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1 Introduction

Understanding the uncertainty associated with a forecast is as important as the forecast

itself. When predictions are made over several periods, such uncertainty is encapsulated

by the joint density of the forecast path. There are many questions of interest that can

be answered based on the marginal distribution of the forecasts at each individual horizon.

These are the questions that have received the bulk of attention in the literature and are

coded into most commercial econometric packages. For example, mean-squared forecast

errors (MSFE) are reported for each forecast horizon individually; two standard-error band

plots that are based on the marginal distribution of each individual forecast error; and fan

charts that are constructed from the percentiles of marginal predictive densities.

The basic message of this paper is that many questions of interest require knowledge of

the joint density, not the collection of marginal densities alone. The joint distribution and

the covariance matrix for the forecast path thus play a prominent role in our discussion, and

we begin by deriving appropriate asymptotic results for data generating processes (DGP) of

infinite order. Vector autoregressions are a natural multivariate method of producing fore-

casts and we will provide results that complement those available in, e.g., Lütkepohl (2005).

Alternatively, direct forecast methods (see, e.g., Bhansali, 2002 and references therein, and

more recently Marcellino, Stock and Watson, 2003) are a natural choice when there is hesita-

tion about the true model characterizing the DGP or when nonlinearities make multiple-step

ahead forecasts cumbersome to obtain. We derive asymptotic results for direct forecasts

based on linear vector autoregressions for infinite order DGPs. We will call forecasts based

on this method local projections, following the nomenclature in Jordà (2005). Some of the
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derivations that we provide will look familiar to those readers acquainted with Lewis and

Reinsel (1985), and Kuersteiner (2001, 2002), to cite a few.

A natural consequence of the correlation across forecast horizons is the desire to cast

forecasting performance comparisons in terms of forecast paths. Therefore, we introduce

the mean squared forecast path (MSFP) as the natural extension of the MSFE by using

the Wald metric and the forecast path’s correlation matrix. Furthermore, we show how to

appropriately use this Wald metric to extend formal testing of predictive ability along the

lines of the Diebold-Mariano-West (Diebold and Mariano, 1995; West, 1996) test or the

more recent approach in Giacomini and White (2006). These extensions also complement

deterministic measures such as the determinant of the covariance matrix of the vector of

forecast errors at different horizons proposed by Clements and Hendry (1993).

A 95% confidence, multi-dimensional ellipse based on the joint distribution of the forecast

path is an accurate representation of its uncertainty but is impossible to display in two-

dimensional space. Another contribution of the paper is to introduce several methods to

present such joint uncertainty in a useful manner to the end-user of the forecasting exercise

based on Scheffé’s (1953) method of simultaneous inference. In particular, we show how to

construct simultaneous confidence bands, conditional confidence bands for the uncertainty

associated to individual forecast horizon, and fan charts based on the quantiles of the joint

predictive density.

The availability of the joint predictive density allows us to construct the distribution of

forecasts conditional on future values of one or more of the endogenous variables in the system

under consideration. TheWald metric provides a natural statistic to evaluate the likelihood of
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observing the conditioning paths. These results can be thought of as the large-sample versions

of Waggoner and Zha’s (1999) Bayesian derivations and provide asymptotic justification for

bootstrap-based, finite-sample inference (Horowitz, 2001). We provide empirical examples

to illustrate all of the results introduced in the paper.

Several final comments are worth making. We hope our paper will pave the way for

many natural extensions that: (1) generalize our basic assumptions on the DGP as well as

the mixing and heteroskedasticity assumptions of the error process; and (2) extend our large-

sample results to finite-sample inference based on bootstrap or subsampling refinements. In

the end, we had to allow space considerations and transparency to rein in our ambitions.

Finally, ours is not a criticism of the status-quo, rather we view our contribution as an

addition to existing methods: different hypotheses require different statistics and tailoring

the statistics results in more precise answers.

2 Asymptotic Distribution of the Forecast Path

This section characterizes the asymptotic distribution of the forecast path, under the as-

sumption that the data generating process (DGP) is of infinite order while the forecasts are

generated by finite-order VARs or finite-order local projections. We feel the DGP is suffi-

ciently general to represent a large class of problems of interest and that VARs and local

projections are the two most commonly used modeling strategies. We begin by stating our

assumptions on the DGP.

Assumption 1: Suppose the k-dimensional vector of weakly stationary variables, yt has
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a Wold representation given by

yt = µ+
∞X
j=0

Φ0jut−j , (1)

where the moving-average coefficient matrices Φj are of dimension k×k, and we assume

that:

(i) E (ut) = 0; and ut are i.i.d.

(ii) E (utu0t) = Σu <∞.

(iii)
P∞
j=0 ||Φj || <∞ where ||Φj ||2 = tr

³
Φ0jΦj

´
is the equivalent of the Euclidean L2 norm

for matrices and Φ0 = Ik.

(iv) det {Φ (z)} 6= 0 for |z| ≤ 1 where Φ (z) =P∞
j=0Φjz

j .

Then the process in (1) can also be written as an infinite VAR process (see, e.g. Anderson,

1994),

yt =m+
∞X
j=1

Ajyt−j + ut (2)

such that,

(v)
P∞
j=1 ||Aj || <∞.

(vi) A (z) = Ik −
P∞
j=1Ajz

j = Φ (z)−1 .

(vii) det {A (z)} 6= 0 for |z| ≤ 1.

Assumption 1 includes the class of stationary vector autoregressive moving average,

VARMA(p, q) processes as a special case. Lewis and Reinsel (1985) derive conditions under
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which a finite order VAR will provide consistent and asymptotically normal estimates of the

p original autoregressive coefficient matrices Aj in expression (2). We will use this result

momentarily and extend it for local projections when deriving the asymptotic distribution

of the forecast path. The i.i.d. assumption could be relaxed to allow for heteroskedasticity

so that the consistency and asymptotic normality results in Lewis and Reinsel (1985) are

derived with appropriate laws of large numbers and central limit theorems for martingale

difference sequences (m.d.s.) under more general mixing conditions. We refer the reader to

Gonçalves and Kilian (2006) and references therein for a discussion of these issues. The most

significant implication of allowing for these alternative, more flexible assumptions is that a

robust covariance estimate along the lines of White (1980) is advised. For now, we prefer to

trade-off some sophistication for clarity to illustrate the more important points we discuss

below.

