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1 INTRODUCTION

A wide variety of studies have debated whether asset returns are, or should be, predictable using

information available to investors. Many, including Barberis (2000), Lettau and Ludvigson (2001),

Campbell and Thompson (2008), and Cochrane (2008, 2011), conclude that asset returns are pre-

dictable. Others, including Goyal and Welch (2008) and Boudoukh, Richardson, and Whitelaw

(2008), remain skeptical.

In many instances, the evidence of predictability (or the lack thereof) is based on out-of-sample

conditional mean predictions of asset returns. These predictions are, in turn, evaluated using

statistical measures of out-of-sample predictive accuracy. In most cases, mean squared error

(MSE) is used (e.g., Campbell and Thompson, 2008; Goyal and Welch, 2008; Ferreira and Santa

Clara, 2011; and the references therein). In many, though not all, cases the question of interest is

whether a newly developed predictive model is better at guiding investment decisions than a pre-

existing baseline model. As such, when statistical measures of predictive accuracy (such as MSE)

are used to evaluate the performance of a new model, not only are MSEs reported but inference is

conducted to determine whether any differences in the MSEs are statistically significant. Inference

is often conducted using common approaches to out-of-sample inference (West, 1996; Clark and

McCracken, 2001; McCracken, 2007).

While statistical metrics of evaluation are informative, there is increasing interest in evaluating

the predictability of asset returns using economic value measures. Examples of economic measures

of predictability include Sharpe ratios (Fleming et al., 2001), performance fees (Patton, 2004),

certainty-equivalent returns (Ingersoll et al., 2007), and profits (Leitch and Tanner, 1991). As for

the case of statistical measures, the most common question of interest is whether a newly developed

predictive model is “better”at generating higher economic value than an established baseline model.

However, despite their increasing use, these economic measures are typically, though not always,

reported with no indication of whether any empirical differences are statistically significant.1

1Wachter and Warusawitharana (2015) conduct a test of the null that certainty equivalent relations (CERs) are
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In this paper, we develop an asymptotically valid approach to inference when performance fees

are used as the economic measure of predictive accuracy. Since the performance fee (Φ) is the

amount an investor would be willing to pay to have access to an alternative predictive model, and

can take both negative and positive values, the null and alternative hypotheses are both composite

and take the form H0 : Φ ≤ 0 and HA : Φ > 0, respectively. As is usual when the null hypothesis is

composite (e.g., Hansen, 2005), we implement our test by using critical values associated with the

asymptotic distribution of the estimated performance fee (Φ̂) under the least favorable alternative

within which Φ = 0.

Specifically, we first show that when Φ is zero, Φ̂ is asymptotically normal with zero mean and,

following West (1996) and West and McCracken (1998), has an asymptotic variance that is affected

by estimation error —additional variation induced by the fact that the models must be estimated

prior to their use. In some instances, consistent estimation of this asymptotic variance is straight-

forward and thus standard Normal critical values can be used to conduct inference. In others,

estimating the asymptotic variance can be quite complicated. We therefore also investigate the

effi cacy of a bootstrap approach to inference based on the methods developed in Calhoun (2015).

Our Monte Carlo evidence suggests that both asymptotic and bootstrap-based critical values can

provide reasonably well-sized tests but, in particular, obtaining substantial power sometimes re-

quires large samples. In addition, the simulation evidence shows that there can be large differences

in statistical versus economic measures of predictive ability. In fact, under some circumstances,

the performance fee can be zero or even negative despite having strong conditional mean predictive

ability in asset returns.

We are, of course, not the first to emphasize that statistical evidence of predictability need

not imply anything about economic predictability. In particular, Cochrane (1999), Sentana (1999,

2005), and Taylor (2013) have developed formulas linking R2s of linear predictive equations to both

Sharpe ratios and performance fees. Our main contribution is not in extending these formulas, but

zero versus an alternative that they are positive. Their critical values are generated using Monte Carlo methods

assuming no return predictability.
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rather in providing a method for conducting asymptotically valid inference on the null hypothesis

that a performance fee is at most zero versus an alternative in which it is positive. Our results

reinforce many of their findings by showing that the non-monotonic link between statistical and

economic predictability leads to diffi culties in conducting inference.

The paper is organized as follows. Section 2 provides a simple example of the type of application

we have in mind. Section 3 develops the theoretical results and Section 4 discusses practical methods

related to inference. Section 5 provides simulation results designed to investigate the size and power

properties of the test statistic. In Section 6 we apply our analytical results to predictions of the

equity premium by means of various predictors (as in Goyal and Welch, 2008). A final section

concludes.

2 A SIMPLE ILLUSTRATIVE EXAMPLE

In this section, we delineate a simple example of performance fees in the context of a portfolio of

two assets: a single risk-free and a single risky asset (e.g., a stock index) that is predictable by

means of a single variable. While simplistic, we use this example not only so that we can convey

certain analytical details in closed form, but also because it is consistent with the existing literature

that uses utility-based comparisons to assess asset returns predictability. It is worth emphasizing

that our analytical results, discussed in the following section, are not restricted to this particular

environment.

Let rt denote the return on the risky asset and r
f
t the rate of return on the risk-free asset.

Define ept+τ = rt+τ − rft+τ as the excess stock index return, or equity premium, in period t+ τ and

let zt denote a variable observed at time t that is believed to predict ep at a future time t+ τ . The

investor uses the predictive regression,

ept+τ = α1,0 + α1,1zt + e1,t+τ , (1)

to make conditional mean forecasts of future stock index excess returns. The variable zt has

predictive content for ept+τ if α1,1 6= 0. If zt has no predictive content, then α1,1 = 0 and Equation
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(1) collapses to

ept+τ = α0,0 + e0,t+τ ,

where stock index excess returns are equal to their historical mean plus an unpredictable error

term. Throughout the paper we denote the competing model as 1 and the baseline model as 0. In

addition, the investor uses a parametric model to estimate the conditional variance of the excess

returns. Define σ2
i,t+τ (ϑi) as the time t conditional variance of ept+τ implied by model i = 0, 1 as

a function of the finite-dimensioned parameter estimates ϑ̂i,t.

At each forecast origin t = T, ..., T +P − τ , the investor uses the conditional mean (ept+τ (α̂i,t))

and conditional variance (σ2
i,t+τ (ϑ̂i,t)) predictions of excess returns to decide how much of her

wealth to invest in the risky and the risk-free assets. If the investor is endowed with mean-variance

preferences, the optimal allocation to the risky asset wi,t at any time t from model i = 0, 1 is given

by the conventional formula

wi,t(β̂i,t) = ŵi,t =
ept+τ (α̂i,t)

γσ2
i,t+τ

(
ϑ̂i,t

) , (2)

where β̂i,t = (α̂′i,t, ϑ̂
′
i,t)
′ and γ is the investor’s known coeffi cient of relative risk aversion (RRA). If

the investor is endowed with initial wealth W = 1 at each forecast origin, the time t + τ realized

gross return implied by model i = 0, 1 equals

R̂i,t+τ = 1 + rft+τ + ŵi,t(β̂i,t)ept+τ .

Any improvements in predictive ability between models 0 and 1 are assessed using utility-based

comparisons. That is, for a prespecified utility function U(R), economic value is evaluated by

comparing the average utility implied by models 0 and 1 across all forecast origins. If we let

P̃ = P − τ denote the number of τ -step-ahead forecasts, this takes the form

U(R̂i) = P̃−1∑T+P−τ
t=T U(R̂i,t+τ ).

