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MC3 algorithm is complicated by time-consuming computations necessary for marginal likelihood
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timing of structural change, conditional on which the structural change model collapses to a linear

regression model for which the marginal likelihood is computed relatively quickly. The timing of
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1 Introduction

There are a host of economic and political developments that could be expected to alter the

behavior of, and relationship among, economic variables. As a result, substantial attention has been

given to developing and applying econometric models that incorporate parameter changes, where

the timing of the change is not necessarily known. This paper focuses on an important class of

such models, namely linear models with discrete structural changes in intercept, slope, and residual

variance parameters. This class of models, referred to as simply “structural change models” in the

following, is a common choice in applied work across a number of fields.1.

The potential for structural changes introduces significant dimensions of model uncertainty

regarding their number (how many changes?) and type (which parameters change?). This un-

certainty is in addition to the standard uncertainty regarding which explanatory variables should

be included in the model. If the researcher does not have a priori knowledge of the number and

type of structural changes, a common situation in practice, working with structural change models

can quickly become a showcase in model uncertainty. In particular, for even small numbers of

structural changes and potential explanatory variables, the space of potential models to consider

becomes enormous.

The existing literature has devoted significant attention to the model selection question of the

number of structural changes. From the classical framework, Andrews (1993) and Andrews and

Ploberger (1994) developed hypothesis tests of the null hypothesis of no structural change vs. the

alternative of a single change, while Bai and Perron (1998) and Bai (1999) develop sequential

testing procedures designed to reveal the number of, perhaps multiple, structural changes. From

the Bayesian framework, Inclán (1993) and Wang and Zivot (2000) use posterior odds ratios to

compare models with different numbers of breaks. However, far less attention has been given
1Recent examples of the application of the structural change model include studies of U.S. trend productivity

growth (Hansen, 2001), the predictive power of the yield curve (Estrella, Rodrigues, and Schich, 2003), the dynamics
of international unemployment rates (Pappell, Murray and Ghiblawi, 2000; Summers, 2004), the dynamics of real
interest rates and inflation (Perron, 1990; Wang and Zivot, 2000; Rapach and Wohar, 2005; Clark, 2006), the
volatility of macroeconomic and financial time series (Inclán, 1993; McConnell and Perez-Quiros, 2000; Stock and
Watson, 2002; Sensier and van Dijk, 2004), the evaluation of crime reduction programs (Piehl, Cooper, Braga, and
Kennedy, 2003), the conduct of U.S. monetary policy (Duffy and Engle-Warnick, 2006), the integration of world
equity markets (Bekaert, Harvey and Lumsdaine, 2002), the “Phillips Curve” relationship (Stock and Watson, 1999;
Clark and McCracken, 2006), the effects of sick leave compensation on the amount of sick leave taken (Henrekson
and Persson, 2004), and the effects of the “War on Terror” on transnational terrorism (Enders and Sandler, 2005)
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to other dimensions of model uncertainty in structural change models. Inoue and Rossi (2008)

present procedures based on sequential hypothesis tests designed to provide evidence on the type

of structural change. Their approach provides a subset of parameters that contain the stable

parameters with a pre-specified probability. Hultblad and Karlsson (2008) use a Bayesian approach

to jointly consider uncertainty regarding lag length selection and the number of structural changes in

autoregressive models. This provides techniques to incorporate uncertainty regarding both variable

selection and the number of structural changes. Finally, Levin and Piger (2006) use Bayesian

posterior odds ratios to compare alternative structural change models that can differ over the

inclusion of explanatory variables, the number of structural changes, and the type of each structural

change. However, the Levin and Piger (2006) procedure is based on direct Bayesian comparison of

all potential models, and is thus only feasible for lightly parameterized models with a small number

of structural changes.

Meanwhile, the focus of the existing literature has been on selection of a particular structural

change model, upon which inferences are then based. However, this practice ignores uncertainty

regarding the model itself, which can have dramatic consequences on inferences about quantities

of interest (e.g. Leamer, 1978; Hodges, 1987; Moulton, 1991; Draper, 1995; Kass and Raftery,

1995; Raftery, 1996; Fernández Ley and Steel, 2001). From a Bayesian perspective, incorporating

model uncertainty is conceptually straightforward. In particular, an additional, discrete, parameter

is defined that lies in the model space, and the posterior mass function for this parameter then

provides posterior probabilities that each model is the true model. Posterior distributions for objects

of interest are then averaged across alternative models, using these posterior model probabilities as

weights. This procedure, known as Bayesian Model Averaging (BMA), allows for model uncertainty

to be incorporated into inference regarding objects of interest.2 Unfortunately, the direct averaging

of all possible models will not be feasible when the model space is large, as is the case for all but

the simplest structural change models.

