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1 Introduction

In this paper we examine the asymptotic and finite-sample properties of bootstrap-based

tests of equal accuracy of out-of-sample forecasts from a baseline nested model and an

alternative nesting model. In our analysis, we address two forms of the null hypothesis of

equal predictive ability. One hypothesis, considered in Clark and McCracken (2001, 2005)

and McCracken (2007), is that the models have equal population-level predictive ability.

This situation arises when the coefficients associated with the additional predictors in the

nesting model are zero and hence at the population level, the forecast errors are identical

and thus the models have equal predictive ability.

However, this paper focuses on a different null hypothesis, one that arises when some of

the additional predictors have non-zero coefficients associated with them, but the marginal

predictive content is small. In this case, addressed in Trenkler and Toutenberg (1992),

Hjalmarsson (2006) and Clark and McCracken (2008), the two models can have equal pre-

dictive ability at a fixed forecast origin (say time T ) due to a bias-variance trade-off between

a more accurately estimated, but misspecified, nested model and a correctly specified, but

imprecisely estimated, nesting model. Building upon this insight, we derive the asymp-

totic distributions associated with standard out-of-sample tests of equal predictive ability

between estimated models with weak predictors. We then evaluate various bootstrap-

based methods for imposing the null of equal predictive ability upon these distributions

and conducting asymptotically valid inference. In our results, the forecast models may be

estimated either recursively or with a rolling sample. Giacomini and White (2006) use a

different asymptotic approximation to testing equal forecast accuracy in a given sample,

but their asymptotics apply only to models estimated with a rolling window of fixed and

finite width.

Our approach to modeling weak predictors is identical to the standard Pitman drift

used to analyze the power of in-sample tests against small deviations from the null of equal

population predictive ability. It has also been used by Inoue and Kilian (2004) in the

context of analyzing the power of out-of-sample tests. In that sense, some (though not all)

of our analytical results are quite similar to those in Inoue and Kilian (2004).

We differ, though, in our focus. While Inoue and Kilian (2004) are interested in examin-

ing the power of out-of-sample tests against the null of equal population predictive ability,

we are interested in using out-of-sample tests to test the null hypothesis of equal finite
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sample predictive ability. This seemingly minor distinction arises because the estimation

error associated with estimating unknown regression parameters can cause a misspecified,

restricted model to be as accurate or more accurate than a correctly specified unrestricted

model when the additional predictors are imprecisely estimated (or, in our terminology, are

“weak”). We use Pitman drift simply as a tool for constructing an asymptotic approxima-

tion to the finite sample problem associated with estimating a regression coefficient when

the marginal signal associated with it is small.

Although our results apply only to a setup that some might see as restrictive — direct,

multi–step (DMS) forecasts from nested models — the list of studies analyzing such forecasts

suggests our results should be useful to many researchers. Applications considering DMS

forecasts from nested linear models include, among others: many of the studies cited above;

Diebold and Rudebusch (1991); Mark (1995); Kilian (1999); Lettau and Ludvigson (2001);

Bachmeier and Swanson (2005); Butler, Grullon and Weston (2005); Cooper and Gulen

(2006); Giacomini and Rossi (2006); Guo (2006); Rapach and Wohar (2006); Bruneau, et

al. (2007); Bordo and Haubrich (2008); Inoue and Rossi (2008); and Molodtsova and Papell

(2008).

The remainder proceeds as follows. Section 2 introduces the notation and assumptions

and presents our theoretical results. Section 3 characterizes the bootstrap-based methods

we consider for testing the joint hypothesis of equal forecast accuracy. Section 4 presents

Monte Carlo results on the finite–sample performance of the asymptotics and the bootstrap.

Section 5 applies our tests to evaluate the predictability of U.S. stock returns and core PCE

inflation. Section 6 concludes.

2 Theoretical results

We begin by laying out our testing framework when comparing the forecast accuracy of two

nested models in the presence of weak predictive ability.
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2.1 Environment

The possibility of weak predictors is modeled using a sequence of linear DGPs of the form

(Assumption 1)1

yT,t+τ = x′T,1,tβ
∗
1,T + uT,t+τ = x′T,0,tβ

∗
0 + x′T,12,t(T

−1/2β∗12) + uT,t+τ , (1)

ExT,1,tuT,t+τ ≡ EhT,1,t+τ = 0 for all t = 1, ..., T, ...T + P − τ .

Note that we allow the dependent variable yT,t+τ , the predictors xT,1,t and the error term

uT,t+τ to depend upon T , the initial forecasting origin. This dependence is necessitated by

the triangular array structure of the data. However, throughout much of the paper we

omit the additional subscript T for ease of presentation.

At each origin of forecasting t = T, ...T +P−τ , we observe the sequence {yT,s, x′T,1,s}t
s=1.

Forecasts of the scalar yT,t+τ , τ ≥ 1, are generated using a (k × 1, k = k0 + k1) vector of

covariates xT,1,t = (x′T,0,t, x
′
T,12,t)

′, and linear parametric models x′T,i,tβi, i = 0, 1. The

parameters are estimated using OLS (Assumption 2) under either the recursive or rolling

schemes. For the recursive scheme we have β̂i,t = arg minβi
t−1 ∑t−τ

s=1(yT,s+τ − x′T,i,sβi)2,

i = 0, 1. for the restricted and unrestricted, respectively. The rolling scheme is similar but

the number of observations used for estimation is held constant as we proceed forward across

forecast origins and hence β̂i,t = arg minβi
T−1 ∑t−τ

s=t−τ−T+1(yT,s+τ − x′T,i,sβi)2, i = 0, 1.

We denote the loss associated with the τ -step ahead forecast errors as û2
i,t+τ = (yT,t+τ −

x′T,i,tβ̂i,t)2, i = 0, 1, for the restricted and unrestricted, respectively.

The following additional notation will be used. For the recursive scheme let HT,i(t) =

(t−1 ∑t−τ
s=1 xT,i,suT,s+τ ) = (t−1 ∑t−τ

s=1 hT,i,s+τ ) and Bi(t) = (t−1 ∑t−τ
s=1 xT,i,sx′T,i,s)

−1, and for

the rolling case let HT,i(t) = (T−1 ∑t−τ
s=t−τ−T+1 xT,i,suT,s+τ ) = (T−1 ∑t−τ

s=t−τ−T+1 hT,i,s+τ )

and Bi(t) = (T−1 ∑t−τ
s=t−τ−T+1 xT,i,sx′T,i,s)

−1. In either case, define, for i = 0, 1, Bi =

limT→∞(ExT,i,sx′T,i,s)
−1. For UT,t = (h′T,1,t+τ , vec(xT,1,tx′T,1,t)

′)′, V =
∑τ−1

j=−τ+1 Ω11,j ,

where Ω11,j is the upper block-diagonal element of Ωj defined below. For any (m × n)

matrix A let |A| denote the max norm and tr(A) denote the trace. For HT,1(t) defined

above, J the selection matrix (Ik0×k0 , 0k0×k1)′, σ2 = limT→∞Eu2
T,t+τ , and a (k1 × k)

matrix Ã satisfying Ã′Ã = B−1/2
1 (−J ′B0J + B1)B

−1/2
1 , let h̃T,1,t+τ = σ−1ÃB1/2

1 hT,1,t+τ

and H̃T,1(t) = σ−1ÃB1/2
1 HT,1(t). For the selection matrix J2 = (0k1×k0 , Ik1×k1)′ define

F1 = J ′2B1J2 and F1(t) = J ′2B1(t)J2. If we define γh̃h̃,1(i) = limT→∞Eh̃T,1,t+τ h̃′T,1,t+τ−i,

1The parameter β∗
1,T does not vary with the forecast horizon τ since, in our analysis, τ is treated as fixed.
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then Sh̃h̃,1 = γh̃h̃,1(0)+
∑τ−1

i=1 (γh̃h̃,1(i)+γ′
h̃h̃,1

(i)). Let W (s) denote a k1×1 vector standard

Brownian motion and define the vector of weak predictor coefficients as δ = (01×k0 , β
∗′
12)

′.

To derive our general results, we need three more assumptions (in addition to our as-

sumptions (1 and 2) of a DGP with weak predictability and OLS–estimated linear forecast-

ing models).

Assumption 3: (a) T−1 ∑[rT ]
t=1 UT,tU ′

T,t−j ⇒ rΩj where Ωj = limT→∞ T−1 ∑T
t=1 E(UT,tU ′

T,t−j)

for all j ≥ 0, (b) Ω11,j = 0 all j ≥ τ , (c) supT≥1,t≤T+P E|UT,t|2q < ∞ some q > 2, (d) The

zero mean triangular array UT,t−EUT,t = (h′T,1,t+τ , vec(xT,1,tx′T,1,t−ExT,1,tx′T,1,t)
′)′ satisfies

Theorem 3.2 of de Jong and Davidson (2000).

Assumption 4: (a) Let K(x) be a continuous kernel such that for all real scalars x, |K(x)| ≤

1, K(x) = K(−x) and K(0) = 1, (b) For some bandwidth L and constant i ∈ (0, 0.5), L =

O(P i), (c) For all j > τ −1, EhT,1,t+τh′T,1,t+τ−j = 0, (d) The number of covariance terms j̄,

used to estimate the long–run covariance Sdd defined in Section 2.2, satisfies τ −1 ≤ j̄ <∞.

Assumption 5: limP,T→∞ P/T = λP ∈ (0,∞).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that

the observables, while not necessarily covariance stationary, are asymptotically mean square

stationary with finite second moments. We do so in order to allow the observables to have

marginal distributions that vary as the weak predictive ability strengthens along with the

sample size but are ‘well-behaved’ enough that, for example, sample averages converge in

probability to the appropriate population means. Second, in (b) we impose the restriction

that the τ -step ahead forecast errors are MA(τ − 1). We do so in order to emphasize the

role that weak predictors have on forecasting without also introducing other forms of model

misspecification. Finally, in (d) we impose the high level assumption that, in particular,

hT,1,t+τ satisfies Theorem 3.2 of de Jong and Davidson (2000). By doing so we not only

insure that certain weighted partial sums converge weakly to standard Brownian motion,

but also allow ourselves to take advantage of various results pertaining to convergence in

distribution to stochastic integrals.

Assumption 4 is necessitated by the serial correlation in the multi-step (τ -step) forecast

errors — errors from even well-specified models exhibit serial correlation, of an MA(τ − 1)

form. Typically, researchers constructing a t-statistic utilizing the squares of these errors
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account for serial correlation of at least order τ − 1 in forming the necessary standard error

estimates. Meese and Rogoff (1988), Groen (1999), and Kilian and Taylor (2003), among

other applications to forecasts from nested models, use kernel-based methods to estimate the

relevant long-run covariance.2 We therefore impose conditions sufficient to cover applied

practices. Parts (a) and (b) are not particularly controversial. Part (c), however, imposes

the restriction that the orthogonality conditions used to identify the parameters form a

moving average of finite order τ − 1, while part (d) imposes the restriction that this fact

is taken into account when constructing the MSE-t statistic discussed later in Section 2.

Finally, in Assumption 5 we impose the requirement that limP,T→∞ P/T = λP ∈ (0,∞).

This assumption implies that the duration of forecasting is finite but non-trivial.

This last assumption, while standard in our previous work, differs importantly from

that in Giacomini and White (2006). In their approach to predictive inference for nested

models, they assume that a rolling window of fixed and finite width is used for estimation

of the model parameters (hence limP→∞ P/T = ∞). While we allow rolling windows, our

asymptotics assume that the window width is a non-trivial magnitude of the out-of-sample

period and hence limP,T→∞ P/T ∈ (0,∞). This difference in the assumed window width,

along with our assumption that the additional predictors in the nesting model are weak, is

fundamentally what drives the difference in our results from theirs and in particular, allows

us to derive results that permit the use of the recursive scheme.

2.2 Asymptotics for MSE-F, MSE-t with weak predictors

In the context of non-nested models, Diebold and Mariano (1995) propose a test for equal

MSE based upon the sequence of loss differentials d̂t+τ = û2
0,t+τ − û2

1,t+τ . If we define

MSEi = (P − τ + 1)−1 ∑T+P−τ
t=T û2

i,t+τ (i = 0, 1), d̄ = (P − τ + 1)−1 ∑T+P−τ
t=T d̂t+τ =

MSE0 −MSE1, γ̂dd(j) = (P − τ + 1)−1 ∑T+P−τ
t=T+j (d̂t+τ − d̄)(d̂t+τ−j − d̄), γ̂dd(−j) = γ̂dd(j),

and Ŝdd =
∑j̄

j=−j̄
K(j/M)γ̂dd(j), the statistic takes the form

MSE-t = (P − τ + 1)1/2 × d̄√
Ŝdd

. (2)

Under the null that x12,t has no population level predictive power for yt+τ , the population

difference in MSEs, Eu2
0,t+τ−Eu2

1,t+τ , will equal 0 for all t. When x12,t has predictive power,

the population difference in MSEs will be positive. Even so, the finite sample difference
2For similar uses of kernel–based methods in analyses of non–nested forecasts, see, for example, Diebold

and Mariano (1995) and West (1996).
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need not be positive and in fact, for a given sample size (say, t = T ) the difference in finite

sample MSEs, Eû2
0,T+τ −Eû2

1,T+τ , may be zero, thus motivating a distinct null hypothesis

of equal finite-sample predictive ability. Regardless of which null hypothesis we consider

(equal population or equal finite-sample predictive ability), the MSE-t test and the other

equal MSE tests described below are one–sided to the right.

While West (1996) proves directly that the MSE-t statistic can be asymptotically stan-

dard normal when applied to non–nested forecasts, this is not the case when the models are

nested. In particular, the results in West (1996) require that under the null, the population–

level long run variance of d̂t+τ be positive. This requirement is violated with nested models

regardless of the presence of weak predictors. Intuitively, with nested models (and for the

moment ignoring the weak predictors), the null hypothesis that the restrictions imposed in

the benchmark model are true implies the population errors of the competing forecasting

models are exactly the same. As a result, in population dt+τ = 0 for all t, which makes the

corresponding variances also equal to 0. Because the sample analogues (for example, d̄ and

its variance) converge to zero at the same rate, the test statistics have non–degenerate null

distributions, but they are non–standard.