As in Fleming et al. (2001), the difference in utilities is characterized using the concept of a

performance fee. This fee is the value of Φ̂ that satisfies

U(R̂1 − Φ̂)−U(R̂0) = 0.
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We interpret Φ as the maximum fraction of wealth the investor would be willing to pay per period to

switch from model 0 to model 1. If the two conditional variance models are identical, this criterion

measures how much a risk-averse investor is willing to pay for conditioning on the information in

the predictive variable zt. It follows that, if there is no predictive power embedded in the variable

zt, then Φ = 0; whereas, if zt helps to predict stock excess returns, one expects Φ > 0.

We can better understand the behavior of Φ when α1,1 6= 0 if a few more assumptions are made.

In particular, let the forecast horizon be τ = 1 and assume that zt follows a stationary AR(1)

process of the form

zt = µz(1− ρ) + ρzt−1 + vt,

where (et, vt) are i.i.d. normally distributed with zero means and variances σ2
e and σ

2
v. Let µz

and σ2
z denote the unconditional mean and variance of zt. Finally, assume that the conditional

mean models are estimated by OLS and the conditional variance models are identical so that

σ2
0,t+1(ϑ̂0,t) = σ2

1,t+1(ϑ̂1,t). More specifically, for ease of presentation, assume that the predictions of

these conditional variances are obtained simply by using a consistent estimate of the unconditional

variance.2

Straightforward algebra shows that

Φ =

(
α2

1,1σ
2
z

γ(α2
1,1σ

2
z + σ2

e)

)(
σ2
e − 3(α1,0 + α1,1µz)

2

2(α2
1,1σ

2
z + σ2

e)

)
. (3)

Equation (3) is the product of two terms. If the first term is zero, as it is when α1,1 = 0, then

Φ = 0. This first term can be interpreted as the (population) R2 from the predictive model 1, scaled

by γ. Using this interpretation, the smaller the R2 from model 1, the closer Φ is to zero. The

second term is less easily interpretable but arises due to the marginal differences in the variance

components of the mean-variance utility functions.

Since the first term in parentheses increases monotonically with |α1,1|, it seems likely that larger

(absolute) values of α1,1 imply larger values of Φ. In this case, statistical measures of predictive

2While this may seem odd given our framework, rolling window estimates of the unconditional variance of ept+1
are often used as estimates of the conditional variance of excess returns in the empirical literature (Goyal and Welch,

2008; Campbell and Thompson, 2008; and Ferreira and Santa Clara, 2011).
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accuracy coincide with utility-based economic measures of predictability. In fact, stronger evidence

of statistical predictability, represented by large t-statistics on α1,1 or large R2 recorded for the

unrestricted regression, implies larger utility gains to investors, and subsequently larger values of

Φ > 0.

However, it is worthwhile noting that this intuitive case need not be the only case in which Φ

equals zero, nor is it trivially true that larger (absolute) values of α1,1 imply larger values of Φ.

Note that the second term in parentheses also depends on α1,1. Taken as a whole, this implies that

as α1,1 deviates from zero, Φ can be positive, negative, or zero depending on the specifics of the

data-generating process. In Figure 1, we plot Φ as a function of α1,1 on the basis of parameter

values loosely calibrated using the return on the NYSE value-weighted index as our risky asset, its

dividend yield as our predictor, and the yield on the 3-month T-bill as our return on the risk-free

asset.3 Given these parameter values, Figure 1 shows the values of Φ obtained as a function of

α1,1 ∈ [0, 2]. As expected, Φ is zero when α1,1 is zero and initially increases as α1,1 increases. And

yet for large enough values of α1,1, Φ begins to decline and eventually becomes negative. Clearly,

large and statistically significant statistical measures of accuracy such as MSEs and R2s need not

provide any indication of economic performance when measured using performance fees.

As shown in the following section, the fact that Φ can have multiple roots (as a function of α1,1)

makes inference more complicated than we might want. In particular, while we are able to establish

that P̃ 1/2Φ̂ is asymptotically normal with zero mean at each root, the asymptotic variance differs

whether α1,1 is zero or nonzero. We consider two approaches to manage this problem. First,

we show that there is a straightforward estimator of the asymptotic variance that is robust to

both instances. The simulation evidence suggests this estimator can work reasonably well but

sometimes requires large samples to provide accurately sized tests. In addition, we consider a

percentile-bootstrap approach to inference based on the work of Calhoun (2015) that is designed

3Specifically, we use these data to estimate empirically relevant values of µz, σ
2
z, σ

2
e, and E(ept+1). The latter two

terms are used to parameterize α1,0 = E(ept+1) and σ2e = V ar(ept+1). The coeffi cient of RRA is set to γ = 3. Some

ad hoc adjustments are made to induce the hump-shaped pattern for Φ.
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explicitly for out-of-sample inference when the test statistic is asymptotically Normal. While

the two approaches yield different results, the bootstrap approach to inference is much easier to

implement and yields comparable size and power in our simulations.

3 THEORETICAL RESULTS

This section provides the asymptotic distribution of a per-period performance fee measure Φ̂ on

the boundary of the null hypothesis and hence Φ = 0. The performance fee Φ is estimated as

a function of two sequences of pseudo-out-of-sample forecasts: one each for models 0 and 1. In

the context of the example from Section 2, these forecasts consist of both conditional mean and

conditional variance forecasts. To calculate the performance fee, we assume that the investor has

access to the necessary observables over the time frame s = 1, ..., T + P . This sample is split into

an in-sample period s = 1, ..., T and an out-of-sample period t = T + 1, ..., T +P . At each forecast

origin t = T, ..., T + P − τ , both of the parametric τ -period-ahead investing models are estimated

and used to construct a forecast that is then used to construct portfolio weights. The assumptions

used to derive the asymptotic results are presented below and closely follow those in West (1996)

with some modest deviations.

Assumption 1. Let β = (β′0, β
′
1)′. (a) There exists a function f(Xt+τ , β) = ft+τ (β), with ft+τ (β∗) = ft+τ ,

that is twice continuously differentiable in β and satisfies P̃ 1/2Φ̂ = P̃−1/2
∑T+P−τ

t=T ft+τ (β̂t) +

op(1). (b) For the max norm |.| and some open neighborhoodN of β∗, E(supβ∈N ∂
2ft+τ (β)/∂β∂β′) <

D some finite scalar D.

Assumption 2. The parameters are estimated using one of two sampling schemes: the recursive or the rolling.

The recursive parameter estimates satisfy β̂i,t − β∗i = Bi(t)H i(t), where Bi(t) →a.s. Bi is

a non-stochastic matrix, Hi(t) = t−1
∑t−τ

s=1 hi,s+τ with Ehi,s+τ = 0, and β∗i denotes the

population counterparts of the parameter estimates β̂i,t. The rolling parameter estimates β̂i,t

are defined similarly but are constructed using data over the ranges s = t − T, ..., t. Define
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β̂t = (β̂
′
0,t, β̂

′
1,t)
′, ht+τ = (h′0,t+τ , h

′
1,t+τ )′, and B = diag(B0, B1). All parameter estimates are

constructed using the same sampling scheme.

Assumption 3. Define ft+τ ,β = ∂ft+τ (β∗)/∂β and let wt = (f ′t+τ ,β, ft+τ , h
′
t+τ )′. (a) For some d > 1,

suptE||wt||4d <∞. (b) wt is strong mixing of size −3d/(d−1). (c) wt is covariance stationary.