Given the DGP in expression (2) suppose we estimate a VAR(p) instead. This VAR(p)

will be of the form

yt = m+

pX
j=1

Ajyt−j +wt (3)

wt =
∞X

j=p+1

Ajyt−j + ut

Given estimates from this VAR(p) then one could construct forecasts with standard available

formulas (see, e.g. Hamilton, 1994). Alternatively, forecasts could be constructed with a

sequence of local projections given by
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yt+h = mh +

p−1X
j=0

Ahjyt−j + vt+h (4)

vt+h =
∞X
j=p

Ahjyt−j + ut+h +
h−1X
j=1

Φjut+h−j for h = 1, ...,H

where:

(i) Ah1 = Φh for h ≥ 1

(ii) Ahj = Φh−1Aj +A
h−1
j+1 for h ≥ 1;A0j+1 = 0;Φ0 = Ik; and j ≥ 1

Let Γ (j) ≡ E
³
yty

0
t+j

´
with Γ (−j) = Γ (j)0 and define:

(iii) Xt,p =
¡
1,y0t−1, ...,y0t−p

¢0
.

(iv) bΓ1−p,h
kp+1×k

= (T − p− h)−1PT
t=pXt,py

0
t+h.

(v) bΓp
k(p+1)×k(p+1)

= (T − p− h)−1PT
t=pXt,pX

0
t,p.

Then, the least-squares estimate of the VAR(p) in expression (3) is given by the formula

bA (p)
k×kp+1

=
³ bm, bA1, ..., bAp´ = bΓ01−p,0bΓ−1p ,

whereas the coefficients of the mean-squared error linear predictor of yt+h based on yt, ...,yt−p+1

is given by the least-squares formula

bA (p, h)
k×kp+1

=
³ bmh, bAh1 , ..., bAhp´ = bΓ01−p,hbΓ−1p ; h = 1, ...,H.

Assumption 2: If {yt} satisfies conditions (i)-(vii) in assumption 1 and:
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(i) E |uitujturtult| <∞ for 1≤ i, j, r, l ≤ k.

(ii) p is chosen as a function of T such that

p3

T
→ 0 as T, p→∞.

(iii) p is chosen as a function of T such that

p1/2
∞X

j=p+1

||Aj ||→ 0 as T, p→∞.

Then, a summary of results shown by Lewis and Reinsel (1985), Lütkepohl and Poskitt

(1991) and Jordà and Kozicki (2007) are contained in the following corollary.

Corollary 1 Given assumptions 1 and 2, the VAR(p) and pth order local projections are

consistent and asymptotically normal, specifically:

(a) bAj p→ Aj ; bAhj p→ Ahj and bAh1 p→ Φh.

(b)
q

T−p−h
p vec

³ bA (p)−A (p)´ d→ N (0,Σa) where Σa = Γ−1p ⊗ Σu

(c)
q
T−p−h

p vec
³ bA (p, h)−A (p, h)´ d→ N (0,Σα) where Σα = Γ

−1
p ⊗Ωh and Ωh = Φ (Ih ⊗ Σu)Φ0

where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 ... 0

Φ1 Ik ... 0

...
... ...

...

Φh−1 Φh−2 ... Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) Let bu (p)t ≡ yt − bm−Pp

j=1
bAjyt−j so that bΣu (p) = (T − p)−1PT

t=1 bu (p)t bu (p)0t then
√
T
³bΣu (p)− Σu´ → N (0,ΩΣ) where ΩΣ is the covariance matrix of the residual

covariance matrix.
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Several results deserve comment. Technically speaking, condition (ii) in assumption 2

is required for asymptotic normality but not for consistency, where the weaker condition

p2/T → 0, T, p → ∞ is sufficient. Results (a)-(c) show that estimates of truncated models

are consistent and asymptotically normal. Result (d) is useful if one prefers to rotate the

vector of endogenous variables yt when providing structural interpretations for the forecast

exercise. Here though, we abstain of such interpretation and provide the result only for

completeness.

Next, denote with yT (h) the forecast of the vector yT+h assuming the coefficients of the

infinite order process (2) were known, that is

yT (h) =m+
∞X
j=1

AjyT (h− j)

where yT (h− j) = yT+h−j for h−j ≤ 0. Denote byT (h) the forecast that relies on coefficients
estimated from a sample of size T and based on a finite order VAR or local projections,

respectively

byT (h) = bm+

pX
j=1

bAjbyT (h− j)
byT (h) = bmh +

p−1X
j=0

bAhjyT−j
were byT (h− j) = yT+h−j for h − j ≤ 0. To economize in notation, we do not introduce a

subscript that identifies how the forecast path was constructed as it should be obvious in

the context of the derivations we provide. Then, define the forecast path for h = 1, ...,H by

stacking each of the quantities byT (h) , yT (h) , and yT+h as follows
8



bYT (H)
kH×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
byT (1)
...

byT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ;YT (H)kH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT (1)

...

yT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; YT,HkH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT+1

...

yT+H

⎤⎥⎥⎥⎥⎥⎥⎦ .

Our interest is in finding the asymptotic distribution for bYT (H)−YT,H = hbYT (H)− YT (H)i
+ [YT (H)− YT,H ] .

It should be clear that [YT (H)− YT,H ] does not depend on the estimation method and

hence its mean-squared error can be easily verified to be

ΩH
kH×kH

≡ E £(YT (H)− YT,H) (YT (H)− YT,H)0¤ = Φ (IH ⊗ Σu)Φ0. (5)

Furthermore, since parameter estimates are based on a sample of size T and hence ut for

t = p+h, ..., T while the term YT (H)−YT,H only involves ut for T+1, ..., T+H, then it should

be clear that to derive the asymptotic distribution of
hbYT (H)− YT (H)i , the asymptotic

covariance of the forecast path will simply be the sum of the asymptotic covariance for this

term and the mean-squared error in expression (5) and we do not have to worry about the

covariance between these terms.

Corollary 1(a) and 1(b) and the observation that bYT (H) is simply a function of estimated
parameters and predetermined variables is all we need to conclude that

s
T − p−H

p
vec

³bYT (H)− YT (H)´ d→ N (0,ΨH) (6)

ΨH ≡
∂vec

³bYT (H)´
∂vec

³bA´ ΣA
∂vec

³bYT (H)´
∂vec

³bA´0
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where ΣA is the covariance matrix for vec
³bA´ ; with bA = bA (p) for estimates from a VAR(p) ;

and for estimates from local projections

bA =

⎡⎢⎢⎢⎢⎢⎢⎣
bA (p, 1)
...

bA (p,H)

⎤⎥⎥⎥⎥⎥⎥⎦ . (7)

We find it convenient to momentarily alter the order of our derivations and begin by ex-

amining forecasts from local projections first since these are linear functions of parameter

estimates and hence can be obtained in a straight-forward manner.