This paper develops a feasible approach to conduct BMA for structural change models, where the

model space encompasses variable selection, the number of structural changes, and the type of each

structural change. The approach exploits the fact that when the timing of the structural changes
2For an introduction to BMA and a review of related literature, see Hoeting, Madigan, Raftery and Volinsky

(1999).

2



is known, the model collapses to a linear regression model with known regressors and, potentially,

heteroskedasticity of a known form. If we define an augmented model space that includes a choice

for the timing of the structural changes, alternative models are then simply heteroskedastic linear

regression models with different sets of regressors. I then rely on existing techniques developed to

conduct feasible BMA for linear regression models. In particular, I apply the Markov Chain Monte

Carlo Model Composition (MC3) algorithm of Madigan and York (1995), which was implemented by

Raftery, Madigan and Hoeting (1997) to conduct BMA in linear regression models. This algorithm

uses a Metropolis-Hastings algorithm to generate samples from the model space, which are used

to estimate posterior model probabilities. Finally, once the posterior model probabilities for the

augmented model space are estimated, the timing of structural change is then integrated out to

arrive at posterior model probabilities for the model space of interest.

The remainder of the paper is organized as follows. Section 2 defines the class of Bayesian

structural change models that will be considered, and establishes aspects of model uncertainty.

Section 3 discusses BMA in the context of the structural change model, while Section 4 develops

the feasible BMA procedures for the structural change model. Section 5 presents an empirical

application of the proposed BMA procedures. In particular, I revisit a large literature investigating

structural changes in the univariate dynamics of post-war U.S. inflation. Section 6 concludes.

2 The Multiple Structural Change Model

2.1 Model Specification and Model Uncertainty

This section defines the class of multiple structural change models to be considered and dis-

cusses dimensions of model uncertainty. Suppose we have T observations through time on a scalar

dependent variable, collected in the vector Y , and on k candidate explanatory variables, collected

in the T x k matrix X. To begin, consider the linear regression model with constant parameters:

Y = αιT +Xjβj + ε, (1)

where Xj is a T x kj matrix holding a subset of the regressors in X, so that kj ≤ k, ιT is a T

vector of 1’s, βj ∈ Rkj is a vector of slope coefficients, and ε is a T vector of i.i.d. normal random

variables with zero mean and variance h−1 ∈ R+. I assume the only source of model uncertainty
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in (1) is with regards to variable selection, so that alternative models differ only by the choice of

Xj . A common choice is to admit all possible combinations of the regressors in X as potential Xj ,

in which case there are 2k potential models.

The structural change model augments equation (1) to allow for mj structural changes that oc-

cur at the changepoints τmj = (τ1, τ2, ..., τmj )′, with τ i a positive integer. To allow for specification

choice regarding the type of structural change, I write this model as follows:

Y = αιT +Xjβj + (Z1
j •D(τ1))γ1

j + ...+ (Zmj

j •D(τmj ))γmj

j + ε, (2)

where • indicates element by element multiplication, Zij is a T x kij subset of Zj = [ιT : Xj ], so

that kij ≤ (kj + 1), D
(
τ i
)

is a T vector of dummy variables with first τ i elements equal to 0 and

remaining elements equal to 1, and γij ∈ Rki
j is a vector of coefficients capturing structural changes

in the intercept and slope parameters at the ith break date. Equation (2) is written compactly as:

Y = Ξjθj + ε, (3)

where Ξj =
[
ιT , Xj ,

(
Z1
j •D

(
τ1
))
, ...,

(
Z
mj

j •D (τmj )
)]

and θj =
(
α, β′j , γ

1′
j , ..., γ

mj ′
j

)′
.

In addition to structural changes in conditional mean parameters, the vector of regression

disturbances is allowed to experience structural changes in variance. This is modeled as:

ε ∼ N
(
0, IT •H−1

)
, (4)

where H is the T vector given by:

H = h0ιT +Djδj . (5)

In (5), Dj is a T x rj matrix holding a subset of the variables in
[
D
(
τ1
)
, D
(
τ2
)
, ..., D (τmj )

]
, so

that rj ≤ mj , while δj ∈ Rrj is a vector of coefficients with ith element:

δj,i = hi − hi−1, i = 1, ..., rj , (6)
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where hi ∈ R+. In this formulation, there are rj structural changes in disturbance variance, and(
hi
)−1 is the disturbance variance in the time period between the ith and (i+ 1)th variance change.

For notational simplicity, collect the rj variance parameters into the vector hrj =
(
h1, h2, ..., hrj

)′.
As is common in the recent literature on structural change models, the changepoints are assumed

unknown and treated as additional parameters to be estimated. In the following, I restrict the

changepoints to be a minimum of b time periods apart:

(τ i − τ i−1) ≥ b, i = 1, ...,mj + 1, (7)

where τ0 = 0 and τmj+1 = T .