Assumption 4. The number of in-sample observations associated with the initial forecast origin T , and the

number of predictions P̃ = P − τ + 1, are arbitrarily large; in particular, they satisfy the

restriction that limP,T→∞
P
T = π ∈ (0,∞),

Assumption 5. Define F = Eft+τ ,β. If the models are nested, FB 6= 0.

Before providing the main result, it is important to explain some key assumptions and their

implications for the validity of our testing procedure. Assumption 1 maps the problem of inference

on Φ̂ into a framework in which the theoretical results in West (1996) can be applied directly. While

the assumption is stated at a very high level, it is actually very simple to verify. For example, in

the context of the mean-variance example from Section 2, Assumption 1 is satisfied for the function

ft+τ (β̂t) = (R̂1,t+τ −
γ

2
(R̂1,t+τ − ER1,t+τ )2)− (R̂0,t+τ −

γ

2
(R̂0,t+τ − ER0,t+τ )2) (4)

if R̄i →p ERi,t+τ . As another example suppose that power utility is used and hence U(R̂i,t+τ ) =

R̂1−ρ
i,t+τ/(1− ρ). Since Φ̂ is defined as a root and U(.) is continuously differentiable in its argument,

we obtain Φ̂ = (Ū(R̂1)− Ū(R̂0))/P̃−1
∑T+P−τ

t=T ∂U(R̂1,t+τ − Φ̃)/∂Φ some Φ̃ on the line between Φ̂

and 0.4 If P̃−1
∑T+P−τ

t=T ∂U(R̂1,t+τ − Φ̃)/∂Φ→p E(∂U(R1,t+τ )/∂Φ) 6= 0, Assumption 1 is satisfied

with

ft+τ (β̂t) = (R̂1−ρ
1,t+τ − R̂

1−ρ
0,t+τ )/(E(∂U(Ri,t+τ )/∂Φ)(1− ρ)).

The requirement that ft+τ (β) is twice continuously differentiable in β is nontrivial for our results.

In the vast majority of studies on economic value calculations, the utility function U (·) itself is

continuously differentiable in the gross return. Even so, there are cases where the assumption might

4When Φ = 0.

9



fail because R̂i,t+τ is not twice continuously differentiable in β. For example, in some applications

the estimated portfolio weights can be bounded (or winsorized) to limit the maximal amount of

leverage in the constructed portfolio (Ferreira and Santa Clara, 2011). We pursue this issue further

in simulations reported in section 5.

Given Assumption 1, Assumptions 2, 3, and 4 are nearly identical to those in West (1996). The

predictive models must be parametric and estimated using a framework that can be mapped into

GMM. The observables must have suffi cient moments and mixing conditions to satisfy a central

limit theorem,5 and the number of in-sample and out-of-sample observations must be of the same

order. Assumption 5 states that if the two models are nested under the null hypothesis, and hence

R1,t+τ = R0,t+τ , it must be the case that a certain product of two moments is nonzero. We do so

since, as shown below, there is the potential for the asymptotic variance of P̃ 1/2Φ̂ to be zero. To

avoid this problem, we state a high-level assumption that ensures that the asymptotic variance is

nonzero. As a practical matter, the condition is likely to hold as long as the model parameters are

not estimated using the utility function U (·) as the objective function.6 Given the assumptions,

our main result follows immediately from Theorem 4.1 of West (1996).

Theorem 1 Maintain Assumptions 1-5 and let Φ = 0. P̃ 1/2Φ̂→d N(0,Ω) with

Ω = Sff + 2Λ0(π)FBS′fh + Λ1(π)FBShhB
′F ′

where Sff = limT→∞ V ar
(
T−1/2

∑T
s=1 fs+τ

)
, Shh = limT→∞ V ar

(
T−1/2

∑T
s=1 hs+τ

)
, Sfh =

limT→∞Cov
(
T−1/2

∑T
s=1 fs+τ ,T

−1/2
∑T

s=1 hs+τ

)
, and

scheme Λ0(π) Λ1(π)

recursive (1− π−1 ln(1 + π)) 2(1− π−1 ln(1 + π))

rolling 0 < π ≤ 1 π
2 π − π2

3

rolling 1 ≤ π <∞ 1− 1
2π 1− 1

3π .

.

Theorem 1 shows that on the boundary of the null hypothesis, the estimated performance fee is

asymptotically normal with zero mean and an asymptotic variance that reflects not only variation
5West uses the central limit theorem of Wooldridge and White (1998).
6This assumption precludes a few isolated applications including Skouras (2007) and Cenesizoglu and Timmermann

(2011).
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in the difference in utilities, via Sff , but also the influence of the estimation error via the remaining

components of the variance, FBS′fh and FBShhB
′F ′, respectively.

When the models are nested there are two distinct cases in which Theorem 1 applies. The

leading case is when Φ = 0 because the models are identical and hence the “competing” and

“baseline”models are better thought of as “unrestricted”and “restricted.” In this situation, there

exists a selection matrix J such that Jβ∗1 = β∗0, and the asymptotic variance simplifies to

Ω = Λ1(π)(E
∂U1,t+τ

∂Φ
)−2E(

∂U1,t+τ

∂β1

)(−JB0J +B1)Sh1h1(−JB0J +B1)E(
∂U ′1,t+τ
∂β1

). (5)

The asymptotic variance simplifies because in this specific case, R1,t+τ = R0,t+τ for all t and hence

Sff and Sfh are both trivially zero. In addition, the fact that the models are nested implies

J ′h1,t+τ = h0,t+τ and J ′
∂U1,t+τ
∂β1

=
∂U0,t+τ
∂β0

and thus the asymptotic variance can be simplified even

further. While not immediately obvious in Theorem 1, it is for this case that we have Assumption 5.

To achieve asymptotic normality in any useful sense we need Ω to be positive. When predictability

exists and hence β∗1,1 is not zero, Sff is nonzero and hence Ω is nonzero as long as Sff does not

cancel with the remaining terms. By imposing Assumption 5, we ensure that Ω is positive for the

case in which the unrestricted model perfectly nests the restricted model —a possibility that we

must allow for under the null hypothesis.

A less intuitive case arises when the models are ostensibly nested and yet Φ = 0 despite the

fact that β∗1,1 is nonzero. In this case, as stated in Theorem 1, Φ̂ is asymptotically normal with

mean zero but with an asymptotic variance that does not simplify as it does when β∗1,1 = 0. Note

also that our results are applicable to the comparison of two models that are non-nested under the

null. While theoretically plausible, such a comparison does not appear to exist in the literature

and hence we do not pursue it any further herein.

4 INFERENCE

The theorem from the previous section provides a means of assessing the statistical significance

of performance fees for a given utility function. Specifically, if Ω̂ is a consistent estimate of Ω,
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it immediately follows that P̃ 1/2Φ̂/Ω̂1/2 →d N(0, 1), and therefore one can use standard normal

critical values to conduct a conservative test of the null hypothesis that Φ ≤ 0 against an alternative

in which Φ > 0. In our simple illustrative example discussed in Section 2, forming a consistent

estimate of Ω is not too diffi cult. However, the standard errors become increasingly complicated to

estimate as the number of risky assets increases and we move from mean-variance utility to other

utility functions.

