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WORKING PAPER

PREVENTING BANK RUNS
BY DAVID ANDOLFATTO, ED NOSAL AND BRUNO SULTANUM∗

JULY, 2014

Diamond and Dybvig (1983) is commonly understood as providing a formal rationale for the existence of

bank-run equilibria. It has never been clear, however, whether bank-run equilibria in this framework are a natural

byproduct of the economic environment or an artifact of suboptimal contractual arrangements. In the class

of direct mechanisms, Peck and Shell (2003) demonstrate that bank-run equilibria can exist under an optimal

contractual arrangement. The difficulty of preventing runs within this class of mechanism is that banks cannot

identify whether withdrawals are being driven by psychology or by fundamentals. Our solution to this problem is

an indirect mechanism with the following two properties. First, it provides depositors an incentive to communicate

whether they believe a run is on or not. Second, the mechanism threatens a suspension of convertibility conditional

on what is revealed in these communications. Together, these two properties can eliminate the prospect of bank-run

equilibria in the Diamond-Dybvig environment.

KEYWORDS: bank runs, optimal deposit contract, financial fragility.

JEL CLASSIFICATION: D82, E58, G21.

1. INTRODUCTION

BANKING is the business of transforming long-maturity illiquid assets into short-maturity liquid liabilities.

The demandable debt issued by commerical banks constitutes the quintessential example of this type

of credit arrangement. The use of short-maturity debt to finance long-maturity asset holdings is also

prevalent in the shadow-banking sector.1 Demandable debt or short-maturity debt in general has

long been viewed by economists and regulators as an inherently fragile financial structure—a credit

arrangement that is susceptible to runs or roll-over risk. The argument is a familiar one. Suppose that

depositors expect a run—a wave of early redemptions driven by fear, rather than by liquidity needs. By

the definition of illiquidity, the value of what can be recouped in a fire-sale of assets must fall short of

existing obligations.2 Because the bank cannot honor its promises in this event, it becomes insolvent. In

this manner, the fear of run can become a self-fulfilling prophecy.

If demandable debt is run prone, then why not tax it, or better yet, legislate it out of existence?3 Bryant

(1980) suggests that the American put option embedded in bank liabilities is a way to insure against

unobservable liquidity risk. In short, banking is an efficient risk-sharing arrangement when assets are

illiquid, depositors are risk averse, and liquidity preference is private information. But if this is the case,

then the solution to this one problem seems to open the door to another. Indeed, the seminal paper by

Diamond and Dybvig (1983) on bank runs demonstrates precisely this possibility: Demandable debt as

an efficient risk-sharing arrangement is also a source of indeterminacy and financial instability.

Diamond and Dybvig (1983) is most often viewed as a theory of bank runs, but it also offers a

prescription for how to prevent bank runs for the case in which aggregate risk is absent. The prescription

entails embedding bank liabilities with a suspension clause that is triggered when redemptions exceed a

specified threshold. This simple fix prevents bank runs.

As Diamond and Dybvig (1983) point out, a full suspension of convertibility—conditional on a

threshold level of redemption activity being breached—is not likely to be optimal in the presence of

aggregate risk.4 In the absence of aggregate uncertainty, redemptions exceeding the appropriate threshold

constitutes a signal that a run is occurring. With aggregate uncertainty, the optimal redemption schedule

∗Federal Reserve Bank of St. Louis, Federal Reserve Bank of Chicago and The Pennsylvania State University.
1This sector includes, but is not limited to, structured investment vehicles (SIVs), asset-backed commercial paper (ABCP)

conduits, money market funds (MMFs), and markets for repurchase agreements (repos).
2If the underlying assets are not illiquid, the demand for maturity transformation would be absent.
3This is essentially the recommendation recently put forth by Cochrane (2014).
4Diamond and Dybvig (1983) do not actually characterize the optimal contract for the case in which aggregate risk is present.
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is state contingent.5 As a consequence, it is not possible to confirm whether heavy redemptions are driven

by fundamentals or by psychology. Threatening full suspension is desirable in the latter case, but not the

former.

Our proposed solution to the bank-run problem under aggregate uncertainty is to exploit the idea

that while the bank may not know whether a run is on, there are agents in the economy that do. That

is, in equilibrium, the beliefs of agents in the economy are consistent with the reality unfolding around

them. Can the bank somehow elicit this information in an incentive-compatible manner? If it can, then

might the threat of suspensions conditional on such information—and not on withdrawals—serve to

eliminate run equilibria?

We provide a positive answer for both these questions, and by so doing depart from the direct

mechanism approach usual in the literature. In a direct mechanism, a depositor in the sequential service

queue simply requests to withdraw or not. That is, the depositor communicates only his type; impatient

if he withdraws or patient if he does not. Our indirect mechanism expands the message space to

accommodate additional communications. In this way, we permit a depositor to communicate his belief

that a run is on. We can show that the threat of suspension conditional on this communication eliminates

the possibility of a run equilibrium.

In practice, such information could be gleaned by introducing a separate financial instrument, the

choice of which implicitly reveals what the depositor believes.6 Our mechanism rewards the depositor

for delivering such a message when a run is on. The reward is such that his payoff is higher compared to

the payoff associated with concealing his belief that a run is on and making an early withdrawal—that

is, misrepresenting his type and running with the other agents. Upon receiving such a message, the

mechanism fully suspends all further redemptions. The design of our mechanism ensures that a patient

agent never has an incentive to either run when a run is on or announce that he believes a run is on

when it is not. At the end of the day, we are able to construct an indirect mechanism that implements the

constrained-efficient allocation in iterated elimination of strictly dominated strategies.

Literature Review

A number of papers have studied bank fragility under optimal arrangements in the Diamond and

Dybvig (1983) setting. Green and Lin (2003) were the first to characterize an optimal bank contract under

private information, sequential service, and aggregate uncertainty. In their version of the Diamond-

Dybvig model, the first-best allocation is implementable as a unique Bayes-Nash equilibrium of a direct

revelation game.

The allocation rule in Green and Lin (2003) allows early withdrawal payments in the sequential

service queue to depend on the history of announcements—"I want to withdraw" or "I do not want to

withdraw"—and payments to that point. The maximum withdrawal amount faced by an agent in the

service queue is lower the larger is the number of preceding withdrawals. This partial suspension scheme

is in stark contrast to Diamond and Dybvig (1983), who restrict the maximum withdrawal amount to be

insensitive to realized withdrawal demand, so that resources are necessarily exhausted in the event of a

run.7

Peck and Shell (2003) modify the Green and Lin (2003) environment in at least two important ways.

First, they alter the preferences so that incentive-compatibility constraints bind at the optimum. This

implies, among other things, that the first-best allocation cannot be implemented. Second, they assume

5This property was suggested by Wallace (1988) and later confirmed by Green and Lin (2003).
6We elaborate on this in section 8.
7Wallace (1990) reports that partial suspensions were prevalent in the banking panic of 1907, and that in one form or another

must have been a feature of other suspension episodes as well.
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that depositors do not know (or are not told) their position in the service queue. If depositors do not know

their queue position, then it is not possible to use backward induction argument of Green and Lin (2003)

to eliminate a bank-run equilibrium. It also turns out—and this was not recognized at the time—not

revealing queue positions to depositors is part of an optimal mechanism when incentive-compatibility

constraints bind.8 Peck and Shell (2003) use a direct revelation mechanism and demonstrate by example

that the optimal direct mechanism can have a bank-run equilibrium.

Ennis and Keister (2009b) modify the Green-Lin environment by assuming the distribution of de-

positors types is correlated; Green and Lin (2003) assume independence. Using a direct revelation

mechanism, Ennis and Keister (2009b) demonstrate that a bank-run equilibrium can exist. But, it is no

longer obvious, that a direct revelation mechanism is the “best” mechanism since it does not deliver a

uniqueness result. Indeed, Cavalcanti and Monteiro (2011) examine indirect mechanisms in the Ennis

and Keister (2009b) environment and demonstrate that the best allocation can be uniquely implemented

in dominant strategies. Unfortunately, the backward induction argument implicitly embedded in their

mechanism—which is key to their uniqueness proof—will not work in the more general Peck and Shell

(2003) environment since depositors do not know their positions in the queue.

