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1 Introduction

Over the past two decades dynamic factor models have become a standard econometric
tool for both measuring comovement in and forecasting macroeconomic time series. The
popularity of these models has risen as methods have been developed to perform factor
analysis on the large datasets that these models naturally apply to (e.g. Stock and
Watson 1998, Forni, Hallin, Lippi, Reichlin 1998, Kose, Otrok and Whiteman 2003).
The motivation underlying these models is that there are a few common factors that
drive fluctuations in large cross sections of macroeconomic time series. One goal of this
literature has been to extract information from large datasets that is useful in forecasting
exercises. A second goal, and the one we focus on this paper, is the use of the factor
models to quantify both the extent and nature of comovement in a set of time series
data. For example, Forni et. al. (1998) study the role of sector specific and aggregate
technological shocks on disaggregated industry level output data in the United States.
Stock and Watson (1999) use their model to study the dynamics of inflation in the US
using sectoral inflation data. In the international context Forni and Reichlin (2001)
study comovement of regional output in European countries while Kose, Otrok and
Whiteman (2003) quantify the importance of world, regional and country specific cycles

in international macroeconomic data.

An assumption of these models is that the relationships between variables has not
changed over time. Recent empirical work shows that the assumption of structural sta-
bility is invalid for many macroeconomic datasets. For example, the break in volatility in
the United States documented by McConnell and Perez-Quiros (2000) suggests a change
in the nature of US business cycles. Cogley and Sargent (2000) study and document the
changing nature of inflation dynamics in the United States during the post-War period.
In the international arena Heathcote and Perri (2002), Doyle and Faust (2002) and Kose,
Prasad and Terrones (2003) document that cross country correlations have changed over
time while Kose, Otrok and Whiteman (2003) find that the importance of a common

dynamic factor in G7 data varies by sample period

In this paper we develop a dynamic factor model with time-varying coefficients to



bridge the literature on factor models with the literature on instability in the time series
properties of macroeconomic data. Specifically, the model allows us to measure and
quantify the changing nature of relationships between individual time series through their
dependence on common factors. Our model is general enough that it allows for changing
relationships among variables in the dataset without imposing that these changes have
occurred or assuming a date for the changes. Additionally, we allow the dates and extent
of these changing relationships to vary across the variables in the dataset. Whether or
not changes have occurred, when these changes took place, and to which variables these

changes affect are all dictated by the data

The application of our econometric model is to the study of international business
cycle dynamics and is motivated by the apparently large structural changes that the
world has faced in the past three decades. In this period the world has experienced a
series of trade agreements, large macroeconomic shocks and changes in monetary and
exchange rate regimes. What has been the impact of these changes on the nature of
the international business cycle? Has the degree of comovement increased or decreased?
Have common fluctuations become more or less volatile? Has the impact of the cycle on
individual countries evolved over time? These questions are of interest to both policy
makers and academic economists. The issues of whether the volatility of the cycle has
increased or declined, and whether countries have become more or less symmetric, are
central to monetary and fiscal policy issues. These questions are also of interest to aca-
demics, who have been debating the effects of trade, monetary, and financial integration
on cross-country business cycle synchronization. ! Since economic theory does not give
us unambiguous predictions for the effects of these changes, empirical work on these

issues is particularly valuable.

Kose and Yi (2002) argue trade theory predicts that increased trade increases synchronization of
macroeconomic aggregates. Frankel and Rose (2002) argue that monetary unions spur trade which in-
creases comovement across countries. However, trade (Krugman 1991) and financial integration (Kalemli-
Ozcan, Sgrensen, and Yosha 2003) can also increase the degree of specialization, and higher specialization

can make business cycles less synchronized (Kalemli-Ozcan, Sgrensen, and Yosha 2001).



2 Measuring and Estimating Models of Macroeconomic

Comovement

Part of the reason behind the resurgence in interest in dynamic factor models are the
new techniques for estimating such models that have become available, such as the time-
domain approach of Stock and Watson (1989, 1998) and the frequency-domain approach
of Forni and Reichlin (1998) and Forni, Hallin, Lippi, Reichlin (2000, 2001).? The work of
Otrok and Whiteman (1998) and Kim and Nelson (1998) provide a Bayesian alternative
to the classical approaches. The motivation for developing new estimation techniques
for these models is that they are the favored econometric tools for many researchers who
wish to characterize comovement in macroeconomic variables. Dynamic factor models
have the advantage over observable index models, such as weighted aggregates, that one
does not need to take a stand on the weighting scheme used in aggregation. Further-
more, in a dynamic factor model the sheer size of a country does not imply that one
country is naturally more important than smaller countries in characterizing the common