In this section, we therefore discuss two approaches to inference: one in which we estimate Ω

and use standard normal critical values for inference and one in which critical values are obtained

by bootstrapping the distribution of Φ̂ without any normalization. To facilitate application of our

results and to emphasize some peculiar features of our results, we delineate both approaches in the

context of the simple environment discussed in Section 2.

Recall that since utility is mean/variance, the percentage of wealth invested in the risky asset

takes the form

wi,t(β̂i,t) = ŵi,t =
ept+1 (α̂i,t)

γσ2
i,t+1

(
ϑ̂i,t

)
for a known RRA parameter γ, conditional mean prediction ept+1 (α̂i,t), and conditional variance

prediction σ2
i,t+1

(
ϑ̂i,t

)
. The baseline model 0 uses the historical mean of ept+1 (α0,0) as the

conditional mean prediction and the historical unconditional variance of ept+1 as the conditional

variance prediction. The competing model 1 forms the conditional mean prediction using the

OLS-estimated regression ept+1 = α1,0 + α1,1zt + e1,t+1 = α′1xt + e1,t+1 and also uses the historical

unconditional variance of ept+1 as the conditional variance prediction.

We allow for three distinct methods of estimating each of these predictions. Under the recursive

scheme, both αi and ϑi i = 0, 1 are estimated using all available observations from i = 1, ..., t for

each forecast origin t = T, ..., T + P − 1. Under the rolling scheme, αi and ϑi i = 0, 1 are

estimated using only the most recent T observations from i = t−T + 1, ..., t for each forecast origin

t = T, ..., T + P − 1. Under a “mixed”scheme, used by Goyal and Welch (2008), αi is estimated

using the recursive scheme, while ϑi is estimated using a small rolling window of sizeM << T . The
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first two schemes align with the maintained assumptions of Section 3 and, in particular, define β̂i,t

as (α̂′i,t, ϑ̂
′
i,t)
′. The latter may align with the maintained Assumptions but only after reinterpreting

the variance parameter ϑ̂i,t = M−1
∑t

s=t−M+1(eps− ep̄t,M )2, where ep̄t,m denotes the sample mean

of eps over the sample s = t −M + 1, ..., t. Since M << T , it is not unrealistic to interpret the

parameter estimates in the manner put forth by Giacomini and White (2006). There, asymptotics

are developed whereby all parameters are assumed to be estimated using a rolling window of fixed

and finite lengthM . By taking this approach, they effectively treat the parameter estimates as just

another time series of observables in much the same way as we treat ept+1 and zt as observables.

If we take this view of the rolling window estimator of the unconditional variance, but still estimate

the conditional mean parameters using the recursive scheme, our theoretical results continue to be

applicable with two distinctions: (i) Contributions to Ω due to estimation error arise only via α̂i,t

since we have de facto redefined β̂i,t as just α̂i,t and (ii) the proofs treat ϑ̂
′
i,t as just a component

of the function ft+τ that continues to satisfy, in particular, Assumption 3.

4.1 Asymptotic Critical Values

Since Φ can be zero regardless of whether α1,1 is zero, for robust inference we need a consistent

estimate of Ω that does not require α1,1 to take any particular value. This can be achieved by

estimating every component of Ω using the formula in the theorem. Under the recursive or rolling

schemes, for which hs+1 = (e0,s+1, (eps+1−Eeps+1)2−E(eps+1−Eeps+1)2, e1,s+1, zse1,s+1, (eps+1−

Eeps+1)2 − E(eps+1 − Eeps+1)2)′, these elements take the form B = diag(B0, B1), B0 = I2, B1 =

diag((Extx
′
t)
−1, 1), and F = (−E ∂U ′0,t+1

∂β0
, E

∂U ′1,t+1
∂β1

)′ where E ∂Ui,t+1
∂βi

= E
∂wi,t+1
∂βi

ept+1(1− γ(Ri,t+1 −

ERi,t+1)) i = 0, 1. Under the mixed scheme, for which hs+1 = (e0,s+1, e1,s+1, zse1,s+1)′, these

elements take the form B = diag(B0, B1), B0 = 1, B1 = (Extx
′
t)
−1, and F = (−E ∂U ′0,t+1

∂β0
, E

∂U ′1,t+1
∂β1

),

where E ∂Ui,t+1
∂βi

= E
∂wi,t+1
∂βi

ept+1(1−γ(Ri,t+1−ERi,t+1)) i = 0, 1 but with βi appropriately redefined

as just αi.

In either case, as discussed in West (1996), sample analogs can be used to estimate each com-

ponent of Ω. Under the recursive or rolling schemes, consistent estimates of B, F , and both
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Λ0(π) and Λ1(π) can be formed using B̂ = diag(I2, diag(((T + P )−1
∑T+P

t=1 xtx
′
t)
−1, 1)), F̂ =

(−P−1
∑T+P−1

t=T
∂ŵ0,t+1
∂β0

ep̂t+1(1− γ(R̂0,t+1 − R̄0)), P−1
∑T+P−1

t=T
∂ŵ1,t+1
∂β1

ep̂t+1(1− γ(R̂1,t+1 − R̄1)))′,

Λ0(P/T ), and Λ1(P/T ) respectively. Estimates of Sff , Sfh, and Shh can be constructed using

conventional nonparametric kernel estimators of the long-run variances and covariances of ht+1

and ft+1 if we define ĥt+1 = (ê0,t+1, (ep̂t+1 − ep̄)2 − σ̂2
ep, ê1,t+1, ztê1,t+1, (ep̂t+1 − ep̄)2 − σ̂2

ep)
′ and

f̂t+1 = (R̂1,t+1 − γ
2 (R̂1,t+1 − R̄1)2)− (R̂0,t+1 − γ

2 (R̂0,t+1 − R̄0)2). Under the mixed scheme, a con-

sistent estimate of B takes the form B̂ = diag(1, diag(((T + P )−1
∑T+P

t=1 xtx
′
t)
−1)). The estimate

of F changes only insofar as ∂ŵi,t+1
∂βi

i = 0, 1 is adjusted to account for the fact that ϑ̂i,t is treated

as an observable rather than a component of β̂i,t. Finally, consistent estimates of Sff , Sfh, and

Shh can be constructed similarly if we redefine ĥt+1 as (ê0,t+1, ê1,t+1, ztê1,t+1)′. It is important to

note that in general, both hs+1 and fs+1 will be serially correlated even if e1,s+1 is a martingale

difference sequence. This occurs when α1,1 is not zero and hence the error term in model 0 (e0,s+1)

exhibits serial correlation induced by the omitted regressor zs.

4.2 Bootstrap Critical Values

The bootstrap used in this paper is consistent with one developed by Calhoun (2015). We have

chosen this specific bootstrap since it is explicitly designed to be applicable in cases when out-

of-sample methods are used to conduct inference and the relevant test statistic is asymptotically

normal. Furthermore, the bootstrap is designed to allow for estimation error in the standard errors.

This final feature is nontrivial for our results. To see this, recall that the theorem implies that Φ̂ is

asymptotically normal with an asymptotic variance that is a linear combination of three elements:

Sff , FBSfh, and FBShhB′F ′. The latter two of these terms exist because the portfolio weights

are functions of estimated parameters and are not known a priori. As a consequence, accounting

for estimation error in the standard errors is crucial in this context.