The jth structural change model requires a number of specification choices, which introduce

significant dimensions of model uncertainty over the linear regression model with constant coeffi-

cients. First, as with (1), the regressors allowed to enter the model must be chosen, which is again

determined by a choice of Xj . Second, the number of structural changes, mj , must be set, where

mj can take on integer values from 0 to a maximum of m∗. Third, we must specify which of the

conditional mean parameters (α and each element of βj) are allowed to change at each of the mj

changepoints. This is alternatively stated as a choice of which of the variables in Xj is allowed

to have a changed relationship with Y at each changepoint, and is determined by choices for the

Zij matrices. I denote this choice as Rj =
[
Z1
j , ..., Z

mj

j

]
. Finally, we must specify at which of the

changepoints the disturbance variance is allowed to change. This is given by a choice of Dj in (5),

which holds the relevant dummy variables for capturing structural changes in variance.

Note that it is possible for Zij or Dj to be the empty set, in which case certain parameters

capturing structural changes drop out of the model. However, the choice of Zij and Dj must be

consistent with mj structural changes. For example, if Zij is the empty set, so that there are no

structural changes in conditional mean parameters at the ith changepoint, then it must be the case

that Dj includes D(τ i), so that there is a residual variance change at τ i. Otherwise, the model

would not have mj structural changes, but mj − 1.

The jth structural change model, denoted Mj , is then determined by a choice of

{Xj ,mj , Rj , Dj}, and the number of potential models is determined by the number of unique

combinations of {Xj ,mj , Rj , Dj} considered. Throughout the remainder of this paper, I set m∗ to
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its largest possible value given T and b, which is m∗ =
⌊
T
b

⌋
− 1, allow Xj to be any combination

of X, allow Zij to be any combination of Zj , and allow Dj to hold any combination of the dummy

variables in
[
D
(
τ1
)
, D
(
τ2
)
, ..., D (τmj )

]
. In this case, the number of potential structural change

models is:

N =
bT

b c−1∑
mj=0

 k∑
kj=0

(
k!

kj !(k − kj)!

)(
2kj+2 − 1

)mj

 . (8)

The space of all N possible models is denoted by M, where M = {Mj : j = 1, ..., N}.

2.2 Prior Specification

The Bayesian approach to parameter estimation and model comparison for alternative struc-

tural change models requires the specification of prior distributions for all model parameters. The

joint prior density function for Mj , denoted p(θj , h0, hrj , τmj |Mj), is usefully factored as follows:

p(θj , h0, hrj , τmj |Mj) = p(τmj |θj , h0, hrj ,Mj)p(θj , h0|hrj ,Mj)p(hrj |Mj). (9)

I specify proper prior density functions for each of the components of (9). For τmj I place equal

prior probability on all possible locations of the changepoints. This is a commonly used prior in the

literature investigating Bayesian multiple break models (e.g. Inclán, 1993; Stephens, 1994; Wang

and Zivot, 2000). Denote the countable set of Cmj possible values for τmj as Smj . The probability

mass function p(τmj |θj , h0, hrj ,Mj) is then uniform:

p(τmj |θj , h0, hrj ,Mj) = p(τmj ) =
1

Cmj

, τmj ∈ Smj , (10)

where:

Cmj =
((T − 2b+ 1)− (mj − 1) (b− 1))!

mj ! ((T − 2b+ 1)− (mj − 1) (b− 1)−mj)!
. (11)

I assume prior independence between each element of hrj and the other model parameters, so that

p(θj , h0|hrj ,Mj) = p(θj , h0|Mj). For θj and h0, I use the natural conjugate Normal-Gamma prior

density function:
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θj |h0 ∼ N
(
µ
j
, (h0)−1V j

)
, (12)

h0 ∼ G
(
a0, b0

)
. (13)

The use of the natural conjugate prior will simplify calculations considerably in the case where there

are no structural changes in variance. For the remaining residual variance parameters collected in

hrj , I specify independent and identical Gamma prior density functions, so that p
(
hrj |Mj

)
=

rj∏
i=1

p(hi|Mj), where:

hi ∼ G(a, b). (14)

3 Bayesian Model Averaging for the Multiple Structural Change
Model

The Bayesian approach to comparing alternative Mj is based on the posterior probability that

Mj is the true model:

Pr(Mj |Y ) =
f (Y |Mj) Pr (Mj)

N∑
n=1

f (Y |Mn) Pr (Mn)

, Mj ∈M. (15)

In (15), Pr(Mj) is the prior probability that Mj is the true model, while f(Y |Mj) is the marginal,

or integrated, likelihood function:

f(Y |Mj) =
∫
f(Y |θj , h0, hrj , τmj ,Mj)p(θj , h0, hrj , τmj |Mj)dθj dh0 dhrj dτmj , (16)

where:

f(Y |θj , h0, hrj , τmj ,Mj) =
|IT •H|

1
2

(2π)
T
2

exp
[
−1

2
(Y − Ξjθj)′(IT •H)(Y − Ξjθj)

