Mortgage Defaults and Prudential Regulations in a Standard Incomplete Markets Model

Juan Carlos Hatchondo
Leonardo Martinez
and
Juan M. Sánchez

Working Paper 2011-019C

August 2011
Revised July 2014

FEDERAL RESERVE BANK OF ST. LOUIS
Research Division
P.O. Box 442
St. Louis, MO 63166

The views expressed are those of the individual authors and do not necessarily reflect official positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working Papers (other than an acknowledgment that the writer has had access to unpublished material) should be cleared with the author or authors.
Mortgage Defaults and Prudential Regulations in a Standard Incomplete Markets Model*

Juan Carlos Hatchondo† Leonardo Martinez‡ Juan M. Sánchez§

July 31, 2014

Abstract

A model of mortgage defaults is built into the standard incomplete markets model. Households face income and house-price shocks and purchase houses using long-term mortgages. Interest rates on mortgages are determined in equilibrium according to the risk of default. The model accounts for the observed patterns of housing consumption, mortgage borrowing, and defaults. Default-prevention policies are evaluated. The mortgage default rate, housing demand, households’ ability to self-insure, and welfare are hump-shaped in the degree of recourse (the level of defaulters’ wealth that can be garnished). Two forces affect default. More recourse implies that the punishment for default is harsher; this reduces the default rate. But more recourse also decreases the interest rates offered; this increases borrowing and the default rate. Introducing loan-to-value (LTV) limits for new mortgages contains borrowing, lowering the default rate with negligible negative effects on housing demand. The combination of recourse mortgages and LTV limits reduces the default rate while boosting housing demand. The behavior of economies with alternative prudential regulations is evaluated during a boom-bust episode in aggregate house prices. In the economy with both recourse mortgages and LTV limits, the mortgage default rate is less sensitive to fluctuations in aggregate house prices.

JEL classification: D60, E21, E44.

Keywords: mortgage, default, life cycle, recourse, LTV, house price, SIM

*Previous drafts circulated under the title “Mortgage Defaults”. For comments and suggestions, we thank seminar participants at ASU, Georgetown U., McMaster U., SUNY at Stony Brook, York U., the FRB of Richmond and St. Louis, the IMF, the 2008 and 2009 Wegmans conference, the 2010 and 2014 SED conference, the 2010 and 2013 HULM Conference, the 2011 North America Summer Meeting of the Econometric Society, the 2011 SAET conference, the 2011 Philadelphia Fed conference on Consumer Credit, the 2013 NBER Summer Institute, and the 2013 Macro-Finance Workshop at NYU. We thank S. Henly, C. Liborio, J. Tompkins, T. Hursey, and E. Yurdagul for excellent research assistance. We thank Jennifer Paniza Bontas for sharing with us her data. We thank M. Michaux, M. Nakajima, and D. Schlagenhauf for useful discussions. Remaining mistakes are our own. The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management, the FRB of St. Louis, or the Federal Reserve System.

†Indiana University; e-mail: juanc.hatchondo@gmail.com.
‡IMF; e-mail: leo14627@gmail.com.
§Federal Reserve Bank of St. Louis; e-mail: juan.m.sanchez78@gmail.com.
1 Introduction

This paper extends a life cycle standard incomplete markets (SIM) model to study the effect of policies that could mitigate mortgage defaults. Mortgage defaults are seen as costly, putting the stability of mortgage markets at the center of policy debates (Campbell, 2012; FED, 2012). This view became even more widespread after the increase in U.S. mortgage defaults observed since 2006, which invigorated academic and policy debates about prudential policies that could prevent mortgage defaults.¹ Two prudential policies have received widespread consideration: recourse mortgages, which allow lenders to garnish defaulters’ assets, and loan-to-value (LTV) limits on new mortgages.² We evaluate these policies in the light of a SIM model that incorporates housing, house-price risk, and mortgages.

Our life cycle SIM model features idiosyncratic shocks to labor earnings and the value of houses. Households can consume housing services by renting or owning the house they live in, and they can buy houses of different sizes. A household can borrow to buy a house using a long-term collateralized defaultable mortgage. A defaulting household must move out of the house used as collateral and is excluded from the housing market for a stochastic number of periods. There is a deadweight cost of liquidating houses in foreclosure. Households can also refinance their mortgage loans (with a cost) and save using a risk-free asset. There is room for policy interventions because households decide sequentially and markets are incomplete.