Motivated by (i) the degeneracy of the long-run variance of dt+τ and (ii) the functional

form of the standard in-sample F-test, McCracken (2007) develops an out–of–sample F–type

test of equal MSE, given by

MSE-F = (P − τ + 1)× MSE0 −MSE1

MSE1
= (P − τ + 1)× d̄

MSE1
. (3)

Like the MSE-t test, the limiting distribution of the MSE-F test is non–standard when

the forecasts are nested under the null. Clark and McCracken (2005) and McCracken (2007)

show that, for τ–step ahead forecasts, the MSE-F statistic converges in distribution to func-

tions of stochastic integrals of quadratics of Brownian motion, with limiting distributions

that depend on the sample split parameter π, the number of exclusion restrictions k1, and

the unknown nuisance parameter Sh̃h̃. While this continues to hold in the presence of weak

predictors, the asymptotic distributions now depend not only upon the unknown coefficients

associated with the weak predictors but also upon other unknown second moments of the

data. In the following, for the recursive scheme define Γ1 =
∫ 1+λP

1 s−1W ′(s)Sh̃h̃dW (s), Γ2 =
∫ 1+λP

1 s−2W ′(s)Sh̃h̃W (s)ds, Γ5 =
∫ 1+λP

1 s−2W ′(s)S2
h̃h̃

W (s)ds, Γ6 =
∫ 1+λP

1 s−1(δ′B−1/2
1 Ã′/σ)S3/2

h̃h̃
W (s)ds.

For the rolling scheme, define Γ1 =
∫ 1+λP

1 (W (s)−W (s−1))′Sh̃h̃dW (s), Γ2 =
∫ 1+λP

1 (W (s)−

W (s−1))′Sh̃h̃(W (s)−W (s−1))ds, Γ5 =
∫ 1+λP

1 (W (s)−W (s−1))′S2
h̃h̃

(W (s)−W (s−1))ds,
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and Γ6 =
∫ 1+λP

1 s−1(δ′B−1/2
1 Ã′/σ)S3/2

h̃h̃
(W (s) − W (s − 1))ds. For both schemes define

Γ3 =
∫ 1+λP

1 (δ′B−1/2
1 Ã′/σ)S1/2

h̃h̃
dW (s), Γ4 =

∫ 1+λP

1 δ′J2F
−1
1 J ′2δ/σ2ds = λP δ′J2F

−1
1 J ′2δ/σ2

and Γ7 = λP (δ′B−1/2
1 Ã′/σ)Sh̃h̃(ÃB−1/2

1 δ/σ). The following two Theorems provide the

asymptotic distributions of the MSE-F and MSE-t statistics in the presence of weak pre-

dictors.

Theorem 2.1: Maintain Assumptions 1, 2, 3, and 5. MSE-F →d {2Γ1−Γ2}+2{Γ3}+{Γ4}.

Theorem 2.2: Maintain Assumptions 1−5. MSE-t→d ({Γ1−.5Γ2}+{Γ3}+{.5Γ4})/(Γ5+

Γ6 + Γ7).5.

Theorems 2.1 and 2.2 show that the limiting distributions of the MSE-t and MSE-F

tests are neither normal nor chi-square when the forecasts are nested, regardless of the

presence of weak predictors. Theorem 2.1 is very similar to Proposition 2 in Inoue and

Kilian (2004) while Theorem 2.2 is unique. And again, the limiting distributions are free

of nuisance parameters in only very special cases. In particular, the distributions here are

free of nuisance parameters only if there are no weak predictors and if Sh̃h̃ = I. If this is

the case — if, for example, τ = 1 and the forecast errors are conditionally homoskedastic

— both representations simplify to those in McCracken (2007) and hence his critical values

can be used for testing for equal population level predictive ability. In the absence of weak

predictors alone, the representation simplifies to that in Clark and McCracken (2005) and

hence the asymptotic distributions still depend upon Sh̃h̃. In this case, and in the most

general case where weak predictors are present, we use bootstrap methods to estimate the

asymptotically valid critical values. Before describing our bootstrap approach, however, it

is necessary to clarify the null hypothesis of interest.

2.3 A null hypothesis with weak predictors

The noncentrality terms, especially those associated with the asymptotic distribution of

the MSE-F statistic (Γ4), give some indication of the power that the test statistics have

against deviations from the null hypothesis of equal population predictive ability H0 :

E(u2
0,t+τ − u2

1,t+τ ) = 0 for all t, – for which it must be the case that β∗12 = 0. As noted

earlier, it is in that sense that our analytical results are closely related to those in Inoue and

Kilian (2004). Closer inspection however, shows that the results provide opportunities for

testing another form of the null hypothesis of equal predictive ability when weak predictors

are present.
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For example, under the assumptions made earlier in this section it is straightforward to

show that the mean of the asymptotic distribution of the MSE-F statistic can be used to

approximate the mean difference in the average out-of-sample predictive ability of the two

models.3 For example, under the recursive scheme we have

E
∑T+P

t=T
(û2

0,t+τ − û2
1,t+τ ) ≈

∫ 1+λP

1
[−s−1tr((−JB0J

′ + B1)V ) + δ′J2F
−1
1 J ′2δ]ds

while under the rolling scheme we have

E
∑T+P

t=T
(û2

0,t+τ − û2
1,t+τ ) ≈

∫ 1+λP

1
[−tr((−JB0J

′ + B1)V ) + δ′J2F
−1
1 J ′2δ]ds.

Intuitively, one might consider using these expressions as a means of characterizing

when the two models have equal average finite-sample predictive ability over the out-of-

sample period. For example, having set these two expressions to zero, integrating and

solving for the marginal signal-to-noise ratio implies δ′J2F−1
1 J ′2δ

tr((−JB0J ′+B1)V ) equals ln(1+λP )
λP

and 1,

respectively, for the recursive and rolling schemes. This ratio simplifies further when τ = 1

and the forecast errors are conditionally homoskedastic in which case tr((−JB0J ′+B1)V ) =

σ2k1.

This marginal signal-to-noise ratio forms the basis of our new approach to testing for

equal predictive ability. Rather than testing for equal population-level predictive ability

H0 : E(u2
0,t+τ−u2

1,t+τ ) = 0 for all t, – for which it must be the case that β∗12 = 0 – we test for

equal average out-of-sample predictive ability H0 : E(P−1 ∑T+P
t=T (û2

0,t+τ − û2
1,t+τ )) = 0 – for

which it is approximately the case that β∗′12F
−1
1 β

∗
12 = d where d equals ln(1+λP )

λP
tr((−JB0J ′+

B1)V ) or tr((−JB0J ′+B1)V ), depending on whether the recursive or rolling scheme is used.

While we believe the result is intuitive, it is not immediately clear how such a restriction

on the regression parameters can be used to achieve asymptotically valid inference. If we

look back at the asymptotic distribution of the MSE-F statistic, we see that in general it

not only depends upon the unknown value of β∗12, but also the asymptotic distribution is

non-standard, thus requiring either extensive tables of critical values or simulation-based

methods for constructing the critical values. Rather than take either of these approaches,

in the following section, we develop a new bootstrap-based method for constructing asymp-

totically valid critical values that can be used to test the null of equal average finite-sample

predictive ability.
3By taking this approach we are using the fact that under our assumptions, notably the L2-boundedness

portion of Assumption 3,
PT+P

t=T (û2
0,t+τ − û2

1,t+τ ) is uniformly integrable and hence the expectation of its
limit is equal to the limit of its expectation.
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2.4 Bootstrap-based critical values with weak predictors

Our new, bootstrap-based method of approximating the asymptotically valid critical values

for pairwise comparisons between nested models is different from that previously used in

Kilian (1999) and Clark and McCracken (2005). In those applications, an appropriately

dimensioned VAR was initially estimated by OLS imposing the restriction that β∗12 was set

to zero and the residuals saved for resampling. The recursive structure of the VAR was then

used to generate a large number of artificial samples, each of which was used to construct

one of the test statistics discussed above. The relevant sample percentile from this large

collection of artificial statistics was then used as the critical value. Simulations show that

this approach provides accurate inference for the null of equal population predictive ability

not only for one-step ahead forecasts but also for longer horizons (in our direct multi-step

framework).

However, there are two reasons we should not expect this bootstrap approach to provide

accurate inference in the presence of weak predictors. First, imposing the restriction that

β∗12 is set to zero implies a null of equal population — not finite-sample — predictive ability.

Second, by creating the artificial samples using the recursive structure of the VAR we are

imposing the restriction that equal one-step ahead predictive ability implies equal predictive

ability at longer horizons. Our present framework in no way imposes that restriction. We

therefore take an entirely different approach to imposing the relevant null hypothesis and

generate the artificial samples.

For example, suppose we are interested in testing whether, under the recursive scheme,

the two models have equal average predictive ability over the out-of-sample period and

hence δ′J2F
−1
1 J ′2δ equals ln(1+λP )

λP
tr((−JB0J ′ + B1)V ). While this restriction is infeasible

due to the various unknown moments and parameters, it suggests a closely related, feasible

restriction quite similar to that used in ridge regression. However, instead of imposing the

restriction that β∗
′

12β
∗
12 = c for some finite constant — as one would in a ridge regression

— we instead impose the restriction that δ′J2F
−1
1 (T )J ′2δ equals ln(1+bλP )

bλP
tr((−JB0(T )J ′ +

B1(T ))V (T )), where the relevant unknowns are estimated using the obvious sample mo-

ments: λ̂P = P/T,Bi(T ) = (T−1 ∑T−τ
s=1 xi,sx′i,s)

−1, i = 0, 1, F1(T ) = J ′2B1(T )J2, and V (T )

denotes an estimate of the long-run variance of h1,t+τ .4 In addition, we estimate δ using

the approximation δ̂ = (01×k0 , T
1/2β̃

′
12,t)′ where β̃12,T denotes the restricted least squares

4In our Monte Carlo simulations and empirical work we use a Newey-West kernel with bandwidth 0 for
horizon = 1 and bandwidth 1.5*horizon otherwise.
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estimator of the parameters associated with the weak predictors satisfying

β̃1,T = (β̃
′
11,T , β̃

′
12,T )′ (4)

= arg min
b1

∑T−τ

s=1
(ys+τ − x′1,sb1)2 s.t. b′1J2F

−1
1 (T )J ′2b1 = d̂/T

where d̂ equals ln(1+bλP )
bλP

tr((−JB0(T )J ′ + B1(T ))V (T )). For a given sample size, this es-

timator is equivalent to a ridge regression if the weak predictors are orthonormal. More

generally though, it lies in the class of asymptotic shrinkage estimators discussed in Hansen

(2008).

Note that this approach to imposing the null hypothesis is consistent with the direct

multi-step forecasting approach we assume is used to construct the forecasts and hence the

restriction can vary with the forecast horizon τ . This approach therefore precludes using

a VAR and its recursive structure to generate the artificial samples. Instead we use a

fixed regressor approach as discussed in Hansen (2000). In this framework the x’s are held

fixed across the artificial samples and the dependent variable is generated using the direct

multi-step equation y∗s+τ = x′1,sβ̃1,T + v̂∗s+τ s = 1, ..., T +P −τ for a suitably chosen artificial

error term v̂∗s+τ designed to capture both the presence of conditional heteroskedasticity and

an assumed MA(τ − 1) serial correlation structure in the τ -step ahead forecasts. Specif-

ically, we construct the artificial samples and bootstrap critical values using the following

algorithm.5

1. Estimate the parameter vector β∗1 associated with the unrestricted model using

the weighted ridge regression from equation (4) above. Note that the resulting pa-

rameter estimate will vary with the forecast horizon. If the recursive scheme is used,

set d̂ to ln(1+bλP )
bλP

tr((−JB0(T )J ′ + B1(T ))V (T )); if the rolling scheme is used, set d̂ to

tr((−JB0(T )J ′ + B1(T ))V (T )).

2. Using NLLS, estimate an MA(τ − 1) model for the OLS residuals v̂1,s+τ such that

v1,s+τ = ε1,s+τ + θ1ε1,s+τ−1 + ... + θτ−1ε1,s+1. Let ηs+τ , s = 1, ..., T + P − τ , denote

an i.i.d N(0, 1) sequence of simulated random variables. Define v̂∗1,s+τ = (ηs+τ ε̂1,s+τ+

θ̂1ηs−1+τ ε̂1,s+τ−1 + ... + θ̂τ−1ηs+1ε̂1,s+1) s = 1, ..., T + P − τ . Form artificial samples of

y∗s+τ using the fixed regressor structure, y∗s+τ = x′1,sβ̃1,T + v̂∗1,s+τ .

3. Using the artificial data, construct an estimate of the test statistics (e.g. MSE-F ,

MSE-t) as if this were the original data.
5Our approach to generating artificial samples of multi-step forecast errors builds on a sampling approach

proposed in Hansen (1996)).
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4. Repeat steps 2 and 3 a large number of times: j = 1, ..., N .

5. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

By using the weighted ridge regression to estimate the model parameters we are able, in

large samples, to impose the restriction that the implied estimates (T 1/2β̃12,T ) of the local-

to-zero parameters β∗12 satisfy our approximation to the null hypothesis. This is despite the

fact that the estimates of β∗12 are not consistent. While this estimator, along with the fixed

regressor structure of the bootstrap, imposes the null hypothesis upon the artificial samples,

it is not necessarily the case that the bootstrap is asymptotically valid in the sense that the

estimated critical values are consistent for their population values. To see how this might

happen, note that the asymptotic distributions from Theorem 2.1 depend explicitly upon

the local-to-zero parameters β∗12 through the terms Γ3 and Γ4. In the case of Γ4, this is

not an issue because the null hypothesis imposes a restriction on the value of this term that

does not depend upon β∗12 explicitly, just an appropriately chosen weighted quadratic that

is known under the null. Γ3 is a different story. This term is asymptotically normal with

a zero mean and variance λP β′∗12J
′
2V J2β

∗
12 that in general, need not have any relationship

to the restriction β′∗12F
−1
1 β∗12 = d implied by the null hypothesis. Hence, in general, the

asymptotic distribution is an explicit function of the value of β∗12 implying that the null

hypothesis itself does not imply a unique asymptotic distribution for either the MSE-F or

MSE-t statistics.