comovement.>

Our papers builds on the existing dynamic factor literature by developing a procedure
that allows for time variation in the factor loadings. The current literature on dynamic
factor models generally assumes no time variation in the relationships in the data.*
One approach to studying changes in comovement has been to study subsamples. For
example, Stock and Watson (2003) and Kose, Otrok and Whiteman (2003b) use factor
models to investigate changes in international business cycles.” Since neither of their
factor models have an intrinsic time-varying feature, changes in comovement are based on
sub-sample estimation. While these studies provide valuable information using relatively
parsimonious models the limitations of this approach are twofold. First, one must take

a stand on which subsamples to study. Second, this approach imposes that changes in

2Forni and Reichlin’s (2001) study of comovements among regional output in Europe is an application

of these techniques.
3This follows from the fact that a factor model is a decomposition of the second moments of a time

series.
4Chauvet and Potter 2001 represents an exception.
5The sub-sample approach is also used by those who study comovement using correlations.



comovement across variables occurs at the same time. By allowing for time variation in
the factor loadings we capture changes in comovement without imposing a date, much

less a common date, for those changes. ©

The time-variation in the exposure of macroeconomic aggregates to the common
factors captures two evolving features of the business cycle. First, we are able to study
changes in the volatility of macroeconomic aggregates. Second, we study the evolution
in the country specific sensitivity to common cycles. The current theoretical literature
suggests that this sensitivity may have changed following trade and financial integration.
In addition, this sensitivity may have evolved at different dates from country to country,
depending on the initial conditions, or the country’s monetary arrangements. We model
the dynamics of the time-varying exposures as drift-less random walks, given our view

7 The econometric

that the nature of the business cycle has evolved slowly over time.
procedure is a Gibbs sampling procedure that generates a set of draws from the posterior

distribution of the parameters and factors.

The estimation procedure we develop for our factor model is explicitly Bayesian.
What characterizes the Bayesian approach in the existing literature is not so much its
Bayesian nature - not a lot of emphasis is placed on the role of the priors, which are
often loose - but rather the fact that Gibbs sampling techniques make it computationally
feasible to draw from the exact finite sample distribution of the parameters and factors of
interest. The fact that the Otrok and Whiteman approach does not rely on asymptotics in
either the cross-sectional (N) or the time (7") dimension makes it particularly attractive
for cases where only one dimension (N or T') is large. At the same time, the Otrok and
Whiteman approach is feasible from a computational standpoint for datasets where N

or 1" are large or there are a large number of factors. For instance, Kose, Otrok, and

SArtis, Krolzig and Toro (1999) study changes in the European cycle at the business cycle frequency
using a Markov-switching framework . Their research is designed to investigate how exposure to the
common cycle changes between booms and recessions. not the long-run evolution of cross-country co-
movement. Work more closely related to ours is that of Artis and Zhang, who look at the change in the

correlation in industrial production pre and post ERM.
"In introducing time-variation in the parameters we follow the recent work of Cogley and Sargent

(2002, 2003). who have time-varying coefficients in vector autoregressions. As in their model. our coeffi-

cients evolve according to a random walk process.



Whiteman (2003) apply the approach to study the properties of world business cycles
(N = 180, 68 factors), while Otrok, Silos, and Whiteman (2003) extend the Otrok-
Whiteman (1998) estimation procedure to allow for large T. They use the procedure
to forecast US post-war inflation (N = 100, 1" = 480). For datasets that are large in
only one dimension and hence where asymptotic results may not apply, the most direct
competitors to Bayesian dynamic factor models - the maximum likelihood techniques
based on the Kalman filter or the EM algorithm (Quah and Sargent, 1993) - are hard to
apply from a computational point of view. The issue often arises when studying models
where there is a combination of factors which load on many variables simultaneously with
factors which load only on a few variables. This is the case for us, where we have all
variables loading on a common factor as well as subsets of variables loading on country

and industry factors.