First notice that bYT (H) = bAXT,p and hence
∂vec

³bYT (H)´
∂vec

³bA´ =
∂vec

³bAXt,p´
∂vec

³bA´ =
¡
X 0
T,p ⊗ IkH

¢
kH×k2Hp+kH

(8)

which combined with corollary 1(c) results in

s
T − p−H

p

³
vec

³bA−A´´ d→ N (0,ΣA) (9)

ΣA
k2Hp+kH×k2Hp+kH

= Γ−1p ⊗ ΩH ; ΩH
kH×kH

= Φ (IH ⊗ Σu)Φ0

Putting together expressions (6), (5), (8) and (9), we arrive at the following corollary.

Corollary 2 Under assumptions 1 and 2 and expressions (6), (5), (8) and (9), the asymp-

totic distribution of the forecast path generated with the local projections approach described
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in assumption 1 is s
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH) (10)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗Σu)Φ0

ΨH = (X 0
T,p ⊗ IkH)

£
Γ−1p ⊗ ΩH

¤
(XT,p ⊗ IkH)

In practice, all population moments can be substituted by their conventional sample

counterparts.

We now return to the more involved derivation of the asymptotic distribution of the

forecast path when the forecasts are generated by the VAR(p) in expression (3). For this

purpose, we find it easier to work with each element of the vector bYT (H) individually, so
that we begin by examining the derivation of

s
T − p−H

p
vec (byT (h)− yT (h)) d→ N (0;Ψh,h)

Ψh,h =
∂vec (byT (h))
∂vec

³ bA (p)´Σa∂vec (byT (h))∂vec
³ bA (p)´

where we remind the reader that from corollary 1(b), Σa = Γ−1p ⊗Σu. In general, notice that

Ψi,j =
∂vec (byT (i))
∂vec

³ bA (p)´Σa∂vec (byT (j))∂vec
³ bA (p)´

which is all we need to construct all the elements in the asymptotic covariance matrix of

bYT (H) , namely ΨH . An expression for byT (h) generated from the VAR(p) in expression (3)

can be obtained as
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byT (h) = JBhXT,p
where B simply stacks the VAR(p) coefficients in companion form and J is a selector matrix,

both of which are

B
kp+1×kp+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ... 0 0

m A1 A2 ... Ap−1 Ap

0 Ik 0 ... 0 0

0 0 Ik ... 0 0

...
...

... ...
...

...

0 0 0 ... Ik 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J
k×kp+1

= ( 0
k×1
, Ik
k×k
, 0k
k×k
, ..., 0k

k×k
).

Therefore, notice that

∂vec (byT (h))
∂vec

³ bA (p)´ = ∂vec
¡
JBhXt,p

¢
∂vec

³ bA (p)´ =
h−1X
i=0

X 0
T,p(B

0)h−1−i ⊗Πi, Πi = JB
iJ 0.

The following corollary characterizes the asymptotic distribution of VAR(p) generated fore-

casts paths.

Corollary 3 Under assumptions 1 and 2, the asymptotic distribution of the forecast path
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bYT (H) generated from the VAR(p) in expression (3) is given bys
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH) (11)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0

Ψi,j =
p

T − p−H
i−1X
k=0

j−1X
s=0

E(X 0
T,p(B

0)i−1−kΓ−1p B
j−1−sXT,p)⊗ΠkΣuΠ0s

=
p

T − p−H
i−1X
k=0

j−1X
s=0

tr((B0)i−1−kΓ−1p B
j−1−sΓp)ΠkΣuΠ0s

In practice all moment matrices can be substituted by their sample counterparts as usual.

Thus, corollaries 2 and 3 provide the necessary results on the joint predictive density of the

path forecasts. The next sections exploit these results to introduce new methods of path

forecast comparison and predictive ability testing.

3 Model Comparison: Mean Squared Forecast Path

The most commonly used metric of forecast model comparison is the mean squared forecast

error (MSFE ). Given a sample of 1, ..., T observations available for estimation and T +

1, ..., T +N observations available for forecast evaluation, this metric is constructed as

MSFEh =
1

N

NX
i=1

(byT+i(h)− yT+i+h)0 (byT+i(h)− yT+i+h)
so that an absolute comparison of the overall predictive merits between two competing models

for a particular forecast horizon h can be directly obtained by comparing their respective

MSFEh.
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However, often times a model that predicts well at short horizons will predict badly a

longer horizons (and vice versa), thus making an assessment of overall predictive performance

difficult. A natural way to overcome this difficulty is to construct a metric that evaluates

entire forecast paths jointly. Clements and Hendry (1993) suggest to base comparison on

the determinant of the forecast error second moment matrix pooled across horizons of inter-

est, which they call generalized forecast error second moment (GFESM ). Compared to the

standard MSFE, the GFESM has the advantage of being invariant to non-singular, scale-

preserving linear transformations. However, GFESM does not provide a natural basis on

which to build tests of relative predictive ability.

Instead, suppose that the 1, ...,H forecast path bYT (H) has an asymptotic distribution
given by

√
T
³bYT (H)− YT,H´ d→ N (0;ΞH) .

Examples of such a result are corollaries 2 and 3. We know then that the associated Wald

statistic

WH = T
³bYT (H)− YT,H´0 Ξ−1H ³bYT (H)− YT,H´ d→ χ2kH

provides a natural metric of distance between bYT (H) and YT,H . This metric operates at two
levels: (1) the relative efficiency with which each forecast is generated; and (2) the degree

of correlation between forecasts. Based on this distance metric, the measure in equivalent

units to the MSFEh is
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MSFP1,H =

Ã
1

HN

NX
i=1

³bYT+i(H)− YT+i,H´0 bΛ−1H ³bYT+i(H)− YT+i,H´!

where ΛH is the correlation matrix associated to ΞH and bΛH p→ ΛH if bΞH p→ ΞH such as in

corollaries 2 and 3; and MSFP1,H stands for the mean squared forecast path over horizons

1, ...,H.