There is a mechanism design literature that studies how indirect mechanisms can help to implement

optimal outcomes uniquely. Demski and Sappington (1984) examine a principal-two-agent setting where

agents separately make production decisions and their costs are private and correlated. The optimal

direct mechanism has two equilibria: A truth-telling equilibrium and a “cheating” equilibrium, where

the cheating equilibrium leaves both agents better off and the principal worse off compared to the

truth-telling equilibrium. Ma et al. (1988) shows how an indirect mechanism can prevent agents from

misrepresenting their types—or stop agents from cheating—in the Demski and Sappington (1984) model.9

Mookherjee and Reichelstein (1990) generalizes this approach. Unfortunately, these results cannot be

directly applied to the banking problem because sequential service, which is absent in the mechanism

design models, complicates the analysis.

The paper is organized as follows. The next section describes the economic environment. Section 3

characterizes the best weakly implementable allocation. In Section 4 we provide a stripped down version

of model to illustrative the key features of our mechanism. In Section 5 we construct an indirect mecha-

nism and provide sufficient conditions for unique implementation of the best weakly implementable

allocation. In Section 6, we examine examples for which the sufficient conditions are not valid and Section

7 examines an alternative indirect mechanism that addresses these examples. Some policy remarks are

offered in the final section.

2. ENVIRONMENT

There are three dates: 0, 1 and 2. The economy is endowed with Y > 0 units of date-1 goods. A

constant returns to scale investment technology transforms y units of date-1 goods into yR > y units of

date-2 goods. There are N ex-ante identical agents who turn out to be one of two types: t ∈ T = {1,2}. We

label a type t = 1 agent “impatient” and a type t = 2 agent “patient”. The number of patient agents in

the economy is drawn from the distribution π = (π0, . . . ,πN), where πn > 0, n ∈ N ≡ {0,1, . . . , N}, is the

probability that there are n patient agents.10 A queue is a vector tN = (t1, . . . , tN) ∈ TN , where tk ∈ T is the

8By not revealing or knowing queue positions, multiple incentive compatibility constraints can be replaced by a single incentive
compatibility constraint. As a result, the set of implementable incentive compatible allocations expands.

9Postlewaite and Schmeidler (1986) also produced an example where an indirect mechanism has a unique equilibrium yielding
the optimal outcome while the corresponding direct mechanisms possess multiple equilibria.

10The full support assumption is not crucial to any result. It is imposed only for simplicity.
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type of the agent that occupies the kth position/coordinate in the queue. Let Pn =
{

tN ∈ TN | ntN = n
}

and Qn(tN) =
{

j | tj = 2 for tN ∈ Pn

}
, where ntN denotes the number of patient agents in the queue tN .

Pn is the set of queues with n patient agents and Qn(tN) is the set of queue positions of the n patient

agents in queue tN ∈ Pn.11 The probability of a queue tN ∈ Pn is πn/(N
n ), where the binomial coefficient,

(N
n ), is the number of queues tN ∈ Pn. In other words, all queues with n patient agents are equally likely.

Agents are randomly assigned to a queue position, where the unconditional probability that an agent

is assigned to position k is 1/N. Label an agent assigned to position k agent k. The queue realization,

tN , is observed by no one; not by any of the agents nor the planner. Agent k does not observe his queue

position, k, but does privately observe his type t ∈ T. The utility function for an impatient agent is

U(c1, c2;1) = u
(
c1
)

and the utility function of a patient agent is U(c1, c2;2) = ρu
(
c1 + c2

)
, where c1 is

date-1 consumption and c2 is date-2 consumption. The function u is increasing, strictly concave and twice

continuously differentiable, and ρ > 0 is a parameter.12 Agents maximize expected utility.

The timing of events and actions are as follows. At date 0, the planner constructs a mechanism

that determines how date-1 and date-2 consumption are allocated among the N agents. A mechanism

consists of a set of announcements, M, and an allocation rule, c = (c1, c2), where c1 = (c1
1, . . . c1

N) and

c2 = (c2
1, . . . c2

N). The planner can commit to the mechanism.13 The queue tN is realized at the beginning

of date 1. Then agents meet the planner sequentially, starting with agent 1. Each agent k makes an

announcement mk ∈ M.14 Only agent k and the planner can directly observe mk. There is a sequential

service constraint at date 1, which means the planner allocates date-1 consumption to agent k based on

the announcements of agents j ≤ k, (mk−1,mk), where mk−1 = (m1, . . . ,mk−1), and each agent k consumes

c1
k(m

k−1,mk) at his date-1 meeting with the planner. Date 1 ends after all agents meet the planner. In

between dates 1 and 2 the planner’s resources are augmented by a factor of R. At date 2, the planner

allocates the date-2 consumption good to each agent based on the date-1 announcements, i.e., agent k

receives c2
k(m

N), where mN = (m1, . . . ,mN) ∈ MN . Figure 1 depicts the sequence of actions.

Period 0

Bank announces
{

M, (c1, c2)
}

Realization

of tN ∈ TN

Period 2Period 1

Sequential Service

announce mk and consume c1
k(m

k−1,mk)

︷ ︸︸ ︷

Return R realizes

and payment c2
k(m

N)

occurs

Figure 1: Sequence of Actions.

3. THE BEST WEAKLY IMPLEMENTABLE OUTCOME

An allocation is weakly implementable if it is an equilibrium outcome of a mechanism; it is strongly

or uniquely implementable if it is the unique equilibrium outcome of a mechanism. Among the set of

weakly implementable allocations, the best weakly implementable allocation provides agents with the

11We omit the argument of Qn(tN) throughout the paper to keep the notation short.
12These preferences are identical to the ones in Diamond and Dybvig (1983). In addition, they assume that ρR > 1 and ρ ≤ 1.
13For a discussion of bank fragility in a setting without commitment, see Ennis and Keister (2009a).
14One could imagine that the planner makes announcement ak to agent k before k makes his announcement. For example, the

planner could tell agent k his queue position, as in Green and Lin (2003), or the set of all messages sent in the previous k − 1
planner-agent meetings, as in Andolfatto et al. (2007), or “nothing”, ak = ∅, as in Peck and Shell (2003). The optimal mechanism,
however, will have the planner announcing nothing. To reduce notation, and without loss of generality, we assume that the planner
cannot make announcements to agents, unless otherwise specified. See footnote 16 for a discussion.
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highest expected utility. To characterize the best weakly implementable allocation, it is without loss

of generality to restrict the planner to use a direct revelation mechanism, where agents only announce

mk = tk ∈ T = {1,2}. The welfare—which we measure as the expected utility of an agent before he learns

his type—associated with allocation rule c when agents use strategies mk ∈ T is

N

∑
n=0

πn

(N
n )

∑
tN∈Pn

N

∑
k=1

U
[

c1
k

(

mk−1,mk

)

, c2
k

(

mN
1

)

; tk

]

.(1)

The allocation rule c = (c1, c2) is feasible if for all mN ∈ TN

N

∑
k=1

[

Rc1
k

(

mk−1,mk

)

+ c2
k

(

mM
)]

≤ RY.(2)

The best weakly implementable allocation has all agents k announcing truthfully, i.e., mk = tk. Allo-

cation rule c must be incentive compatible in the sense that agent k has no reason to announce mk 6= tk.

Since impatient agents k only value date-1 consumption, they always announce mk = 1.15 Patient agent k

has no incentive to defect from the strategy mk = 2, assuming that all other agents announce truthfully, if

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρ
{

u
[

c1
k

(

tk−1,2
)

+ c2
k

(

tN
)]

− u
[

c1
k

(

tk−1,1
)

+ c2
k

(

tk−1,1, tN
k+1

)]}

≥ δ,(3)

where, for any vector xN = (x1, . . . , xN), x
j
i denotes

(
xi, . . . , xj

)
, δ > 0 is a parameter, and

π̂n =
πn/(N

n )

∑
N
n=1 πn/(N

n )

is the conditional probability that agent k is in a specific queue with n patient agents.16 The 1/n term

that appears in (3) reflects that a patient agent has a 1/n chance of occupying each of the patient queue

positions in Qn.