Even so, as we discuss below, the bootstrap is asymptotically valid in two empirically

relevant special cases. Before providing the result, however, we require a modest strength-

ening of the moment conditions on the model residuals.

Assumption 3′: (a) T−1 ∑[rT ]
j=1 UT,jU ′

T,j−l ⇒ rΩl where Ωl = limT→∞ T−1 ∑T
t=1 E(UT,jU ′

T,j−l )

for all l ≥ 0, (b) E(ε1,s+τ |ε1,s+τ−j , x1,s−j j ≥ 0) = 0, (c) Let γT = (β′2,T , θ1, ..., θτ−1)′,

γ̂T = (β̂
′
2,T , θ̂1, ..., θ̂τ−1)′, and define the function ε̂2,s+τ = ε̂2,s+τ (γ̂T ) such that ε̂1,s+τ (γT ) =

ε1,s+τ . In an open neighborhood NT around γT , there exists a finite constant c such that

sup1≤s≤T,T≥1 || supγ∈NT
(ε̂1,s+τ (γ),∇ε̂′1,s+τ (γ), xT,1,s)′||4 ≤ c. (d) UT,j−EUT,j = (h′T,1,j+τ , vec(xT,1,jx′T,1,j−

ExT,1,jx′T,1,j)
′)′ is a zero mean triangular array satisfying Theorem 3.2 of de Jong and David-

son (2000).

Assumption 3′ differs from Assumption 3 in two ways. First, in (b) it emphasizes the

point that the forecast errors, and by implication h1,t+τ , form an MA(τ−1). Second, in (c)
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it bounds the second moments not only of h1,t+τ = (ε1,s+τ +θ1ε1,s+τ−1+ ...+θτ−1ε1,s+1)x1,s

(as in Assumption 3) but also the functions ε̂1,s+τ (γ)xT,1,s, and ∇ε̂1,s+τ (γ)xT,1,s for all γ

in an open neighborhood of γT . These assumptions are primarily used to show that the

bootstrap-based artificial samples, which are a function of the estimated errors ε̂1,s+τ , ade-

quately replicate the time series properties of the original data in large samples. Specifically

we must insure that the bootstrap analog of h1,s+τ is not only zero mean but has the same

long-run variance V . Such an assumption is not needed for our earlier results since the

model forecast errors ûi,s+τ i = 0, 1 are linear functions of β̂i,T and Assumption 3 already

imposes moment conditions on û1,s+τ via moment conditions on h1,s+τ .

In the following let MSE-F ∗ and MSE-t∗ denote statistics generated using the artificial

samples from our bootstrap. Similarly let Γ∗i , i = 1, ..., 7, denote random variables generated

using the artificial samples satisfying Γ∗i =d Γi, i = 1, ..., 7, for Γi defined in Theorems 2.1

and 2.2.

Theorem 2.3: Let β′∗12F
−1
1 β∗12 = d and assume either (i) τ = 1 and the forecast errors

from the unrestricted model are conditionally homoskedastic, or (ii) dim(β∗12) = 1. (a)

Given Assumptions 1, 2, 3′, and 5, MSE-F ∗ →d {2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4}. (b) Given

Assumptions 1, 2, 3′, 4, and 5, MSE-t∗ →d ({2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4})/(Γ∗5 + Γ∗6 + Γ∗7).5.

In Theorem 2.3 we show that our fixed-regressor bootstrap provides an asymptotically

valid method of estimating the critical values associated with the null of equal average finite

sample forecast accuracy. The result, however, requires additional assumptions. In the

first, we require that the forecast errors be one-step ahead and conditionally homoskedastic.

In the latter we allow serial correlation and conditional heteroskedasticity but require that

β∗12 is scalar. While neither case covers the broadest situation in which β∗12 is not scalar and

the forecast errors exhibit either serial correlation or conditional heteroskedasticity, these

two special cases cover a wide range of empirically relevant applications. Kilian (1999)

argues that conditional homoskedasticity is a reasonable assumption for one-step ahead

forecasts of quarterly macroeconomic variables. Moreover, in many applications in which

a nested model comparison is made (Goyal and Welch (2008), Stock and Watson (2003),

etc.), the unrestricted forecasts are made by simply adding one lag of a single predictor to

the baseline restricted model.

By itself, however, Theorem 2.3 is insufficient for recommending the use of the boot-

strap: it does not tell us whether the proposed bootstrap is adequate for constructing
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asymptotically valid critical values under the alternative that the unrestricted model fore-

casts more accurately than the restricted model. Unfortunately, there are any number

of ways to model the case in which β′∗12F
−1
1 β∗12 > d. For example, rather than modeling

the weak predictive ability in Assumption 1 as T−1/2β∗12 with β′∗12F
−1
1 β∗12 = d, one could

model the predictive content as T−aCβ∗12 for constants C < ∞ and a ∈ (0, 1/2] satisfying

β′∗12F
−1
1 β∗12 > d. While mathematically elegant, this approach does not allow us to analyze

the most intuitive alternative in which not only is the unrestricted model more accurate

but J ′2β̂1,T is also a consistent estimator of β∗12 -= 0. For this situation to hold we need the

additional restriction that a = 0 and hence β∗12 is no longer interpretable as a local-to-zero

parameter. With this modification (Assumption 1′) in hand, we address the validity of

the bootstrap under the alternative in the following Proposition.

Theorem 2.4: Let J ′2β̂1,T →p β∗12 -= 0 and assume either (i) τ = 1 and the forecast errors

from the unrestricted model are conditionally homoskedastic, or (ii) dim(β12) = 1. (a)

Given Assumptions 1′, 2, 3′, and 5, MSE-F ∗ →d {2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4}. (b) Given

Assumptions 1′, 2, 3′, 4, and 5, MSE-t∗ →d ({2Γ∗1 − Γ∗2} + 2{Γ∗3} + {Γ∗4})/(Γ∗5 + Γ∗6 + Γ∗7).5.

In Theorem 2.4 we see that indeed, the bootstrap-based test is consistent for testing the

null hypothesis of equal finite sample predictive accuracy (that β′∗12F
−1
1 β∗12 = d against the

alternative that the unrestricted model is more accurate (that J ′2β̂1,T →p β∗12 -= 0). This

follows since under this alternative, the data-based statistics MSE − F and MSE-t each

diverge to +∞ while the the bootstrap-based statistics MSE-F ∗ and MSE-t∗ each retain

the same asymptotic distribution as they did under the null.

As we will show in section 3, our fixed regressor bootstrap provides reasonably sized

tests in our Monte Carlo simulations, outperforming other bootstrap-based methods for

estimating the asymptotically valid critical values necessary to test the null of equal average

finite sample predictive ability.

3 Bootstrap approaches

Drawing on the proceeding theoretical results, we use non–parametric and parametric boot-

strap procedures and a fixed regressor bootstrap in testing for equal forecast accuracy, based

on the above MSE-F and MSE-t tests.
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3.1 Non-parametric bootstrap

Our non–parametric approach is patterned on White’s (2000) method: we create bootstrap

samples of forecast errors by sampling (with replacement) from the time series of sample

forecast errors, and construct test statistics for each sample draw. However, as noted above

and in White (2000), this procedure is not, in general, asymptotically valid when applied

to nested models. We include the method in part for its computational simplicity and in

part to examine the potential pitfalls of using the approach.

In our non-parametric implementations, we follow the approach of White (2000) in cen-

tering the bootstrap distributions. Under the non–parametric approach, the relevant null

hypothesis is that the MSE difference (benchmark MSE less alternative model MSE) is at

most 0, and the MSE ratio (benchmark MSE/alternative model MSE) is at most 1. Fol-

lowing White (2000), each bootstrap draw of a given test statistic is re-centered around the

corresponding sample test statistic. Bootstrapped critical values are computed as percentiles

of the resulting distributions of re–centered test statistics. We report empirical rejection

rates using a nominal size of 10%. Results using a nominal size of 5% are qualitatively

similar.

3.2 Restricted VAR bootstrap

Our parametric bootstrap procedure broadly follows those of Kilian (1999) and Clark and

McCracken (2005), among others. Vector autoregressive equations for yt and xt are esti-

mated using the full sample of observations, with the residuals stored for sampling. Boot-

strapped time series on yt and xt are generated by drawing with replacement from the

sample residuals and using the autoregressive structures of the estimated VAR to itera-

tively construct data. The initial observations — observations preceding the sample of data

used to estimate the models — necessitated by the lag structures of the estimated models,

are selected by sampling from the actual data. In particular, following Stine (1987), among

others, the initial observations are selected by picking one date at random and then taking

the necessary number of initial observations in order from that date backward. For each

sample of artificial data, we estimate forecasting models and generate forecasts and test

statistics.

The VAR used in the bootstrap is restricted to impose the null that the x variables

of interest have no predictive content — that is, coefficients of zero. The bootstrap DGP
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equation for y in the VAR takes the form of the null or benchmark forecasting model. For

simplicity, the VAR equations for the x variables are specified as AR models. This basic

approach is used in such studies as Mark (1995), Kilian (1999), Clark and McCracken (2005,

2006), and Clark and West (2006, 2007).

We use the restricted VAR bootstrap to construct critical values for tests of equal forecast

accuracy based on the MSE-F and MSE-t tests. For all tests, because the null hypothesis

of β∗12 = 0 is imposed in the data generation process, no adjustment of the sample test

statistics is needed for inference. We simply compare the sample test statistics against the

bootstrap draws, without any re-centering.

For comparison, we also use the restricted bootstrap to generate critical values for the

adjusted t−test of equal MSE developed in Clark and West (2006, 2007). In the interest

of obtaining a normally-distributed or nearly-normal test of equal MSE, Clark and West

propose a simple adjustment to the MSE differential to account for the additional parameter

estimation error of the larger model. When applied to a pair of rolling sample forecasts under

a random walk null model, the adjusted test statistic has a standard normal distribution

(asymptotically). With a null model that involves parameter estimation (as is the case in

this paper), Clark and West (2007) argue that the limiting null distribution is approximately

normal. Note, however, that in either case, the null hypothesis is that the smaller model

is true, not that the null and alternative forecasts are equally accurate over the sample of

interest.

3.3 Fixed regressor bootstrap

As outlined in section 2.4, we also consider a fixed regressor bootstrap under the null of

equal forecast accuracy. Under this procedure, we re-estimate the alternative forecasting

model subject to the constraint that implies the null and alternative model forecasts to

be equally accurate. We take the residuals (v̂t+τ ) and fitted values (x′1,tβ̂1,T ) from this

model. Following the algorithm outlined in section 2.4, we create artificial replicas of

the residuals v̂∗t+τ and add them to the fitted value to form artificial samples of y∗t+1:

y∗t+1 = x′1,tβ̂1,T + v̂∗t+τ . Using the artificial samples of data on y, we estimate the forecasting

models (using actual data on all the variables on the right-hand side, rather than simulated

data), generate samples of forecasts and forecast errors, and finally compute samples of test

statistics. In particular, we use the fixed regressor bootstrap to construct critical values for

the MSE-F and MSE-t tests. We compare the sample test statistics against the bootstrap
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draws, without any re-centering.

4 Monte Carlo Evidence

We use simulations of bivariate and multivariate DGPs based on common macroeconomic

applications to evaluate the finite sample properties of the above approaches to testing

for equal forecast accuracy. In these simulations, the benchmark forecasting model is an

autoregressive model of the predictand y; the alternative models add lags of various other

variables of interest. The general null hypothesis is that the forecast from the alternative

models is no more accurate than the benchmark forecast. This general null, however, can

take different specific forms: either the variables in the alternative model have no predictive

content, in that their coefficients are 0; or the variables have non–zero coefficients, but the

coefficients are small enough that the benchmark and alternative models are expected to

be equally more accurate over the forecast sample. We focus our presentation on recursive

forecasts, but include some results for rolling forecasts.

4.1 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal

distribution and the autoregressive structure of the DGP. The initial observations necessi-

tated by the lag structure of each DGP are generated with draws from the unconditional

normal distribution implied by the DGP. While our results can be generalized to any fore-

cast horizon (with models of the direct multi–step form), for brevity we focus on one–step

ahead forecasts. With quarterly data in mind, we also consider a range of sample sizes

(R,P ), reflecting those commonly available in practice: 80,40; 40,80; 80,80; and 80,120.

All of the DGPs are based on empirical relationships among U.S. inflation and a range

of predictors, estimated with 1968-2007 data. In all cases, our reported results are based

on 2000 Monte Carlo draws and 499 bootstrap replications.
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4.1.1 DGPs

DGP 1 is based on the empirical relationship between the change in core PCE inflation

(yt) and the Chicago Fed’s index of the business cycle (x1,t, the CFNAI):

yt = −0.4yt−1 − 0.1yt−2 + b11x1,t−1 + ut

x1,t = 0.8x1,t−1 − 0.1x1,t−2 + v1,t (5)

var
(

ut

v1,t

)
=

(
0.8
0.0 0.4

)
.

In the DGP 1 experiments, the alternative (unrestricted) forecasting model takes the form

of the DGP equation for y (with constant added); the null or benchmark (restricted) model

drops x1,t−1:

null: yt = β0 + β1yt−1 + β1yt−2 + u0,t. (6)

alternative: yt = β0 + β1yt−1 + β1yt−2 + β3x1,t−1 + u1,t. (7)

We consider various experiments with different settings of b11, the coefficient on x1,t−1,

which corresponds to the elements of our theoretical construct β∗12/
√

T . In one set of

simulations (Table 1), the coefficient is set to 0, such that the null forecasting model is

expected to be more accurate than the alternative. In others (Tables 2 and 3), the coefficient

is set to a value that makes the models equally accurate (in expectation) on average over

the forecast sample. For example, with recursive forecasts and R and P both equal to 80

(this coefficient value changes with R and P ), this value is 0.11, about 1/2 of the empirical

estimate. In another set of experiments (Table 4), the coefficient is set to 0.3, such that the

alternative model is expected to be more accurate than the null.