3 The Model

We begin the description of the model with the equation describing a n-dimensional

vector of observable variables denoted y;; at time ¢ (¢ = 1,..,7"). The observables evolve

as:
n
vie =0, + B fi + Y b S e (1)
c=1
where the a/s are constant terms, f? is a factor common to all observables and f}, ..., f/

are factors that we will restrict to affecting a subset of the observable variables. The
factor loadings, b?,t and bf,t capture the exposure of the observables to the common
factors. Note that the factor loadings depend on the date. Finally, ¢, ; denotes the
idiosyncratic components. For example, in our dataset f{ will be the world factor while

the factors restricted to a subset of the data will be country or region specific factors.

We assume that the factors evolve as independent AR(g) processes that are invariant
over time:

fE=dhifE + ol k=0,1,....n (2)



where uf is an i.i.d. innovation, uncorrelated across factors:

k1 lfors=0, k=1
Elufu; | = ] . (3)
0 otherwise
Note that the variance of the innovation in the law of motion for the factor, ugy, is
normalized to one. The motivation for this normalization, which is standard in the
factor literature, can be seen by studying equation (1). If one increases the standard
deviation of ff by a factor of x and at the same time divides all the bf“_‘_’s by x, one
obtains exactly the same value for the likelihood function. This identification problem

is solved in the literature by normalizing the standard deviation of the factor innovation

to one, and letting the factor loading be unconstrained.

Following Stock and Watson (1989) and others we assume that the idiosyncratic

terms ¢, ¢ follow independent AR(p) processes, which are also time invariant:®
€t = P61+ oot Pup€itpt Ut (4)

where the w,, ; are i.i.d.innovations, uncorrelated with each other across variables (i).

The law of motion for the factor loading coefficients follows a driftless random walk:

bf,t = bf,t—l + Uﬁt: (5)

for k = 0,1,..., n. The disturbances nﬁt are ii.d. and uncorrelated with each other.
Additionally, the factor innovations, factor loading innovations, and idiosyncratic shocks
are all independent of each other. Finally, we assume that all disturbances are normally

distributed.

Of course, there are alternative ways to model changes in economic time series.
For example, time variation in the innovation variances is one obvious alternative. By

modeling the time variation in the factor loadings we are able to capture two of the

8The literature on dynamic factor analysis has made different assumptions in regard to the law of
motion of the idiosyncratic component. For instance, Otrok, Silos, and Whiteman (2002) follow Kim
and Nelson (1998) and Quah and Sargent (1993) and assume that it depends on the past p values of the

observables.



features that we are most interested in: the change in the volatility of macroeconomic
aggregates due to global, country and region specific factors, and the change in the
comovement across the variables due to these factors. While it seems clear that the
factor loadings will capture changes in comovement it is less clear that the model will
capture changes in volatility. To show that our model does in fact capture this aspect
of the data we will work through an example using the global factor only. In order to
see how the time-varying factor loadings capture the change in the volatility, notice that

equation (1) could have the alternative specification:

Yie = a, + b?/i?t to +..F€. (6)

k2

Since the volatility of the innovations to f{ is normalized to one, the shift parameter
kY would essentially allow for changes in the standard deviation of the observable vari-
ables over time. Of course, specification (6) is embedded in specification (1) under the

restriction 6%, = "x{. Specification (1) is more general in that it allows for country or

industry specific evolution in the factor loadings as well as changes in the world factor.

4 Estimation

To estimate the model we use a Gibbs sampler to draw from the joint posterior dis-
tribution of parameters and factors”. A Gibbs sampler is a method to obtain a set of
draws from a joint distribution by successively drawing from a sequence of conditional
distributions. It has been shown elsewhere that such a procedure will yield a set of draws

from the desired joint distribution.

Our approach to partitioning the joint posterior of the factors and parameters for
our model begins with the observation that conditional on the factors the equations (1)
fori =1,..,n are n independent regression models with AR(p) errors (Otrok and White-
man 1998). Conditional on the realization for the factors (and in our case, conditional

also on the realization for the 8¥,’s) one can then use the distribution theory developed

90ne step of our procedure use a Metroplis-Hastings algorithm to draw from one of the conditional

distributions, so technically we employ a Metroplis-in-Gibbs procedure.



in Chib and Greenberg (1994) in order to draw the parameters {a,, ¢, 1....¢,,}. Since
this is done equation by equation, the size of n does not affect the feasibility of these
computations. Conditional on the factor realizations, the Chib and Greenberg procedure
can also be applied to equation (2) to obtain draws for the autoregressive parameters of

the factors {gb’&l - qbé“':q}.