]
, (17)

is the likelihood function for Mj .
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Construction of Pr(Mj |Y ) requires specification of Pr(Mj), where
N∑
n=1

Pr(Mn) = 1. Here I

describe one strategy for setting Pr(Mj) that will be used in the application presented in Section

6. To begin, factor Pr(Mj) as follows:

Pr(Mj) = Pr(Xj,mj , Rj , Dj) = Pr(Rj , Dj |Xj ,mj) Pr(Xj |mj) Pr(mj). (18)

For Pr(mj), I assign equal probability to the model that contains no breaks (mj = 0) and the class

of models with at least one break (mj > 0), and further assume equal probability across those

models with at least one break:

Pr(mj) =


1
2
, mj = 0

1
2
(⌊

T
b

⌋
− 1
) , mj = 1, 2, ..,

⌊
T
b

⌋
− 1

 (19)

For Pr(Xj |mj), I assign equal probability to each of the 2k possible choices of Xj :

Pr (Xj |mj) = Pr(Xj) =
1
2k
. (20)

Finally, for Pr(Rj , Dj |Xj ,mj) I assign equal probability to each of the possible choices of Rj and

Dj given Xj and mj :

Pr(Rj , Dj |Xj ,mj) =
1(

2kj+2 − 1
)mj

. (21)

Once obtained, the posterior model probabilities can be used to provide statistical evidence

regarding various objects of interest in a straightforward fashion. One approach for using Pr(Mj |Y )

is to find the model with highest posterior probability:

M̃j = max
Mj

[Pr (Mj |Y )] . (22)

and then make inference about objects of interest based on M̃j alone. However, this approach

ignores information in models other than M̃j , and thus does not yield inferences that fully incorpo-

rate model uncertainty. Instead of basing inference on a single, highest probability model, we could
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instead average inference about objects of interest across alternative models, where averaging is

with respect to Pr(Mj |Y ). In particular, suppose we have an object of interest from the structural

change model, denoted Ψ, which has a common interpretation across alternative models. We can

construct a posterior density function for Ψ that incorporates model uncertainty as follows:

p(Ψ|Y ) =
N∑
n=1

p(Ψ|Y,Mn) Pr(Mn|Y ), (23)

where p(Ψ|Y,Mj) is the posterior density for Ψ from model Mj . This approach to incorporating

model uncertainty is called Bayesian Model Averaging (BMA). As an example of BMA in the

context of a structural change model, consider the posterior probability that the true model contains

mj structural changes. This is constructed as follows:

Pr(mj |Y ) =
N∑
n=1

Pr (mj |Y,Mn) Pr(Mn|Y ), (24)

where Pr(mj |Y,Mn) = Pr(mj |Mn) is 1 if mn = mj and is 0 otherwise. As another example,

consider the posterior density for the coefficient on the first regressor in X, denoted x1. Define δ∗t

as the value of this coefficient in period t, where:

δ∗t = β∗j + γ1∗
j Dt

(
τ1
)

+ ...+ γ
mj∗
j Dt (τmj ) . (25)

In (25), β∗j is equal to the appropriate element of βj when x1 is included in Xj and is zero otherwise,

γi∗j is equal to the appropriate element of γij when x1 is included in Zij and is zero otherwise, and

Dt

(
τ i
)

is the tth element of D
(
τ i
)
. The BMA posterior density for δ∗t is then:

p(δ∗t |Y ) =
N∑
n=1

p (δ∗t |Y,Mn) Pr (Mn|Y ) (26)

4 A Feasible Approach to BMA for the Multiple Structural
Change Model

While BMA for the multiple structural change model is conceptually straightforward, the po-

tentially enormous model space makes direct calculation of each Pr (Mj |Y ) based on (15) practically
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infeasible for all but the simplest cases. For example, even with a small number of potential regres-

sors (k = 2), a moderate sample size (T = 100), and a minimum regime length of 10 time periods

(b = 10), there are N > 1011 alternative models to consider. Although exacerbated by the presence

of structural breaks, this problem is not unique to multiple structural change models. Indeed,

direct calculation of all posterior model probabilities is infeasible for the linear regression model

in (1) once k becomes large. For linear regression models, a popular alternative approach is to

sample the model space using a posterior simulator designed to obtain draws from the multinomial

probability distribution given by the posterior model probabilities. A commonly-used example of

this approach is the Markov Chain Monte Carlo Model Composition (MC3) algorithm of Madigan

and York (1995), which uses a posterior simulator based on the Metropolis-Hastings algorithm.

MC3 was implemented by Raftery, Madigan and Hoeting (1997) for Bayesian Model Averaging in

linear regression models, and has been used in a number of economic applications involving linear

regression (e.g. Fernández, Ley and Steele, 2001a, 2001b).