For H = 1, then MSFP1,1 = MSFE1. Similarly, if forecasts at horizons 1, ...,H are

uncorrelated (ΞH is diagonal) thenMSFP1,H = 1
H

PH
h=1MSFEh, that is, an average of the

MSFE over 1, ...,H. To get a better sense, suppose the data were generated by the simple

AR(1) model

yt = ρyt−1 + εt εt ∼ N
¡
0,σ2

¢
and for simplicity assume that ρ is known rather than estimated. Next, consider the forecast

path for h = 1, 2

bYT (2) =
⎡⎢⎢⎣ ρyT

ρ2yT

⎤⎥⎥⎦ ;YT,2 =
⎡⎢⎢⎣ ρyT + εT+1

ρ2yT + εT+2 + ρεT+1

⎤⎥⎥⎦
then clearly

bYT (2)− YT,2 =
⎡⎢⎢⎣ εT+1

εT+2 + ρεT+1

⎤⎥⎥⎦ ∼ N
⎛⎜⎜⎝0;σ2

⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
⎞⎟⎟⎠

The MSFP1,H for a predictive sample of N observations is then
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MSFPAR1,2 =
1

2N

NX
i=1

³bYT+i (2)− YT+i,2´0
⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1 ³bYT+i (2)− YT+i,2´

=
1

2N

NX
i=1

µ
εT+i+1 εT+i+2 + ρεT+i+1

¶⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1⎛⎜⎜⎝ εT+i+1

εT+i+2 + ρεT+i+1

⎞⎟⎟⎠
=

1

2N

NX
i=1

¡
ε2T+i+1 + ε2T+i+2

¢ p→ σ2 as N →∞

That is, absent parameter estimation uncertainty and given that εt are i.i.d. normal, then the

MSFPAR1,2 is simply the predictive sample variance of the shocks hitting the model at each

forecast horizon. In other words, this is a pure measure of how well the model fits at each

horizon, distilled from the correlation between how the forecasts are constructed over time.1

The next section exploits the Wald metric on which MSFP is based to extend available

tests of relative predictive ability between models.

4 Tests of Path Predictive Ability

The MSFP1,H metric allows one to easily determine which of two competing forecasting

models performs best, in the available sample of data. If we want to determine whether

differences in forecasting performance are statistically significant, we need to recast common

tests of predictive ability in terms of paths. The literature on comparing the predictive ability

of competing forecasts given general loss functions was initiated by Diebold and Mariano

(1995) and further formalized in West (1996); McCracken (2000); Clark and McCracken

1 Parenthetically, notice that when one omits parameter estimation uncertainty, there is no difference
between forecasts made by iterating the AR(1) specification or by local projections so that this result is not
method-dependent.
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(2001); Corradi, Swanson and Olivetti (2001); and Chao, Corradi and Swanson (2001),

among others. Giacomini and White (2006) extend this literature even further by considering

conditional predictive ability tests based on examining null hypotheses that are expressed

in terms of conditional expected forecast loss functions rather than unconditionally, as had

previously been done. The literature is obviously very extensive so we cannot presume

to explore the details of every possible contingency when testing path predictive ability.

However, we think the underlying principle can be succinctly presented for the most common

testing scenario, and we leave for further research appropriate generalizations.

Accordingly, suppose interest is in comparing the accuracy of two competing forecasting

models whose forecasted paths are bY jT (H) for j = 1, 2 indicating the method. We can then
think of the test of equal predictive ability as a Hausman test, where the null hypothesis we

are interested in testing is

H0 : p lim vec

∙bY 1T (H)− bY 2T (H)¸ = 0, N →∞
where T is the sample size available for estimation, N is the sample size available for forecast

evaluation and

bY jT (H) = 1

N

NX
i=1

bY jT+i(H); j = 1, 2.
The key element to derive the asymptotic properties of the test is then to establish sufficient

conditions so that an appropriate central limit theorem holds for

√
Nvec

∙bY 1T (H)− bY 2T (H)¸ d→ N (0;ΥH) (12)
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and then the null hypothesis can be evaluated with the statistic

PDMWH = N

∙bY 1T (H)− bY 2T (H)¸0Υ−1H ∙bY 1T (H)− bY 2T (H)¸→ χ2kH .

Several remarks are worth making. First, notice that if T,N →∞ (as is done in West, 1996)

then parameter estimation uncertainty vanishes. As an example, consider the two forecast-

ing approaches and DGP we have considered in previous sections. Generically speaking,

expressions (10) and (11) have the general format

√
T
³bY jT (H)− YT,H´ d→ N

³
0,ΞjH

´
; (13)

ΞjH =

∙
1

T
ΩH +Ψ

j
H

¸
so that as T → ∞, ΨjH

p→ 0 and expression (12) is a natural consequence of (13). Hence,

assumptions that guarantee the result (13), such as assumptions 1 and 2 in our paper, are

sufficient to guarantee (12). However, when T is fixed (as in Giacomini and White, 2006) the

asymptotic distribution of the test statistics will reflect non-vanishing estimation uncertainty.

In that case, what is needed are conditions that guarantee that vec
∙bY 1T (H)− bY 2T (H)¸ is

a martingale difference sequence with appropriate mixing conditions that ensure a central

limit theorem is available to derive expression (12). Often times the literature has opted to

make these assumptions primitive with respect to the asymptotic framework and we refer the

reader to Giacomini andWhite (2006) for very general conditions that ensure the result holds.

Second, notice that ΥH = Ξ1H +Ξ
2
H −Ξ1,2H −Ξ2,1H where Ξi,jH denotes the covariance between

the forecast paths obtained by the two methods being considered. Under assumptions 1 and

2, as T → ∞ even with N fixed, it would be possible to obtain consistent estimates of Ξ1H

and Ξ2H with the formulas that we provide in corollaries 2 and 3 but in general, it is often
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not possible to obtain closed-form expressions for Ξi,jH . Under assumptions 1 and 2, then a

consistent estimate of ΥH (as N →∞) is

bΥH =
1

N

NX
i=1

µbY 1T (H)− bY 1T (H)¶µbY 1T (H)− bY 1T (H)¶0
+
1

N

NX
i=1

µbY 2T (H)− bY 2T (H)¶µbY 2T (H)− bY 2T (H)¶0
− 1
N

NX
i=1

µbY 1T (H)− bY 1T (H)¶µbY 2T (H)− bY 2T (H)¶0
− 1
N

NX
i=1

µbY 2T (H)− bY 2T (H)¶µbY 1T (H)− bY 1T (H)¶0
Assumptions that allow for heterogeneity of bY jT+i(H) across the evaluation sample i = T +
1, ..., T+N will instead require heteroskedasticity and autocorrelation (HAC) robust versions

of bΥH , such as a Newey-West covariance matrix estimator.
5 Simultaneous Confidence Regions for Forecast Paths

This section considers the problem of constructing a simultaneous confidence region for the

forecast path of the jth variable in the k-dimensional system we have so far examined. Under

assumptions 1 and 2, corollaries 2 and 3 show that the asymptotic distribution of bYT (H) is
(with the obvious simplifications relative to (10) or (11)):

√
T
³bYT (H)− YT,H´ d→ N (0;ΞH) . (14)

Let Sj ≡ (IH ⊗ ej) where ej is a 1× k vector of zeros with a 1 in the jth column. Then the

asymptotic distribution for the forecast path of the jth variable in (14) is readily seen to be
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√
T
³bYj,T (H)− Yj,T,H´ d→ N

¡
0;Ξj,H

¢
, (15)

where bYj,T (H) = Sj bYT (H); Yj,T,H = SjYT,H ; and Ξj,H = SjΞHS
0
j . The derivations we

are about to present do not depend on how one arrives at expression (15). Therefore, to

make the results more general, we take expression (15) as our primitive assumption so as to

accommodate forecasting environments other than those implied by assumptions 1 and 2.