DGP 2 is based on the empirical relationship among the change in core PCE inflation

(yt), the CFNAI (x1,t), growth in unit labor costs less core inflation (x2,t), PCE food price

inflation less core inflation (x3,t), and PCE energy price inflation less core inflation (x4,t).

To simplify the lag structure necessary for reasonable forecasting models, the growth or

inflation rates used in forming variables x2,t, x3,t, and x4,t are computed as two-quarter
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averages. Based on these data, DGP 2 takes the form

yt = −0.40yt−1 − 0.1yt−2 + b11x1,t−1 + b21x2,t−1 + b31x3,t−1 + b41x4,t−1 + ut

x1,t = 0.8x1,t−1 − 0.1x1,t−2 + v1,t

x2,t = 0.7x2,t−1 − 0.3x2,t−2 + v2,t (8)

x3,t = 0.9x3,t−1 − 0.2x3,t−2 + v3,t

x4,t = 0.8x4,t−1 − 0.3x4,t−2 + v4,t

var





ut

v1,t

v2,t

v3,t

v4,t




=





0.8
0.0 0.4
0.2 −0.1 3.8
−0.1 0.0 0.3 2.2
0.3 −0.6 1.5 0.9 72.6




.

In DGP 2 experiments, the null (restricted) and alternative (unrestricted) forecasting

models take the following forms, respectively:

yt = β0 + β1yt−1 + β1yt−2 + u0,t. (9)

yt = β0 + β1yt−1 + β1yt−2 + β3x1,t−1 + β4x2,t−1 + β5x3,t−1 + β6x4,t−1 + u1,t. (10)

As with DGP 1, we consider experiments with three different settings of the set of bij

coefficients, which correspond to the elements of β∗12/
√

T . In one set of experiments (Table

1), all of the bij coefficients are set to zero, such that the null forecasting model is expected to

be more accurate than the alternative. In others (Tables 2 and 3), empirically–based values

of the bij coefficients are multiplied by a constant less than one, such that, in population,

the null and alternative models are expected to be equally accurate, on average, over the

forecast sample. With R and P at 80, this multiplying constant is 0.355. In another set

of experiments (Table 4), the coefficients are set at empirically–based estimates: b11 = 0.3,

b12 = 0.1, b13 = 0.1, and b14 = .015. With these values, the alternative model is expected

to be more accurate than the null.

4.2 Results

Our interest lays in identifying those bootstrap approaches that yield reasonably accurate

inferences on the forecast performance of models. At the outset, then, it may be useful

to broadly summarize the forecast performance of competing models under our various

alternatives. Accordingly, Figure 1 shows estimated densities of the MSE ratio statistic
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(the ratio of the null model’s MSE to the alternative model’s MSE), based on experiments

with DGP 2, using R = P = 80. We provide three densities, for the cases in which the

bij coefficients of the DGP (8) are: (i) set to 0, such that the null model should be more

accurate; (ii) set to non–zero values so as to make the null and alternative models (9) and

(10) equally accurate over the forecast sample, according to our local–to–zero asymptotic

results; and (iii) set at larger values, such that the alternative model is expected to be more

accurate.

As the figure shows, for the DGP which implies the null model should be best, the

MSE ratio distribution mostly lays above 1.0. For the DGP that implies the models can be

expected to be equally accurate, the distribution is centered at about 1.0. Finally, for the

DGP that implies the alternative model can be expected to be best, the distribution mostly

lays about 1.0. Among our bootstrap procedures, the restricted VAR approach yields, by

design, a distribution like that shown for the null best DGP. The non–parametric and fixed

regressor bootstraps are intended to estimate a null distribution like that shown for the

equally good models DGP. In all cases, the null will be rejected when the sample MSE

ratio lays in the right tail of the bootstrapped distribution.

What, then, might we expect test rejection rates to look like across experiments and

bootstraps? For DGPs in which the null model is best, tests compared against the restricted

VAR bootstrap should have rejection rates of about 10%, the nominal size (prior studies such

as Kilian (1999) and Clark and McCracken (2005) have shown this bootstrap approach to

work reasonably well in this type of experiment). However, the same tests compared against

the other bootstraps should have rejection rates below 10%, because given the DGP, the

models should not be expected to be equally accurate. For DGPs with coefficients scaled

such that the null and alternative models can be expected to be equally accurate, we want

the tests compared against the non–parametric and fixed regressor bootstraps to have size

of about 10%. That said, as indicated above, we shouldn’t expect the non–parametric ap-

proach to perform well when applied to recursive forecasts from our nested models (based on

the asymptotics of Giacomini and White (2006), the non-parametric bootstrap may perform

better for rolling forecasts). We should expect the same tests compared to restricted VAR

bootstrap critical values to yield rejection rates greater than 10%, because the restricted

VAR distribution lays to the left of the equal accuracy distribution. Finally, with DGPs

that imply the alternative model to be more accurate than the null, we should look for re-
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jection rates that exceed 10%. Again, though, rejection rates based on the restricted VAR

bootstrap should generally be higher than rejection rates based on the other approaches.

4.2.1 Null Model Most Accurate

Table 1 presents Monte Carlo results for DGPs in which, in truth, the x variables considered

have no predictive content for y, such that the null forecasting model should be expected to

be best. These results generally line up with the expectations described above. Comparing

the MSE-F , MSE-t and CW t-test statistics against restricted VAR bootstrap critical values

consistently yields rejection rates of about the nominal size of 10%. For example, across all

the experiments, restricted VAR bootstrap rejection rates for the MSE-F test range from

9.3% to 11.4%.

Comparing the test statistics to other bootstrap distributions yields rejection rates typ-

ically well below 10%, and often close to 0. Non-parametric bootstrap rejection rates for

the MSE-F test range from 0% to 4.1%. Using the fixed regressor bootstrap yields results

qualitatively similar to those for the non–parametric approach, with a range of 0.3 to 3.8%.

Under any bootstrap approach, results are qualitatively very similar for the MSE-F and

MSE-t tests.

4.2.2 Null and Alternative Models Equally Accurate

Table 2 presents results for DGPs in which the bij coefficients on some x variables are non–

zero but small enough that, under our asymptotic approximation, the null and alternative

forecasting models are expected to be equally accurate over the sample considered. These

results also generally line up with the expectations described above, and show clearly that,

for testing the null of equal forecast accuracy, the most reliable bootstrap method is our

proposed fixed regressor procedure.

Tests based on the fixed regressor bootstrap generally have rejection rates of about 10%

(the nominal size). For example, in the case of the MSE-F test, rejection rates range from

8.1% to 11.4%.

Tests based on the other bootstrap intended to test the null of equal accuracy, the non–

parametric bootstrap, are less reliable indicators of equal accuracy. For the MSE-F test,

using the non-parametric bootstrap to compute critical values leads to modest undersizing.

In Table 2, the MSE-F test’s rejection rate ranges from 3.2 to 8.8% based on non-parametric

critical values, compared to a range of 8.1 to 11.4% based on fixed regressor bootstrap critical
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values.

Tests based on the restricted VAR bootstrap may also be seen as unreliable indicators of

equal forecast accuracy — but in that they overstate, rather than understate, the likelihood

of two models being equally accurate. Comparing test statistics against critical values from

the restricted VAR bootstrap generally yields rejection rates far in excess of 10%. In the

case of the MSE-F test, rejection rates range from 25.3% to 46.6% (Table 2). Similarly,

rejection rates for the C-W t-test range from 23.7% to 54.1%.

Among the alternative tests for equal MSE, results are, for the most part, qualitatively

similar for the MSE-F and MSE-t test. For example, with the fixed regressor bootstrap,

MSE-t rejection rates range from 7.4 to 10.3%, compared to the MSE-F range of 8.1% to

11.4%.

Table 3 provides results for experiments using a rolling forecast scheme instead of the

baseline recursive scheme, for models parameterized to make the null and alternative models

equally accurate (the necessary scaling factor is a bit different in the rolling case than the

recursive). In general, the results for the rolling scheme are very similar to those for the

recursive. Under both schemes, tests based on the restricted VAR reject too often, while

tests based on our fixed regressor bootstrap have size of about 10% (the nominal size). Tests

based on the non-parametric bootstrap continue to be undersized, although the problem

is a bit worse under the rolling scheme than the recursive. For example, with DGP 1 and

R = P = 80, comparing the MSE-F test against critical values estimated with the non-

parametric bootstrap yields a rejection rate of 7.0% for recursive forecasts (Table 2) and

5.2% for rolling forecasts (Table 3).

Our rolling scheme results on the behavior of the MSE-t test compared against non-

parametric bootstrap critical values are somewhat at odds with the behavior of the test

in Giacomini and White (2006).6 The difference seems to stem from treating the test as

one-sided rather than two-sided. In unreported results for our DGPs, with non-parametric

bootstrap critical values, a two-sided MSE-t test ranged from being slightly undersized to

slightly oversized, in contrast to the consistent undersizing of the one-sided test.
6Giacomini and White (2006) compare the MSE-t test against standard normal critical values, rather

than bootstrap critical values. In our experiments, comparing the MSE-t test against normal critical values
yields results very similar to those we report for the non-parametric bootstrap.
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4.2.3 Alternative Model Most Accurate

Table 4 provides results for DGPs in which the bij coefficients on some x variables are large

enough that, under our asymptotics, the alternative model is expected to be more accurate

than the null model.

As anticipated, comparing the test statistics against critical values estimated with the

restricted VAR bootstrap yields the highest rejection rate. In the case of the MSE-F test,

rejection rates range from 72.6 to 99.1%. Comparing the test statistics against critical values

estimated with the fixed regressor bootstrap yields modestly lower rejection rates. For the

MSE-F test, rejection rates range from 58.4 to 96.1%. Comparing tests against distributions

estimated with the non–parametric bootstrap yields materially lower power. In Table 4’s

results, using the non–parametric bootstrap for the MSE-F test yields a rejection rate

between 29.9 and 79.2%.

Rejection rates for the MSE-t test are broadly similar to those for the MSE-F test,

although with some noticeable differences. In most cases in Table 4’s results, the MSE-

t test is less powerful than the MSE-F test (as with the fixed regressor bootstrap), but

in some cases (as with the non–parametric bootstrap), the MSE-t test is more powerful.

Finally, as noted above in other experiment settings, the power of the C-W t-test is broadly

comparable to that of the MSE-F test compared against restricted VAR critical values.

4.2.4 Results summary

Overall, the Monte Carlo results show that, for testing equal forecast accuracy over a given

sample, our proposed fixed regressor bootstrap works reasonably well. When the null of

equal accuracy is true, the testing procedures yield approximately correctly sized tests.

When an alternative model is, in truth, more accurate than the null, the testing procedures

have reasonable power. The non–parametric bootstrap procedure, which just re–samples

the data without imposing the equal accuracy null in the data generation, is not as reliable

when applied to nested forecasting models. Finally, in line with prior research, for the

purpose of testing the null that certain coefficients are 0, a restricted VAR bootstrap is

reliable. However, the null of 0 coefficients is not the same as the null of equal forecast

accuracy.
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5 Applications

In this section we use the tests and inference approaches described above in forecasting

excess stock returns and core inflation, both for the U.S. Some recent examples from the

long literature on stock return forecasting include Rapach and Wohar (2006), Goyal and

Welch (2008), and Campbell and Thompson (2008). Some recent inflation examples include

Atkeson and Ohanian (2001) and Stock and Watson (2003).

More specifically, in the stock return application, we use the data of Goyal and Welch

(2008), and examine forecasts of monthly excess stock returns (CRSP excess returns mea-

sured on a log basis) from a total of 17 models. The null model includes just a constant.

The alternative models add in one lag of a common predictor, taken from the set of vari-

ables in the Goyal-Welch data set available over all of our sample.7 These include, among

others, the dividend-price ratio, the earnings-price ratio, and the cross-sectional premium.

The full set of 16 predictive variables is listed in Table 5, with details provided in Goyal

and Welch (2008). Following studies such as Pesaran and Timmermann (1995), we focus

on the post-war period. Our model estimation sample begins with January 1954, and we

examine recursive 1-month ahead forecasts (that is, our estimation sample expands as fore-

casting moves forward in time) for 1970 through 2002. In the VAR bootstrap, we use a null

model with just a constant for excess returns and AR(6) models for each of the predictive

variables. In the fixed regressor procedure, the bootstrap equation for excess returns takes

the form of the unrestricted forecasting model from each application (with the coefficients

rescaled to imply equal forecast accuracy).

In the inflation application, we examine 1-quarter ahead and 1-year ahead forecasts of

core PCE inflation obtained from a few models. The null model includes a constant and lags

of the change in inflation. One alternative model adds one lag of the CFNAI to the baseline

model. Another includes one lag of the CFNAI, PCE food price inflation less core inflation,

and and import price inflation less core inflation.8 We specify the models in terms of the

change in inflation, following, among others, Stock and Watson (1999, 2003) and Clark and

McCracken (2006). In one application, we consider one-quarter ahead forecasts of inflation

defined as πt = 400 ln(Pt/Pt−1), using models relating ∆πt+1 to a constant, ∆πt, ∆πt−1,

and the period t values of the CFNAI, relative food price inflation, and relative import
7We obtained the data from Amit Goyal’s website.
8We obtained the CFNAI data from the Chicago Fed’s website and the rest of the data from the FAME

database of the Federal Reserve Board of Governors.
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price inflation. In another, we consider one-year ahead forecasts of inflation defined as

π(4)
t = 100 ln(Pt/Pt−4), using models relating π(4)

t+4 − π(4)
t to a constant, π(4)

t − π(4)
t−4, and

the period t values of the CFNAI, relative food price inflation, and relative import price

inflation. To simplify the lag structure necessary for reasonable forecasting models, the

(relative) food and import price inflation variables are computed as two-period averages of

quarterly (relative) inflation rates.

For both inflation forecast horizons, our model estimation sample uses a start date of

1968:Q3. The forecasts are generated recursively. In the restricted VAR bootstrap, the

DGP for inflation takes the same form as the null forecasting model, and we use AR(2)

models for each of the predictive variables. In the fixed regressor procedure, the bootstrap

equation for inflation takes the form of the unrestricted forecasting model from each of the

two applications (with the coefficients rescaled to imply equal forecast accuracy).