In this section I design an MC3 algorithm to conduct BMA for the multiple structural change

model. One could apply an MC3 algorithm to sample directly from the model space defined byM.

However, in order to calculate the Metropolis-Hastings acceptance probability, this algorithm would

require computation of the marginal likelihood in (16) for each model, which is very computationally

expensive. To sidestep this computational difficulty, I instead apply the MC3 algorithm to an

augmented model space that includes a choice for the timing of the structural changes, conditional

on which the structural change model collapses to a linear regression model for which the marginal

likelihood is computed relatively quickly. This added element of the augmented model space is then

integrated out to arrive at estimates for Pr(Mj |Y ).

In particular, consider a model defined by a particular structural break model, Mj , augmented

with a specific location for the break dates, τmj . Inspection of (3)-(5) reveals that this model

is simply a Normal linear regression model with known regressor matrix, Ξj , and, potentially, a

disturbance variance that changes at known dates. In the case where there are no structural changes

in disturbance variance, the marginal likelihood can be computed analytically:
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f(Y |Mj , τmj ) =
Γ( b

0+T
2 )(a0b0)

b0

2

Γ( b
0

2 )π
T
2


∣∣∣∣(V −1

j + Ξ′jΞj
)−1

∣∣∣∣
|V j |


1
2

(dj)

(
− b0+T

2

)
, (27)

where:

dj = a0b0 +
(
Y − Ξj θ̂j

)′ (
Y − Ξj θ̂j

)
+
(
θ̂j − µj

)′ [
V j +

(
Ξ′jΞj

)−1
]−1 (

θ̂j − µj
)
, (28)

and θ̂j is the ordinary least squares estimate of θj . In the case where there are structural changes in

disturbance variance, the marginal likelihood no longer takes a convenient analytical form. However,

there are a number of approximating techniques that can be used to provide very accurate estimates

of the marginal likelihood for such a model, with little computational expense. Here, I use the

approach of Chib(1995), which is based on simulations from the Gibbs Sampler applied to the

linear regression model. For the linear regression model with structural changes in disturbance

variance of known timing, and the parameter priors discussed above, Chib’s approach can be

implemented using only a single Gibbs run. In untabulated Monte Carlo experiments using a linear

regression model with 10 regressors, 5 breaks in disturbance variance, and a sample size of 200, I

found that the procedure produced estimates of the log marginal likelihood across 1000 separate

Gibbs runs that were never more than 0.08% apart, even when using a very small number of total

Gibbs simulations (100 simulations following 100 burn-in simulations).3 Such a small number of

Gibbs simulations can be produced in approximately one-100th of a second at current computing

speeds, making use of the Chib approach as a step in the MC3 sampler feasible. Details of the Chib

(1995) technique are discussed in the appendix.

The MC3 algorithm is then designed to simulate a chain of models from the augmented model

space defined by Mj ∈ M and τmj ∈ Smj , where the limiting distribution of the chain is the

multinomial distribution given by Pr(Mj , τmj |Y ), the joint posterior probability that Mj is the

true model and τmj is the true location of the changepoints. Denote the gth simulated model from

this chain as (M (g)
q , τ

(g)
mq ). That is, M (g)

q is one of the structural break models, M1, M2, ..., MN ,

3These results are consistent with the Monte Carlo simulations of Bos (2002), which show the Chib (1995) approach
to provide accurate estimates of the marginal likelihood for the linear regression model.
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and τ
(g)
mq is one of the Cmq possible values for τmq . The (g + 1)st simulation is then generated via

the following steps:

1. Choose a candidate model, denoted (M (∗)
s , τ

(∗)
ms ) with equal probability from a set of neigh-

borhood models to (M (g)
q , τ

(g)
mq ). The set of neighborhood models is defined as:

(a) The current model, (M (g)
q , τ

(g)
mq ).

(b) All models that add one explanatory variable to the current model, so that ks = kq + 1.

(c) All models that remove one explanatory variable from the current model, so that ks =

kq − 1. Note that such models will also involve removing any regressors in Rq related to

structural changes in the coefficient on the deleted explanatory variable.

(d) All models that add a single structural change for an existing explanatory variable, that

is an explanatory variable included in Xq. This can be achieved by adding a coefficient

break at an existing changepoint, so that ms = mq, or by adding a coefficient break at

a new changepoint, in which case ms = mq+1.

(e) All models that remove a single structural change for an existing explanatory variable.

(f) All models that add a single structural change in disturbance variance. The new struc-

tural change can be either at an existing changepoint, so that ms = mq, or at a new

changepoint, in which case ms = mq+1.

(g) All models that remove a single structural change in disturbance variance.