The conventional approach to reporting forecasting uncertainty consists of displaying

two standard-error bands constructed from the square roots of the diagonal entries of Ξj,H .

The confidence region described by these bands is therefore equivalent to testing a joint

null hypothesis with the collection of t-statistics associated to the individual elements of

the joint null. It is easy to see that such an approach ignores the simultaneous nature of

the problem and any correlation that may exist among the forecasts across horizons, thus

providing incorrect probability coverage.

Under expression (15), the Wald principle suggests that a joint null hypothesis on Yj,T,H

can be tested with the statistic

WH = T
³bYj,T (H)− Yj,T,H´0Ξ−1j,H ³bYj,T (H)− Yj,T,H´ d→ χ2H (16)

so that a confidence region at an α significance level is represented by the values of Yj,T,H

that satisfy

P
£
WH ≤ c2α

¤
= 1− α

where c2α is the critical value of a random variable distributed χ
2
H at a 1−α confidence level.

20



This confidence region is a multi-dimensional ellipsoid that in general, is too complicated to

display graphically and makes communication of forecast uncertainty difficult. However, for

H = 2, this region can be displayed in two-dimensional space as is done in figure 1.

The top panel of figure 1 displays the 95% confidence region associated to a one- and two-

period ahead forecasts from an AR(1) model with known autoregressive coefficient ρ = 0.75

and σ = 1. Overlayed on this ellipse is the traditional two standard-error box. The figure

makes clear why this box provides inappropriate probability coverage: it contains/excludes

forecast paths with less/more than 5% chance of being observed.

In order to reconcile the inherent difficulty of displaying multi-dimensional ellipsoids

with the inadequate probability coverage provided by the more easily displayed marginal

error bands, we construct a simultaneous rectangular region with Scheffé’s (1953) S-method

of simultaneous inference (see also Lehmann and Romano, 2005). Briefly, the intuition of

the method is to exploit the Cauchy-Schwarz inequality to transform the Wald statistic from

L2-metric into L1-metric to facilitate construction of a rectangular confidence interval.

Notice that the covariance matrix of bYj,T (H) is positive-definite and symmetric and hence
admits a Cholesky decomposition T−1Ξj,H = PP 0, where P is a lower triangular matrix.

The passage of time provides a natural and unique ordering principle so that P is obtained

unambiguously. Notice then that
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P

∙
T
³bYj,T (H)− Yj,T,H´0 Ξj,H ³bYj,T (H)− Yj,T,H´ ≤ c2α¸ = 1− α

P

∙³bYj,T (H)− Yj,T,H´0 (PP 0)−1 ³bYj,T (H)− Yj,T,H´ ≤ c2α¸ = 1− α

P
h bZj,T (H)0 bZj,T (H) ≤ c2αi = 1− α

P

"
HX
h=1

bzj,T (h)2 ≤ c2α
#
= 1− α (17)

where bZj,T (H) = P−1bYj,T (H) and bzj,T (h)→ N (0, 1) and independent across h. Consider now

the problem of constructing the rectangular confidence region for the average path-average

forecast

P

"¯̄̄̄
¯
HX
h=1

bzj,T (h)
h

¯̄̄̄
¯ ≤ δα

#
= 1− α.

A direct consequence of Bowden’s (1970) lemma is that

max

⎧⎨⎩
¯̄̄PH

h=1
bzj,T (h)
h

¯̄̄
qPH

h=1
1
h2

: |h| <∞
⎫⎬⎭ =

vuut HX
h=1

bzj,T (h)2
which can be applied directly to the bottom line of expression (17) to obtain

P

"¯̄̄̄
¯
HX
h=1

bzj,T (h)
h

¯̄̄̄
¯ ≤

r
c2α
H

#
= 1− α, (18)

which in turn implies that δα =
q

c2α
H . Expression (18) and

bZj,T (H) = P−1 bYj,T (H) imply
that a simultaneous confidence region for the forecast path bYj,T (H) can then be constructed
as

bYj,T (H)± δαP iH (19)
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where iH is an H × 1 vector of ones. We call these bands Scheffé confidence bands to

distinguish then from the usual two (marginal) standard error bands commonly reported.

One way to gain intuition about the Scheffé bands is to establish their relation to tra-

ditional marginal error bands. In a traditional error band, the boundaries of the band

represent a shift from the mean of the distribution (the parameter estimate) in proportion

to its variance. Thus, the boundary is the appropriately scaled 1 − α critical value of the

standard normal density, that is for example, byj,T (h) ± zα/2bΞ1/2j,(h,h). Similarly, consider now
a simultaneous shift in all the elements of the forecast path in proportion to their variances.

What would the appropriate critical value be? It is easier to answer this question with the

orthogonal coordinate system bZj,T (H). From expression (17) and denoting this critical value
δα, then δα must meet the condition

P
£
δ2α +

H...+ δ2α = c
2
α

¤
= 1− α

which implies that δα =
q

c2α
H . In two dimensions, both panels of figure 1 display diagonal

intersecting the origin of both ellipses. The slopes of these diagonals reflect the relative

variance of each forecast (in the bottom panel the normalization ensures the variances are

the same so the diagonal is the 45 degree line) and represent the ±δα for all values of α. The

Cholesky factor P therefore provides the appropriate scaling for δα since it not only scales

the orthogonal system by the individual variances of its elements but also accounts for their

correlation.