The best weakly implementable allocation is given by the solution to

max (1) subject to (2) and (3),(4)

where mk = tk for all k ∈ N. We restrict δ > 0 to those values that admit a solution to problem (4). Let

c∗ (δ) =
(
c1∗ (δ) , c2∗ (δ)

)
be a solution to problem (4) and let W∗(δ) denotes its maximum. We consider

δ > 0 to guarantee that the incentive compatibility holds in an open neighbourhood of c∗. The existence

of such neighbourhood is necessary for our uniqueness result but δ > 0 can be made arbitrarily small.

Therefore, we can apply Berge’s maximum theorem, which says that W∗(0) is approximated by W∗(δ)

when δ is close to zero. The allocation rule c∗ (δ) has the following features: (i) an agent k who announces

mk = 1 consumes only at date 1, that is, c2∗
k (m1, . . . ,mk−1, 1,mk+1, . . . ,mN) = 0 for all k ∈ N; (ii) an agent k

who announces mk = 2 consumes only at date 2, that is, c1∗
k (m1, . . . ,mk−1,2) = 0 for all k ∈ N; and (iii) all

15 This anticipates the result that the best weakly implementable allocation provides zero date-1 consumption to agents who
announce that they are patient, which implies that the incentive compatibility constraint for impatient agents is always slack.

16 To characterize the best weakly implementable allocation, one wants to choose from the largest possible set of incentive
compatible allocations. This implies the planner should not make any announcements, as noted in footnote 14. In particular, if
the planner does not make any announcements, then there is only one incentive compatibility constraint for all patient agents,
(3). If, however, the planner did make an announcement ak to agent k, there will be additional incentive constraints for the agent
who received the announcement. For example, suppose that ak = k for all k, i.e., the planner announces to each agent his place in
the queue. Then there would be N incentive compatibility constraints for patient agents, one for each queue position. Since an
appropriately weighted average of these distinct incentive constraints implies (3), the set of incentive compatible allocations when
the planner makes announcements is a subset of the set of incentive compatible allocations when he does not. By not making any
announcements, the planner is able to choose from a larger set of incentive feasible allocations.
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agents j and k announcing mj = mk = 2 consume identical amounts at date 2, that is, c2∗
j (mN) = c2

k(m
N) for

all mj = mk = 2. The best-weakly implementable allocation is c∗ (0), which corresponds to the allocation

rule derived in Peck and Shell’s (2003) Appendix B.

Define a bank run as a non-truthtelling equilibrium for the mechanism {M, c}, where some and

possibly all k ∈ Qn(tN) announce mk = 1. Both Peck and Shell (2003) and Ennis and Keister (2009b)

demonstrate, by example, that the direct mechanism {T, c∗ (0)} can have two equilibria: one where

agents play truth-telling strategies, mk = tk for all k, and another where all patient agents k play bank-run

strategies, mk = 1.17 We claim that bank-run equilibria arise in these examples because the direct revelation

mechanism they use, {T, c∗(0)}, is not optimal in the sense that there exists a different mechanism which

strongly implements the best weakly implementable allocation. Before we demonstrate this result, we

provide a simple example that illustrates the basic intuition underling our optimal mechanism.

4. A SIMPLE EXAMPLE

Consider a stripped-down version of a Diamond-Dybvig model where there are only 2 agents—

column and row—and both agents are patient. Agents simultaneously announce that they are either

patient, m = 2, or impatient, m = 1. The payoffs to agents for this game are given by

m = 1

m = 2

m = 1 m = 2

0 , 2 3 , 3

1 , 1 2 , 0

This simple normal form game captures two important insights of the Diamond-Dybvig model. First,

there are multiple equilibria: one where both agents announce the truth, m = 2, one where both agents

announce they are impatient, m = 1, and another where both agents randomize between each strategy

with probability half. And second, the truth-telling equilibrium generates the higher payoffs for agents

than a bank-run equilibrium.

Consider now a normal form game that simply augments the announcement space of the original

game from {1,2} to {1,2, g}, with associated payoffs

m = 1

m = 2

m = g

m = 1 m = 2 m = g

1 , 1

0 , 2

1 + ǫ , 0

2 , 0

3 , 3

2 + ǫ , 3

0 , 1 + ǫ

3 , 2 + ǫ

ǫ , ǫ

There are three features of the augmented game that we would like to highlight. First, when agents

restrict their announcements to {1,2}, the payoffs they receive are identical to the original game. Second,

announcement m = g strictly dominates announcement m = 1. And finally, the payoff to an agent who

announces m = 2 is the same regardless if his opponent announces m = 2 or m = g.

17 The Ennis and Keister (2009b) bank-run example is in section 4.2 of their paper. There, agents do not know their position in the
queue, as in Peck and Shell (2003), and the utility functions of patient and impatient agents are the same, ρ = 1, as in Green and Lin
(2003).
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Since agents never play m = 1 in the augmented game—it is strictly dominated by playing m = g—the

relevant augmented game that agents play is

m = 2

m = g

m = 2 m = g

2 + ǫ , 3 ǫ , ǫ

3 , 3 2 , 0

But in this relevant augmented game, announcement m = g is strictly dominated by announcement m = 2.

Therefore, the unique iterated strict dominant equilibrium to the augmented game is one of truthtelling,

m = 2. Hence, by modifying the game that agents play, we get rid of the “bad” bank-run equilibria that

existed in the original game.

The best weakly implementable allocation described in Section 3, c∗(δ), is somewhat more complicated

than the payoff structure in the stripped-down example. Nevertheless, our approach to eliminate the bad

equilibria is the same: We construct an indirect mechanism {M̂, ĉ} with the properties: (i) M̂ = {1,2, g};

(ii) announcing m̂k = 1 is strictly dominated by announcing m̂k = g for patient agents; and (iii) after

announcement m̂k = 1 is eliminated for patient agents announcing m̂k = 2 strictly dominates announcing

mk = g. The uniqueness result is a bit more tricky to prove because we need enough resources to

construct an allocation rule ĉ that provides sufficiently high payoffs to patient agents so that announcing

truthfully is the unique rational strategy. In the subsequent section, we characterize an indirect mechanism

and provide sufficient conditions under which this mechanism uniquely implements the best weakly

implementable allocation using dominance arguments similar to the simple example.

5. AN INDIRECT MECHANISM

Consider an indirect mechanism {M̂, ĉ}, where M̂ = {1,2, g} and ĉ is described below. The basic

construction of the allocation rule ĉ uses c∗ (δ). If agent j announces m̂k = 1, then

ĉ1
k

(

m̂k−1,1
)

=

{

c1∗
k (δ)

(

m̂k−1,1
)

if m̂j ∈ {1,2} for all j < k

0 if m̂j = g for some j < k
and ĉ2

k

(

m̂k−1,1, m̂N
k+1

)

= 0.(5)

An agent k announcing m̂k = 1 receives the date-1 consumption payoff under the direct revelation

mechanism {T, c∗(δ)} only if all earlier agents j < k announce either m̂j = 1 or m̂j = 2; otherwise he receives

zero. That is, there is a suspension of first period payments after an agent j < k announces m̂j = g. The

date-2 consumption payoff associated with the announcement m̂k = 1 is zero, as in the direct revelation

mechanism {T, c∗(δ)}. If agent k announces m̂k = g, then

ĉ1
k

(

m̂k−1, g
)

= 0 and ĉ2
k

(

m̂k−1, g, m̂N
k+1

)

= ĉ1
k

(

m̂k−1,1
)