2. Compute the Metropolis-Hastings acceptance probability:

α (g, ∗) = min

(
f(Y |M (∗)

s , τ
(∗)
ms )Cmq Pr(Ms)Bg

f(Y |M (g)
q , τ

(g)
mq )Cms Pr(Mq)B∗

, 1

)
(29)

where Bg is the number of neighborhood models to the gth simulated model and B∗ is the

number of neighborhood models to the candidate model. In (29), the prior probabilities for the

structural break model, Pr
(
M

(∗)
s

)
and Pr

(
M

(g)
q

)
, are given in (18). As discussed above, the

marginal likelihoods, f
(
Y |M (∗)

s , τ
(∗)
ms

)
and f

(
Y |M (g)

q , τ
(g)
mq

)
can be computed using (27) when
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the corresponding structural break model, M (∗)
s or M (g)

q , does not contain structural changes

in disturbance variance. Again, when the structural break model does contain structural

changes in variance, the marginal likelihoods are computed using the approach in Chib(1995).

3. Set the (g+ 1)st simulated model equal to the candidate model with probability α and equal

to the gth simulated model with probability 1− α.

The algorithm is initialized with an arbitrary initial model. G1+G0 simulations are then conducted,

with the first G0 discarded to ensure convergence.

To estimate posterior model probabilities for the alternative structural break models, we could

simply count the relative frequency that each model is visited by the MC3 algorithm. In other

words, an estimate of Pr(Mj |Y ) is given by:

1
G1

G1∑
g=G0+1

I(g), (30)

where I(g) is an indicator function that equals one if M (g)
q = Mj and is zero otherwise. Note that

this approach implicitly gives zero posterior probability to any model that is not visited by the

sampler. This fact suggests an alternative estimate of Pr(Mj |Y ), which is to calculate posterior

model probabilities directly, where the set of possible models is reduced to the set of models that

were actually visited by the sampler. In other words, an estimate of Pr(Mj |Y ) is given by:

∑
τmj∈Smj

f(Y |Mj , τmj ) Pr(Mj) 1
Cmj

I(Mj , τmj )∑
Ms∈M,τms∈Sms

f(Y |Ms, τms) Pr(Ms) 1
Cms

I(Ms, τms)
, (31)

where I(Ms, τms) is an indicator function that equals one if (Ms, τms) is a model that is visited by the

MC3 sampler and is zero otherwise. As the set of models visited by the sampler will have far fewer

elements than the set of all possible models, these calculations will be feasible. Further, provided

the estimates of f
(
Y |Mj , τmj

)
are accurate, the posterior model probability estimates based on

(31) are more accurate than those based on (30), as probabilities for the reduced set of models

are computed directly rather than based on the relative frequency of model visits. When posterior

model probabilities are based on (31), it is clear that the MC3 algorithm is simply providing an
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mechanism to seek out high probability models. This use of the MC3 algorithm is discussed in

detail in Fernandez, Ley and Steele (2001a, 2001b).

The two approaches to estimate Pr(Mj |Y ) also provides a useful diagnostic tool to check the

convergence of the MC3 sampler. In particular, provided that the MC3 sampler has converged to

taking draws from its ergodic distribution, and provided that enough draws are taken to accurately

characterize relative model probabilities, the estimates based on (30) should be close to those based

on (31). Indeed, Fernandez, Ley and Steele (2001b) suggest calculating the correlation between the

two posterior model probability estimates as a metric to evaluate convergence of the MC3 sampler.

5 Application: Structural Changes in the U.S. Post-War Inflation
Rate

A substantial recent literature is devoted to evaluating the evidence for parameter change in

time-series models for the post-war U.S. inflation rate. In particular, Cogley and Sargent (2001)

argue that the persistence of shocks to the U.S. inflation rate have varied considerably over the

sample period, being lower prior to the “great inflation” and after the Volcker disinflation, and

higher between these episodes. The Cogley and Sargent results are consistent with earlier work by

Evans and Wachtel (1993) and Barsky (1987), which documented variation in inflation persistence.

However, the Cogley and Sargent results have been challenged by Pivetta and Reis (2007) and Stock

(2001). In particular, these authors argue that evidence for shifts in persistence is not statistically

significant, particularly once one allows for shifts in the residual variance of the model for the

inflation rate. A large subsequent literature has investigated the evidence for changes in inflation

persistence using a variety of models of parameter instability, and has provided mixed results.4 The

stakes in this debate are quite high, as the stylized facts regarding inflation are key metrics often

used to evaluate the plausibility of structural macroeconomic models.

