can be detected, in the
sense that they provide consistent estimates of the breakpoint. Recall that we assumed in
Theorem 3 that

A8 ∆s0 depends on T and can be written as ∆s0 = ∆0 ·vT where vT is a positive number
such that vT −→ 0 and (π1T )

(1/2−α) vT →∞ for some α ∈ (0, 1/2) and ∆0 6= 0

Then we have

k̂ = k0 +OP

³
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´
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T
alternative as in Andrews (1993) such that
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µ
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¶
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T
,

where η (·) is some bounded function on [0, 1] such that η is not equal to a constant almost
everywhere on [τ , 1− τ ], we have
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¶
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For A8 to be satisfied, we need

(π1T )
(1/2−α)
√
T

→∞. (12)

Recall however, that π1 → 0. It is clear that π1 → 0 and (12) can both be satisfied by

choosing π1 = O
³
T
− α
1/2−α−ε

´
with α less than 1

4 and ε > 0. So if we limit α to be less

than 1
4 , since we are using a consistent estimate of the breakpoint in the first stage, we will

inherit the optimality properties of Chow-type tests based on the correct break point (see
e.g. Rossi (2005)).¥
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E. Tables
Table 1: Empirical Size. Model with intercept and time trend. Nominal size = 5%

n = 1 n = 2 n = 5 n = 10

T F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC

35 11 4 5 17 4 5 47 5 5 92 6 5

40 11 5 5 16 6 5 36 4 5 83 5 5

50 10 5 5 13 5 6 29 5 5 68 5 5

60 10 5 5 10 4 5 23 5 5 52 5 5

80 9 5 5 11 5 5 20 4 5 36 4 5

100 8 5 5 10 5 5 16 5 5 30 5 5

120 8 5 5 11 6 5 14 4 6 24 5 5

140 8 5 5 9 5 5 13 6 5 20 4 5

180 7 4 5 8 4 5 11 5 5 18 6 5

Note: F∗ is the asymptotic Bai et al (1998) test, Λ∗MC is the exact procedure of Bernard
et al (2007) and LRpMC is LRpart with the finite sample correction employed.

Table 2: Empirical Size. Model with intercept and normal regressor. Nominal size = 5%

n = 1 n = 2 n = 5 n = 10

T F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC F∗ Λ∗MC LRpMC

35 10 6 5 15 5 5 41 5 5 88 6 5

40 10 6 5 12 6 5 31 5 5 76 5 5

50 6 4 5 9 5 5 23 4 5 59 4 5

60 6 5 5 9 5 5 17 5 5 45 5 5

80 6 6 5 9 6 5 14 5 5 31 6 5

100 5 5 5 6 5 5 10 4 5 26 6 4

120 6 5 4 8 7 5 10 6 5 19 5 5

140 5 5 5 7 5 5 8 5 5 16 5 6

180 4 4 5 6 6 5 7 5 5 13 6 5

Note: F∗ is the asymptotic Bai et al (1998) test, Λ∗MC is the exact procedure of Bernard
et al (2007) and LRpMC is LRpart with the finite sample correction employed.
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Table 3: Empirical Power. Model with intercept, trend and normal variate. Nominal Size
= 5%

ξ0 1.5 5 10

T n s0 Λ∗MC LP(Λ) LRpMC Λ∗MC LP(Λ) LRpMC Λ∗MC LP(Λ) LRpMC

40 1 [.5T ] + 1 21 12 8 100 84 20 100 100 25

[.85T ] 37 43 9 100 100 42 100 100 66

[.95T ] 12 12 5 91 70 4 100 99 3

3 [.5T ] + 1 39 16 7 100 92 12 100 100 12

[.85T ] 66 68 10 100 100 26 100 100 29

[.95T ] 20 17 4 99 80 4 100 99 4

10 [.5T ] + 1 59 19 6 100 70 8 100 93 8

[.85T ] 86 80 8 100 100 10 100 100 11

[.95T ] 25 19 5 96 55 4 100 65 4

80 1 [.5T ] + 1 48 27 9 100 100 36 100 100 59

[.85T ] 69 73 18 100 100 87 100 100 100

[.95T ] 23 24 6 100 100 15 100 100 33

3 [.5T ] + 1 88 48 12 100 100 24 100 100 26

[.85T ] 97 97 25 100 100 83 100 100 97

[.95T ] 49 40 7 100 100 11 100 100 13

10 [.5T ] + 1 100 69 11 100 100 14 100 100 14

[.85T ] 100 100 25 100 100 44 100 100 47

[.95T ] 75 56 7 100 100 8 100 100 8

Note: Λ∗MC is the exact procedure of Bernard et al (2007), LP(Λ
∗) is the new test

introduced by Bernard et al (2007) and LRpMC is LRpart with the finite sample
correction employed.
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Table 4: Empirical Power. Model with intercept, trend and normal variate. Nominal Size
= 5%