In the second block of the procedure we draw the factors conditional on the param-

eters and factor loadings. We begin by writing model (1), in stacked form, as:

e = Gy + Byofi + &, (7)

The matrix B,; is of dimension n x (n + 1) and its (ik)*" element is bgi,t- The law of

motion of the factors (2) expressed in terms of f; is:
fr=@ufi 1+ o+ Pofe g + . (8)

where @ = (ugy, - - - Uny)’, and where the @, matrices are diagonal with elements gb’; on
the diagonal. One can obtain draws of the factors { f1, s fT} applying the procedure of
Carter and Kohn (1994) using equation (7) as the measurement equation and equation
(8) as the transition equation. The algorithm in Carter and Kohn, which is described
more fully in the appendix, consists of applying the Kalman filter to obtain the mean
and the variance of the conditional distribution of fT, and then proceed “backward”
to obtain the distribution of fT_l conditional on the realization of fT, et cetera. The
fact that the idiosyncratic shocks are autocorrelated, however, makes direct application
of this natural formulation of the model computationally expensive, as one would have
to include the 2n idiosyncratic shocks (and their lags) as part of the state vector. The
approach of Kim and Nelson (1998), also applied in Chauvet, Juhn, and Potter (2001),
offers a more computationally efficient formulation of this problem when there are many
observable variables. The law of motion of the idiosyncratic shocks (4), also written in

stacked form, is:

€yt = Pyi€yi1 + o+ Pyp€yip + Uy, (9)



where @y = (Wy, ¢, -, Uy, +)’, and where the ®, ; matrices are diagonal with elements
Gy;s- Let ©,(L) = P, &, L5, Now premultiply 7 by I, — ®,(L) and obtain the
systein:

Yy
U=+ PyiByefi — > PysByisfios + Uyt (10)

s=1
where §; = (In—@y (L)), @, = (In—Py(L))a,. Now the disturbances in the transformed
measurement equation (10) are i.i.d. One can then apply the approach of Carter and
Kohn to equation (10) and (8) using the vector (ﬂ e, f{_q)’ as state vector.!’ Note

that the size of the state vector in this approach, and hence the feasibility of the approach

for large datasets, does not increase with 7" or n.

In our application it is critical to not condition on the initial observations when
drawing the factor. As we will see subsequently, due to the non-stationarity of the factor
loadings the initial condition itself needs to be derived. The mean and variance for the
initial state fp = (fp:---. fp—q+1)', conditional on the first p observations can be derived

as follows. Define:

b1y
[
bt
gt = (@ -+, 91), and frl = (f;_l, ..., f1Y. Note that
_ te=r
G =a+ B fo+ By gy ;+6.
3=0

Hence we can write the first p observations as:

a+B,e°f | [ B, . Ber2B,ert || a, &
gp..l _ . i i n .- i ] . n . . (11)
a+ Ba®? [y 0 . By  By®! To,2 €
i &-l—Bl(I)fO ] | 0 . 0 Bl 1L ﬁo; | | €1 |

Equation (8) needs to be appropriately rewritten in companion form.
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and fp"lz
d? f, I .. o2 orl || 4,
fp..lz . ) + . . . (12)
P2 fy 0 . I o! o2
[ of | |0 . 0 I|| G |

Call U, and Uy the two upper triangular matrices in equations 11 and 12, respectively.

Also define - i i i i
I B, @ o
= |.B=|" , B =
L | 7 | Ber| 7| o2
|1 | B | @
Finally, call ¥ and Y, 1 the variance covariance matrix of g, and (&, ,..., &),

respectively . This is a matrix of zeros except for the (1,1) element, which is o3. From

our distributional assumptions (see also section 77) we have that

gt | N L+ BYfoo
fr BY foo

ngozogg "+ Uy(]p ® EO)L{{, + X

6550:065 T4+ Uf (Ip (%9 ZO)L{{, 6550:061{ "4+ Uf (Ip (%9 Zo)lx{}
(13)

where fo,0 and 30,9 are the unconditional mean and variance of f;. Therefore the condi-

tional mean and the variance of b, are given by:

By [fPt] = Bifoo+ (BfsooBy " +Us(l, @ Yol
(BYS00BY "+ Uy (1, @ Sy + (075 @ 1) - (71~ T~ Boo)
Vol 7] = BlaooB) ' +Up(L, @ Souy — (Bl5ooBy ' +Us(l, @ Sl
(BYsooBY " +Uy (I, @ S0l + (035 & 1)) (BlsooBy " + U (1, ® Sold})
(14)
In the cases ¢ — 1 > p one simply needs to add ¢ — 1 — p columns of zeros to the
matrix B*. Vice versa, in the the case ¢ — 1 < p one adds p — ¢ + 1 columns of zeros to

the matrix .
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The third block of the Gibbs sampler consists of drawing from the distribution of
the bit’s, conditional on all other parameters and the factor realizations. Following Kim
and Nelson (1999) and Cogley and Sargent (2002), we derive this conditional distribu-
tion of the Gibbs sampler by framing the problem in the language of Carter and Kohn
(1994). This is accomplished by treating equation (5) as the transition equation and
equation (1) as the measurement equation. The fact that the errors in the measurement
approach are autocorrelated can again be addressed using the quasi-differencing proce-
dure described above. Given our assumption that the shocks to the law of motion of the
factor loadings (5) are uncorrelated across variables, this block of the Gibbs sampler is

applied equation by equation, so that it is feasible even for large n.

One issue we face is that law of motion for the factor loadings (5) is non-stationary.
The initial condition for the Kalman Filter, which is typically the unconditional expec-
tation of the state vector, is not well defined here. In our case, the initial condition needs
to be treated as a hyperparameter. Recent work on VARs with time-varying parameters
(Cogley and Sargent 2002, 2003) treats the initial condition as a known parameter.'!
This approach is not appropriate in our setting. If the loadings do not vary much over
time, having a degenerate prior on the initial condition implies having a degenerate prior
on the loadings themselves. Instead we estimate the initial condition, denoted b; 9. We
will return to this issue after describing the procedure for drawing the factor loadings

given an initial condition

Conditional on the factors, parameters other than the factor loadings and on the
initial condition b; g, the distribution of the parameters b;;, t = 1,...,T" can be obtained
by applying the Carter-Kohn approach equation by equation. This can be done as
follows. Consider pre-multiplying equation 1 by the quantity 1 — ¢; 1LY — .. — ¢, LPi

where L is the lag operator. One obtains the equation:

yft =a; +wibiy + U for t =pi+1,... T (15)

where yi; = (1= ¢i1L' — oo — ¢ip, LPyis, af = (1 — ¢i1 — .. — Gip)a, wf = (fr —
¢i,1 fi—1 . — ¢i,p1— ft—pi): Bi,t = (bi,t: ceey bi,t—pi),: ﬂi,t = (ui:t, 0,..., 0),. Equation 15 is the

HCogley and Sargent (2002, 2003) use pre-sample information to pin down the initial condition.
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measurement equation. The transition equation is simply 5 written to accommodate I;Z—:t:

bis = Ebiy 1+ i (16)
where 7; 1 = (1.4, 0,...,0) and
- 10 ... 0
T I,, o

Note that the first ¢t one considers in eq. 15 is ¢ = p; + 1. Once again, a key ingredient
in the procedure is the mean and variance for the initial state Bi,pi = (bip;s---.bi1.bi0)
For expositional simplicity, the initial condition b;¢ is treated as a constant for the
derivation of this distribution. In the next section we derive the distribution for drawing
the initial condition. To draw b;,,,...,b;1 we need to obtain the mean and variance of

pri-t — (bip;—1:---.b;i1) given the first p; observations yii"l = (Yips» - -+ i1), the initial

1 ]

condition b; ¢, and the factors. Note that

t
Yir = a;i +biofi + (Z Nij) fi + €ig-

=1
We can write the first p; observations as:
ai + biofp, Joi  Joi v T.p; €ip;
e = + + (17)
a; + biof2 0 . fo fe 7,2 €2
L ai+biofs | L0 0 fi Jlma ]| | €1 |
and bi,pi..I:
bio 11 .1 Mi.p;
bfi"l |- L - (15)
bi,O o .. 11 T2
L bi:(] ] L 0 .. 01 1L 771':1 ]

Let U, and U}, denote the two upper triangular matrices in equations 17 and 18, respec-

tively. From our distributional assumptions (see also section 3) we have that

it VS B Ly, +biofr 03Uy Uy + 075,
il ’
b’? bi,O 1p1— 072]1' Ub Ué UgiUb Ul:

1
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where fPi~! = (f,.,....f1) and 1, is a unitary vector of length p;. Therefore the

conditional mean and the variance of bf7l are given by:
Ep, [b{hl] = bio 1p, + U;ZhUb Uz,/ (U;ZHUy Uz,/ + U;'zzi)_l (%11 —a; lp, — bi,Ofpi"l)
B = 02U, Uy — 02Uy U (02U, UL+ 025:) 7! 02U, Uj.
(20)

Conditional on the loadings (b;1,...,b; ) the posterior distribution for the load-
ings’ innovation U?H

Sim (big — big—1)?.

is an inverted gamma distribution / G(w, o7, + d?) where df =

4.0.1 The initial condition

To estimate the initial condition,] b;¢9 we begin with a non degenerate prior for b, ,
which is N(b;0,v;0). Conditional on (b;1,...,b; 1), the posterior distribution of b; ¢ is
N(b; 9. v; ). The mean and the variance of the posterior, b;; and v, , are obtained (as

in Carter and Kohn) by updating (_)i,o and v; 0 using
bi1 = bio+mi1

as measurement equation. An additional hyperparamter in the variance of the initial
condition in the Kalman filter. Here we follow Cogley and Sargent (2002) and use a
fixed (large) number (see also Harvey). Our rationale for this choice is that the variance
of the initial condition matters less than the initial condition itself for the outcome of

the Kalman filter. Hence it is not as dangerous to have a degenerate prior.

To summarize our econometric procedure, the Gibbs sampler partitions the model
into 3 blocks. In the first block we draw the constant, the innovation variances as well as
the autoregressive parameters for the factors and the idiosyncratic terms conditional on
the factor loadings and factors. In the second block we condition on the factor loadings

and the parameters drawn in the first block and draw the factors. In the third block
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we condition on the factors and parameters drawn in the first block, and draw the time-

varying factor loadings.

We conclude the section by specifying the (conjugate) priors. These are:

Ay, - N(GZHAJI) ¢k : N(&k vk _1)]S¢k: ¢yi : N(i)yl ‘ZJ:I)]Sﬁ)yi:

7

bi:(] : N(i)i,O:T}i,O):Ugi : ]G(%g?) ng:yi : ]G( bl;’yi, 52 ),

bk Ui

where ¢* and ¢y, are the vectors {¢f,..,¢%} and {¢y, 1. ... #y.p; ;. N is the Normal
distribution,/G is the inverted gamma distribution, [, S, is an indicator function that
equals zero if the roots of the ¢, polynomial lie outside the unit circle. One issue with our
model is that if the factor loadings are left unconstrained the model will have too many
free parameters. We address this issue by imposing relatively tight priors on some of the
innovation variances. In particular, we want to ensure that the factors dynamics capture
cyclical relationships and the factor loadings capture more slowly evolving relationships.
Hence we use a prior on the variance of the innovations in factor loading equations (5)

that is relatively tight. 2

5 The Data

The data consist of Output growth for an 15 country sample of developed economies.

The data are in real per capita terms. Growth rates are 4 quarter growth rates.

6 Empirical Results

There is a large literature that has studied the properties of international business cy-
cle dynamics. A prominent strand of this literature has used dynamic factor models to

characterize these dynamics. Here we apply our time varying parameter dynamic factor

12The other priors are fairly loose. The prior on a; is very loosely centered around zero. The priors

on the AR coefficients follows Otrok and Whiteman (1998).
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model described by equations (1)-(6) to some of this same international data to demon-
strate the dimensions on which our model can reveal new insights. We allow for one
global factor and one factor common to all European countries. That is, in equation (1)
n is set equal to one and only the countries in Europe have a non-zero factor loading on
this factor. We focus on the World and Europe for a number of reasons. First, Europe
has undergone many well known changes in terms of financial and trade integration over
this period. Furthermore, there has been heterogeneity in terms of when and to what
extent each country has chosen to participate in this integration. We hope to exploit
the flexibility of our econometric model to help characterize these changes in terms of
each European countries exposure to the World and European factors. Second, over
this period there has been a moderation in volatility global. Our model can shed some
light on the source of this change, whether global or regional in nature. Third, there is
some dissension on whether or not there is in fact a truly European cycle rather than
simply a common cycle among all developed economies (e.g. Canova et. al.). Given that
the European cycle may have changed significantly over time we wish to investigate the
existence of such a distinct cycle in the context of a model that allows for the variation

we expect to see in Europe as it integrates.