Results for the stock return and inflation forecast applications are reported in Tables

5 and 6. The tables provide, for each alternative model, the ratio of the MSE of forecasts

from the benchmark model to the alternative model’s forecast MSE. The tables include

p-values for the null that the benchmark model is true (restricted VAR bootstrap) or that

the models are equally accurate (the non–parametric and fixed regressor bootstraps). In the

interest of brevity, results are only presented for the MSE-F test. We use 9999 replications

in computing the bootstrap p-values.

In the case of excess stock returns, the evidence in Table 5 is consistent with much of

the literature: return predictability is limited. Of the 16 alternative forecasting models,

only two — the first two in the table — have MSEs lower than the benchmark (that is,

MSE ratios greater than 1). The restricted VAR bootstrap p-values reject the null model

in favor of the alternative for each of these two models. These test results indicate the

predictor coefficients on the cross-sectional premium and return on long-term Treasuries are

non–zero. However, p-values based on the fixed regressor bootstrap imply weaker evidence

of forecastability, with the null of equal forecast accuracy rejected for the cross-sectional

premium, but not the Treasury return. This pattern suggests that, while the coefficient on

the Treasury return may differ from zero, the coefficient is not large enough that a model

including the Treasury return would be expected to forecast better than the null model

over a sample of the size considered. Critical values based on the non-parametric bootstrap

yield no rejections, presumably (given our Monte Carlo evidence) reflecting lower power.
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The inflation results reported in Table 6 yield similarly mixed evidence of predictability.

By itself, the CFNAI improves the accuracy of 1-quarter ahead forecasts but not 4-quarter

ahead forecasts. At the 1-step horizon, the restricted VAR bootstrap p-values reject the

null model in favor of the alternative — indicating the predictor coefficients on the CFNAI

to be non–zero. However, p-values based on the fixed regressor bootstrap fail to reject the

null of equal accuracy. So while the coefficient on the CFNAI may differ from zero, it is

not large enough that a model including the CFNAI would be expected to forecast better

than the null model in a sample of the size considered. Including not only the CFNAI

but also relative food and import price inflation yields larger gains in forecast accuracy, at

both horizons. In this case, critical values from both the restricted VAR and fixed regressor

bootstrap reject the null. This suggests the relevant coefficients are non-zero and large

enough to make the alternative model more accurate than the null. Here, too, critical

values based on the non-parametric bootstrap yield no rejections.

6 Conclusion

This paper develops bootstrap methods for testing, whether, in a finite sample, competing

out-of-sample forecasts from nested models are equally accurate. Most prior work on fore-

cast tests for nested models has focused on a null hypothesis of equal accuracy in population

— basically, whether coefficients on the extra variables in the larger, nesting model are zero.

We instead use an asymptotic approximation that treats the coefficients as non-zero but

small, such that, in a finite sample, forecasts from the small model are expected to be as

accurate as forecasts from the large model. While an unrestricted, correctly specified model

might have better population-level predictive ability than a misspecified restricted model,

it need not do so in finite samples due to imprecision in the additional parameter estimates.

In the presence of these “weak” predictors, we show how to test the null of equal average

predictive ability over a given sample size.

Under our asymptotic approximation of weak predictive ability, we first derive the

asymptotic distributions of two tests for equal out-of-sample predictive ability. We then

develop a parametric bootstrap procedure — a fixed regressor bootstrap — for testing the

null of equal finite-sample forecast accuracy. We next conduct a range of Monte Carlo

simulations to examine the finite–sample properties of the tests and bootstrap procedures.

For tests of equal population-level predictive ability, we find that, as suggested in Inoue and
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Kilian (2004), a restricted VAR bootstrap provides accurately sized tests. However, this

does not continue to hold when we consider tests of equal finite-sample predictive ability

in the presence of weak predictors. Instead, our proposed fixed regressor bootstrap works

reasonably well: When the null of equal finite-sample predictive ability is true, the testing

procedure yields approximately correctly sized tests. Moreover when an alternative model

is, in truth, more accurate than the null, the testing procedure has reasonable power. In

contrast, when applied to nested models, the non-parametric method of White (2000) does

not work so well, in a size or power sense.

In the final part of our analysis, we apply our proposed methods for testing equal predic-

tive ability to forecasts of excess stock returns and core inflation, using U.S. data. In both

applications, our methods for testing equal finite sample accuracy yield weaker evidence of

predictability than do methods for testing equal population-level accuracy. There remains

some evidence, but only modest. In contrast, using non-parametric bootstrap methods that

are technically invalid with nested models — methods that have relatively poor size and

power properties — yields no evidence of predictability.
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7 Appendix: Theory Details

In the following, in addition to the notation from Section 2, define h∗T,1,s+τ = xT,1,sv∗1,s+τ and
ĥ∗T,1,s+τ = xT,1,sv̂∗1,s+τ . For the recursive scheme define H∗

T,1(t) = t−1
∑t−τ

s=1 h∗T,1,s+τ and Ĥ∗
T,1(t) =

t−1
∑t−τ

s=1 ĥ∗T,1,s+τ while for the rolling scheme define H∗
T,1(t) = T−1

∑t−τ
s=t−T−τ+1 h∗T,1,s+τ and

Ĥ∗
T,1(t) = T−1

∑t−τ
s=t−T−τ+1 ĥ∗T,1,s+τ Moreover let supt |.| denote supT≤t≤T+P−τ |.|.

Proof of Theorem 2.1: (a) The result is a special case of Theorem 1 of Clark and McCracken
(2008) and as a result, we provide only an outline of the proof here. The proof consists of two steps.
In the first we provide an asymptotic expansion. In the second we apply a functional central limit
theorem and a weak convergence to stochastic integrals result, both from de Jong and Davidson
(2000). Throughout we ignore the finite sample difference between P and P − τ + 1.

For the first step, straightforward algebra reveals that

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) (11)

= {2
∑T+P−τ

t=T
(T−1/2h′T,1,t+τ )(−JB0(t)J ′ + B1(t))(T 1/2HT,1(t))

−T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t))(−JB0(t)xT,0,tx
′
T,0,tB0(t)J ′

+B1(t)xT,1,tx
′
T,1,tB1(t))(T 1/2HT,1(t))}

+2{
∑T+P−τ

t=T
δ′B−1

1 (t)(−JB0(t)J ′ + B1(t))(T−1/2hT,1,t+τ )}

+{T−1
∑T+P−τ

t=T
δ′(xT,1,tx

′
T,1,t − 2xT,1,tx

′
T,1,tJB0(t)J ′B−1

1 (t)

+B−1
1 (t)JB0(t)xT,0,tx

′
T,0,tB0(t)J ′B−1

1 (t))δ}

+2{T−1
∑T+P−τ

t=T
δ′(B−1

1 (t)JB0(t)xT,0,tx
′
T,0,tB0(t)J ′

−xT,1,tx
′
T,1,tJB0(t)J ′)(T 1/2HT,1(t))}.

Given Assumptions 3 (c) and 5, straightforward moment-based bounding arguments, along with
the definitions of Ã, h̃T,1,t+τ , and H̃T,1(t) imply

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) = σ2{2

∑T+P−τ

t=T
(T−1/2h̃T,1,t+τ )(T 1/2H̃T,1(t))

−T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(T 1/2H̃T,1(t))} + σ2{2

∑T+P−τ

t=T
(δ′B−1/2

1 Ã/σ)(T−1/2h̃T,1,t+τ )}

+σ2{(P/T )(δ′J2F
−1
1 J ′2δ/σ2)} + op(1).

For the second step we apply weak convergence results from de Jong and Davidson (2000),
notably Theorem 3.2. Taking limits, and noting that T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s) we obtain the

stochastic integrals presented in the statement of the Theorem.

∑T+P−τ

t=T
(û2

0,t+τ − û2
1,t+τ ) =

σ2{2
∫ 1+λP

1
s−1W ′(s)Sh̃h̃dW (s)−

∫ 1+λP

1
s−2W ′(s)Sh̃h̃W (s)ds}

+σ2{
∫ 1+λP

1
(δ′B−1/2

1 Ã′/σ)S1/2

h̃h̃
dW (s)} + σ2{λP δ′J2F

−1
1 J ′2δ/σ2}.

That MSE2 →p σ2 then provides the desired result.
(b) The proof is largely the same as for the recursive scheme. The only important difference

is that instead of HT,1(t) = (t−1
∑t−τ

s=1 hT,1,s+τ ) for the recursive scheme we now have HT,1(t) =
(T−1

∑t−τ
s=t−τ−T+1 hT,1,s+τ ) for the rolling scheme. Hence in the final step of the proof for the
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recursive scheme we have T 1/2H̃T,1(t)⇒ s
−1

S1/2

h̃h̃
W (s) whereas for the rolling scheme we have

T 1/2H̃T,1(t)⇒ S1/2

h̃h̃
(W (s)−W (s− 1)). Other differences are minor and omitted for brevity.

Proof of Theorem 2.2: (a) Given Theorem 2.1(a) and the Continuous Mapping Theorem it
suffices to show that P

∑j̄
j=−j̄ K(j/M)γ̂dd(j)→d 4σ4(Γ5+Γ6+Γ7). Before doing so it is convenient

to redefine the bracketed terms from (11) used in the primary decomposition of the loss differential
in the proof of Theorem 2.1(absent the summations, but keeping the brackets) as

(û2
0,t+τ − û2

1,t+τ ) = {2A1,t −A2,t} + 2{Bt} + {Ct} + 2{Dt}. (12)

With this in mind, if we ignore the finite sample difference between P and P − τ + 1, we obtain

P
j̄∑

j=−j̄

K(j/M)γ̂dd(j) =
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
(û2

0,t+τ − û2
1,t+τ )(û2

0,t−j+τ − û2
1,t−j+τ )(13)

= 4{
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tA1,t−j} + 4{

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tBt−j}

+4{
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
BtBt−j}

+ other cross products of A1,t, A2,t, Bt, Ct, Dt with A1,t−j , A2,t−j , Bt−j , Ct−j , Dt−j .

In the remainder we show that each of the 3 bracketed terms in (13) converges to σ4 times Γ5, Γ6,
and Γ7 respectively and that the other cross product terms are each op(1).

For the first bracketed term in (13), if we recall the definition of h̃T,1,t+τ and that j̄ is finite,
algebra along the lines of Clark and McCracken (2005) gives us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tA1,t−j

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T+j
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0(t)J ′ + B1(t))B
−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (T 1/2B1/2
1 HT,1(t− j)/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0J
′ + B1)B

−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (T 1/2B1/2

1 HT,1(t)/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(T 1/2H̃T,1(t)) + op(1)

= σ4(T−1
∑T+P−τ

t=T
[T 1/2H̃ ′

T,1(t)⊗ T 1/2H̃ ′
T,1(t)])vec[

j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s), the

Continuous Mapping Theorem implies

T−1
∑T+P−τ

t=T
T 1/2H̃ ′

T,1(t)⊗ T 1/2H̃ ′
T,1(t)→d

∫ 1+λP

1
s−2[W ′(s)S1/2

h̃h̃
⊗W ′(s)S1/2

h̃h̃
]ds.

Since (
∫ 1+λP

1 s−2[W ′(s)S1/2

h̃h̃
⊗W ′(s)S1/2

h̃h̃
]ds)vec[Sh̃h̃] = Γ5, we obtain the desired result.
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For the second bracketed term in (13), similar arguments give us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
A1,tB1,t−j =

σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T+j
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0(t)J ′ + B1(t))B
−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (t− j)(B1/2
1 (t− j)δ/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H ′

T,1(t)B
1/2
1 /σ)B−1/2

1 (−JB0J
′ + B1)B

−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (B1/2

1 δ/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(T 1/2H̃T,1(t))(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(ÃB1/2

1 δ/σ) + op(1)

= σ4(T−1
∑T+P−τ

t=T
[(ÃB1/2

1 δ/σ)
′
⊗ T 1/2H̃ ′

T,1(t)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

3 and Theorem 3.2 of de Jong and Davidson (2000) suffice for T 1/2H̃T,1(t) ⇒ s−1S1/2

h̃h̃
W (s), the

Continuous Mapping Theorem implies

T−1
∑T+P−τ

t=T
[(ÃB1/2

1 δ/σ)
′
⊗ T 1/2H̃ ′

T,1(t)]→d

∫ 1+λP

1
s−1[(ÃB1/2

1 δ/σ)
′
⊗W ′(s)S1/2

h̃h̃
]ds.

Since (
∫ 1+λP

1 s−1[(ÃB1/2
1 δ/σ)

′
⊗W ′(s)S1/2

h̃h̃
]ds)vec[Sh̃h̃] = Γ6, we obtain the desired result.

For the third bracketed term in (13), similar arguments give us

j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T+j
B1,tB1,t−j =

σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 (t)/σ)B−1/2
1 (t)(−JB0(t)J ′ + B1(t))B

−1/2
1 ×

(B1/2
1 hT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B0(t− j))B−1/2

1 (t− j)(B1/2
1 (t− j)δ/σ)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 /σ)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 ×

(B1/2
1 EhT,1,t+τh′T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0J

′ + B1)B
−1/2
1 (B1/2

1 δ/σ) + op(1)

= σ4
j̄∑

j=−j̄

K(j/M)T−1
∑T+P−τ

t=T
(δ′B1/2

1 Ã′/σ)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )(ÃB1/2
1 δ/σ) + op(1)

= σ4((P/T )[(δ′B1/2
1 Ã′/σ)⊗ (δ′B1/2

1 Ã′/σ)])vec[
j̄∑

j=−j̄

K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ )] + op(1).