ξ0 1.5 5 10 1.5 5 10

T n s0 LRpMC LRpMC LRpMC T n LRpMC LRpMC LRpMC

100 1 [.5T ] + 1 11 53 85 140 1 14 67.16 95.52

[.85T ] 22 95 100 31 99.32 100.0

[.95T ] 6 19 35 8 38.18 78.80

3 [.5T ] + 1 15 44 55 3 19 61.16 79.78

[.85T ] 35 96 100 51 99.94 100.0

[.95T ] 7 13 16 9 33.98 50.34

10 [.5T ] + 1 15 21 22 10 19.84 32.00 33.70

[.85T ] 38 69 74 63.14 96.92 99.04

[.95T ] 6 8 9 9.46 16.98 18.44

120 1 [.5T ] + 1 11 51 83 180 1 16.58 81.20 99.34

[.85T ] 26 98 100 40.30 100.0 100.0

[.95T ] 7 30 60 8.72 52.16 90.10

3 [.5T ] + 1 15 42 51 3 23.44 82.34 96.54

[.85T ] 43 99 100 69.38 100.0 100.0

[.95T ] 8 24 31 11.38 52.32 74.36

10 [.5T ] + 1 14 21 22 10 27.02 49.62 53.10

[.85T ] 50 99 99 83.32 99.92 100.0

[.95T ] 8 13 14 13.50 29.54 32.78

Note: LRpMC is LRpart with the finite sample correction employed.
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Table 5: Empirical Size: Model with intercept and normal regressor. Nominal size = 5%

n = 1 n = 5 n = 10 n = 15 n = 20

T LRpart LRall LRpart LRall LRpart LRall LRpart LRall LRpart LRall

40 6 7 9 12 14 25 26 55 45 89

50 6 6 7 10 12 18 20 36 31 62

60 4 5 7 9 10 16 15 26 25 45

80 5 5 7 8 8 12 11 18 17 28

100 5 6 6 7 7 10 10 14 12 21

120 5 6 6 7 7 9 8 12 10 16

140 5 5 6 7 7 8 7 10 10 14

180 4 5 6 6 6 7 7 9 8 11

1000 5 5 5 5 5 5 4 5 4 6

Table 6: Empirical Size: Model with intercept and trend regressor. Nominal size = 5%

n = 1 n = 5 n = 10 n = 15 n = 20

T LRpart LRall LRpart LRall LRpart LRall LRpart LRall LRpart LRall

40 7 5 13 8 26 15 54 26 88 44

50 7 6 11 8 12 19 36 19 61 31

60 6 6 9 7 14 10 27 15 44 24

80 5 5 8 7 12 8 17 11 28 16

100 6 5 7 6 10 8 13 9 20 12

120 6 5 6 6 9 7 12 8 16 10

140 5 5 6 5 8 6 10 8 13 9

180 5 5 6 5 8 6 9 7 11 8

1000 5 4 5 5 5 4 6 5 6 5
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Table 7: Power. Model with intercept and normal regressor. Nominal size = 5%.
s0 = [.85T ]

ξ0 1.5 5 10 1.5 5 10 1.5 5 10

T n LRpart LRall F∗

40 1 29 43 96 66 98 100 84 100 100

5 33 53 100 35 79 100 35 84 100

10 48 56 100 51 65 100 48 64 100

15 73 64 100 76 66 100 75 67 100

20 94 73 100 94 74 100 94 73 100

80 1 55 75 100 100 100 100 100 100 100

5 71 94 100 99 100 100 100 100 100

10 69 93 100 84 100 100 85 100 100

15 69 90 100 78 97 100 78 98 100

20 74 86 100 78 94 100 80 94 100

120 1 71 90 100 100 100 100 100 100 100

5 90 100 100 100 100 100 100 100 100

10 88 100 100 99 100 100 100 100 100

15 85 99 100 93 100 100 94 100 100

20 82 99 100 89 100 100 89 100 100

160 1 86 97 100 100 100 100 100 100 100

5 99 100 100 100 100 100 100 100 100

10 99 100 100 100 100 100 100 100 100

15 98 100 100 100 100 100 100 100 100

20 97 100 100 100 100 100 100 100 100

Note: F∗ is the asymptotic Bai et al (1998) test.
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Table 8: Power: Model with intercept and trend. 5% nominal size.