+ ǫ,(6)

where ǫ > 0 is an arbitrarily small number. To keep the presentation simple, we assume throughout the

paper that ǫ is taken small enough so all results hold. If agent k announces m̂k = g, then he receives a zero

payoff at date 1. At date 2, he receives a payoff that is slightly bigger than the date-1 payoff he would

receive by announcing m̂k = 1, see (5), which implies that ĉ2
k

(
m̂k−1, g, m̂N

k+1

)
= ĉ1

k

(
m̂k−1,1

)
+ ǫ. Hence,

announcing m̂k = g strictly dominates announcing m̂k = 1 for any patient agent k. Finally, if agent k
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announces m̂k = 2, then

ĉ1
k

(

m̂k−1,2
)

= 0 and ĉ2
k

(

m̂k−1,2, m̂N
k+1

)

=
R
[

Y − ∑
N
j=1 ĉ1

j (m̂
j)
]

− ∑
N
j=1 ĉ2

j (m̂
N)1m̂j=g

nm̂N

(7)

where nm̂N represents the number of agents who announced m̂ = 2 in the announcement vector m̂N and

1m̂j=g is an indicator function, where 1m̂j=g = 1 if mj = 1 and 0 otherwise. If agent k announces m̂k = 2,

then he receives a 1/nm̂N share of the total date-2 output that remains after payments to agents j who

announced either mj = 1 or mj = g are made. Since the allocation rule ĉ, given by (5)-(7), depends on δ

and ǫ, we will denote it as ĉ (δ,ǫ).

Generally speaking, a patient agent j who announces mj = 1 adversely affects the payoffs of truthfully

announcing patient agents in two ways. First, the payments to an agent who announces mj = 1 are

made in period 1 which implies that these resources cannot benefit from the investment opportunity,

R, available between dates 1 and date 2. Second, if impatient agents have a relatively high marginal

utility of consumption compared to patient agents, i.e., ρ is small, then, due to risk-sharing considerations,

payments to agents who announce mj = 1 can be quite high, leading to less resources available to the

patient agents. Interestingly, the story is a bit different when patient agent j announces m̂j = g and

impatient agents have a relatively low marginal utility of consumption compared to patient agents.

Following a g announcement there is a suspension of date 1 payments and agents who announce g

receive their payments at date 2. Hence, all suspended payments benefit from the investment opportunity

that is available between dates 1 and 2, and patient agents who announced truthfully will receive a

fraction of the investment return, R. In addition, if ρ is relatively large, then the date-2 payment to agent j

will be relatively low, which benefits truth-telling patient agents.

Patient agent k who announces truthfully will benefit from a mj = g if allocation rule ĉ(δ,ǫ) has the

following property

ĉ2
k(δ,ǫ)(m̂k−1,2, m̂N

k+1) ≥ ĉ2
k(δ,ǫ)(t̂k−1,2, t̂N

k+1) = c2∗
k (δ)(t̂k−1,2, t̂N

k+1),(P1)

where t̂i ∈ Ti (t̂N
i ∈ TN

i ) is a vector of length i (T − i) such that for each j ≤ i (i ≤ j ≤ N), t̂j = 1 if m̂j = 1

and t̂j = 2 if either m̂j = 2 or m̂j = g. In words, vector t̂i (t̂N
i ) is constructed from the message vector m̂i

(m̂N
i ) by replacing all of the g’s with 2’s. The first term in (P1) is the payoff to a truthfully announcing

patient agent when some (patient) agents announce g. The second term is the payoff to patient players

when those g announcements are replaced by 2, which, by construction, also equals the payment from

the best implementable allocation. If the contract ĉ(δ,ǫ) is characterized by property (P1), then, clearly, a

truthfully announcing patient agent benefits if some other (patient) agent announces g. In fact, his payoff

will exceed that associated with the best weakly implementable allocation, c∗(δ).

Under what circumstances will the allocation rule ĉ(δ,ǫ) have property (P1)? The above discussion

suggests that truthfully announcing patient agents benefit from a mj = g announcement the larger is R

and/or the larger is ρ. (Recall that the higher is ρ, the smaller will be the payments to impatient agents.)

Our first proposition verifies this intuition.

PROPOSITION 1: If ρR > 1, then property (P1) holds.

PROOF: See Appendix.

Property (P1) seems to imply that, since more resources are available to patient players who announce

truthfully and less to patient players who announce g, it is rational for patient players to announce

truthfully. Our main proposition demonstrates that this intuition is, in fact, correct.
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PROPOSITION 2: If property (P1) holds, then the indirect mechanism {M̂, ĉ(δ,ǫ)} strongly implements allocation

c∗(δ) in rationalizable strategies.

PROOF: The mechanism {M̂, ĉ(δ,ǫ)} induces a symmetric Bayesian game Γ = {T,S} where, T = {1,2} is

the set of types, st ∈ M̂ is the player’s message contingent on his type t ∈ T and S = {(s1, s2) ∈ M̂2} is the

set of pure strategies. We solve the game by iterated elimination of strictly dominated strategies in two

rounds.

Round 1 - Any strategy (s1, s2) ∈ S, with s1 6= 1, is strictly dominated by (1, s2) since, contingent on

being impatient, an agent only derives utility from period 1 consumption. Additionally, any strategy

(s1,1) is strictly dominated by (s1, g) since, contingent on being patient, agents are indifferent between

period 1 or period 2 consumption and announcing g always gives a total payment that is ǫ higher

than announcing 1. Let S1 = {(1,2), (1, g)} denote the set of strategies that survive the first round of

elimination of strictly dominated strategies.

Round 2 - When strategies are restricted to S1, impatient agents announce 1 and patient agents

announce either 2 or g. From property (P1), the lower bound on the expected payoff to a patient player

who announces 2 is

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c2∗
k (δ)(tk−1,2, tN

k+1)
)

.

Since the payment to agent k who announces mk = g is either c1∗
k

(
tk−1, 1

)
+ ǫ or ǫ, the expected payoff

to a patient player who announces g is bounded above by

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c1∗
k (δ)

(
tk−1,1

)
+ ǫ
)

.

Since u is continuous, there exists an ǫ > 0 sufficiently small so that

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

{

ρu
(

c1∗
k (δ)

(
tk−1,1

)
+ ǫ
)

− ρu
(

c1∗
k (δ)

(
tk−1,1

))}

< δ.

The incentive compatibility condition (3) can be rewritten as

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c2∗
k (δ)

(
tk−1,2, tN

k+1

))

≥
N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c1∗
k (δ)

(
tk−1,1

))

+ δ.

Combining the above two inequalities, we get

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c2∗
k (δ)(tk−1,2, tN

k+1)
)

>

N

∑
n=1

π̂n ∑
tN∈Pn

1

n ∑
k∈Qn

ρu
(

c1∗
k (δ)(tk−1,1) + ǫ

)

.(8)

Therefore, the strategy (1, g) is strictly dominated by the strategy (1,2) in S1. Let S2 be the set of strategies

that survive the second round of elimination of strictly dominated strategies. Since S2 = {(1,2)} is a

singleton, the game is iterated strict dominance solvable. The unique equilibrium strategy is the truth-

telling s = (1,2), which implies the same outcome as the truth-telling equilibrium of the direct mechanism

{T, c∗(δ)}.

If allocation ĉ(δ,ǫ) has property (P1), then, just as in the stripped-down example from Section 4,

mechanism {M̂, ĉ(δ,ǫ)} admits only one equilibrium characterized by truthtelling for all agents. Hence,

mechanism {M̂, ĉ (δ,ǫ)} does not allow bank runs. In addition, the allocation delivered by the mechanism,

ĉ (δ,ǫ), can be made arbitrarily close to the best weakly implementable allocation c∗ (0) by choosing δ
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arbitrarily close to zero.

Together, Propositions 1 and 2 imply that a sufficient condition for unique implementation is ρR > 1.

This is quite interesting and, perhaps, even remarkable. Diamond and Dybvig (1983) construct a model

where fractional reserve banks endogenously arise and use the model to help us understand the notion

that banks are inherently unstable. Their 1983 article requires that ρR > 1. Propositions 1 and 2 in this

article, however, indicates that for this parametrization banks are always stable.