Several results deserve comment. First, when H = 1 so that we are considering a one-

period ahead forecast, then c20.05 = 3.84 for a χ
2
1 random variable and hence δα =

√
3.84 =
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1.96. In this case, P = σ1 so that the rectangular confidence interval obtain by Scheffé’s

S-method corresponds to the traditional two standard-error band. However, when H = 2,

then δα = 1.73, not the usual 1.96. Second, because the relation between the L2-norm im-

plied by the Wald statistic and the rectangular region implied by the associated L1-norm

holds by Hölder’s inequality (rather than with equality), the probability coverage is more

conservative. Third, an alternative approach is to construct confidence intervals with Bon-

ferroni’s inequality. This inequality suggests that a
¡
1− α

H

¢
confidence interval for yj,T (h),

h = 1, ...,H, then the union of these confidence intervals generates a region that includes

Yj,T,H with at least (1−α) probability. Specifically, the Bonferroni confidence region (BCR)

is

bYj,T (H)± zα/2H × diag(Ξj,H),
where zα/2H denotes the critical value of a standard normal random variable at a α/2H sig-

nificance level. Thus, the BCR can be significantly more conservative than our simultaneous

confidence region, specially when the correlation between forecasts across horizons is low.

In addition, we offer two complementary ways to report uncertainty about the forecast.

The first is to notice that it is easy to construct a fan chart with the quantiles of the joint

predictive density simply by calculating the simultaneous rectangular regions associated with

the values that c2α and δα take for different values of α. An example of such a chart is provided

below in the empirical section. The second measure is based on the following observation.

Notice that Ξj,H = PP 0 = QDQ0 where Q is lower triangular with ones in the main diagonal

and D is a diagonal matrix. Hence, the Wald statistic in expression (16) can be rewritten as
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WH = T
³bYj,T (H)− Yj,T,H´0Ξ−1j,H ³bYj,T (H)− Yj,T,H´

=
³bYj,T (H)− Yj,T,H´0 ¡QDQ0¢−1 ³bYj,T (H)− Yj,T,H´

= eZj,T (H)0D−1 eZj,T (H)
=

HX
h=1

ezj,T (h)2
dhh

=
HX
h=1

t2h|h−1,...,1 → χ2H

where eZj,T (H) = Q−1 ³bYj,T (H)− Yj,T,H´ is the unstandarized version of bZj,T (H); and dhh is
the hth diagonal entry ofD, which is the variance of ezj,T (h). In other words, the Wald statistic
WH of the joint null on Yj,T,H is equivalent to the sum of the squares of the conditional t-

statistics of the individual nulls of significance of the forecast path at time h given the path

from 1 to h−1 for h = 1, ...,H. An implication of this result is that an 1−α confidence region

that sterilizes the uncertainty about the forecast path up to time h− 1 and summarizes the

uncertainty about the h horizon forecast alone, can be easily constructed with the bands

bYj,T (H)± zα/2 × diag(D)
where zα/2 refers to the critical value of a standard normal random variable at a α/2 signif-

icance level.

A simple example provides further intuition about the relation between the different

confidence regions discussed in this section. Suppose the data are generated by the AR(1)

model previously discussed in section 3, then the 95% confidence ellipse results from the

associated Wald statistic in expression (16), that is
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W2 =
1

σ2

³bYT (2)− YT,2´0
⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1 ³bYT (2)− YT,2´ ≤ 6

since c20.05 ' 6 for a χ22 random variable. This is the ellipse displayed in the top panel of

figure 1 for σ = 1 and ρ = 0.75. For this example, the traditional two standard-error box is

given by [−1.96, 1.96] and [−2.45, 2.45] .

The Cholesky decomposition of this forecast path’s covariance matrix is

σ2

⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 0

ρ 1

⎤⎥⎥⎦
⎡⎢⎢⎣ σ2 0

0 σ2

⎤⎥⎥⎦
⎡⎢⎢⎣ 1 ρ

0 1

⎤⎥⎥⎦ (20)

and it is clear that the orthogonal path’s covariance matrix is

⎡⎢⎢⎣ σ2 0

0 σ2

⎤⎥⎥⎦
that is, this covariance simply summarizes the fact that the only source of forecast uncer-

tainty in this simple example comes from the i.i.d. shock, εt (to see it more clearly suppose

that ρ = 0). The 95% confidence circle associated to the orthogonalized forecast path is

displayed in the bottom panel of figure 1. The associated rectangular region can be easily

constructed by noticing that δα =
p
c2α/2 = 1.73 and hence the box is given by [−1.73, 1.73]

and [−1.73, 1.73] . Parenthetically, these also correspond to the conditional two standard

error bands.

In order to obtain the simultaneous, rectangular 95% confidence region we need to trans-

late the rectangular box in the orthogonal coordinate system back to the original coordinate

26



system of the forecast path. The Cholesky factor when ρ = 0.75 can be easily obtained from

expression (20), which multiplied by the orthogonal rectangular values

±

⎡⎢⎢⎣ 1 0

0.75 1

⎤⎥⎥⎦
⎡⎢⎢⎣ 1.73
1.73

⎤⎥⎥⎦ = ±
⎡⎢⎢⎣ 1.73
3.03

⎤⎥⎥⎦
delivers the simultaneous 95% rectangular region [−1.73, 1.73] and [−3.03, 3.03] . Notice that

compared to the traditional two standard-error box [−1.96, 1.96] and [−2.45, 2.45] , Scheffé’s

(1953) method produces a confidence region in which the first period’s forecast uncertainty

is narrower but the second period’s is wider. Figure 2 translates all of these bands discussed

into a more traditional format to make the interpretation more transparent.

6 Conditional Path Forecasts

This section discusses a final method of path forecast evaluation that exploits the asymptotic

Gaussian approximation of the joint predictive density in corollaries 2 and 3; and properties

of the multivariate normal distribution and linear projections. The problem that we have

in mind is that of constructing forecast paths conditional on alternative hypothetical paths

for a subset of variables in the k-dimensional system being considered. An example perhaps

provides better intuition about what we mean.

Suppose a policy maker is confronted with a set of path forecasts bYT (H) about the future
behavior of output growth, inflation, oil prices, exchange rates, interest rates, and so on.

Given these forecasts, suppose the policy maker wants to stress the model and examine how

would these macroeconomic forecasts vary if, for example, a path of oil prices different than

that predicted were to take place. It turns out that when the joint predictive density is
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Gaussian, not only is it simple to obtain what the conditional forecast paths would be, it is

straightforward to calculate the associated conditional predictive density. Waggoner and Zha

(1999) develop Bayesian methods to compute this distribution in finite samples for VARs

whereas Leeper and Zha (2003) further investigate projections based on hypothetical paths

of monetary policy.

It is important to remark that this section does not specifically address parameter stability

in the face of variability in the hypothetical paths in the sense discussed by Lucas (1976).

Such questions are reserved for future research. Rather, we examine hypothetical paths drawn

from the joint predictive density and therefore, a natural starting point is to examine the

likelihood of the hypothetical paths proposed. For this reason, we define the some additional

notation.