Let Xt denote the vector of time t observables. In the simple example discussed in Section 2,

this consists of Xt = (ept, zt)
′. The first stage of the bootstrap consists of using the moving blocks,

circular blocks, or stationary bootstrap with block lengths drawn from the geometric distribution
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to generate the time series of bootstrapped observations X∗1 ...X
∗
T+P . In each method the block

length l satisfies l/P → 0 as l, P → ∞. In the second stage, the bootstrapped data are used to

construct the bootstrapped performance fee measure Φ̂∗. This process is repeated many times so

that we have a collection of Φ̂∗j j = 1, ..., N of bootstrapped performance fees that can be used to

estimate asymptotically valid critical values.

As in White (2000), we recenter each of the bootstrapped Φ̂∗j statistics to ensure that the

empirical critical values remain bounded under the alternative hypothesis, Φ > 0. Unfortunately,

as shown in Corradi and Swanson (2007), White’s approach to recentering does not allow for

estimation error in the asymptotic distribution. The issue is that White recommends recentering

each Φ̂∗j by the empirical value of the performance fee Φ̂, which is a function of an entire sequence

of parameter estimates β̂t, t = T..., T + P − τ . In contrast, Calhoun recommends recentering in

one of two ways: (i) by the constant Φ̄ = Φ̂(β̂T+P−τ ), which is constructed exactly as was Φ̂ but

where β̂t = β̂T+P−τ for all t = T..., T +P − τ or (ii) by the constant Φ̄ = N−1
∑N

i=j Φ̂∗j . Given the

recentering constant Φ̄ and the bootstrapped performance fees Φ̂∗j , critical values are then estimated

based on the empirical distribution of Φ̂∗j − Φ̄. After some experimentation in our simulations, we

found that the second of the two centering methods performed best and is therefore uses in both

our Monte Carlo and empirical evidence.

5 MONTE CARLO EVIDENCE

In this section, we provide Monte Carlo evidence on the finite sample properties of the asymptotic

results. Specifically, we provide simulation evidence on the effi cacy of both asymptotic and boot-

strap approaches to testing the null hypothesis H0 : Φ ≤ 0 against the alternative HA : Φ > 0. In

our experiments, we consider the problem of a US investor who faces the problem of choosing how

to optimally allocate her wealth between the value-weighted index of stocks traded on the NYSE

and the 3-month T-bill. We assume that the investor is endowed with mean-variance preferences

and the performance fees are computed using a mean-variance utility function, as outlined in Sec-
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tion 2. To be clear, our experiments are not designed to perfectly match the data. Rather, they

are intended to delineate the diffi culties associated with inference when multiple roots of Φ exist in

an environment that is not too dissimilar from the one we discuss in the empirical section of this

paper.

5.1 Experiment Design

The experiments are conducted as follows. For all cases, we use a data-generating process loosely

calibrated on the empirical properties of excess returns to the NYSE value-weighted index and its

dividend yield zt both at a monthly frequency:

ept+1 = 0.05 + b(c
1/2
b zt) + (c

1/2
b ut+1)h

1/2
t

zt = 0.05 + 0.9zt−1 + vt

ht = 0.1 + 0.4ht−1 + 0.05u2
t−1 + z−2

t−1 (6)

rft+1 = 0.036

with (
ut

vt

)
∼ i.i.d.N

(
0,

[
0.1716 −0.0038

−0.0038 0.0012

])
.

With an eye toward our empirical section, in which we consider annual, quarterly, and monthly

frequency data, we primarily consider three overall sample sizes T +P = 88, 352, and 1056. A few

additional results are given for a larger sample size T + P = 2112.7 For each we consider three

sample splits: P/T = 1/3, 1, and 3. Conditional heteroskedasticity is modeled using a GARCH-X

form in the equity premium equation.8 The risk aversion parameter γ is set to 3. For brevity,

we focus exclusively on the recursive and mixed schemes. For the mixed scheme we set the rolling

window size, used to estimate the conditional variance, at values indicative of a 5-year window and

7We use a burnout period of 500 observations to remove the effects of initial conditions.
8 In the current simulations, Assumption 5 requires that FB = E(

∂U1,t+τ
∂β1

)(−JB0J +B1) is nonzero. Straightfor-

ward algebra reveals that Assumption 5 fails if ept+1 and ep2t+1 are both mean independent of (1, zt). It is for this

reason that we introduce conditionally heteroskedastic errors. The issue is relevant only when α1,1 = 0. In unreported

results for which α1,1 = 0 and the errors are conditionally homoskedastic, the rejection frequencies are less than 1

percent for nominally 5 percent tests.
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hence take the values 5, 20, 60, and 120 depending on the sample size. To facilitate interpretation

of our results, the data-generating process for the equity premium ep is designed so that for all

values of b, the unconditional variance of ep takes the constant value c0 = V ar(ut+1)E(ht). We

achieve this through the scaling factor cb = c0/(b
2V ar(zt) + c0).

For all size and power experiments we consider both asymptotic and bootstrap-based critical

values. For asymptotic critical values, we estimate the standard errors using the formulas described

in Section 4. Newey-West (1987) HAC estimators were used to estimate Sff , Shh, and Sfh with

a lag length fixed at 4. For bootstrap critical values, we use the stationary block-bootstrap

approach described in Section 4 with the block length set at (T+P )0.6 and the number of bootstrap

replications set at 299. For insight on the impact winsorizing may have on our asymptotics, we

conduct all experiments twice: once with and once without winsorized portfolio weights. In the

experiments with winsorized weights, we restrict them to lie between −0.5 and 1.5. All results are

based on 2,000 Monte Carlo replications.

Our experiment design is intended to not only emulate data from our empirical work but also

to exemplify the the diffi culty of conducting inference when Φ has multiple roots. For nonnegative

values of b, unreported simulation evidence indicates that under the recursive scheme Φ is hump-

shaped in b and takes the value of zero when b = 0 and b = 2.35 in much the same way seen in

Figure 1.9 When the mixed scheme is used, the presence of a hump shape now depends on the

value of M . As M increases from 20, to 60, to 120, the nonzero roots of Φ increase from 0.8, to

1.7, to 2.1. When M = 5, Φ has a unique root when b = 0 and is negative for all nonzero values

of b.

5.2 Size Results

Tables 1 and 2 report the actual rejection frequencies of nominally 5% tests in experiments in

which Φ = 0. Table 1 corresponds to rejection frequencies when asymptotic critical values are

used, while Table 2 corresponds to rejection frequencies when bootstrap critical values are used.

9The formula for Φ in section 2 is not applicable due to the introduction of conditionally heteroskedastic errors.
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Within each table the columns are associated with various sample splits, roots of Φ, and presence

of winsorization. The rows correspond to various estimation schemes and sample sizes.

Consider the left-hand side of Table 1, within which b = 0 and the portfolio weights are not

winsorized. In most cases the test is undersized. At the smaller sample sizes, rejection frequencies

are near 1%. As the sample size increases, the test is typically more accurately sized approaching

3% when T + P = 1056 and 4% for the largest sample size. The asymptotics appear to work

better under the recursive scheme than under the mixed scheme for which the undersizing is more

acute. There is some variation across sample splits: For the smaller samples, size is a little better

for smaller out-of-sample periods, while the opposite is true for the larger sample sizes. There

are very few changes in rejection frequencies when we winsorize the portfolio weights and in all

instances the differences occur under the mixed scheme.

On the right side of Table 1, within which b > 0, the rejection frequencies are sometimes less

and sometimes greater than 5%. Under the recursive scheme, the rejection frequencies range from

0.028 to 0.086. Under the mixed scheme the range is wider, ranging from 0.003 to 0.157. As before,

winsorization has little effect on the rejection frequencies.