We want to emphasize that conditions stated in Propositions 1 and 2 are only sufficient conditions.

Regarding Proposition 1, one can see from the proof that if incentive compatibility condition (3) does not

bind, then condition the ρR > 1 is not necessary. This means that contract ĉ(δ,ǫ) can be consistent with

property (P1) even if ρR < 1. In the subsequent section, we provide an example of this (even when the

incentive compatibility condition (3) binds). Regarding Proposition 2, property (P1) allows us to derive a

lower bound on the expected payoff of a patient agent announcing m = 2 and, therefore, to use dominance

arguments to demonstrate uniqueness. But neither, such lower bound or dominance arguments, are

necessary for uniqueness. In the subsequent section we provide an example where contract allocation

ĉ(δ,ǫ) does not have property (P1) but the indirect mechanism {M̂, ĉ(δ,ǫ)} uniquely implements ĉ(δ,ǫ).

6. SOME EXAMPLES

In this section we provide some examples that show the sufficient conditions described in Propositions

1 and 2 are not necessary for unique implementation of the allocation rule c∗(δ). The first example shows

that property (P1) can hold when ρR < 1. A second example shows that allocation rule c∗(δ) can be

uniquely implemented when property (P1) is violated.

Common to all examples are: (i) R = 1.05; (ii) Y = 6; (iii) ρR < 1; (iv) δ = 10−10; and (v) the general

structure of preferences is given by 18

u(x) =
(x + 1)1−γ − 1

1 − γ
, γ > 1.(9)

In the first example, N = 2, ρ = 0.9, γ = 1.01 and (π0,π1,π2) = (0.005,0.4975,0.4975). Notice that

ρR < 1. The best weakly implementable allocation, c∗(0), which is obtained by solving (4), has c∗1
1 (1) =

3.1487 and c∗1
2 (2,1) = 3.1481. The other payments can be derived from the resource constraint (2) holding

at equality. It is straight forward to show that the direct mechanism {T, c∗(0)} admits a bank-run

equilibrium for this example. For ǫ arbitrarily small, property (P1) holds, even though ρR < 1. Therefore,

although ρR > 1 is a sufficient condition for property (P1), it is not a necessary one. Since property (P1) is

satisfied in this example, Proposition 2 implies that {M̂, ĉ(δ,ǫ)} uniquely implements allocation c∗(δ) for

δ and ǫ small. In this example, constraint (3) binds. This implies that incentive constraints in the Green

and Lin (2003) environment—where agents know their queue positions—will also bind and that the best

implementable allocation from that environment is not equal to c∗(0).19 This implies that the Green and

Lin (2003) mechanism is unable to even weakly implement the allocation c∗(δ), where δ is arbitrarily

small.

The second example replicates the Peck and Shell (2003) example in Appendix B. The only difference

between the examples is the specification of preferences. Peck and Shell (2003) assume that u(x) =

c1−γ/(1 − γ), which implies that u(0) = −∞. For these preferences, our mechanism trivially uniquely

implements allocation c∗(δ), since patient agent k will never announce mk = g if there is a probability,

18 Notice that u(0) = 0.
19Our environment can be turned into the Green and Lin (2003) environment by allowing the planner to tell agent k his queue

position, k, before agent k makes sends his message.
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however small, that some other agent j will announce mj = g. The parameters for our second example

are N = 2, ρ = 0.1, γ = 2 and (π0,π1,π2) = (0.25,0.5,0.25). Notice that ρR < 1. The best weakly

implementable allocation, c∗(0), is characterized by c∗1
1 (1) = 3.0951 and c∗1

2 (2,1) = 3.1994. Allocation

c∗(0) features bank runs and a binding incentive constraint (3). (This implies that a Green and Lin (2003)

mechanism cannot weakly implement c∗(0).) It is straightforward to demonstrate that the mechanism

{M̂, ĉ(δ,ǫ)} uniquely implements allocation c∗(δ), for δ and ǫ arbitrarly close to zero. For this example

c∗1
1 (2,1) + c∗2(2,2) > RY, which implies that (P1) is not satisfied for all m̂N ∈ M̂N . Hence, property (P1)

is not necessary for unique implementation. We are not aware of any mechanism in the literature that can

implement the best weakly implementable allocations from these two examples. We have experimented

with many combinations of model parameters. We are unable to find a set of parameters for which

the indirect mechanism {M̂, ĉ(δ,ǫ)} cannot uniquely implement an allocation that is arbitrarily close to

the best weakly implementable allocation. Our search, however, was restricted to N ∈ {2,3}. It is, of

course, possible that the indirect mechanism {M̂, ĉ(δ,ǫ)} does not uniquely implement the best weakly

implementable allocation for some set of parameters—that we were unable to recover—when ρR ≤ 1. In

the next section, we propose an alternative indirect mechanism to deal with this case.

7. AN ALTERNATIVE MECHANISM

The indirect mechanism {M̂, ĉ(δ,ǫ)} uniquely implements allocation c∗(δ) for the N ∈ {2,3} examples

we considered, but there may exist primitives for which it does not. To address this issue, we construct an

alternative mechanism that uniquely implements c∗(δ) in pure and symmetric strategies. The mechanism,

however, does rule out the existence of mixed or asymmetric Nash equilibria.20

The alternative indirect mechanism is denoted by {M̃, c̃}, where M̃ = {1,2, g} and c̃ is described

below. For a given m̃k−1 ∈ M̃k−1, define t̃k−1 ∈ Tk−1 as a vector of length k − 1, where for each j ≤ k − 1,

t̃j = 1 if either m̃j = 1 or m̃ = g; and t̃j = 2 if m̃j = 2. It is important to emphasize that the relationship

between m̃j and t̃j is different from that of m̂j and t̂j. Specifically, the vector t̃k−1 is constructed from m̃k−1

by replacing any g’s with 1’s, while vector t̂k−1 is constructed from m̂k−1 by replacing any g’s with 2’s.

The construction of the allocation rule c̃ uses the best weakly implementable allocation rule, c∗ (0). If

agent k announces m̃k = 1, then

c̃1
k(m̃

k−1,1) = c1∗
k (0)

(

t̃j−1,1
)

and c̃2
j (m̃

k−1,1, m̃N
k+1) = 0.(10)

When agent k announces m̃k = 1 he receives the consumption associated with announcing mk = 1 in

the direct revelation mechanism {T, c∗ (0)}, where announcement m̃j = g in the indirect mechanism is

treated as if it is m̃j = 1. If agent k announces m̃k = g, then

c̃1
k(m̃

k−1, g) = 0 and c̃2
k(m̃

k−1, g, m̃N
k+1) =

{

c1∗
k (0)

(

t̃k−1,1
)

+ ǫ if m̃j = 1 for all j 6= k

0 otherwise
,(11)

where ǫ > 0 is arbitrarily small. If agent k announces m̃k = g, he receives a zero date 1 payoff. His date 2

payoff is slightly bigger than what he would receive by announcing m̃k = 1 but only if all other agents j

announce mj = 1; otherwise, he receives a payoff of zero. Finally, if agent k announces m̃k = 2, then

c̃1
k

(

m̃k−1,2
)

= 0 and c̃2
k

(

m̃k−1,2, m̃N
k+1

)

=
R
[

Y − ∑
N
j=1 c̃1

j (m̃
k)
]

− ∑
N
j=1 c̃2

j (m̃
N)1m̃j=g

nm̃N

,(12)

20 Mechanism {M̂, ĉ(δ)} does rule out these equilibria when ρR > 1. It is interesting to note, however, that in the literature
virtually all of the analyses of the Diamond-Dybvig model focus on pure and symmetric equilibria.
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where nm̃N represents the number of agents j who announced m̃j = 2. If agent k announces m̃k = 2, then

he receives an equal share of date-2 output net of any payments made to agent j who announce m̃j = g.

Since the allocation rule c̃ given by (10)–(12) depends on δ, we will denote it as c̃(ε).