Here we apply the BMA procedures described above to evaluate the evidence for the number

and type of structural changes in the parameters of an autoregressive process fit to the post-war

U.S. inflation rate. We measure inflation as the quarterly percentage change in the U.S. GDP
4See, for example, Stock and Watson, 2007; Levin and Piger, 2002; Benati, ??; Giordani and Kohn, 2008; and

Murray, Nikolsko-Rzhevskyy, and Papell, 2008.
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Deflator, sampled from the first quarter of 1952 through the second quarter of 2008. To begin,

consider the kthj -order autoregressive model with constant parameters:

yt = α+ φ1yt−1 + φ1yt−1 + ....+ φkj
yt−kj

+ εt, (32)

where yt is the inflation rate measured for quarter t, and εt ∼ i.i.d.N(0, h−1). A key quantity of

interest in the study of inflation dynamics is the persistence of inflation, or the extent to which an

innovation, εt, has long-lived effects on the level of the inflation rate. A commonly used measure of

persistence is the sum of the autoregressive coefficients, denoted ρ =
kj∑
i=1

φi. To measure ρ directly,

we rewrite (32) using the Dickey-Fuller transformation:

yt = α+ ρyt−1 + γ1∆yt−1 + ....+ γk−1∆yt−(kj−1) + εt, (33)

where the γh are linear combinations of the φi.

We use the BMA procedures developed above to consider both uncertainty about variable selec-

tion and uncertainty about the number and type of structural changes in (33). In the autoregressive

model, uncertainty about variable selection is related to which autoregressive lags should be in-

cluded. Suppose we consider a maximum of k∗ autoregressive lags. Then, in the notation of the

model in (2), we have the matrix of potential regressors, X = (y−1, y−2, ..., y−k∗), where y−k is the

vector holding the kth lags of inflation.

The jth inflation structural change model will then involve choices of Xj , mj , Rj , and Dj ,

which in turn will define the matrix of regressors Ξj in (3). We parameterize the parameter prior

distributions as follows. In terms of the conditional mean parameters, I set all elements of µ
j

equal

to zero, with the exception of the element corresponding to ρ when y−1 is included in the model,

which is set equal to one. This centers the prior for ρ on a unit root process when y−1 is included

in the model. The prior variance for conditional mean parameters is set as follows:

V j =
(
c 0
0 V ∗j

)
.

It is well known that posterior model probabilities are sensitive to the amount of prior information

incorporated for parameters in alternative models. In particular, if a prior distribution is very
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diffuse for a particular parameter, models that do not include this parameter will tend to be

preferred over those that do include this parameter. Here I follow a strategy that is consistent with

Fernandez, Ley and Steele (2001), which involves using very diffuse priors for parameters that are

in all models, and more informative priors for parameters that are in some models, but not others.

In particular, the element c in V j captures the prior variance on the intercept parameter, α, which

is assumed to be in all models considered. As such, I set c = 100, 000, which suggests very little

prior information regarding α. The matrix V ∗j captures the prior variance-covariance matrix of the

remaining conditional mean parameters in (3), which are not in each possible model. To set V ∗j I

use the ”g-prior” specification:

V ∗j =
[
gjΞ′jΞj

]−1 (34)

The g-prior simplifies the specification of V ∗j to the choice of a single value, gj . The g-prior was

introduced in Zellner (1986), and its use was investigated in the context of BMA for linear regression

models by Fernandez, Ley and Steel (2001). Here I set gj = 1
T , where T is the sample size, which

is based on the “unit information prior” of Kass and Wasserman (1995), and was one of the priors

investigated in Fernandez, Ley and Steel (2001). Future versions will investigate the sensitivity of

results to alternative specifications of g.

I specify the prior densities for the precision parameters, h0, h1,..., hrj as follows. The first-

regime precision parameter, h0, is in all models considered, and as such I specify a prior distribution

that is quite diffuse, setting a0 = 1 and a0 = 1 x 10−10. This yields a Gamma density with mean

of 1 and variance 1 x 1010. For the remaining precision parameters, I set a = 1 and b = 0.5, which

yields a Gamma density with mean of 1 and variance of 2. Finally, I set the minimum regime length

to b = 8 quarters, and the maximum lag length to k∗ = 4. The prior probability of alternative

models, Pr(Mj |Y ), is set as described in Section 3.

The MC3 algorithm described in Section 4 is run for G0 = 1 million simulations to ensure

convergence, after which an additional G1 = 2 million simulations are collected on which to base

inference.5 I perform a number of checks to evaluate convergence of the sampler. First, the

correlation between the probabilities based on sampler visit rates (based on (30)) and those based
5These simulations required roughly 8 hours - more details on computation time to come...
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Table 1: Posterior Inclusion Probabilities for Potential Lags
in U.S. Inflation Autoregression

Variable Posterior Inclusion Probability
y−1 1.000

∆y−1 1.000
∆y−2 0.939
∆y−3 0.253

on direct calculation of posterior probabilites for the set of visited models (based on (31)) is greater

than 0.99. Second, results based on a shorter run of G1 = 500,000 simulations after only G0

=100,000 burn-in drawings were very similar to those obtained from the longer simulation. Third,

results obtained from two runs, one in which the initial model used to start the sampler is the

model with no breaks, and one in which the initial model is a model with the maximum number of

breaks in all parameters, were also very similar.