We first show that our model generates plausible predictions for the households’ demand for housing, demand for mortgages, and mortgage default decisions. We parameterize households’ income and house-price stochastic processes using previous estimations obtained with U.S. data. We then calibrate five parameters to match five targets: the homeownership rate, the share of homeowners with mortgages, the median house price, the median ratio of financial assets

¹ Concerns about mortgage defaults motivated the Obama administration’s programs to modify mortgage terms for borrowers with negative home equity (Treasury, 2009).

² IMF (2011) discusses the widespread use of these policies across countries. It is often argued that recent house-price declines had a much larger effect on mortgage defaults in the United States than in Europe in part because of soft U.S. recourse policies (IMF, 2011; Feldstein, 2008). Wong, Fong, Li, and Choi (2011) present empirical evidence that, for a given fall in house prices, the incidence of mortgage default is higher for countries without a LTV limit than for countries with a LTV limit. Several studies document the important effects of LTV at origination on the probability of a mortgage defaults (Mayer, Pence, and Sherlund, 2009; Schwartz and Torous, 2003).
to income, and the median down payment. We show that the model also generates plausible implications for other indicators of the demand for housing (the life cycle profiles of ownership and house prices), the use of mortgages (mortgage payments and the distribution of mortgage down payments), and the mortgage default rate. The overall match between the model predictions and the data makes the model a good laboratory for the quantitative evaluation of policies.

We evaluate two policies: the introduction of recourse in mortgage contracts and limiting loan-to-value ratios for new mortgages. Those policies are evaluated in (i) an stationary environment with constant aggregate house prices and (ii) an environment with aggregate fluctuations in house prices.

First, we simulate the benchmark model but with recourse mortgages. That is, we assume that lenders can garnish some of the wealth of a household that defaults. We compute economies with different degrees of recourse, defined as the fraction of defaulters’ wealth that can be garnished. We find that the mortgage default rate, housing demand, households’ ability to self-insure, and the ex-ante welfare from being born in each of these economies are hump-shaped in the degree of recourse.

Two opposite forces explain why the effect of recourse on the default rate is nonmonotonic. On the one hand, a harsher recourse policy makes defaults more costly, reducing the probability of a default in any mortgage. On the other hand, in our model with endogenous choice of down payment and equilibrium pricing of mortgage rates, a harsher recourse policy may increase the LTV chosen by households and, therefore, it may increase the default rate. We find that the first effect becomes dominant (decreasing the default rate) only for sufficiently harsh recourse rules. This nonmonotonicity may explain why the evidence on the effect of recourse on mortgage defaults is mixed.3

The effect of recourse on the demand for housing is also hump-shaped. This occurs because of two opposing effects of recourse on the LTVs chosen by households. On the one hand, as explained above, a harsher recourse policy lower the cost of high-LTV mortgages and leads households to choose higher LTVs. On the other hand, since harsher recourse policies increase the cost of defaulting, it may lead households to choose lower LTVs in order to decrease the

3See Clauretie (1987), Ghent and Kudlyak (2011), and the references therein.
probability of a default. The latter effect dominates for very harsh recourse policies, dampening the demand for housing.

The degree of recourse and households’ ability to self-insure (measured with the insurance coefficients used by Blundell, Pistaferri, and Preston, 2008, and Kaplan and Violante, 2010) follow the same hump-shaped relationship that recourse and the default frequency follow. In particular, recourse rules that reduce the default frequency significantly also damage the households’ ability to self-insure.

The relationship between recourse and welfare follows the one between recourse and the demand for housing. In particular, among the levels of recourse considered here, welfare is maximized by the recourse rule that maximizes the homeownership rate and the size of houses. In our model, the households’ ability to default implies endogenous borrowing constraints. Recourse mortgages may relax these constraints, boosting the demand for housing and, therefore, producing welfare gains (default decisions need not be optimal from an ex ante perspective). The recourse rule that maximizes the demand for housing and welfare also displays a very low default rate (10 percent of the rate in the benchmark) and weakens households’ ability to self-insure. This indicates that the relaxation of borrowing constraints that boost housing consumption more than compensate (in welfare terms) the negative effect of recourse on nonhousing consumption volatility.