When considering only pure and symmetric equilibria, the indirect mechanism {M̃, c̃(ε)} is quite

powerful. Specifically,

PROPOSITION 3: The indirect mechanism {M̃, c̃(ε)} uniquely implements the best weakly implementable alloca-

tion c∗ (0) in pure and symmetric Nash equilibrium.

PROOF: All impatient agents k announce truthfully since announcing m̃k = 1 results in a strictly positive

date-1 payoff and announcing m̃k 6= 1 results in a date-1 payoff equal to zero.

First, there cannot exist an equilibrium where all patient agents k announce m̃k = 1. Suppose such

an equilibrium exists. Then some patient agent j can defect from proposed equilibrium and announce

m̃j = g. Agent j’s payoff is strictly greater than the payoff associated with announcing m̃j = 1 by the

amount ǫ > 0; a contradiction.

Second, there cannot be an equilibrium where all patient players k announce m̃k = g. To see this,

note that if agent k announces m̃k = g, then his payoff will be zero if there are other patient agents in the

economy. The (proposed) equilibrium payoff, therefore, is

(13)
π̂1

N

N

∑
k=1

ρu
[

c1∗
k (0)

(

1k−1,1
)

+ ε
]

+ (1 − π̂1)ρu (0) .

If instead, agent k defects from proposed play announces m̃k = 1, his payoff will be

(14)
1

N

N

∑
k=1

ρu
[

c1∗
k (0)

(

1k−1,1
)]

.

Since π̂1 < 1, for ǫ > 0 sufficiently small (14) exceeds (13); a contradiction.

Third, there is an equilibrium where all patient agents k announce m̃k = 2. By construction, patient

agent j has no incentive to announce m̃j = 1 when all other agents announce truthfully, i.e., allocation rule

c∗(0) is incentive compatible for patient agents when m̃j is restricted to the set {1,2}. Suppose, instead,

that patient agent j defects from equilibrium play and announces m̃j = g. In this case, his payoff will be

only slightly greater than the payoff associated with announcing m̃j = 1 if and only if he is the only patient

agent in the economy—an event that occurs with probability π̂1. With probably 1 − π̂1, there are other

patient agents k who announce m̃k = 2, which implies that patient agent j receives a zero payoff. For any

π̂1 < 1, there exists an ε > 0 sufficiently small so that the expected payoff associated with announcing

m̃j = g is strictly less than that associated with announcing m̃j = 1, when all other agents announce

truthfully.

The unique symmetric and pure equilibrium strategy for mechanism {M̃, c̃} is characterized by truth-

telling, i.e., m̃k = tk for all k. By construction, these strategies implement the best weakly implementable

allocation in c∗ (0).

There is an interesting tradeoff between the two indirect mechanisms that have been studied. Mecha-

nism {M̂, ĉ} has a very weak equilibrium concept, rationalizability. However, unique implementation is

guaranteed only if the restriction ρR > 1 is satisfied. Unique implementation is possible when ρR ≤ 1, as

our examples demonstrate, but it has to be verified on a case-by-case basis. Mechanism {M̃, c̃} has a very

strong equilibrium concept, pure and symmetric Nash equilibria. However, no restriction are required on

model parameters to guarantee unique implementation. Unique implementation is possible for when

mix strategies are allowed, but it has to be verified on a case-by-case basis.
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Finally, the indirect mechanism (M̂, ĉ) relies on both punishments and suspension for unique imple-

mentation. Since strategies are restricted to be pure and symmetric, indirect mechanism (M̃, c̃) only relies

on punishments for unique implementation.

8. POLICY DISCUSSION

The most common prescription for enhancing the stability of demandable debt is to modify the

contract to include a partial suspension clause. For example, Cochrane (2014), suggests that if securities

are designed so debtors have the right to delay payment, suspend convertibility, or pay in part, then

it is much harder for a run to develop. Santos and Neftci (2003) recommend the use of extendable

debt—which is a suspension in payments—in the sovereign debt market to help mitigate the frequent

debt crises that have afflicted emerging economies and, recently, more advanced economies as well. In

June 2013, the Securities and Exchange Commission (SEC) announced a set of proposals to help stabilize

money market funds (MMFs). One of the key proposals recommends that the MMF board of directors

have the discretion to impose of penalty redemption fees and redemption gates—or suspsension of

payments—in times of heavy redemption activity.

The effect of such proposals is to render demandable debt more state-contingent. In this sense, the

proposals above are consistent with the properties of the optimal debt contracts described in Diamond

and Dybvig (1983), Green and Lin (2003), and Peck and Shell (2003). But given that bank-run equilibria

remain a possibility in the latter model, one is led to question whether the the use of such measures

constitute only necessary, and not sufficient conditions, for stability.

The key question concerns the issue of precisely what information is be used to condition the suspen-

sion/extension clause. In the Diamond and Dybvig (1983) model without aggregate risk, suspension is

triggered when “reserves” are reach a well-specified critical level. Evidently, this conditioning factor is

sufficient to prevent runs in that environment. Similarly, the partial suspension schedules described in

Green and Lin (2003) and Peck and Shell (2003) are triggered by measures of reserve depletion (more

precisely, the history of reported types). In reality, the volatility of redemption rates varies across different

classes of MMFs. Schmidt et al. (2013), for example, report that MMFs with volatile flow rates prior to the

financial crisis of 2008 were more likely to experience runs during the crisis. How are directors of these

funds to ascertain whether a spike in redemptions is attributable to fear rather than fundamentals? Our

indirect mechanism suggests that information beyond some measure of redemption activity or resource

availability is needed to prevent the possibility of a bank-run. We need to know why depositors are

exercising their redemption option. For better or worse, this information is private and must therefore

be elicited directly—as in our model—or inferred indirectly—through some other means. Of course,

information revelation must be incentive compatible.

Just how realistic is this idea? There is, in fact, historical precedence for the practice of soliciting

additional information in periods of heavy redemption activity. For example, banks would sometimes

permit limited redemptions to occur for depositors that could demonstrate evidence of impatience, e.g.,

a need to meet payroll. Gorton (1985, fn 7) reports that 19th century clearinghouses would regularly

investigate rumors pertaining to the financial health of member banks.

As a practical matter, the spirit of our mechanism could be implemented in several different ways.

One way would be to permit depositors to pay a small fee for the right to have their funds diverted to a

segregated, priority account.21 Such an action could be interpreted as a communication of an impending

run. The priority debt differs from other debt only in the event of failure and the ratio of priority to

21This is effectively what happens in our mechanism when a depositor reports m = g.
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non-priority debt outstanding informs the issuer on the degree to which depositors expect the bank to

fail. In principle, the suspension clause could be made conditional on this ratio hitting some specified

threshold. It does not need to be official as long as there is a mutual understanding that it will be used.

And along the lines suggested by our mechanism, if one knows that the bank will suspend before any

rumor-induced trouble affects their balance sheet, then depositors know that there will be no reason, in

equilbrium, to actually exercise the option of converting their claims to priority debt.

To summarize, current policy proposals designed to prevent, or at least mitigate, bank runs in

demandable debt structures focus on enhancing state-contingency, with contingencies dictated by some

measure of redemption activity or resource depletion. Our analysis suggests that while state contingency

is necessary, it may not be sufficient to prevent bank runs. Suspension clauses should be conditioned

on information relating to depositor beliefs about what they perceive to be happening around them.

The desired information could be elicited in an incentive compatible manner through an appropriate

modification of the deposit contract—an example of which we described above. If we are wrong in our

present assessment, the inclusion of such a clause would be inconsequential. But if we are correct, then

the inclusion of such a clause may help to prevent bank runs in debt structures that are presently run

prone.

APPENDIX: PROOF OF PROPOSITION 1

In order to prove proposition 1 we first establish the following result.

LEMMA 1: If ρR > 1 then c1∗
k (δ)

(
t̄k−1,1

)
< c2∗(δ)

(
t̄k−1,2N−k+1

)
for all k ∈ N and t̄k−1 ∈ Tk−1. Where 2n

denotes the n−dimensional vector of twos.