In Table 2 we report rejection frequencies when bootstrap-based critical values are used and

restrict attention to the case in which P/T = 1. In all cases for which b = 0, the bootstrap

rejection frequencies are more accurate than those associated with asymptotic critical values from

Table 1. When b > 0, the bootstrap generally helps under the mixed scheme, bringing the rejection

frequencies closer to 5%. Under the recursive scheme, when b > 0 the rejection frequencies are a

bit higher relative to those found in Table 1 but still remain below 10%.

5.3 Power Results

Figures 2 and 3 plot rejection frequencies of nominal 5% tests over a range of values for the tuning

parameter b. In particular, we allow b to increase from zero up to, and a bit beyond, the value

of b for which Φ has its second root as delineated in the size experiments. For brevity, we restrict

attention to sample splits for which P/T = 1 and cases for which the portfolio weights are not
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winsorized. As a benchmark, Figure 2 provides rejection frequencies for a test of equal MSE when

we allow b to increase from zero to 2.585 in increments of 0.235 —a range of values for which Φ has

two roots under the recursive scheme.10 As expected, rejection frequencies increase monotonically

with b and the sample size.

Figure 3 reports rejection frequencies associated with the performance fee measure. There are

four distinct plots, each associated with some permutation of the recursive or mixed scheme and

asymptotic or bootstrap critical values. Note that for the mixed scheme there are two scales for

the horizontal axis: one for the largest sample size and one for the two smaller sample sizes. There

are a number of items of note.

• In each plot, the path of rejection frequencies is very different than that found in Figure

2. In many cases, there is a clear hump-shaped pattern that is particularly clear under the

recursive scheme. As one might expect given our example in Figure 1, the hump arises from

the fact that there are two nonnegative roots for Φ and, moreover, between these two roots

Φ is positive but beyond the largest root, Φ is negative.

• For the largest sample sizes, power can be substantial. But for the smallest sample sizes,

especially when T +P = 88, power is essentially nonexistent and in some instances the actual

power of the test is lower than the nominal size of the test.

• While a direct comparison is invalid because the mixed and recursive schemes have different

roots for Φ, power appears to be a bit stronger under the recursive scheme than under the

mixed scheme.

• For a large enough sample size, bootstrap-based inference provides reasonable power. Even

so, the bootstrap approach to inference seems to come at a small loss in power relative to

the asymptotic approach that estimates the asymptotic variance directly and uses standard

normal critical values.
10We use the MSE-t test as delineated in McCracken (2007) and its associated critical values.
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6 THE ECONOMIC VALUE OF PREDICTIONS OF THE US
EQUITY PREMIUM

In this section, we use the testing procedure discussed in the previous sections to revisit the findings

of the recent literature on the predictability of the US equity premium. Methodologically our

framework is identical to the one highlighted in Section 2. We use monthly value-weighted returns

from the S&P 500 index from January 1927 to December 2011 from the Centre for Research in

Security Prices and Robert Shiller’s website. Stock returns are continuously compounded including

dividends, and the predictive variables zt are a selection of 14 variables from the ones used by

Goyal and Welch (2008, and additional appendix).11 We begin forecasting in January 1965 and

continue through December 2011, giving us P = 564 out-of-sample observations out of a total of

T + P = 1692.

Following a conventional practice used in several studies (see, among others, Ferreira and Santa-

Clara, 2011; and the references therein), we compute the weights ŵi,t using the mixed scheme: A

small rolling window of 5 years’worth of past observations is used to construct an estimate of the

conditional variance, while the recursive scheme is used to estimate the conditional means. The

coeffi cient of relative risk aversion is set to 3 (Goyal and Welch, 2008; Campbell and Thompson,

2008; and Ferreira and Santa Clara, 2011). We compute the portfolio weights both unconstrained

and winsorized by imposing a maximum value of the investment in the risky asset to 150% (i.e.,

−0.5 ≤ ŵi,t ≤ 1.5).

The results of our empirical exercise are reported in Table 3 for three different data frequencies:

monthly, quarterly, and annual in Panels A, B and C, respectively. For all data frequencies the

p-values of the null hypothesis are reported for both unconstrained and winsorized portfolio weights

and they are computed using the asymptotic and bootstrap critical values as discussed in Sections

4.1 and 4.2 of the main text. The bootstrapped critical values are computed using 999 replications

11For further details on data construction, refer to Goyal and Welch (2008, and additional appen-

dix). The full dataset used in this empirical exercise can be downloaded from Amit Goyal’s website

(http://www.bus.emory.edu/agoyal/Research.html).
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and a sample-size-dependent block length like that used in the Monte Carlo section.

The results in all panels of Table 3 suggest unambiguously that none of the predictive variables

in our sample is able to generate economic values from forecasting that are statistically different

from the one provided by the no-predictability benchmark. Put differently, the positive perfor-

mance fees recognizable for some predictors across data frequencies are found to be statistically

indistinguishable from zero when our testing procedure is applied. The results are confirmed us-

ing both asymptotic and bootstrap critical values. The only exception is represented by the term

spread that is able to generate positive performance fees at the monthly and quarterly frequency.

However, the statistical significance is only at the 10% level at the quarterly frequency and is not

confirmed when bootstrap critical values are computed.

Overall, the results reported in this simple exercise reinforce the primary point of this paper. The

mere evidence of a positive estimated performance fee does not provide conclusive evidence of supe-

riority of a given predictive model against a given (in this case, no-predictability) benchmark. All

panels of Table 3 provide examples of estimated performance fees that are positive and yet are not

significantly different from zero based on a standard z-score-based approach to inference. Since this

level of rigor is commonly used when reporting evidence of statistical (MSE-based) predictability,

it seems only fitting to do the same when reporting evidence of economic (performance-fee-based)

predictability. This is particularly true given that the data used to construct the MSEs are the

same as those used to construct the performance fees!

7 CONCLUSION

Out-of-sample methods are a common approach to evaluating the predictive content of a model.

As such, a healthy literature has developed that provides methods for conducting inference on

measures of forecast accuracy. This literature is almost completely focused on statistical measures.

Economic measures of predictive accuracy are becoming increasingly common and are used to

complement the evidence provided by statistical measures. In this paper, we derive asymptotics
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that can be used to conduct inference on one economic measure of forecast quality —performance

fees. In particular, building on the theoretical results in West (1996), we are able to establish

that these performance fee measures are asymptotically normal with an asymptotic variance that is

affected by parametric estimation error. Monte Carlo evidence suggests that the theoretical results

can be useful but also suggest that large samples are sometimes required.
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8 APPENDIX

To understand the results reported in Section 3, it is instructive to consider the forms of Φ̂ and

ft+τ (β̂t) for three commonly used functional forms for utility: mean-variance, quadratic, and power.

In addition, we also characterize the moment F when the two models are nested under the null

hypothesis and hence β∗1,1 = 0.

(i) When utility is mean-variance, the average utility obtained using model i = 0, 1 is

Ū(R̂i) = R̄i −
γ

2
P̃−1

∑T+P−τ

t=T
(R̂i,t+τ − R̄i)2,

where R̄i = P̃−1
∑T+P−τ

t=T R̂i,t+τ and γ is a known preference parameter. For this functional

form, we trivially obtain

Φ̂ = Ū(R̂1)− Ū(R̂0).