The findings described above indicate that while recourse policies have great potential for mitigating mortgage defaults, the implementation of these policies may present difficulties. On the one hand, a recourse policy that is not harsh enough would increase default. On the other hand, a recourse policy that is too harsh may reduce the boost to housing consumption implied by recourse mortgages and may also damage households’ ability to self-insure.\(^4\) Since the increase in default implied by milder recourse policies is the result of low LTVs at origination, this problem could be mitigated by imposing LTV limits for new mortgages. We first study the effect of introducing LTV limits and later the effects of combining LTV limits with recourse mortgages.

We find that LTV limits lower the default rate with mild effects on the demand for housing.

\(^4\)Of course, in the United States, bankruptcy laws could also prevent the implementation of very harsh recourse policies. As pointed out by Campbell (2012), the main stated goal of much U.S. housing policy is to increase the homeownership rate.
and welfare.5 For instance, comparing simulations for the benchmark economy with those for a model economy with an 85 percent LTV limit shows negligible differences in homeownership and the types of houses owned by households, while the LTV-limit economy shows a default rate 64 percent lower than the one in the benchmark.

These results shed light on important policy debates. For instance, in the United States, qualified residential mortgage rules make higher down payments necessary to allow originators to fully securitize and sell the mortgage, which in turn would result in lower interest rates for borrowers. Critics argue that these rules could have significant negative effects on housing demand (see, for example, MBA, 2011). Since these rules can be viewed as a flexible LTV limit for new mortgages, our results cast doubt on these arguments.

We also show there may be important complementarities between recourse mortgages and LTV limits. For instance, we show that compared with the no-recourse, no-LTV-limit benchmark, an economy with a relatively mild recourse policy features higher homeownership at the expense of a higher default rate. In contrast, the economy with an 80 percent LTV limit features a lower default rate at the expense of a lower homeownership rate. The economy with both the mild recourse policy and the 80 percent LTV limit features a higher ownership rate with a lower default rate than the benchmark, thus achieving the two most cited goals of mortgage policies (promoting homeownership and containing default). Furthermore, we show that mild recourse rules combined with LTV limits may reduce the mortgage default rate without damaging households’ ability to self-insure.

The performance of economies with alternative prudential regulations is then studied in a context with aggregate fluctuations in house prices. In a sense, these experiments represent stress tests of the mortgage market soundness. We find that introducing both recourse and LTV limits reduces the responsiveness of defaults to fluctuations in aggregate house prices.

5Our measure of welfare gains from policies that reduce the mortgage default rate (as LTV limits and recourse mortgages do) should be interpreted as a lower bound. The mild negative effect of LTV limits on welfare in our model could be compensated by benefits from LTV limits that we do not model. In our model, a majority of households expect to buy more housing and find it costly to save for higher down payments. Therefore, these households are worse off with LTV limits. However, our model does not feature a positive feedback from a lower default rate to the banking sector on house prices. Campbell (2012) discusses the importance of mortgages in the banking sector and during the recent financial crisis, and externalities from mortgage defaults (see also Campbell, Giglio, and Pathak, 2011, and the references therein).
1.1 Related Literature

We follow closely the SIM model and calibration presented by Kaplan and Violante (2010), but we incorporate housing, house-price risk, and mortgages into their model. Carroll (1997), Huggett (1993, 1996), Krusell and Smith (2006), and Ríos-Rull (1995), among others, also study SIM models.

Our modeling of mortgages extends the equilibrium default model used in quantitative studies of credit card debt (Athreya, 2005; Chatterjee, Corbae, Nakajima, and Ríos-Rull, 2007). Some studies of credit card debt focus on the effects of changes in the severity of bankruptcy penalties or income garnishment, which is comparable to our discussion on the effects of recourse (Athreya, 2008; Athreya, Tam, and Young, 2011; Chatterjee and Gordon, 2012; Li and Sarte, 2006; Livshits, MacGee, and Tertilt, 2007). We depart from these studies by focusing on collateralized long-term debt (mortgages) and shocks to the price of the collateral. Studying collateralized debt allows us to look at LTV limits as an alternative default-prevention policy and discuss important complementarities between recourse mortgages and LTV limits.