PROOF: Since c∗(δ) solves problem (4), it satisfies the implied first-order conditions.22 Let λtN denote

the Lagrange multiplier of the feasibility constraint (2) for each tN ∈ TN and µ denotes the Lagrange

multiplier of the incentive compatibility (3). By simplicity, λtN is normalized by πn
tN

/( N
n

tN
), where ntN

denotes the number of type 2 players in queue tN . And µ is normalized by π̄ = ∑
N
n=1 πn/(N

n ). Since

u′(0) = ∞ the constraint c1 ≥ 0 and c2 ≥ 0 are not binding and the respective Lagrange multipliers can be

ignored. The first order conditions of the problem are given below.

[

c1
k

(
t̄k
)]

:
N

∑
n=0

πn

(N
n )

∑
tN∈Pn
tk=t̄k

{

u′
[

c1
k

(
t̄k
)]

− λtN R
}

−
N

∑
n=1

πn

(N
n )

∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN

u′
[

c1
k

(
t̄k
)]

= 0(15)

for all k ∈ N and t̄k−1 ∈ Tk−1 such that t̄k = 1; and

[

c2
(
tN
)]

:
πn
(

N
n

tN

)

{

ρu′
[

c2
(
tN
)]

− λtN +
µρ

ntN

u′
[

c2
(
tN
)]
}

= 0(16)

for all tN ∈ TN such that ntN > 0. We can solve the above equations for λtN and obtain

λtN =

{

ρ
(

1 + µ
n

tN

)

u′
[
c2
(
tN
)]

if nt̄N > 0

1
R u′

[
c1

N

(
tN
)]

if nt̄N = 0
.

Note that c2
(
tN
)

is not defined if tN = 1
N = (1,1, . . . ,1)—there is no second period payments when every

depositor announces to be of type impatient in the first period. In order to keep the notation short, let us

22 From now on we will denote c∗(δ) just by c in order to keep the notation short.
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define u′
[
c1

N

(
1

N
)]

= ρRu′
[
c2
(
1

N
)]

and 1/n
1N = 0. Then, λtN is given by

λtN = ρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]

.(17)

After replace equation (17) in equation (15) we obtain that for all k ∈ N and t̄k = (t̄k−1,1) ∈ Tk−1:

N

∑
n=0

πn
(

N
n

) ∑
tN∈Pn

tk=t̄k

u′
[

c1
k

(
t̄k
)]

−
N

∑
n=1

πn
(

N
n

) ∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN

u′
[

c1
k

(
t̄k
)]

=
N

∑
n=0

πn
(

N
n

) ∑
tN∈Pn

tk=(t̄k−1,1)

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]

which is equivalent to

{

P

[

tk = (t̄k−1,1)
]

−
N

∑
n=1

πn
(

N
n

) ∑
tN∈Pn

tk=(t̄k−1,2)

µρ

ntN

}

u′
[

c1
k

(
t̄k
)]

=
N

∑
n=0

πn
(

N
n

) ∑
tN∈Pn

tk=(t̄k−1,1)

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]

.

We can also write the equation in expectations, which yields to the formula

[

1 − γ
(
t̄k−1

)]

u′
[

c1
k

(
t̄k
)]

= EtN |tk=(t̄k−1,1)

{

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]
}

(18)

where γ
(
t̄k−1

)
= P

[
tk = (t̄k−1,2)

]
EtN |tk=(t̄k−1,2) [µρ/ntN ]

/
P
[
tk = (t̄k−1,1)

]
.

The result will be derived from equation (18). Let us use induction on k ∈ N starting from k = N and

going down until k = 1.

Proof for k = N: Fix any t̄N = (t̄N−1,1). From equation (18) we have that
[

1 −
P
[
tN = (t̄N−1,2)

]

P
[
tN = (t̄N−1,1)

] ×
µρ

n(t̄N−1,2)

]

u′
[

c1
N

(
t̄N−1,1

)]

= Rρ

(

1 +
µ

n(t̄N−1,1)

)

u′
[

c2
(
t̄N−1,1

)]

.

which implies that u′
[
(c1

N

(
t̄N−1,1

)]
> u′

[
c2
(
t̄N−1,1

)]
. Thus, c1

N

(
t̄N−1,1

)
< c2

(
t̄N−1,1

)
. We know that

the resources constraints holds at equality because u is strictly increasing. Therefore,

n(t̄N−1,2)c
2
(
t̄N−1,2

)
= [nt̄N + 1] c2

(
t̄N−1,2

)
= nt̄N c2

(
t̄N−1,1

)
+ Rc1

N

(
t̄N−1,1

)

And after reorganize the equation above we have that

c2(t̄N−1,2) =
n(t̄N−1,1)

n(t̄N−1,1) + 1
c2(t̄N−1,1) +

1

n(t̄N−1,1) + 1
Rc1

N(t̄
N−1,1) > c1

N(t̄
N−1,1).

Hence, for the case k = N, we can conclude that c1
k

(
t̄k−1,1

)
< c2

(
t̄k−1,2N−k+1

)
.

Proof for k < N: Assume the result holds for all j > k and t̄j = (t̄j−1, 1) ∈ T j. That is, for all j > k we have

c1
j

(
t̄j−1,1

)
< c2

(
t̄j−1,2N−j

)
. Let us show it also holds for k. Fix some t̄k = (t̄k−1,1) ∈ Tk−1, then equation

(18) is given by

u′
[

c1
k

(
t̄k
)]

=
1

1 − γ
(
t̄k−1

)EtN |tk=(t̄k−1,1)

{

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]
}

.

Note that, for any function X : TN → R, the conditional expectation can be decomposed as

E
tN
∣
∣tk=t̄k

{

X
(
tN
)}

=
N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

]

E
tN
∣
∣tj=
(

t̄k ,2j−k−1,1
)
{

X
(
tN
)}

+

P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

X
(
t̄k,2N−k

)
.
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Applying this decomposition to equation (18) we obtain

u′
[

c1
k

(
t̄k
)]

=







N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

]

E
tN
∣
∣tj=
(

t̄k ,2j−k−1,1
)

{

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]
}

+

P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)

u′
[

c2
(
t̄k,2N−k

)]
}

1

1 − γ
(
t̄k−1

) .

By equation (18) we know that

[

1 − γ
(
t̄k,2j−k−1

)]

u′
[

c1
j

(
t̄k,2j−k−1,1

)]

= E
tN
∣
∣tj=
(

t̄k ,2j−k−1,1
)

{

Rρ

(

1 +
µ

ntN

)

u′
[

c2
(
tN
)]
}

for j = k + 1, . . . , N. Hence,

u′
[

c1
k

(
t̄k
)]

=







N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

][

1 − γ
(
t̄k,2j−k−1

)]

u′
[

c1
j

(
t̄k,2j−k−1,1

)]

+

P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)

u′
[

c2
(
t̄k,2N−k

)]
}

1

1 − γ
(
t̄k−1

) .

By the inductive hypothesis we know that c1
j

(
t̄k,2j−k−1,1

)
< c2

(
t̄k,2N−k

)
, which implies that

u′
[

c1
k

(
t̄k
)]

>
1

1 − γ
(
t̄k−1

)







N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

][

1 − γ
(
t̄k,2j−k−1

)]

u′
[

c2
(
t̄k,2N−k

)]

+ P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)

u′
[

c2
(
t̄k,2N−k

)]
}

=
1

1 − γ
(
t̄k−1

)







N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

][

1 − γ
(
t̄k,2j−k−1

)]

+ P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)}

u′
[

c2
(
t̄k,2N−k

)]

=
1

1 − γ
(
t̄k−1

)

{
N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

]

−
N

∑
j=k+1

P

[

tj =
(
t̄k,2j−k−1,1

)
∣
∣
∣tk = t̄k

] P
[
tj = (t̄k,2j−k)

]

P
[
tj = (t̄k,2j−k−1,1)

]EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]

+ P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)}

u′
[

c2
(
t̄k,2N−k

)]

After simplify the above equation we obtain

u′
[

c1
k

(
t̄k
)]

>
1

1 − γ
(
t̄k−1

)

{

1 − P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

(19)

−
N

∑
j=k+1

P
[
tj = (t̄k,2j−k)

]

P
[
tk = t̄k

] EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]

+ P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

)}

u′
[

c2
(
t̄k,2N−k

)]

.
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The fact that the queue position is withdrawn uniformly implies that

P
[
tj = (t̄k,2j−k)

]
= P

[
tj = (t̄k−1,1,2j−k)

]
= P

[
tj = (t̄k−1,2j−k,1)

]

and

EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]

= EtN |tj=(t̄k−1,1,2j−k)

[
µρ

ntN

]

= EtN |tj=(t̄k−1,2j−k ,1)

[
µρ

ntN

]

.