As stated in the text, for this utility function Assumption 1 is satisfied for the function

ft+τ (β̂t) = (R̂1,t+τ −
γ

2
(R̂1,t+τ − ER1,t+τ )2)− (R̂0,t+τ −

γ

2
(R̂0,t+τ − ER0,t+τ )2)

if R̄i →p ERi,t+τ . When the models are nested, straightforward algebra implies

F = (−E
∂U ′0,t+τ
∂β0

, E
∂U ′1,t+τ
∂β1

)′,

where E ∂Ui,t+τ
∂βi

= E
∂wi,t+τ
∂βi

ept+τ (1− γ(Ri,t+τ − ERi,t+τ )) i = 0, 1.

(ii) When utility is quadratic, the average utility obtained using models i = 0, 1 takes the similar

but distinct form

Ū(R̂i) = R̄i − γP̃−1
∑T+P−τ

t=T
R̂2
i,t+τ .

For this utility function, there are actually two roots that satisfy the definition of Φ. If we

use the larger of the two as our estimate of Φ, we obtain the following closed form for the

performance fee:

Φ̂ = (R̄1 − (2γ)−1) + [(R̄1 − (2γ)−1)2 + γ−1(Ū(R̂1)− Ū(R̂0))]1/2.
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For this utility function Assumption 1 is satisfied for the function

ft+τ (β̂t) = ((R̂1,t+τ − γR̂2
1,t+τ )− (R̂0,t+τ − γR̂2

0,t+τ ))/(−1 + 2γE(R1,t+τ ))

if −1+2γR̄1 →p −1+2γE(R1,t+τ ) 6= 0. When the models are nested, straightforward algebra

implies

F = (−E
∂w′0,t+τ
∂β0

ept+τ (1− 2γR0,t+τ ), E
∂w′1,t+τ
∂β1

ept+τ (1− 2γ(R1,t+τ )))′/(−1 + 2γE(R1,t+τ )).

(iii) When utility is power, the average utility obtained using model i = 0, 1 is

Ū(R̂i) =
P̃−1

∑T+P−τ
t=T R̂1−γ

i,t+τ

1− γ .

For this functional form of utility, we do not obtain a closed form for the performance fee Φ̂.

Estimating Φ̂ is done numerically using the definition and hence we have

Φ̂ = argΦ root(
P̃−1

∑T+P−τ
t=T (R̂1,t+τ − Φ)1−γ

1− γ − Ū(R̂0)).

As stated in the text, for this utility function, Assumption 1 is satisfied for the function

ft+τ (β̂t) = (R̂1−ρ
1,t+τ − R̂

1−ρ
0,t+τ )/(E(∂U(R1,t+τ )/∂Φ)(1− ρ))

if P̃−1
∑T+P−τ

t=T ∂U(R̂1,t+τ − Φ̃)/∂Φ →p E(∂U(R1,t+τ )/∂Φ) 6= 0. When the models are

nested, straightforward algebra implies

F = (−E∂w0,t+τ

∂β0

ept+τR
−γ
0,t+τ , E

∂w1,t+τ

∂β1

ept+τ (R1,t+τ )−γ)′/E(R1,t+τ )−γ .

24



9 REFERENCES

Barberis, N. (2000), “Investing for the Long Run When Returns Are Predictable,” Journal of

Finance, 55, 225-264.

Boudoukh, J., Richardson, M., and Whitelaw, R. (2008), “The Myth of Long-Horizon Predictabil-

ity,”Review of Financial Studies, 24, 1577-1605.

Calhoun, G. (2015), “A Simple Block Bootstrap for Asymptotically Normal Out-of-Sample Test

Statistics,”Iowa State University working paper.

Campbell, J.Y., and Thompson, S.B. (2008), “Predicting Excess Returns Out of Sample: Can

Anything Beat the Historical Average?”Review of Financial Studies, 21, 1509-1531.

Cenesizoglu, T., and Timmermann, A. (2011), “Do Return Prediction Models Add Economic

Value?”UCSD working paper.

Clark, T.E., and McCracken, M.W. (2001), “Tests of Equal Forecast Accuracy and Encompassing

for Nested Models,”Journal of Econometrics, 105, 85-110.

Cochrane, J.H. (1999), “New Facts in Finance,”Economic Perspectives, 23, 36-58.

Cochrane, J.H. (2008), “The Dog That Did Not Bark: A Defense of Return Predictability,”Review

of Financial Studies, 21, 1533-1575.

Cochrane, J.H. (2011), “Presidential Address: Discount Rates,”Journal of Finance, 66, 1047-1108.

Corradi, V., and Swanson, N.R. (2007), “Nonparametric Bootstrap Procedures for Predictive

Inference Based on Recursive Estimation Schemes,” International Economic Review, 48, 67-

109.

Ferreira, M.A., and Santa Clara, P. (2011), “Forecasting Stock Market Returns: The Sum of the

Parts Is More than the Whole,”Journal of Financial Economics, 100, 514-537.

25



Fleming, J., Kirby, C., and Ostdiek, B. (2001), “The Economic Value of Volatility Timing,”

Journal of Finance, 56, 329-352.

Giacomini, R., and White, H. (2006), “Tests of Conditional Predictive Ability,”Econometrica, 74,

1545-1578.

Goyal, A., and Welch, I. (2008), “A Comprehensive Look at the Empirical Performance of Equity

Premium Predictions,”Review of Financial Studies, 21, 1455-1508; see additional appendix

at http://www.hec.unil.ch/agoyal/docs/AllTables2009.pdf.

Hansen, P.R. (2005), “A Test for Superior Predictive Ability,”Journal of Business and Economic

Statistics, 23, 365-380.

Ingersoll, J., Speigel, M., Goetzmann, W., and Welch, I. (2007), “Portfolio Performance Ma-

nipulation and Manipulation-proof Performance Measures,”Review of Financial Studies, 20,

1503-1546.

Leitch, G., and Tanner, J.E. (1991), “Economic Forecast Evaluation: Profits Versus the Conven-

tional Measures,”American Economic Review, 81, 580-590.

Lettau, M., and Ludvigson, S. (2001),“Consumption, Aggregate Wealth and Expected Stock Re-

turns,”Journal of Finance, 56, 815-849.

McCracken, M.W. (2007), “Asymptotics for Out-of-Sample Tests of Granger Causality,”Journal

of Econometrics, 140, 719-752.

Newey, W.K., and West, K.D. (1987), “A Simple, Positive Semi-Definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix,”Econometrica, 55, 703-708.

Patton, A.J. (2004), “On the Out-of-Sample Importance of Skewness and Asymmetric Dependence

for Asset Allocation,”Journal of Financial Econometrics, 2, 130-168.

26



Sentana, E. (1999), “Least Square Predictions and Mean-Variance Analysis,”CEPR Discussion

Paper No. 2088.

Sentana, E. (2005), “Least Square Predictions and Mean-Variance Analysis,”Journal of Financial

Econometrics, 1, 56-78.

Skouras, S. (2007), “Decisionmetrics: A Decision-based Approach to Econometric Modeling,”

Journal of Econometrics, 137, 414-440.

Taylor, N. (2013), “A Formula for the Economic Value of Return Predictability,”European Journal

of Finance, 19, 37-53.

Wachter, J.A., and Warusawitharana, M. (2015), “What Is the Chance That the Equity Premium

Varies Over Time? Evidence from Regressions on the Dividend-Price Ratio,” Journal of

Econometrics, 186, 74-93.