Given Assumptions 3 and 4,
∑j̄

j=−j̄ K(j/M)(Eh̃T,1,t+τ h̃′T,1,t−j+τ ) → Sh̃h̃. Since Assumption

5 implies P/T → λP and (λP [(δ′B1/2
1 Ã′/σ)⊗ (δ′B1/2

1 Ã′/σ)])vec[Sh̃h̃] = Γ7, we obtain the desired
result.
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There are twelve remaining terms in (13) that are cross products of A1,t, A2,t, Bt, Ct, and Dt

with A1,t−j , A2,t−j , Bt−j , Ct−j , and Dt−j for each j. That each are op(1) follow comparable
arguments. For brevity we show this for the term comprised of A1,t and A2,t−j . For this term we
have

|
j̄∑

j=−j̄

K(j/M)
∑T+P−τ

t=T
A1,tA2,t−j | =

|
j̄∑

j=−j̄

K(j/M)T−3/2
∑T+P−τ

t=T
(T 1/2H ′

T,1(t))(−JB0(t)J ′ + B1(t))×

(hT,1,t+τvec[−JB0(t)xT,0,tx
′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′(T 1/2HT,1(t− j)⊗ T 1/2HT,1(t− j))|

≤ 2j̄k4T−1/2(T−1
∑T+P−τ

t=T
|hT,1,t+τvec[−JB0(t)xT,0,tx

′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′|)×

(supT≤t≤T+P−1|T
1/2HT,1(t)|)

3
(supT≤t≤T+P−1| − JB0(t)J ′ + B1(t)|).

Assumptions 3 and 5, along with de Jong and Davidson (2000) suffice for supT≤t≤T+P−1|T 1/2HT,1(t)| = Op(1).
Assumption 3 along with Markov’s inequality imply both

T−1
∑T+P−1

t=T
|hT,1,t+τvec[−JB1(t)xT,0,tx

′
T,0,tB0(t)J ′ + B1(t)xT,1,tx

′
T,1,tB1(t)]

′| = Op(1)

and supT≤t≤T+P−1| − JB0(t)J ′ + B1(t)| =Op(1). Since j̄ and k are finite and T−1/2 = op(1), the
proof is complete.

(b) The proof is largely the same as for the recursive scheme. And as was the case for Theorem
2.1, the primary difference is that instead of HT,1(t) = (t−1

∑t−τ
s=1 hT,1,s+τ ) for the recursive scheme

we now have HT,1(t) = (T−1
∑t−τ

s=t−τ−T+1 hT,1,s+τ ) for the rolling scheme. Hence in each step of the

proof for the recursive scheme where the fact that T 1/2H̃T,1(t)⇒ s
−1

S1/2

h̃h̃
W (s) is used, we instead

use the fact that for the rolling scheme T 1/2H̃T,1(t)⇒ S1/2

h̃h̃
(W (s)−W (s− 1)). Other differences

are minor and omitted for brevity.
Lemma 1: Maintain Assumptions 2, 3′, 4, and 5 as well as either Assumption 1 or 1′. (a)

T 1/2J ′2β̃1,T = Op(1). (b) supT≤t≤T+P−τ |T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t))| = op(1).
Proof of Lemma 1: (a) Let ζ̂ denote the Lagrange multiplier9 associated with the ridge

regression and define C12(T ) = J ′B−1
1 (T )J2 and C12 = limT→∞E(xT,0,tx′T,12,t).

(a-i) Maintain Assumption 1. The definition of the ridge estimator implies that for 1
1+ζ̂

=
√

d̂
(T 1/2β̂1,T )′J2F−1

1 (T )J′2(T
1/2β̂1,T )

, the ridge estimator takes the form

β̃1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
β̂1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
(β∗+T−1/2δ+B1(T )HT,1(T )).

Hence

T 1/2J ′2β̃1,T = J ′2

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
[δ + B1(T )(T 1/2HT,1(T ))]

→d J ′2

(
I ζ∗

1+ζ∗B0C12

0 1
1+ζ∗ I

)
N(δ,B1V B1)

9This multiplier satisfies ( 1
1+ζ̂

)2 = d̂

(T1/2β̂1,T )′J2F−1
1 (T )J′2(T1/2β̂1,T )

and hence ζ̂ is unique only up to its’

sign. In all aspects of this paper we use the value satisfying 1
1+ζ̂

=

r
d̂

(T1/2β̂1,T )′J2F−1
1 (T )J′2(T1/2β̂1,T )

.

Choosing the opposite sign is irrelevant since, in every case, what matters is not the value of 1
1+ζ̂

but it’s
square.
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where
ζ∗ =d (N(δ, B1V B1))

′J2F
−1
1 J ′2(N(δ, B1V B1)) a mixed non-central chi-square variate, and the

proof is complete.
(a-ii) Maintain Assumption 1′. The ridge estimator takes the form

β̃1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
β̂1,T =

(
I ζ̂

1+ζ̂
B0(T )C12(T )

0 1
1+ζ̂

I

)
(β∗1 + B1(T )HT,1(T )).

Hence
T 1/2J ′2β̃1,T =

√
d̂

β̂
′
1,T J2F−1

1 (T )J′2β̂1,T

J ′2[β
∗
1 + B1(T )HT,1(T )]

→p

√
d

β∗′12F−1
1 β∗12

β∗12

and the proof is complete.
(b) For ease of presentation, we show the result for the recursive scheme and assuming τ = 2

and hence v̂∗T,1,s+2 = ηs+2ε̂T,1,s+2+ θ̂ηs+1ε̂T,1,s+1 and v∗T,1,s+2 = ηs+2εT,1,s+2 + θηs+1εT,1,s+1. (a)
Rearranging terms gives us,

T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t)) = T−1/2
∑t−τ

s=1
(v̂∗T,1,s+2 − vT,1,s+2)xT,1,s =

T−1/2
∑t−τ

s=1
(ηs+2(ε̂T,1,s+2 − εT,1,s+2) + θηs+1(ε̂T,1,s+1 − εT,1,s+1) +

(θ̂ − θ)ηs+1(ε̂T,1,s+1 − εT,1,s+1) + (θ̂ − θ)ηs+1εT,1,s+1)xT,1,s.

If we take a first order Taylor expansion of both ε̂T,1,s+2 and ε̂T,1,s+1, then for some γT in the
closed cube with opposing vertices γ̂T and γT we obtain

T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t)) =

T−1/2
∑t−τ

s=1
(ηs+2∇ε̂T,1,s+2(γT )(γ̂T − γT ) + θηs+1∇ε̂T,1,s+1(γT )(γ̂T − γT )

+(θ̂ − θ)ηs+1∇ε̂T,1,s+1(γT )(γ̂T − γT ) + (θ̂ − θ)ηs+1εT,1,s+1)xT,1,s

and hence

sup
t

|T 1/2(Ĥ∗
T,1(t)−H∗

T,1(t))| ≤

2k1 sup
t

|T−1
∑t−τ

s=1
ηs+2∇ε̂T,1,s+2(γT )xT,1,s||T 1/2(γ̂T − γT )|

+θ2k1 sup
t

|T−1
∑t−τ

s=1
ηs+1∇ε̂T,1,s+1(γT )xT,1,s||T 1/2(γ̂T − γT )|

+(θ̂ − θ)2k1 sup
t

|T−1
∑t−τ

s=1
ηs+1∇ε̂T,1,s+1(γT )xT,1,s||T 1/2(γ̂T − γT )|

+(T 1/2(θ̂ − θ)) sup
t

|T−1
∑t−τ

s=1
ηs+1εT,1,s+1xT,1,s|.

Assumptions 1 or 1′, along with 3′ suffice for both T 1/2(γ̂T − γT ) and T 1/2(θ̂ − θ) to be
Op(1). In addition since, for large enough samples, Assumption 6 bounds the second moments
of ∇ε̂T,1,s+2(γT ) and ∇ε̂T,1,s+1(γT ) as well as xT,1,s, the fact that the ηs+τ are i.i.d. N(0, 1) then im-
plies T−1

∑T−τ
s=1 ηs+2∇ε̂T,1,s+2(γT )xT,1,s, T−1

∑T−τ
s=1 ηs+1∇ε̂T,1,s+1(γT )xT,1,s, and T−1

∑T−τ
s=1 ηs+1×

εT,1,s+1xT,1,s are all oa.s.(1). This in turn, (along with Assumption 5) implies that supt|.| of each
of the partial sums is op(1) and the proof is complete.
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Proof of Theorem 2.3: We provide details for the recursive scheme noting differences for the
rolling later. Straightforward algebra implies that
∑T+P−τ

t=T (û∗20,t+τ − û∗21,t+τ ) =
∑T+P−τ

t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))H∗
T,1(t)

−H ′∗
T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))H∗

T,1(t)}
+T−1/2

∑T+P−τ
t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))B−1

1 (t)(T 1/2β̃1,T )}
+T−1

∑T+P−τ
t=T {(T 1/2β̃1,T )′B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,t(−JB0(t)J ′ + B1(t))B−1
1 (t)(T 1/2β̃1,T )}

+2
∑T+P−τ

t=T {h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))
+(ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))H∗

T,1(t)
−H ′∗

T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))
+(ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))(Ĥ∗

T,1(t)−H∗
T,1(t))

−(0.5)(Ĥ∗
T,1(t)−H∗

T,1(t))
′(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))(Ĥ∗

T,1(t)−H∗
T,1(t))

−β̃
′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,tJB0(t)J ′H∗
T,1(t)

+β̃
′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))(ĥ∗T,1,t+τ − h∗T,1,t+τ )
−β̃

′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,tJB0(t)J ′(Ĥ∗
T,1(t)−H∗

T,1(t))}
(14)

Note that there are 4 bracketed {.} terms in (14). The first three are directly analogous to the three
bracketed terms in (11) from the proof of Theorem 2.1. We will show that these three terms have
limits Γ∗i =d Γi, for Γi i = 1− 4 defined in the text. The additional assumption of either conditional
homoskedasticity or k1 = 1 are needed only in the proof for Γ∗3 =d Γ3. Finally, we then show that
the remaining fourth bracketed term is op(1).

Proof of bracket 1: The sole difference between this term and that in the proof of Theorem 2.1
is that they are defined in terms of h∗1,t+τ rather than h1,t+τ . Since these terms have the same first
and second moments, as well as the same mixing properties, the exact same proof is applicable and
hence we have

∑T+P−τ
t=T {2h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))H∗

T,1(t)
−H ′∗

T,1(t)(−JB0(t)J ′xT,1,tx′T,1,tJB0(t)J ′ + B1(t)xT,1,tx′T,1,tB1(t))H∗
T,1(t)} →d 2Γ∗1 − Γ∗2

where Γ∗1 and Γ∗2 denote independent replicas of Γ1 and Γ2 respectively. Independence follows from
the fact that the ηt+τ are i.i.d. N(0, 1).

Proof of bracket 2: Rearranging terms gives us

T−1/22
∑T+P−τ

t=T h′∗T,1,t+τ (−JB0(t)J ′ + B1(t))B−1
1 (t)(T 1/2β̃1,T )

= T−1/22
∑T+P−τ

t=T h′∗T,1,t+τB1(t)J2F
−1
1 (t)(T 1/2J ′2β̃1,T )

.

From Lemma 1 we know T 1/2J ′2β̃1,T = Op(1). Algebra along the lines of Clark and McCracken
(2005) then gives us

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)(T 1/2J ′2β̃1,T ) = T−1/22

∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 (T 1/2J ′2β̃1,T )+op(1).

This term is a bit different from that for the second bracketed term in Theorem 2.1. There, the
second bracketed term takes the form T−1/22

∑T+P−τ
t=T h′T,1,t+τB1J2F

−1
1 β∗12+op(1). What makes

them different here is that since T 1/2J ′2β̃1,T is not consistent for β∗12, it is not the case that
T−1/22

∑T+P−τ
t=T h′∗T,1,t+τB1J2F

−1
1 (T 1/2J ′2β̃1,T ) equals T−1/22

∑T+P−τ
t=T h′∗T,1,t+τB1J2F

−1
1 β∗12+op(1).

However, it is true that both terms are asymptotically normal. For the former, clearly

T−1/22
∑T+P−τ

t=T
h′T,1,t+τB1J2F

−1
1 β∗12 →d Γ2 ∼ N(0, 4Ω)

where Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12. But for the latter, due to the i.i.d. N(0, 1) (and strictly

exogenous) nature of the ηt+τ , we have

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 J ′2(T

1/2β̃1,T )→d Γ∗3 ∼ N(0, 4W )
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where

W = limV ar{T−1/2
∑T+P−τ

t=T h′∗T,1,t+τB1J2F
−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1{lim V ar(P−1/2

∑T+P−τ
t=T h′∗T,1,t+τ )}B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

.

The precise relationship between Γ∗3 and Γ3 depends on the relationship between Ω and W . This in
turn depends upon the additional restrictions in the statement of the Theorem.

(a) If we let V = σ2B−1
1 , W simplifies to

W = σ2λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T )}

= σ2λP lim E{(T 1/2β̃1,T )′J2F
−1
1 (T )J ′2(T 1/2β̃1,T )}

= σ2λP lim E{d̂} = σ2λP d

.

The result follows since under the null hypothesis, Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ2λP β∗

′

12F
−1
1 β∗12 =

σ2λP d.
(b) If we let dim(β∗12) = 1, W simplifies to

W = λP lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP lim E{(T 1/2β̂12,T )2(F−1
1 )2J ′2B1V B1J2}

.

But β̂12,T was estimated satisfying the restriction that (T 1/2β̂12,T )2 = F1(T )d̂ and hence W =
λP lim E{F1(T )d̂(F−1

1 )2J ′2B1V B1J2} = λP F−1
1 dJ ′2B1V B1J2. Following similar arguments, we also

have Ω = λP (β∗12)2(F
−1
1 )2J ′2B1V B1J2. But under the null, (β∗12)2 = dF1 and the proof is complete.

Proof of bracket 3: Rearranging terms gives us

T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′B−1
1 (t)(−JB0(t)J ′ + B1(t))xT,1,tx′T,1,t(−JB0(t)J ′ + B1(t))B−1

1 (t)(T 1/2β̃1,T )
= T−1

∑T+P−τ
t=T (T 1/2β̃1,T )′J2F

−1
1 (t)J ′2B1(t)xT,1,tx′T,1,tB1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T )

.

From Lemma 1 we know T 1/2J ′2β̃1,T = Op(1). From there, algebra long the lines of Clark and
McCracken (2005) gives us

T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 (t)J ′2B1(t)xT,1,tx′T,1,tB1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T )

= T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 (t)J ′2B1(t)B−1

1 B1(t)J2F
−1
1 (t)J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T (T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= (P − τ + 1/T )d̂ + op(1)→p λP d ≡ Γ∗4

.