This implies that

N

∑
j=k+1

P
[
tj = (t̄k,2j−k)

]

P
[
tk = t̄k

] EtN |tj=(t̄k ,2j−k)

[
µρ

ntN

]

=
N

∑
j=k+1

P
[
tj = (t̄k−1,1,2j−k)

]

P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,1,2j−k)

[
µρ

ntN

]

(20)

=
N

∑
j=k+1

P
[
tj = (t̄k−1,2j−k,1)

]

P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,2j−k ,1)

[
µρ

ntN

]

=
N

∑
j=k+1

P
[
tj = (t̄k−1,2j−k,1)

]

P
[
tk = (t̄k−1,1)

] EtN |tj=(t̄k−1,2j−k ,1)

[
µρ

ntN

]

+
P
[
tk = (t̄k−1,2N−k)

]

P
[
tk = (t̄k−1,1)

]
µρ

n(t̄k−1,2N−k)

−
P
[
tk = (t̄k−1,2N−k)

]

P
[
tk = (t̄k−1,1)

]
µρ

n(t̄k−1,2N−k)

=
P
[
tk = (t̄k−1,2)

]

P
[
tk = (t̄k−1,1)

]EtN |tk=(t̄k−1,2)

[
µρ

ntN

]

−
P
[
tk = (t̄k−1,2N−k)

]

P
[
tk = (t̄k−1,1)

]
µρ

n(t̄k−1,2N−k)

=γ
(
t̄k−1

)
−

P
[
tk = (t̄k−1,2N−k)

]

P
[
tk = (t̄k−1,1)

]
µρ

n(t̄k−1,2N−k)
.

Replacing equation (20) in inequality (19) and reorganising the terms in the inequality, we obtain

u′
[

c1
k

(
t̄k
)]

>
1

1 − γ
(
t̄k−1

)

{

1 − γ
(
t̄k−1

)
+

P
[
tk = (t̄k−1,2N−k)

]

P
[
tk = (t̄k−1,1)

]
µρ

n(t̄k−1,2N−k)

(21)

+ P

[

tN =
(
t̄k,2N−k

)
∣
∣
∣tk = t̄k

]

Rρ

(

1 +
µ

n(t̄k ,2N−k)

−
1

Rρ

)}

u′
[

c2
(
t̄k,2N−k

)]

.

Because Rρ > 1, the inequality (21) implies that

u′
[

c1
k

(
t̄k−1,1

)]

= u′
[

c1
k

(
t̄k
)]

> u′
[

c2
(
t̄k,2N−k

)]

= u′
[

c2
(
t̄k−1,1,2N−k

)]

.

And since u is concave, it implies that c1
k

(
t̄k−1, 1

)
< c2

(
t̄k−1, 1,2N−k

)
. The resources constraint implies that

[

n(t̄k−1,1,2N−k) + 1
]

c2
(
t̄k−1,2N−k+1

)
= n(t̄k−1,1,2N−k)c

2
(
t̄k−1,1,2N−k

)
+ Rc1

k

(
t̄k−1,1

)
.

And finally we can conclude that

c2
(
t̄k−1,2N−k+1

)
=

n(t̄k−1,1,2N−k)

n(t̄k−1,1,2N−k) + 1
c2
(
t̄k−1,1,2N−k

)
+

1

n(t̄k−1,1,2N−k) + 1
Rc1

k

(
t̄k−1,1

)
> c1

k

(
t̄k−1,1

)
.

We have shown that the result holds for k = N and that if it holds for all j ∈ {k + 1, . . . , N} it holds for

k. Therefore, by induction, we can conclude that the result holds for all k ∈ N.
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Proposition 1

PROOF: We know that for any vector of announcements m̂N ∈ M̂N , if either m̂N ∈ TN or m̂k 6= 2 for all k,

the result is trivial. Consider a realized vector of announcements m̂N ∈ M̂N , with m̂N /∈ TN , m̂k = 2, and

let j be the queue position of the first agent to announce g. As before, t̂N ∈ TN denotes the vector m̂N

we replace all g’s with 2’s. When agent j announced g the in the first period payments were suspended,

hence, the total resources in the beginning of period 2 is

R

[

Y −
N

∑
i=1

ĉ1
i (m̂

i)

]

= R

[

Y −
j

∑
i=1

ĉ∗1
i (t̂i)

]

= n(t̂j−1,2N−j+1)c
∗2
k (t̂j−1,2N−j+1).

Where n(t̂j−1,2N−j+1) is the number of 2’s in the vector (t̂j−1,2N−j+1). Let dm̂N denote the number of agents

who have announced g and nm̂N the number of agents who announced 2. The total payments in the

second period to agents who announced g is given by

N

∑
k=1

ĉ2
k(m̂

N)1m̂k=g = c∗1
j (t̂j−1,1) + dm̂N ǫ.

Hence, payment to agent k is

ĉ2
k

(

m̂k−1,2, m̂N
k+1

)

=
R
[

Y − ∑
N
k=1 ĉ1

k(m̂
k)
]

− ∑
N
k=1 ĉ2

k(m̂
N)1m̂k=g

nm̂N

=
n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1)− c∗1

j (t̂j−1,1)− dm̂N ǫ

nm̂N

.

By lemma (1) we know that c∗1
j

(
t̄j−1, 1

)
< c∗2

j (t̂j−1,2N−j+1). Thus, by taking ǫ > 0 small enough, we have

that,

ĉ2
k

(

m̂k−1,2, m̂N
k+1

)

≥
[n(t̂j−1,2N−j+1) − 1]c∗2

k (t̂j−1,2N−j+1)

nm̂N

.

By construction we have that

ĉ2
k

(

t̂k−1,2, t̂N
k+1

)

= c∗2
k

(

t̂k−1,2, t̂N
k+1

)

=
R
[

Y − ∑
N
i=1 ĉ∗1

i (t̂i)
]

nm̂N + dm̂N

≤
R
[

Y − ∑
j
i=1 ĉ∗1

i (t̂i)
]

nm̂N + 1
=

n(t̂j−1,2N−j+1)c
∗2
k (t̂j−1,2N−j+1)

nm̂N + 1
.

Note that,

n(t̂j−1,2N−j+1) − 1

nm̂N

≥
n(t̂j−1,2N−j+1)

nm̂N + 1
⇐⇒

n(t̂j−1,2N−j+1)nm̂N + n(t̂j−1,2N−j+1) − nm̂N − 1 ≥ n(t̂j−1,2N−j+1)nm̂N ⇐⇒ n(t̂j−1,2N−j+1) ≥ nm̂N + 1.

The last inequality holds because n(t̂j−1,2N−j+1) ≥ nt̂N = nm̂N + dm̂N . Hence,

ĉ2
k

(

m̂k−1,2, m̂N
k+1

)

≥
[n(t̂j−1,2N−j+1) − 1]c∗2

k (t̂j−1,2N−j+1)

nm̂N

≥
n(t̂j−1,2N−j+1)c

∗2
k (t̂j−1,2N−j+1)

nm̂N + 1
≥ ĉ2

k

(

t̂k−1,2, t̂N
k+1

)

.

Which concludes the proof.
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