West, K.D. (1996), “Asymptotic Inference About Predictive Ability,” Econometrica, 64, 1067-

1084.

West, K.D. and McCracken, M.W. (1998), “Regression-based Tests of Predictive Ability,” Inter-

national Economic Review, 39, 817-840.

White, H. (2000), “A Reality Check For Data Snooping,”Econometrica, 68, 1097-1127.

Wooldridge, J.M., and White, H. (1998), “Central Limit Theorems for Dependent, Heterogeneous

Processes with Trending Moments,” in Topics in Econometric Theory: The Selected Works

of Halbert White, ed. H. White, Cheltenham: Edward Elgar.

27



T
ab
le
1.
A
ct
u
al
S
iz
e
of
N
om

in
al
5%

T
es
ts
U
si
n
g
A
sy
m
p
to
ti
c
C
ri
ti
ca
l
V
al
u
es

b
=

0
b
>

0

N
ot
W
in
so
ri
ze
d

W
in
so
ri
ze
d

N
ot
W
in
so
ri
ze
d

W
in
so
ri
ze
d

T
+
P

P
/T

1/
3

1
3

1/
3

1
3

1/
3

1
3

1/
3

1
3

R
ec
ur
si
ve

88
0.
01
8

0.
01
0

0.
00
6

0.
01
8

0.
01
0

0.
00
6

0.
06
5

0.
03
6

0.
02
8

0.
06
5

0.
03
6

0.
02
8

35
2

0.
01
2

0.
01
3

0.
01
4

0.
01
2

0.
01
3

0.
01
4

0.
05
6

0.
05
4

0.
06
3

0.
05
6

0.
05
4

0.
06
3

10
56

0.
01
8

0.
03
0

0.
03
3

0.
01
8

0.
03
0

0.
03
3

0.
06
4

0.
08
2

0.
08
6

0.
06
4

0.
08
2

0.
08
6

21
12

0.
02
5

0.
04
0

0.
05
4

0.
02
5

0.
04
0

0.
05
4

0.
06
4

0.
06
3

0.
07
5

0.
06
4

0.
06
3

0.
07
5

M
ix
ed

88
0.
01
2

0.
00
4

0.
00
2

0.
01
1

0.
00
3

0.
00
2

0.
02
6

0.
01
1

0.
00
6

0.
01
8

0.
01
0

0.
00
3

35
2

0.
00
3

0.
00
2

0.
00
2

0.
00
3

0.
00
2

0.
00
2

0.
02
2

0.
02
1

0.
02
3

0.
02
2

0.
02
1

0.
02
3

10
56

0.
00
9

0.
02
1

0.
02
6

0.
00
9

0.
02
1

0.
02
6

0.
13
6

0.
14
6

0.
15
7

0.
13
6

0.
14
6

0.
15
7

21
12

0.
02
2

0.
03
6

0.
04
9

0.
01
8

0.
03
5

0.
04
8

0.
11
1

0.
09
4

0.
09
5

0.
11
1

0.
09
4

0.
09
5

N
O
T
E
S:
T
he
da
ta
-g
en
er
at
in
g
pr
oc
es
s
is
a
bi
va
ri
at
e
V
A
R
(1
)
w
it
h
co
effi
ci
en
ts
an
d
er
ro
r
va
ri
an
ce
gi
ve
n
in
Se
ct
io
n
5.
T
he
le
ft
-h
an
d
se
t
of
th
e
tw
o

su
bp
an
el
s
co
rr
es
p
on
ds
to
th
e
ca
se
in
w
hi
ch
th
e
nu
ll
ho
ld
s
b
ec
au
se
b

=
0,
w
hi
le
th
e
se
t
on
th
e
ri
gh
t
co
rr
es
p
on
ds
to
th
e
ca
se
in
w
hi
ch
th
e
nu
ll
ho
ld
s

de
sp
it
e
b
>

0
.
In
ea
ch
se
t,
th
e
tw
o
su
bp
an
el
s
re
p
or
t
re
je
ct
io
n
fr
eq
ue
nc
ie
s
un
de
r
di
ff
er
en
t
sa
m
pl
in
g
sc
he
m
es
.
C
ol
um
ns
de
no
te
di
ff
er
en
t
sa
m
pl
e
sp
lit
s

P
/T

an
d
w
he
th
er
or
no
t
th
e
w
ei
gh
ts
ar
e
tr
un
ca
te
d
b
et
w
ee
n
−

0
.5
an
d

1.
5.
R
ow
s
de
no
te
di
ff
er
en
t
va
lu
es
un
de
r
di
ff
er
en
t
sa
m
pl
e
si
ze
s
T

+
P

=
8
8,

3
5
2
,

10
56
,
an
d

21
12
.
E
ac
h
va
lu
e
is
th
e
p
er
ce
nt
ag
e
of
re
je
ct
io
ns
ou
t
of
2,
00
0
re
pl
ic
at
io
ns
.

28



Table 2. Actual Size of Nominal 5% Tests Using Bootstrapped Critical Values

b = 0 b > 0

T + P Not Winsorized Winsorized Not Winsorized Winsorized

Recursive 88 0.011 0.011 0.065 0.065

352 0.018 0.018 0.091 0.091

1056 0.035 0.035 0.084 0.084

Mixed 88 0.057 0.023 0.064 0.034

352 0.007 0.007 0.020 0.020

1056 0.030 0.030 0.095 0.095

NOTES:

The data-generating process is a bivariate VAR(1) with coeffi cients and error variance given in Section 5.

The left-hand set of the two subpanels corresponds to the case in which the null holds because b = 0, while

the set on the right corresponds to the case in which the null holds despite b > 0. In each set, the two

subpanels report rejection frequencies under different sampling schemes. Columns denote whether or not

the weights are truncated between −0.5 and 1.5. Rows denote different values under different sample sizes

T + P = 88, 352, and 1056. Each value is the percentage of rejections out of 2,000 replications.
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Figure 1: F  as a Function of 1,1a  

 

NOTES: The figure shows F  as a function of 1,1a  based on equation (3) in the text.  Moments in the 

formula are loosely calibrated to the return on the NYSE value-weighted index as our risky asset, its 
dividend yield as our predictor, and the yield on the 3-month T-bill as our return on the risk-free asset.  
See Section 2 for more details. 
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Figure 2: Power of MSE-t Statistic 

 
NOTES: The figure shows rejection frequencies of nominally 5% tests of the null hypothesis 

2 2
0, 1 1, 1( ) 0t tE e e+ +- =  using the MSE-t statistic in McCracken (2007) and its associated critical values.  

The simulation design is described in Section 5 and is the same as that used in our other Monte Carlo 
experiments that conduct inference on ̂ . 
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Figure 3: Power Properties of Test Statistic 

 
NOTES: The figure shows rejection frequencies of nominally 5% tests.  Details on the simulation design 
are provided in section 5.  Recursive results arise when all model parameters are estimated using the 
recursive scheme.  Mixed results arise when the conditional mean and conditional variance are estimated 
using the recursive and rolling schemes, respectively.  Asymptotic critical values indicate that the 
asymptotic standard errors were estimated and standard normal critical values were used for inference on 
the Studentized value of ̂ .  Bootstrap critical values are based on the percentile-bootstrap approach of 
Calhoun (2015) as described in the text.  Note that under the mixed scheme, the horizontal axis varies by 
sample size. 
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