Some recent studies discuss the effects of recourse mortgages. Quintin (2012) shows that recourse mortgages may increase mortgage defaults by changing the pool of borrowers in a model economy with asymmetric information. We find a hump-shaped relationship between the degree of recourse and mortgage default. Furthermore, the mechanism through which a harsher recourse policy increases the default frequency in our environment completely differs from the one presented by Quintin (2012). In addition, while Quintin (2012) presents a theoretical discussion of the effects of recourse, we show it is possible that recourse increases mortgage defaults in a quantitative model that matches several features of the data.

Corbae and Quintin (2014) present a quantitative study of mortgage defaults. The main focus of their study is the role of the introduction of mortgage contracts with low down payments in accounting for the recent rise in U.S. mortgage defaults. As we do, they assume that the benchmark economy does not have recourse mortgages. They also present an exercise showing in which introducing recourse mortgages increases the mortgage default rate.

Mitman (2012) presents a quantitative study of the interactions between mortgage defaults
and bankruptcy across U.S. states. He finds that recourse on mortgages have only a small effect on U.S. mortgage defaults. This is consistent with using a benchmark model without recourse mortgages to study the U.S. economy as done, for instance, by Corbae and Quintin (2014) and in this paper. Mitman (2012) also performs an exercise on the optimal degree of recourse and finds that nonrecourse is the optimal policy. This is in sharp contrast to the gains from introducing recourse mortgages presented here.

While we are not aware of studies using theoretical models to evaluate the effects of LTV limits for new mortgages, Campbell and Cocco (2012) present comparative statistics on their model with respect to exogenous LTV at origination. They show that higher LTVs at origination are related to higher probabilities of mortgage defaults. Our model features endogenous LTVs and we show that the distribution of LTVs generated by the model is consistent with the one in the data. Thus, our model is better suited to study the effects of LTV limits (because these limits do not change the LTV chosen by all households in the model economy). For instance, our model allows us to discuss the effects of LTV limits on homeownership, a key element of policy debates.

Our main objective—presenting a quantitative evaluation of prudential regulations for mortgage defaults, including the effects of these regulations after large declines in house prices—leads us to study a set of prudential policies richer than the ones studied by Corbae and Quintin (2014), Mitman (2012), and Quintin (2012). Thus, we study several recourse rules, several LTV rules, and combinations of these rules. Our objective also leads us to chose assumptions that contrast with those made by Campbell and Cocco (2012), Corbae and Quintin (2014), and Mitman (2012) (the high computation cost implied by some of our assumptions justifies abandoning them when they do not seem important for the issues under study). We next discuss the assumptions that differentiate our work.

First, we assume that house-price shocks affect both the household’s wealth and the price of housing services but do not affect the services the household obtains from its house. Our approach contrasts with that followed by Mitman (2012) and others. They model shocks to the house value as depreciation shocks that affect the services a household obtains from its house.

6 Chatterjee and Eyigungor (2009), Garriga and Schlagenhauf (2010), Guler (2008), and Jeske, Krueger, and Mitman (2013) present other recent quantitative studies of mortgage defaults but do not discuss policies that could mitigate defaults.
without affecting the price of housing. Depreciation shocks are likely to overstate the cost of a decline in the price of a house by implying that the household receives fewer services from its house and cannot buy housing any cheaper. Thus, depreciation shocks are likely to underestimate the benefits from recourse mortgages, which limit households’ ability to transfer resources to states with low house prices (or states where households suffer a depreciation shock). This may explain in part why the evaluation of recourse policies in this paper differs from the one presented by Mitman (2012).

Furthermore, depreciation shocks are likely to distort the relationship between house-price shocks and mortgage default. For example, depreciation shocks may be more likely to trigger a mortgage default than shocks to the price of housing because the former shocks may lead the household that incurs the shock to move to a different house, and moving to a different house is an important cost of mortgage defaults. These distortions could be particularly important for our goal of studying mortgage defaults after large shocks to the price of housing (which could hardly be interpreted as depreciation shocks). Instances of large declines in the price of housing are a central part of policy debates on prudential regulations that could mitigate mortgage defaults.

Other studies calibrate idiosyncratic depreciation or house-price shocks to match their target for the default rate (Corbae and Quintin, 2014; Mitman, 2012). Attempting to better model the relationship between house-price declines and mortgage defaults, we calibrate house-price shocks using estimations obtained with micro data. The careful modeling of the relationship between house-price declines and defaults could be particularly important for our goal of studying prudential policies.