The result follows since under the null hypothesis, Γ4 ≡ β∗
′

12F
−1
1 β∗12 = λP d.

Proof of bracket 4: We must show that each of the eight components of the fourth bracketed
term in (14) are op(1). The proofs of each are similar and as such we show the results only for the
fourth and seventh components. If we take absolute value of the former we find that

|
∑T+P−τ

t=T (ĥ∗T,1,t+τ − h∗T,1,t+τ )′(−JB0(t)J ′ + B1(t))(Ĥ∗
T,1(t)−H∗

T,1(t))|
≤ k2

1(T−1/2
∑T+P−τ

t=T |ĥ∗T,1,t+τ − h∗T,1,t+τ |)(supt | − JB0(t)J ′ + B1(t)|)(supt T 1/2|Ĥ∗
T,1(t)−H∗

T,1(t)|)

while straightforward algebra along the lines of Clark and McCracken (2005) gives us

∑T+P−τ
t=T β̃

′
1,T B−1

1 (t)(−JB0(t)J ′ + B1(t))(ĥ∗T,1,t+τ − h∗T,1,t+τ )
= (T 1/2J ′2β̃1,T )′F−1

1 J ′2B1(T−1/2
∑T+P−τ

t=T (ĥ∗T,1,t+τ − h∗T,1,t+τ )) + op(1).

Lemma 1 implies both supt T 1/2|Ĥ∗
T,1(t) − H∗

T,1(t)| = op(1) and T 1/2J ′2β̃1,T = Op(1) while
Assumption 3′ suffices for supt | − JB0(t)J ′ + B1(t)| = Op(1). That T−1/2

∑T+P−τ
t=T (ĥ∗T,1,t+τ −

h∗T,1,t+τ ) = op(1) follows an almost identical line of proof to that in Lemma 1b (without the supt |.|
component) but with a different range of summation.
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The result will follow if T−1/2
∑T+P−τ

t=T |ĥ∗T,1,t+τ − h∗T,1,t+τ | = op(1). For simplicity we assume,
as in the proof of Lemma 1, that τ = 2 and hence the forecast errors form an MA(1). If we then
take a Taylor expansion in precisely the same fashion as in the proof of Lemma 1 we have

T−1/2
∑T+P−τ

t=T
|ĥ∗T,1,t+τ − h∗T,1,t+τ | ≤

2k1T
−1

∑T+P−τ

t=T
|ηt+2∇ε̂T,1,t+2(γT )xT,1,t||T 1/2(γ̂T − γT )|

+θ2k1T
−1

∑T+P−τ

t=T
|ηs+1∇ε̂T,1,t+1(γT )xT,1,t||T 1/2(γ̂T − γT )|

+(θ̂ − θ)2k1T
−1

∑T+P−τ

t=T
|ηt+1∇ε̂T,1,t+1(γT )xT,1,t||T 1/2(γ̂T − γT )|

+(T 1/2(θ̂ − θ))T−1
∑T+P−τ

t=T
|ηt+1εT,1,t+1xT,1,t|.

Assumptions 1 or 1′ and 3′ suffice for both T 1/2(γ̂T − γT ) and T 1/2(θ̂ − θ) to be Op(1).
Since, for large enough samples, Assumption 3′ bounds the second moments of ∇ε̂T,1,s+2(γT ) and
∇ε̂T,1,s+1(γT ) as well as xT,1,s; with ηs+τ distributed i.i.d.N(0, 1), T−1

∑T−τ
s=1 |ηs+2∇ε̂T,1,s+2(γT )xT,1,s|,

T−1
∑T−τ

s=1 |ηs+1∇ε̂T,1,s+1(γT )xT,1,s|, and T−1
∑T−τ

s=1 |ηs+1εT,1,s+1xT,1,s| are all Op(1), and the proof
is complete.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H∗
T,1(t) =

T−1
∑t

s=t−T+1 h∗T,1,s+τ (and to a lesser extent Ĥ∗
T,1(t) = T−1

∑t
s=t−T+1 ĥ∗T,1,s+τ ). In particular, if

we substitute T 1/2H∗
T,1(t) ⇒ V 1/2(W ∗(s) −W ∗(s − 1)) for T 1/2H∗

T,1(t) ⇒ V 1/2s−1W ∗(s) as used
above and in the proof of Theorem 2.1, we obtain the desired conclusion.

Proof of Theorem 2.4: Given Theorem 2.3 and the Continuous Mapping Theorem it suffices
to show that P

∑j
j=−j

K(j/M)γ̂∗dd(j)→d 4σ4
u(Γ∗5 +Γ∗6 +Γ∗7) where Γ∗i =d Γi for Γi i = 5−7 defined

in the text. Before doing so it is convenient to redefine the four bracketed terms terms from (14)
used in the main decomposition of the loss differential in Theorem 2.3 (absent the summations, but
keeping the brackets) as

(û∗20,t+τ − û∗21,t+τ ) = {2A∗1,t −A∗2,t} + 2{B∗1,t} + {C∗t } + {D∗
t }.

With this in mind, if we ignore the finite sample difference between P and P − τ + 1, we obtain

P
∑j

j=−j
K(j/M)γ̂∗dd(j) =

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j (û∗20,t+τ − û∗21,t+τ )(û∗20,t−j+τ − û∗21,t−j+τ )

= 4{
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tA

∗
1,t−j} + 4{

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j A∗1,tB
∗
1,t−j}

+4{
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j B∗1,tB

∗
1,t−j}

+ other cross products of A∗1,t, A
∗
2,t, B

∗
1,t, C

∗
t , D∗

t with A∗1,t−j , A
∗
2,t−j , B

∗
1,t−j , C

∗
t−j , D

∗
t−j

.

In the remainder we show that each of the three bracketed terms converges to σ4 times Γ∗i =d Γi

i = 5− 7 respectively and that each of the cross product terms are each op(1).
Proof of bracket 1: As was the case in the proof of Theorem 2.3, the sole difference between this

term and that in the proof of Theorem 2.2 is that they are defined in terms of h∗T,1,t+τ rather than
hT,1,t+τ . Since these terms have the same first and second moments, as well as the same mixing
properties, the exact same proof is applicable and hence we have
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j A∗1,tA

∗
1,t−j =

σ4
∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j (T 1/2H ′∗

T,1(t)B
1/2
1 /σ2)B−1/2

1 (−JB0(t)J ′ + B1(t))×
B−1/2

1 (B1/2
1 h∗T,1,t+τh′∗T,1,t−j+τB1/2

1 /σ2)B−1/2
1 (−JB0(t− j)J ′ + B1(t− j))B−1/2

1 (T 1/2B1/2
1 H∗

T,1(t− j)/σ2)
→d σ4Γ∗5

where Γ∗5 denotes an independent replica of Γ5. Independence follows from the fact that the ηt+τ

are i.i.d. N(0, 1).
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Proof of bracket 2: After rearranging terms, the second bracketed term is

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j A∗1,tB
∗
1,t−j

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1
1 (t− j)(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F
−1
11 (t− j)J ′2(T 1/2β̃1,T )

.

This term is a bit different from that for the second bracketed term in Theorem 2.2. As in the proof
of Theorem 2.3, it differs because J ′2(T 1/2β̃1,T ) is not consistent for β∗12. However, it is true that
both terms are asymptotically normal. To see this note that

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F
−1
1 (t− j)J ′2(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0J ′ + B1)×

(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1J2F
−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
(−JB0J ′ + B1)V B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

→d σ4Γ∗6 ∼ N(0, W )

where W = ln(1+λP )σ−8 lim E{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}.

The asymptotic normality follows from the fact that H∗
T,1(t) is independent of T 1/2β̃1,T and moreover

that T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))→d

∫ 1+λP

1 s−1V 1/2W ∗(s)ds ∼ N(0, ln(1 + λP )V ). As in the proof
of Theorem 2.3, the exact relationship between Γ∗6 and Γ6 depends upon the additional assumptions
stated in the Theorem.

(a) If we let V = σ2B−1
1 , W simplifies to

W = σ6 ln(1 + λP ) limE{(T 1/2β̃1,T )′J2F
−1
1 J ′2(T 1/2β̃1,T )}

= σ6 ln(1 + λP ) limE{(T 1/2β̃1,T )′J2F
−1
1 (T )J ′2(T 1/2β̃1,T )}

= σ6 ln(1 + λP ) limE(d̂) = σ6 ln(1 + λP )d
.

But from Theorem 2.2, the definition of Γ6 gives us

σ4Γ6 = (
∫ 1+λP

1
s−1W (s)ds)′V 1/2B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ ∼ N(0,Ω)

where
Ω = ln(1 + λP )δ′J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ.

Assuming conditional homoskedasticity this simplifies to Ω = σ6 ln(1 + λP )β∗
′

12F
−1
1 β∗12. The result

then follows since under the null, β∗
′

12F
−1
1 β∗12 = d.

(b) If β∗12 is scalar we find that

W = ln(1 + λP ) limE{(T 1/2β̃12,T )2(F−1
1 )2J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2}

= ln(1 + λP ) limE{d̂F1(T )(F−1
11 )4(J ′2B1V B1J2)3}

= ln(1 + λP )d(F−1
1 )3(J ′2B1V B1J2)3

.

But from Theorem 2.2, the definition of Γ6 gives us

σ4
uΓ6 = (

∫ 1+λP

1
s−1W ′(s)V 1/2

ds)B1J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2δ ∼ N(0,Ω)

where
Ω = ln(1 + λP )(β∗12)

2(F−1
1 )4(J ′2B1V B1J2)3.
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The result then follows since under the null, (β∗12)2F
−1
1 = d.

Proof of bracket 3: After rearranging terms, the third bracketed term is

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j B∗1,tB
∗
1,t−j =

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
B−1

1 (t)(−JB0(t)J ′ + B1(t))×
h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1

1 (t− j)(T 1/2β̃1,T )
=

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )J2F
−1
1 (t)J ′2B1(t)h∗1,t+τh′∗1,t−j+τB1(t− j)J2F

−1
1 (t− j)J ′2(T 1/2β̃1,T )

.

This term is also different from that for the third bracketed term in Theorem 2.2. As in the proof of
Lemma 2, it differs because T 1/2J ′2β̃1,T is not consistent for β∗12. Even so, since T 1/2J ′2β̃1,T = Op(1),
the above term is also Op(1). To see this, algebra along the lines of Clark and McCracken (2005)
gives us

∑j
j=−j

K(j/M)T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
J2F

−1
1 (t)J ′2B1(t)h∗T,1,t+τh′∗T,1,t−j+τB1(t− j)J2F

−1
1 (t− j)J ′2(T 1/2β̃1,T )

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 (t)J ′2B1(t)(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1(t)J2F

−1
1 (t)J ′2(T 1/2β̃1,T ) + op(1)

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1(Eh∗T,1,t+τh′∗T,1,t−j+τ )B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= T−1
∑T+P−τ

t=T+j (T 1/2β̃1,T )
′
J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T ) + op(1)

= σ4Γ∗7 ≡ lim λP (T 1/2β̃1,T )
′
J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )

As in the proof for bracket 2 above, the exact relationship between Γ∗7 and Γ7 depends upon the
additional assumptions stated in the the Theorem.

(a) If we let V = σ2B−1
2 , we immediately see that

Γ∗7 ≡ λP σ−4 lim{(T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )}

= λP σ−2 lim{(T 1/2β̃1,T )J2F
−1
1 J ′2(T 1/2β̃1,T )} = λP σ−2 lim d̂ = σ−2λP d

.

But under the null, and with the additional assumption of conditional homoskedasticity, from The-
orem 2.2 we know that

Γ7 ≡ σ−4λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ−2λP β∗

′

12F
−1
1 β∗12 = σ−2λP d = Γ∗7

and the proof is complete.
(b) If we let β∗12 be scalar we find that

σ4Γ∗7 ≡ lim λP (T 1/2β̃1,T )′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2(T 1/2β̃1,T )

= λP lim(T 1/2β̃12,T )2(F−1
1 )2J ′2B1V B1J2

= λP lim d̂F−1
1 (T )(F−1

1 )2J ′2B1V B1J2

= λP dF−1
1 J ′2B1V B1J2 + op(1)

.

But under the null, and with the additional assumption of that β∗12 is scalar, from Theorem 2.2 we
know that

σ4Γ7 ≡ λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP (β∗12)2(F

−1
1 )2J ′2B1V B1J2

= λP dF−1
1 J ′2B1V B1J2 = σ4Γ∗7

and the proof is complete.
Proof of bracket 4: We must show each of the remaining cross-products of A∗1,t, A∗2,t, B∗t , C∗t ,

and D∗
t with A∗1,t−j , A∗2,t−j , B∗t−j , C∗t−j , and D∗

t−j are op(1). The proof is nearly identical to that
for the fourth bracketed term from the proof of Theorem 2.2. The primary difference is that the
relevant moment conditions are all defined in terms of h∗T,1,t+τ rather than hT,1,t+τ . But since these
terms have the same first and second moments, as well as the same mixing properties, nearly the
same proof is applicable and hence for brevity we do not repeat the details.

Proof for the rolling scheme: Results for the rolling scheme differ only in the definition of H∗
T,1(t) =

T−1
∑t

s=t−T+1 h∗T,1,s+τ (and to a lesser extent Ĥ∗
T,1(t) = T−1

∑t
s=t−T+1 ĥ∗T,1,s+τ ). In particular, if
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we substitute T 1/2H∗
T,1(t) ⇒ V 1/2(W ∗(s) −W ∗(s − 1)) for T 1/2H∗

T,1(t) ⇒ V 1/2s−1W ∗(s) as used
above, we obtain the desired conclusion.

Proof of Theorem 2.5: Regardless of whether the recursive or rolling scheme is used, the proof
follows very similar arguments to those used in Theorems 2.3 and 2.4. Any differences that arise
come from differences in the asymptotic behavior of T 1/2J ′2β̃1,T under Assumption 1′ as compared
to Assumption 1. Therefore, since the decomposition at the beginning of the proof of Theorem 2.3 is
unaffected by whether Assumption 1 or 1′ holds, and the first bracketed term does not depend upon
the value of either β∗12 or T 1/2J ′2β̃1,T the same proof can be applied to show 2Γ∗1 − Γ∗2 =d 2Γ1 − Γ2

and Γ∗5 =d Γ5 under Assumption 1′. For the third bracketed term, the asymptotic behavior of
T 1/2J ′2β̃1,T is also irrelevant – all that matters is that the ridge constraint is still imposed whether
working under Assumption 1 or 1′.