We first turn to the estimated factors themselves. The top panel of Figure 1 depicts
the world factor along with an average growth rate across all variables in our dataset.
Note that the world factor departs in some cases from the average growth rate and tends
to be a bit smoother-demonstrating a feature of most factor models that they are not

overly influenced by occasional large idiosyncratic jumps in one or two large countries.

Of primary interest to us is the evolution in the sensitivity of each country to the
factors depicted in Figure 1. In Figure 2 we plot the factor loadings of each country to
the world factor over time. We also include 90 percent posterior coverage intervals for the
factor loadings. Despite the sometimes wide posterior coverage intervals in some cases
we find that for a number of countries the posterior distribution of the factor loadings
varies significantly over time. For example, the factor loading for Japan is positive and
significant at the beginning of the sample and then declines to nearly zero by the 1990s,

indicating the significant break of Japan with the rest of the world. On the other hand,
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Sweden and Finland began a period of rapid integration in the mid 1980s. Even among
these two similar countries there is variation in the manner in which this integration took
place. In Sweden the change was gradual while in Finland the change happened sharply
over a short period of time. In some cases, there is no time variation, such as Belgium.
The heterogeneity depicted in this figure demonstrates a nice feature of our model in
that it allows for considerable flexibility in the timing and size of changes in comovement
and volatility. In some cases where the data dictate rapid movement in factor loadings

are model can capture this.

In Figure 3 we plot the factor loadings for Europe. The figures show that there
is a decline in the sensitivity of the UK and Switzerland to the European cycle from
the 1970s to the later period. In the case of the UK this changed occurred gradually
throughout the 1980s and was complete by 1990. In the case of Switzerland the change
was essentially complete by 1980. For the remaining countries there seems to be little

evidence of changes in the sensitivity to the European factor.

We use the model to decompose movements in output growth into components at-
tributed to world, European, and idiosyncratic shocks. For each period we compute
the variance for each component during the previous ten years. We do this for each
posterior draw and report the mean. We therefore have a rolling window estimate of
the importance of each component in determining the volatilities of the series. Table 1
provides similar information, except that there we focus on three equally-spaced sub-
periods (19770:2-81:2, 1981:3-1992:4,1993:1-2004:1). For each sub-period, Table 1 also
shows the variance of the actual data. Note that although in sample the three com-
ponent are not by construction orthogonal, for most countries/sub-periods the sum of
their variance roughly adds up to the total variance, suggestion that our decomposition
is not too far-fetched. We find: 1) for most countries output volatility has decreased
over time, as found elsewhere. The magnitude of the decrease has been substantial for
some countries (US, Canada, UK, Italy,...) but much smaller for others. 2) Idiosyn-
cratic shocks have been the main driving force of the decline in volatility. Idiosyncratic
shocks capture country-specific shocks but also (especially for some countries like Spain

and possible Germany) measurement error. 3) For a number of countries (US, Canada,
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France,..) the decline in the volatility of the component due to the world cycle has been
significant. 4) The patterns do not seem to be affected by business cycles. For instance,
the recent recession does not seem to have resulted in increased volatility for the world

component.

Finally, Table 2 shows the relative importance of the three components during the

three equally-spaced sub-periods (19770:2-81:2, 1981:3-1992:4,1993:1-2004:1).

7 Conclusions

We develop a dynamic factor model allowing for time variation in the factor loadings. We
estimate the model using a Gibbs sampling procedure to draw from the joint posterior
distribution of the model parameters and latent factors. An important feature of our
procedure is the derivation of the distribution of the initial conditions. In models with
time variation the initial conditions can have important implications for estimates of the
model parameters and hence it is important to let the data dictate these initial conditions
by including these conditions in the likelihood function for the model. [FOOTNOTE:
Sims (1996) discusses some of the problems associated with conditioning in time series

data.]

We apply our econometric model to the study of international business cycles in
developed economies. The model has wide applicability to other issues. In the inter-
national business cycle literature the model had natural applications to understanding
the impact of integration in developing countries as well. The short samples typically
available for these countries are not an issue for our procedure. Factor models have also
been used extensively as powerful forecasting tools. Apply our time-varying model may
result in more accurate forecasts as the model parameters adapt to changing structure
in the world. Factor models have also been used extensively in the finance literature and

its is natural to consider time variation in these models in future work.
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Table 1: VARIANCE ATTRIBUTABLE TO WORLD, KEUROPEAN, AND IDIOSYNCRATIC