Table 1 begins by giving the posterior inclusion probabilities for each of the potential explanatory

variables in X. That is, for each particular variable in X, Table 1 reports the sum of the posterior

probability of all models that contain this element. As can be seen from the table, all models visited

by the sampler included y−1 and y−2, so that the posterior probability that there is at least AR(2)

dynamics in the inflation rate is unity. There is substantial evidence of higher order dynamics as

well. In particular, the posterior inclusion probability for ∆y−3 is 0.94. The inclusion probability

for ∆y−4, which corresponds to AR(4) dynamics, is much lower, but still substantial.

Table 2 presents the posterior probabilities for alternative values of the number of structural

breaks, mj , defined as in (24). The results demonstrate that there is overwhelming evidence for

structural breaks, and that two is the preferred number of structural breaks, receiving 72% of the

posterior probability. There is some non-trivial uncertainty regarding the true number of structural

breaks, with one and three breaks receiving 17% and 10% posterior probability respectively.

Next we move to evaluating the specific type of structural change models that are preferred.

Table 3 gives the posterior probability for alternative numbers of structural breaks in the individual

parameters of the model. In particular, for the model intercept (α), the measure of persistence (ρ),

and the disturbance precision (h), Table 3 reports the sum of the posterior probability of all models

that contain 0, 1, 2, ..., m∗ structural changes in that parameter. These results suggest substantial
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Table 2: Posterior Probability of Alternative Numbers of Structural Breaks
in U.S. Inflation Autoregression

Number of Breaks Posterior Probability
0 0.000
1 0.174
2 0.723
3 0.102
4 0.001
>4 0.000

Table 3: Posterior Probability of Structural Breaks in Individual Parameters
of U.S. Inflation Autoregression

Parameter Number of Breaks Posterior Probability
α

0 0.912
1 0.080
2 0.009
>2 0.000

ρ
0 0.016
1 0.220
2 0.763
>2 0.000

h
0 0.000
1 0.666
2 0.237
3 0.096
>3 0.000

evidence of changes in inflation persistence and disturbance variance. In particular, there is 98%

posterior probability of at least one break in ρ, and 100% posterior probability of at least one break

in disturbance variance. There is less evidence of changes in the regression intercept, with 91%

posterior probability given to models with no break in α.

Table 4 shows posterior model probabilities for the top 10 posterior probability structural change

models that were visited by the sampler. There are at least two salient points that stand out in

Table 4. First, there is substantial uncertainty regarding the identity of the true model, with several

models receiving non-trivial posterior weight. This implies that inference that is based on only one

model will substantially understate uncertainty related to the choice of model, and argues for the
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Table 4: Ten Highest Posterior Probability Structural Change Models
for U.S. Inflation Autoregression

Posterior Probability Included Regressors First Break Second Break Third Break
0.255 yt−1, ∆yt−1, ∆yt−2 ρ ρ, h –
0.128 yt−1, ∆yt−1, ∆yt−2 ρ, h ρ, h –
0.101 yt−1, ∆yt−1, ∆yt−2 ρ, h – –
0.088 yt−1, ∆yt−1, ∆yt−2, ∆yt−3 ρ ρ, h –
0.045 yt−1, ∆yt−1, ∆yt−2 h ρ, h ρ, h
0.028 yt−1, ∆yt−1, ∆yt−2, ∆yt−3 ρ, h ρ, h –
0.026 yt−1, ∆yt−1, ρ ρ, h –
0.021 yt−1, ∆yt−1, ∆yt−2, ∆yt−3 ρ ρ, h –
0.021 yt−1, ∆yt−1, ∆yt−2, ∆yt−3 ρ, h – –
0.020 yt−1, ∆yt−1, ∆yt−2, ∆yt−3 h ρ, h ρ, h

use of BMA. Second, all of the top 10 models are partial structural change models that are not

represented by the baseline specification often used in the literature in which all parameters are

allowed to change at each changepoint.

Finally, Figures 1-2 plot the median of the BMA posterior distribution for the sum of the

autoregressive coefficients and the standard deviation of the disturbance variance at each point in

the sample, constructed as in (26). Figure 1 shows a pattern for the persistence measure that is

consistent with Cogley and Sargent (2001), in which persistence rises during the 1960’s, remains

high in the 1970’s, and falls in the early 1980’s. The disturbance standard deviation is high during

the first half of the sample, before falling dramatically in the early 1980’s.

6 Conclusion

Coming soon....
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Figure 1: Bayesian Model Averaged Posterior Distribution of Sum of AR Coefficients
for U.S. Inflation Autoregression

Figure 2: Bayesian Model Averaged Posterior Distribution of Disturbance Std. Deviation
for U.S. Inflation Autoregression
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