ξ0 1.5 5 10

T n s0 LRpart LRall LRpart LRall LRpart LRall

40 1 [.5T ] + 1 8 9 13 23 9 30

[.85T ] 13 14 57 79 89 99

[.95T ] 7 6 6 11 4 17

3 [.5T ] + 1 10 11 13 17 11 15

[.85T ] 18 21 47 78 56 95

[.95T ] 9 7 7 9 6 8

10 [.5T ] + 1 27 18 30 23 30 23

[.85T ] 35 30 48 52 53 59

[.95T ] 25 16 23 16 24 16

80 1 [.5T ] + 1 9 12 27 57 40 91

[.85T ] 21 28 91 99 100 100

[.95T ] 7 7 18 24 41 61

3 [.5T ] + 1 11 16 19 49 18 63

[.85T ] 30 45 95 100 100 100

[.95T ] 8 8 15 20 15 28

10 [.5T ] + 1 17 22 20 33 22 35

[.85T ] 45 65 73 98 77 100

[.95T ] 15 12 16 15 16 16
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Table 8: (cont.)

ξ0 1.5 5 10

T n s0 LRpart LRall LRpart LRall LRpart LRall

120 1 [.5T ] + 1 13 18 59 83 92 100

[.85T ] 28 41 99 100 100 100

[.95T ] 8 9 35 54 67 94

3 [.5T ] + 1 18 25 51 85 66 99

[.85T ] 48 69 100 100 100 100

[.95T ] 10 12 31 57 39 84

10 [.5T ] + 1 23 33 33 57 34 61

[.85T ] 65 90 98 100 100 100

[.95T ] 14 16 22 34 24 38

160 1 [.5T ] + 1 18 24 75 94 99 100

[.85T ] 39 53 100 100 100 100

[.95T ] 9 11 44 70 84 99

3 [.5T ] + 1 24 35 75 98 96 100

[.85T ] 64 85 100 100 100 100

[.95T ] 10 15 43 79 63 99

10 [.5T ] + 1 28 46 50 85 51 90

[.85T ] 84 98 100 100 100 100

[.95T ] 15 21 29 57 33 65
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Table 9: Power: Model with intercept and normal regressor. T = 1000. s0 = [0.85T ] .
n = 5

ξ0 0.05 0.1 0.15 0.05 0.1 0.15

π1T LRpart LRall

1/3 7 22 52 48 78 89

1/4 8 25 55 49 76 90

1/5 10 26 60 48 78 89

1/6 8 24 59 48 77 89

Table 10: Size: Model with intercept and normal regressor. U follows a t-distribution
with df degrees of freedom;

To calculate LRpartMC and Λ∗MC a N(0,1) distribution is assumed.

n = 1, df = 5 n = 5, df = 5 n = 5, df = 35

T LRpMC LRall F∗ Λ∗MC LRpMC LRall F∗ Λ∗MC LRpMC LRall F∗ Λ∗MC

40 7 6 5 0 7 9 9 0 5 9 8 0

80 7 5 4 0 6 7 6 0 5 7 6 0

120 6 5 4 0 6 7 5 0 5 6 5 0

160 5 4 5 0 6 6 5 0 5 6 5 0

Table 11: Size: Model with intercept, normal regressor and an AR(1). T = 1000. s0 =
[0.85T ] . n = 1.π1T = 1/3.

T LRpart

80 3.30

160 3.82

500 4.34

1000 4.48
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Figure 1: Definitions of sets

Figure 2: Local asymptotic power characterized as
³
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√
T
´
of the SupWald

test (SUPWALD), the test with the break to be known (KNOWNBREAK) and value of
π1T (denoted PI) that gives same power for the LRpart as the SupWald test. The true
break is simulated in the middle of the sample. Number of replications=10000 and

T=1000. 5% nominal size.
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Figure 3: Five portfolios sorted according to size (R_1T,..., R_5T) and excess return on
the market portfolio (R_MT)
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