SHOCKS: THREE SUBPERIODS

Data World Europe Country
periods: 1 2 3 1 2 311 2 3 1 2 3
U.S. 2144 10.67 4.62 |7.13 7.04 145 13.66 4.56 3.42
Japan 18.64 12,54 11.84|4.14 1.31 0.68 13.56 12.52 11.48
Canada 15.76 16.68 4.09 |5.00 9.70 2.18 10.94 6.27 2.69
Australia 33.19 17.19 6.45 |2.32 593 0.78 31.98 10.00 6.40
U.K. 36.13 8.02 199|549 482 1.06(1.63 1.34 0.34|27.84 6.38 1.96

Belgium 1442 7.74 6.56 [4.88 6.11 2.18|4.53 4.37 1.72| 6.37 4.34 4.16
Denmark 18.81 21.40 10.79(5.11 3.97 1.41|1.55 2.48 0.98|11.91 20.67 8.83
France 744 4.03 4.09 [3.58 3.34 1.48|2.68 2.80 1.32| 249 2.09 1.94
Germany 16.48 46.82 6.90 [5.92 12.66 3.47|3.81 4.19 1.64|10.82 36.45 5.58
Ttaly 20.13 7.89 5.59 |5.24 4.55 1.02(3.72 2.37 1.35|11.88 5.64 4.34
Netherlands|11.67 16.45 5.32 |3.09 6.62 1.61|2.66 2.91 1.47| 7.20 11.84 3.48
Sweden 38.34 21.45 11.63|0.91 5.53 2.65(1.29 1.85 1.14|36.38 17.06 9.98
Switzerland |57.43 11.11 5.50 |3.55 5.15 1.72(3.93 2.12 1.30|50.94 7.72 4.62
Finland 2724 31.47 18.93|1.90 10.34 4.70]1.90 2.42 1.23|25.46 19.19 15.96

Spain 9.37 13.85 3.63 [1.95 2.08 0.66|1.27 2.27 0.82| 6.04 11.12 3.05

Notes: subperiod 1: 7T0-Q2 — 81-Q2 ; subperiod 2: 81-Q3 — 92-Q4 ; subperiod 3: 93-Q1
- 04-Q1
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SHOCKS: THREE SUBPERIODS

Notes: subperiod 1: 70-Q2 — 81-QQ2 ; subperiod 2: 81-Q3 — 92-Q4 ;

- 04-Q1
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RELATIVE IMPORTANCE OF WORLD, EUROPEAN, AND IDIOSYNCRATIC

World Europe Country
periods: 1 2 3 1 2 3 1 2 3
U.S. 0.34 0.60 0.28 0.66 0.40 0.72
Japan 0.23 0.09 0.05 0.77 091 0.95
Canada 0.31 0.60 0.43 0.69 0.40 0.57
Australia 0.07 0.36 0.10 0.93 0.64 0.90
U.K. 0.15 0.37 0.29|0.05 0.10 0.09]0.80 0.53 0.61
Belgium 0.30 0.40 0.26]0.28 0.29 0.21]0.41 0.31 0.53
Denmark 0.27 0.14 0.12]0.08 0.09 0.08]0.65 0.77 0.80
France 0.40 0.39 0.31]0.30 0.33 0.27]0.29 0.28 0.42
Germany 0.28 0.23 0.31]0.18 0.08 0.15]0.55 0.69 0.55
Ttaly 0.25 0.35 0.14(0.17 0.18 0.19|0.58 0.48 0.66
Netherlands|0.23 0.30 0.24|0.20 0.13 0.22|0.57 0.57 0.55
Sweden 0.02 0.22 0.19]0.03 0.07 0.08]0.94 0.71 0.74
Switzerland |0.06 0.33 0.21]0.07 0.13 0.16|0.87 0.54 0.63
Finland 0.06 0.31 0.21]0.06 0.07 0.05]0.88 0.62 0.74
Spain 0.20 0.13 0.14|0.13 0.14 0.17]0.66 0.73 0.69

subperiod 3: 93-Q1
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Figure 1: FACTORS
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Figure 2: TIME-VARYING BETAS: WORLD FACTOR
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Figure 3: TIME-VARYING BETAS: EUROPEAN FACTOR
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Figure 4: VARIANCE ATTRIBUTABLE TO WORLD (RED), EUROPEAN (WHITE), AND

IDIOSYNCRATIC (GREEN) SHOCKS OVER TIME: TEN YEARS ROLLING WINDOW
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