The duration of mortgages is endogenous in our model—because we allow for refinancing—and we show that the model generates plausible levels of mortgage payments. This contrasts with the one-period mortgages commonly assumed in other studies (Mitman, 2012). Assuming long-term mortgage contracts also allows us to better capture the relationship between house-price changes and mortgage defaults. First, with long-term contracts, mortgage payment obligations are independent of the house price: Long-term contracts eliminate the obligation to refinance after a decline of the house price. Thus, long-term debt contracts provide insurance to households. In contrast, with one-period mortgages, the household typically asks for a new mortgage every
period. Thus, after a house-price decline (if the household does not default), since the household
has less collateral, it has fewer resources available for nonhousing consumption. Therefore, the
household’s obligation to refinance could trigger a default after a relatively mild house-price
decline.

Furthermore, the assumed duration of mortgages could play an important role in the evalua-
tion of recourse policies. As explained by Mitman (2012), in his one-period-mortgage model,
nonrecourse mortgages are optimal in part because rich households that could be affected by re-
course always have low LTV mortgages and, therefore, do not default. In contrast, with long-term
mortgages, relatively rich households could default after a sequence of realistic mild house-price
declines (while in one-period-mortgage models these households would choose high LTVs every
period). Since default by rich households is not desirable ex ante, this could also play a role in
explaining the difference between our evaluation of recourse policies and the one presented by
Mitman (2012).

Our model also differs from the one presented in the few other studies using long-term mort-
gages (Corbae and Quintin, 2014; Campbell and Cocco, 2012) because we allow for refinancing.
Refinancing is important for the evaluation of recourse and LTV policies because it allows mort-
gage holders to benefit from the lower rates (or higher LTVs) made possible by the imposition
of these policies. Refinancing is also essential for generating a plausible distribution of the age
of mortgages, which is a key determinant of defaults (as older mortgages have lower LTVs; see,
for instance, Schwartz and Torous, 2003). Furthermore, the possibility of refinancing affects the
trade-off between accumulating housing and nonhousing wealth and is essential for generating
the increase in mortgage payments over the life cycle observed in the data and replicated by our
model.7

Other studies also assume only one or two possible down-payment values (Corbae and Quintin,
2014; Campbell and Cocco, 2012). We only restrict the size of the down payment by imposing a
limit to the LTV. We show that the model generates a plausible distribution of down payments.
Furthermore, allowing for a rich down-payment choice is essential for evaluating recourse policies,

7Chen, Michaux, and Roussanov (2012) discuss the important role of mortgage refinancing in consumption
smoothing.
which we find affect equilibrium down payments greatly.

Compared with other studies (Corbae and Quintin, 2014; Mitman, 2012), we also present a richer model of the life cycle and house sizes. We show there are significant variations in housing consumption and mortgage financing over the life cycle and that our model can account for these variations. Allowing for a richer set of house sizes allows us to capture the increase in housing consumption over the life cycle while generating households that change houses, which has been argued could be important for evaluating recourse policies.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 presents the recursive formulation of the model. Section 4 discusses our calibration. Section 5 presents the main quantitative predictions of the model. Section 6 compares economies with different prudential regulations in place. Section 7 studies how these economies would perform in the presence of large changes in aggregate house prices. Section 8 discusses the welfare gains from introducing prudential policies. Section 9 concludes.

2 The Model

We study a life cycle SIM model close to that of Kaplan and Violante (2010). As they do, we model the choices of a household that lives up to T periods and works until age $W \leq T$. In contrast to their study, we assume that (i) in addition to consuming nondurable goods, the household consumes housing; (ii) in addition to idiosyncratic earning shocks, the household faces idiosyncratic house-price shocks; and (iii) borrowing options are endogenously given by lenders’ zero-profit conditions on mortgage contracts.

At the beginning of the period, the household observes the realization of its earnings and house-price shocks. After observing its shocks, the household makes its housing and financial decisions. We let β denote the subjective discount factor, and $\chi_{t,t+s}$ denotes the probability of being alive at age $t + s$ conditional on being alive at age t.\footnote{We assume stochastic death to be consistent with previous SIM studies.}
2.1 Housing

We present a stylized model of housing that follows closely that of Campbell and Cocco (2003): We assume that the household must live in a house and that, in any given period, the household may own up to one house.