Specifically, let k = k0+k1 where k0 is the dimension of the subvector of variables whose

conditional path forecasts we want to calculate, and k1 is the subvector of variables whose

hypothetical paths are the conditioning set. Define the selector matrices S0 = (IH ⊗E0) and

S1 = (IH ⊗E1) where E0 is a k0 × k matrix formed with the k0 rows of Ik associated with

the variables whose conditional paths we wish to calculate, and E1 is a k1 × k matrix whose

rows are the k1 rows of Ik associated with the variables whose hypothetical paths provide

the conditioning set. Therefore, if bY cT (H) denotes the kH × 1 vector of conditional forecasts,
bY 0T (H) = S0bY cT (H) is the k0H × 1 vector of forecasts conditional on the hypothetical paths

Y 1T (H) = S1
bY cT (H), which are of dimension k1H × 1 and where the “hat” is omitted because

the hypothetical paths are not estimated but rather are assumed.

Recall that under assumptions 1 and 2, corollaries 2 and 3 suggest that the asymptotic
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predictive density of bYT (H) is
√
T
³bYT (H)− YT,H´ d→ N (0;ΞH)

although we remark that different assumptions and forecast environments could produce a

similar asymptotic result. The likelihood of the hypothetical paths Y 1T (H) can be evaluated

by testing the null hypothesis H0 : S1YT,H = Y 1T (H) with the Wald statistic

W c
1 = T

³
S1bYT (H)− Y 1T (H)´0 ¡S1ΞHS01¢−1 ³S1 bYT (H)− Y 1T (H)´ d→ χ2k1H .

Hence, one minus the p-value associated with W c
1 is a measure of the distance, in probabil-

ity units, between the predicted paths and the hypothetical paths of the k1 variables. Low

p-values (i.e. toward the direction of rejecting the null) stress the conditional forecasting

exercise toward paths for the k1 variables that have been rarely observed in the historical

sample. In such situations, the resulting conditional forecasts are likely to be more prob-

lematic because we are asking about areas where the model has not been trained by the

sample.

Once the likelihood of the hypothetical values has been assessed, we want to calculate

the conditional forecast paths bY 0T (H) and their predictive distribution. Standard properties
of linear projections and the multivariate Gaussian distribution are all is needed to conclude

that

bY 0T (H) = bYT (H) + S0ΞHS01 ¡S1ΞHS01¢−1 (Y 1T (H)− S1bYT (H))
with a Gaussian predictive density whose covariance matrix is
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Ξ0H = S0ΞHS
0
0 − S0ΞHS01

¡
S1ΞHS

0
1

¢−1
S1ΞHS0.

It is worth remarking that the Gaussian approximation and Ξ0H is all that is needed

to construct simultaneous rectangular confidence regions, conditional error bands and Wald

tests of joint hypotheses with the techniques described in previous sections. The next section

illustrates all of these techniques with an empirical illustration.

7 Empirical Illustration

This section contains two illustration of the techniques presented above. The first application

serves to illustrate the newly introduced measures of forecast path comparison and examines

the role of monetary aggregates in forecasting inflation, a topic of much recent debate in

central bank circles. The second application examines path forecasts for a system of U.S.

macroeconomic variables and provides an example of counterfactual simulation.

7.1 Do Monetary Aggregates Help Forecast Inflation?

In order to achieve monetary policy goals, central banks constantly monitor risks to price

stability. Since its inception, the European Central Bank (ECB) has used a so-called “two

pillar” approach that gives a specific role to monetary aggregates over other economic indi-

cators when forecasting inflation. Naturally, the question we ask in this section is whether

monetary aggregates help forecast U.S. inflation since the U.S. Federal Reserve (Fed) does

not reserve a special role for monetary aggregates over other predictors.

Our objective is very modest: to evaluate whether forecasts of core consumer price infla-

tion (measured by the consumer price index less food and energy) improve when either the
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M2 or the M3 money stock growth measures are added alongside the industrial production

index growth rate and the federal funds rate — inflation, output and interest rates being the

constituent variables of practically any macroeconomic model of the economy. All variables

are observed monthly and are seasonally adjusted from January 1985 to January 2007. The

starting date of the sample is chosen because of the relative stability of inflation during this

period and to mitigate other issues (for example, a structural break) that may influence our

findings.

Three years worth of data are reserved for out-of-sample comparisons of paths one to

twelve months into the future. To maintain the forecast window constant, we expand the

estimation sample one month at a time until the end of the estimation sample (December

2005).

Figure 3 plots theMSFE and theMSFP in terms of the percentage forecast improvement

of the model that includes money aggregates (M2 in the top panel, M3 in the bottom panel)

relative to the model that excludes them. The forecasting model is based on local projections

whose lag length is determined automatically by information criteria (Hurvich and Tsai’s

(1989) AIC corrected).

Figure 3 is typical of many forecasting exercises, where additional variables are found to

improve forecasts in the short-run but not at medium or longer horizons. In fact, both panels

show that the MSFE quickly deteriorates with the forecast horizon. Meanwhile, the MSFP

is very stable over the forecast horizon suggesting that monetary aggregates do improve

forecasting accuracy over virtually all horizons considered. These gains are nevertheless

rather small (at most 3% improvement) and the Hausman test of predictive ability indeed
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suggests that the differences are not statistically significant.

7.2 A Macroeconomic Forecasting Exercise

On June 30, 2004, the Federal Open Market Committee (FOMC) raised the federal funds

rate (the U.S. key monetary policy rate) from 1% to 1.25% — a level it had not reached since

interest rates were last changed from 1.5% to 1.25% on November 6, 2002. For more than

a year before the June 30, 2004 change, the Federal Reserve had kept the federal funds rate

fixed at 1%. This section examines forecasts of the U.S. economy on the eve of the first in a

series of interest rate increases that would culminate two years later, on June 29, 2006, with

the federal funds rate at 5.25%.

Our forecast exercise examines U.S. real GDP growth (on a yearly basis, in percentage

terms, and seasonally adjusted); inflation (measured by the personal consumption expendi-

tures deflator on a yearly basis, in percentage terms, and seasonally adjusted); the federal

funds rate; and the 10 year Treasury Bond rate. All data are measured quarterly (with the

federal funds rate and the 10 year T-Bond rate averaged over the quarter) from 1953:II to

2004:II. With these data, we then construct two-year (eight-quarters) ahead forecasts for this

system of variables by local projections. The lag length of the projections was automatically

selected to be six by AICC — a correction to AIC designed for autoregressions and with better

properties in small samples than either AIC or SIC (see Hurvich and Tsai, 1989).