Differences arise for the second, and fourth bracketed terms. For the fourth bracketed term,
the differences remain minor since we need only show that the relevant components are all op(1)
and the corresponding proofs only make use of the fact that, under Assumption 1, Lemma 1 implies
T 1/2J ′2β̃1,T = Op(1). These arguments continue to hold since under Assumption 1′, T 1/2J ′2β̃1,T

remains Op(1) – despite also having the property that T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12.

We therefore focus attention on showing that Γ∗i =d Γi for i = 3, 6, 7. In each case, the different
asymptotic behavior of T 1/2J ′2β̃1,T under Assumption 1′ does impact the proofs directly. And as
we saw earlier, in each case the proof also requires additional assumptions as noted in the statement
of the theorem.

Proof that Γ∗3 =d Γ3: As in the proof for Theorem 2.3, the second bracketed term satisfies

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)J ′2(T

1/2β̃1,T ) = T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 J ′2(T

1/2β̃1,T )+op(1).

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have

T−1/22
∑T+P−τ

t=T
h′∗T,1,t+τB1(t)J2F

−1
1 (t)J ′2(T

1/2β̃1,T )

= T−1/22

√
d

β∗
′

12F
−1
1 β∗12

∑T+P−τ

t=T
h′∗T,1,t+τB1J2F

−1
1 β∗12 + op(1)

→ dN(0, 4W )

where
W = ( d

β∗
′

12F−1
1 β∗12

)λP β∗
′

12F
−1
1 J

′
2B1V B1J2F

−1
1 β∗12 .

Since Γ3˜N(0, 4Ω),Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12, the precise relationship between Γ∗3 and Γ3

depends on the relationship between Ω and W . This in turn depends upon the additional restrictions
in the statement of the Theorem.

(a) If we let V = σ2B−1
1 , W simplifies to

W = σ2(
d

β∗
′

12F
−1
1 β∗12

)λP β∗
′

12F
−1
1 β∗12 = σ2λP d.

The result follows since under the null hypothesis, Ω = λP β∗
′

12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = σ2λP β∗

′

12F
−1
1 β∗12 =

σ2λP d.
(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),

W simplifies to
W = dλP tr((−JB0J

′ + B1)V ).

The result follows since under the null hypothesis, Ω = dλP tr((−JB0J ′ + B1)V ) and the proof
is complete.
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Proof that Γ∗6 =d Γ6: As in the proof for Theorem 2.4, the second bracketed term satisfies

∑j
j=−j

K(j/M)
∑T+P−τ

t=T+j A∗1,tB
∗
1,t−j

=
∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
(−JB0(t)J ′ + B1(t))×

h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1
1 (t− j)(T 1/2β̃1,T )

= T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T ) + op(1)

.

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have

T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))

′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T )

= (
√

d
β∗

′
12F−1

1 β∗12
)T−1

∑T+P−τ
t=T+j (T 1/2H∗

T,1(t))
′
B1J2F

−1
1 J ′2B1V B1J2F

−1
1 β∗12 + op(1)

→d N(0, W )

where W = ln(1 + λP )( d
β∗

′
12F−1

1 β∗12
){β∗′12F−1

1 J ′2B1V B1J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 β∗12}.

The asymptotic normality follows from the fact that T−1
∑T+P−τ

t=T+j (T 1/2H∗
T,1(t))→d

∫ 1+λP

1 s−1V 1/2W ∗(s)ds ∼
N(0, ln(1+λP )V ). Since Γ6˜N(0,Ω),Ω = ln(1+λP )δ′J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ,

the precise relationship between Γ∗6 and Γ6 depends on the relationship between Ω and W . This in
turn depends upon the additional restrictions in the statement of the Theorem.

(a) If we let V = σ2B−1
1 , W simplifies to

W = σ6 ln(1 + λP )d .

The result follows since under the null hypothesis,

Ω = ln(1 + λP )δ′J2F
−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2B1V B1J2F

−1
1 J ′2δ

= σ6 ln(1 + λP )β∗
′

12F
−1
1 β∗12 = σ6 ln(1 + λP )d.

.

(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),
W simplifies to

W = ln(1 + λP )d · tr((−JB0J ′ + B1)V )3 .

The result follows since under the null hypothesis, Ω = ln(1 + λP )d · tr((−JB0J ′ + B1)V )3 and the
proof is complete.

Proof that Γ∗7 =d Γ7: As in the proof for Theorem 2.4, the third bracketed term satisfies

∑j

j=−j
K(j/M)

∑T+P−τ
t=T+j B∗1,tB

∗
1,t−j =

∑j

j=−j
K(j/M)T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
B−1

1 (t)(−JB0(t)J ′ + B1(t))×
h∗T,1,t+τh′∗T,1,t−j+τ (−JB0(t− j)J ′ + B1(t− j))B−1

1 (t− j)(T 1/2β̃1,T )
= T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T ) + op(1)

.

What makes this different under Assumption 1′ is that since T 1/2J ′2β̃1,T →p
√

d
β∗

′
12F−1

1 β∗12
β∗12 we also

have
T−1

∑T+P−τ
t=T+j (T 1/2β̃1,T )

′
J2F

−1
1 J ′2B1V B1J2F

−1
1 (T 1/2J ′2β̃1,T )

= λP ( d
β∗

′
12F−1

1 β∗12
)β∗′12F

−1
1 J ′2B1V B1J2F

−1
1 β∗12 ≡ Γ∗7

.

In contrast, the associated term from Theorem 2.2 takes the value Γ7 = λP β∗′12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12.

The exact relationship between these two terms depends upon the additional assumptions stated in
the Theorem.

(a) If we let V = σ2B−1
1 , Γ∗7 simplifies to λP σ2d. The result follows since under the null

hypothesis,Γ7 = λP β∗′12F
−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP σ2d and the proof is complete.

(b) If we let dim(β∗12) = 1 and note that in this case J ′2B1V B1J2 = F1 · tr((−JB0J ′ + B1)V ),
Γ∗7 simplifies to λP dtr((−JB0J ′ + B1)V ). The result follows since under the null hypothesis,
Γ7 = λP β∗′12F

−1
1 J ′2B1V B1J2F

−1
1 β∗12 = λP dtr((−JB0J ′ + B1)V ) and the proof is complete.
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Figure 1:  Densities of MSE(null model)/MSE(alt. model), R = 80, P = 80
DGP 2 experiments
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Table 1: Monte Carlo Rejection Rates, Null Model Best
(nominal size = 10%)

DGP 1
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .009 .041 .018 .015
MSE-F restricted VAR .099 .114 .095 .103
MSE-F fixed regressor .012 .038 .022 .018
MSE-t non-parametric .013 .052 .019 .018
MSE-t restricted VAR .095 .105 .099 .104
MSE-t fixed regressor .015 .047 .026 .024
CW t-test restricted VAR .094 .112 .097 .100

DGP 2
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .000 .013 .004 .003
MSE-F restricted VAR .096 .093 .097 .104
MSE-F fixed regressor .003 .010 .003 .005
MSE-t non-parametric .001 .019 .005 .004
MSE-t restricted VAR .096 .087 .095 .104
MSE-t fixed regressor .005 .019 .007 .005
CW t-test restricted VAR .098 .086 .102 .107

Notes:
1. The data generating processes are defined in equations (5) and (8). In these experiments, the coefficients bij = 0
for all i, j, such that the null forecasting model is expected to be most accurate.
2. For each artificial data set, one-step ahead forecasts of yt are formed recursively using estimates of equations (6)
and (7) in the case of the DGP 1 experiments and equations (9) and (10) in the case of the DGP 2 experiments. These
forecasts are then used to form the indicated test statistics, defined in Section 2.2. R and P refer to the number of
in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against bootstrapped critical values,
using a significance level of 10%. Section 3 describes the bootstrap procedures.
4. The number of Monte Carlo simulations is 2000; the number of bootstrap draws is 499.
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Table 2: Monte Carlo Rejection Rates, Equally Accurate Models
(nominal size = 10%)

DGP 1
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .048 .088 .070 .068
MSE-F restricted VAR .296 .253 .256 .304
MSE-F fixed regressor .091 .114 .101 .108
MSE-t non-parametric .054 .098 .077 .073
MSE-t restricted VAR .283 .208 .237 .281
MSE-t fixed regressor .083 .100 .095 .103
CW t-test restricted VAR .310 .237 .270 .320

DGP 2
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .032 .060 .050 .064
MSE-F restricted VAR .466 .295 .372 .448
MSE-F fixed regressor .085 .088 .081 .099
MSE-t non-parametric .048 .080 .061 .072
MSE-t restricted VAR .480 .262 .356 .451
MSE-t fixed regressor .081 .087 .074 .095
CW t-test restricted VAR .541 .319 .432 .519

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are scaled such that the null and alternative models are expected to
equally accurate (on average) over the forecast sample.
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Table 3: Monte Carlo Rejection Rates, Equally Accurate Models
Rolling Forecasts

(nominal size = 10%)
DGP 1
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .034 .081 .052 .052
MSE-F restricted VAR .336 .245 .295 .340
MSE-F fixed regressor .097 .115 .105 .108
MSE-t non-parametric .043 .101 .065 .062
MSE-t restricted VAR .332 .206 .269 .328
MSE-t fixed regressor .081 .104 .097 .106
CW t-test restricted VAR .359 .241 .317 .378

DGP 2
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .011 .055 .032 .036
MSE-F restricted VAR .541 .323 .418 .524
MSE-F fixed regressor .074 .088 .084 .090
MSE-t non-parametric .022 .076 .047 .044
MSE-t restricted VAR .588 .287 .431 .546
MSE-t fixed regressor .072 .085 .077 .083
CW t-test restricted VAR .623 .358 .499 .612

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are scaled such that the null and alternative models are expected to
equally accurate (on average) over the forecast sample.
3. In these experiments, the forecasting scheme is rolling, rather than recursive.
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Table 4: Monte Carlo Rejection Rates, Alternative Model Best
(nominal size = 10%)

DGP 1
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .348 .299 .424 .544
MSE-F restricted VAR .842 .726 .864 .930
MSE-F fixed regressor .636 .584 .738 .843
MSE-t non-parametric .406 .360 .466 .580
MSE-t restricted VAR .801 .559 .775 .882
MSE-t fixed regressor .508 .366 .541 .668
CW t-test restricted VAR .895 .753 .934 .978

DGP 2
R=40 R=80 R=80 R=80

statistic bootstrap approach P=80 P=40 P=80 P=120
MSE-F non-parametric .477 .330 .587 .792
MSE-F restricted VAR .948 .844 .964 .991
MSE-F fixed regressor .774 .676 .870 .961
MSE-t non-parametric .569 .452 .672 .843
MSE-t restricted VAR .960 .780 .957 .992
MSE-t fixed regressor .684 .488 .752 .896
CW t-test restricted VAR .992 .931 .998 1.000

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bij = 0 are set to empirically-based estimates, which are large enough that
the alternative model is expected to be more accurate than the null model.

46



Table 5: Tests of Equal Accuracy for Monthly Stock Returns
Bootstrap p–values

alternative model MSE(null)/ non- restricted fixed
variable MSE(altern.) param. VAR regressor
cross-sectional premium 1.009 .144 .011 .073
return on long-term Treasury 1.005 .380 .034 .170
BAA-AAA yield spread .996 .691 .619 .492
BAA-AAA return spread .995 .809 .775 .768
net equity expansion .994 .658 .785 .656
CPI inflation .993 .653 .871 .771
stock variance .992 .736 .761 .242
dividend-payout ratio .991 .677 .915 .724
term (yield) spread .987 .737 .970 .987
earnings-price ratio .985 .968 .919 .934
10-year earnings-price ratio .983 .884 .969 .983
3-month T-bill rate .982 .742 .991 .991
dividend-price ratio .981 .836 .948 .995
dividend yield .981 .832 .989 .997
yield on long-term Treasury .978 .810 .995 .995
book-market ratio .965 .998 .998 .996

Notes:
1. As described in section 5, monthly forecasts of excess stock returns in period t + 1 are generated recursively from
a null model that includes just a constant and 15 alternative models that include a constant and the period t (t− 1
in the case of CPI inflation) value of each of the variables listed in the first column. Forecasts from January 1970 to
December 2002 are obtained from models estimated with a data sample starting in January 1954.
2. For each alternative model, the table reports the ratio of the null model’s forecast MSE to the alternative model’s
MSE and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F statistic. Section 3
details the bootstrap methods. The RMSE of the null model is 0.046.
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Table 6: Tests of Equal Accuracy for Core Inflation
Bootstrap p–values

MSE(null)/ non- restricted fixed
alternative model variables MSE(altern.) param. VAR regressor

1-quarter horizon
CFNAI 1.020 .376 .040 .251
CFNAI, food, imports 1.091 .156 .001 .084

4-quarter horizon
CFNAI .920 .711 .919 .894
CFNAI, food, imports 1.257 .235 .001 .053

Notes:
1. As described in section 5, 1-quarter and 4-quarter ahead forecasts of core PCE inflation (specified as a period
t + τ predictand) are generated recursively from a null model that includes a constant and lags of inflation (from
period t and earlier) and alternative models that include one lag (period t values) of the variables indicated in the
table (defined further in section 5). The 1-quarter forecasts are of quarterly inflation; the 4-quarter forecasts are of
4-quarter inflation. Forecasts from 1985:Q1 + τ −1 through 2007:Q2 are obtained from models estimated with a data
sample starting in 1968:Q3.
2. For each of the alternative models, the table reports the ratio of the null model’s forecast MSE to the alternative
model’s MSE and bootstrapped p-values for the null hypothesis of equal accuracy, based on the MSE-F statistic.
Section 3 details the bootstrap methods. The RMSE of the null model is 0.626 at the 1-quarter horizon and 0.451 at
the 4-quarter horizon.
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