We depart from Campbell and Cocco (2003) by (i) allowing the household to choose whether to own or rent the house it lives in and (ii) incorporating houses of different “size.” We assume that if the household owns a house, it must live in the house it owns. For simplicity, we also assume the household does not need to pay rent if it chooses to be a renter. This assumption guarantees that the household is always able to afford housing.

In our stylized model of homeownership, the only cost of renting is that it forces the household to live in a smaller house. We calibrate the size of the rental house, \(h^R \), targeting the homeownership rate. Thus, we guarantee that, on average, households dislike renting as much as in the data. Furthermore, we find that the model generates a life-cycle profile of homeownership close to the one observed in the data, with ownership increasing over the life cycle (this is not targeted in the calibration). This shows that in our model households dislike renting more as they become older and richer, which seems consistent with the data. Overall, these findings indicate to us that our stylized framework is a reasonable benchmark to study households’ demand for housing and, in particular, ownership.

Incorporating houses of different size allows us to account for the increasing life cycle profile of the mean house price observed in the data. As do Jeske, Krueger, and Mitman (2013), we assume that the utility derived from consumption \(c \) and from living in a house of size \(h \in \{ h^R, h_1, ..., h_M \} \) is specified by

\[
u(c, h) = \frac{(c^\alpha h^{1-\alpha})^{1-\gamma}}{1-\gamma},\]

where \(\gamma \) denotes the curvature parameter and \(\alpha \) determines the demand for housing.

The price of housing for household \(i \) is given by \(p_i^t \). This price changes stochastically over time. The cost of buying a house of size \(h \) is \(\xi_B hp_i^t \), and the cost of selling a house of size \(h \) is \(\xi_S hp_i^t \).
2.2 Earnings and House-Price Stochastic Processes

Both house prices and earnings are exogenous processes. Each period, household i receives income y^i_t. During working age, income has a fixed effect, a persistent component, a life cycle component, and an i.i.d component:

$$\log(y^i_t) = f^i + l_t + \varepsilon^i_t + z^i_t,$$

where f^i denotes the fixed effect, l_t denotes the life cycle component, ε^i_t is a transitory component, and z^i_t is a permanent component that follows a random walk:

$$z^i_t = z^i_{t-1} + \varepsilon^i_t.$$

We assume ε^i_t is normally distributed with variance σ^2_{ε}. After retirement, the household receives a percentage of the last realization of the permanent component of its working-age income.

As is standard in the housing literature, we model house price shocks as an autoregressive process, and we allow for correlation between earnings and house prices. In particular, following Nagaraja, Browny, and Zhao (2009), the log of the housing price is assumed to follow an AR(1) process:

$$\log(p^i_{t+1}) = (1 - \rho_p) \log(\bar{p}) + \rho_p \log(p^i_t) + \nu^i_t,$$ (1)

where \bar{p} is the mean price, and ε^i_t and ν^i_t are jointly normally distributed with correlation $\rho_{\varepsilon,\nu}$ and variances σ^2_ε and σ^2_ν.

2.3 Mortgage Contracts and Savings

Financial intermediaries are risk neutral and make zero profits in expectation. Their opportunity cost of lending is given by the interest rate r. The household can save using one-period annuities and can finance housing consumption with mortgages.

A mortgage for a household of age t is a promise to make payments for the next $T - t$ years or to prepay its debt in any period before T. Mortgage payments decay at rate δ. This allows us to account for the decline in the real value of mortgage payments due to inflation. In order to

9Thus, we explicitly allow for predictability in house prices as in Corradin, Fillat, and Vergara-Alert (2010); Nagaraja, Browny, and Zhao (2009).
prepay its mortgage, the household must pay the fee ξ_P plus the value of the remaining payment obligations discounted at the rate r. That is, a household of age t may cancel its mortgage by paying, $\xi_P + q^*(n)b$, where b denotes the current-period mortgage payment, and q^* denotes the present discounted value of future mortgage payments at the risk free rate; i.e.,