Figure 4 displays these forecasts along with the actual realizations of these economic

variables, conditional and marginal 95% bands, and 95% Scheffé bands. Several results

deserve comment. First, the 95% Scheffé bands are more conservative and tend to fan out

as the forecast horizon increases but over the two-year period examined, they tend to be
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relatively close to the traditional 95% marginal bands (specially for U.S. GDP). Second, the

95% conditional bands are considerably narrower in all cases but they are meant to capture

the uncertainty generated by that period’s shock, not the overall uncertainty of the path.

Third, our simple experiment results in projections for output and inflation that are more

optimistic than the actual data later displayed. As a consequence, our forecast for the federal

funds rate is more aggressive (after two years we would have predicted the rate to be at 5.5%

instead of 5.25%) although the general pattern of interest rate increases is very similar. Not

surprisingly, the 10 year T-Bond rate is also predicted to be higher than it actually was

although consistent with a higher inflation premium. For completeness, the same forecasts

are displayed in Figure 5 with 95th, 50th and 5th simultaneous percentiles to form appropriate

fan charts.

In order to make sense of were the differences between our forecasts and the historical

record may come from, we experimented with the following hypothetical. Suppose that

the Federal Reserve at the time believed that inflation would not run as high as predicted

(perhaps because of the end of major military operations in Iraq suggested more stability in

oil markets would be forthcoming or other factors that may be difficult to quantify with the

model). Along these lines, we experimented with a path of inflation that tracks the lower

95% conditional confidence band so that inflation is predicted to be at 3.4% (rather than at

3.8%) after two years.

The results of this conditional experiment are reported in Figure 6. We begin by re-

marking that this hypothetical path is very conservative: the Wald test of the null that

the hypothetical is statistically equivalent to the forecast has a p-value of 0.71, that is, the
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distance between the hypothetical and the forecasted path is only 29% in probability units.

Therefore, we feel reasonably certain that such an experiment is still well approximated by

our model. Interestingly, the forecasts obtained by conditioning on this hypothetical path for

inflation are remarkably close to the historical record. In particular, the path of increases in

the federal funds rate is virtually identical to the actual path whereas the path of the 10 year

T-Bond rate is mostly within the 95% conditional bands. The most significant difference was

a slight drop in output after one year to a 3% growth rate that in the conditional was pre-

dicted to be closer to 3.5%, but otherwise both paths seem to reconnect at the end of the two

year predictive horizon. Whereas we cannot be certain that this hypothetical reflected the

Federal Reserve view’s on inflation at the time, it serves to illustrate that formal statistical

experimentation with alternative scenarios can be easily provided to policy makers.

8 Conclusions

Suppose you are comparing two defective computer monitors. One where the color of each

pixel is randomly chosen from a relatively tight distribution centered at the true color for

each pixel; the other shifts the color of each pixel by a random shock of higher variance than

in the first monitor, but by the shock is the same for all pixels. Although the individual

pixel, color error-rate in the first monitor is smaller than in the second, images in the first

will be quite blurry while images in the second will be perfectly crisp — albeit with the wrong

tint.

By the same token, we believe it is more sensible to compare the patterns implied by the

forecast paths of competing models jointly when assessing predictive ability. To that end,

our paper provides a long list of results. We begin by deriving the asymptotic distribution of
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forecast paths generated by finite order VARs or local projections from potentially infinite

order DGPs. Hence our results cover a wide class of situations practitioners are likely to en-

counter in practice, leaving for further research elaborate extensions from these foundational

results.

Returning to the intuition of our computer monitor example, we ask what is the best way

to compare the predictive ability of models. We accomplish this in two ways: by extending

the traditional mean squared forecast error measures to paths (and hence we create the mean

squared forecast path) and by extending Diebold-Mariano-West statistics of equal predictive

ability in terms on the joint null over the path rather than on its constituent elements.

Summarizing the wealth of information contained in the joint distribution of the forecast

path presents a host of new difficulties. We provide several new graphical solutions to this

problem based on the observation that the Cholesky decomposition of the covariance matrix

of the forecast path orthogonalizes the path into the constituent shocks hitting the forecasting

model at each horizon. Hence we introduce simultaneous confidence bands based on Scheffé’s

(1953) method, conditional bands and fan charts based on the quantiles of the joint predictive

density. In the end, the underlying intuition of our derivations is the same as the intuition

in classical linear regression with correlated regressors: while individual coefficients may be

imprecisely estimated (low t-statistics), the joint effect could still be quite precisely estimated

(high F-statistics).

Knowledge of the joint distribution is also advantageous for counterfactual simulation.

However, experimentation with alternative scenarios is complicated in most economic appli-

cations since the Lucas Critique warns of the possibility that the forecasting model may be
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parametrically unstable with respect to the hypothetical path. Furthermore, insofar as the

hypothetical paths are far away from the history observed, we are asking an approximate

model to make predictions in regions were the model has no training from the data. To get a

grip on these issues, we provide formal statistics on the distance of the hypothetical from the

average historical distribution of the paths based on the Wald principle. Once the validity

of the hypothetical is formally assessed, we provide simple formulas to derive the paths and

their distribution, conditional on the hypothetical.
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Figure 1 – 95% Confidence Ellipse for AR(1) Forecast Path over Two Horizons 
 
Panel 1 – Standard confidence bands, confidence ellipse, and Scheffé Bounds 
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Panel 2 – 95% Confidence Circle for Orthogonalized Forecast Path 
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Notes: AR Coefficient = 0.75, Error Variance = 1 
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Figure 2 – 95% Confidence Scheffé, Marginal and Conditional Bands 
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Notes: AR(1) two period ahead forecasts with ρ = 0.75 and σ = 1. This representation 
corresponds to the two dimensional representation in figure 1. 
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Figure 3 – Predicting U.S. Inflation with and without Monetary Aggregates 
 
Sample: January 1985 – January 2007 
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Figure 4 – 95% Scheffé, Conditional and Marginal Error Bands for Macroeconomic Forecasts 
 

 
Notes: Sample runs from 1953:II to 2004:II. The forecast horizon runs from 2004:III to 2006:III.
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Figure 5 – Fan Charts: 95th, 50th, and 5th percentiles 
 

 
Notes: These are the same forecasts as in figure 4 but with Scheffé percentiles displayed. 

Actual 
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Figure 6 – Counterfactual: Inflation set at the lower 95% conditional band value. Sample: 1953:II – 2004:II 
 

 
Notes: Distance of the counterfactual from the forecast in probability units is 0.29 (or p-value of the joint test of equality is 0.71).  
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