$$q^*(n) = 1 + \frac{1 - \delta}{1 + r} + \ldots + \left(\frac{1 - \delta}{1 + r}\right)^n = \frac{1 - \left(\frac{1 - \delta}{1 + r}\right)^{n+1}}{1 - \frac{1 - \delta}{1 + r}} \text{ for } n \geq 1, \quad (2)$$

where $n = T - t$. Computing the prepayment amount using the opportunity cost of lending r instead of using the mortgage interest rate allows us to economize a state variable (which is significant given the high computation cost of the exercises we present). This is unlikely to have significant quantitative effects: the mortgage interest rate is given by the opportunity cost of lending plus a default premium, and the majority of households choose down payments high enough to make the default premium negligible (which is consistent with the very low mortgage default rate observed in normal times). Note that since we allow borrowers to prepay their mortgages and ask for a new one every period, they can choose a decreasing or increasing pattern of mortgage payments and change the effective duration of their mortgages. There is a limit to the mortgage LTV at origination and a fixed cost ξ_M of signing a mortgage contract.

Mortgage loans are the only loans available to the household. That is, we do not allow for unsecured borrowing, which would imply incorporating an additional endogenous state variable, threatening the tractability of our model. While we do not allow the household to use unsecured credit as a form of insurance, we allow it to decumulate both housing and non-housing wealth. Section 8 shows that our model generates plausible implications for insurance and that changes in the household’s ability to self-insure are not crucial for our evaluation of policies.

The household can default on its mortgage. If the household chooses to default, it hands its house over to the lender, who sells it with a discount at $p_t(1 - \xi_S)$, with $0 \leq \xi_S \leq 1$. A defaulting household must use all its financial wealth w above a threshold $\phi\tilde{w}$ for deficiency payments, where \tilde{w} represents the median income in the benchmark economy.\(^{10}\) Thus, a defaulting household must transfer to the lender

\(^{10}\)This formulation resembles means-testing features often present in debt relief legislation (see, for instance, the U.S. Bankruptcy Abuse Prevention and Consumer Protection Act of 2005).
\[\Phi(h, b, w, p) = \max \left\{ \min \{ w - \phi \tilde{w}, q^*(n)b - ph(1 - \xi_S) \}, 0 \right\}, \]

using all its financial wealth \(w \) in excess of the threshold \(\phi \tilde{w} \) to pay any amount of its mortgage debt \(q^*(n)b \) that was not covered by the sale of the house at \(ph(1 - \xi_S) \). The household must rent in the period in which default occurs. After that period, the household regains the option of becoming a homeowner with probability \(\psi \) or stays in default and must rent with probability \(1 - \psi \).

As is standard in models with mortality risk and no bequests, wealth is annuitized. Thus, in this model, we need to annuitize both financial and housing wealth. Each period, a household with assets receives a transfer equal to its discounted expected next-period wealth. The price of an annuity is the survival probability discounted at the risk free rate.

A homeowner with positive expected home equity receives a transfer \(\epsilon \) equal to its discounted expected next-period home equity position (net of the cost of selling the house) multiplied by the probability of its death:

\[
\epsilon(h', b', p, n) = \max \left\{ 0, \frac{1 - \chi_n}{1 + r} [h'E[p'p](1 - \xi_S) - q^*(n - 1)b'] \right\}.
\]

If the homeowner dies, the financial intermediary who contracted with him receives the house. After paying the selling cost, the financial intermediary sells the house, uses the proceeds to pay the mortgage, and keeps the remaining amount, if any.\(^{11}\)

3 Recursive Formulation

The household can enter each period either as (i) a defaulter (who defaulted in a previous period and still does not have the choice to buy a house), (ii) a nonhomeowner with clean credit who can choose whether to buy a house, and (iii) a homeowner. Figure 1 presents households’ choices in each of these three situations and the corresponding value functions.

\(^{11}\)We only assume mortality risk to facilitate the comparison of the paper with previous SIM studies.
Figure 1: Households’ Choices

Note: \(\psi\) is the probability a defaulter can access the housing market in the next period. The functions \(R, B, S^H, S^R, F, P\) and \(D\) are the interim value functions.

3.1 NonHomeowner

If the household does not own a house, it must choose whether to stay as a renter or buy a house. Thus, the lifetime utility of a household that enters the period not owning a house is given by

\[
N(w, z, p, n) = \max_{\hat{r}_N \in \{0.1\}} \{\hat{r}_N R(w, z, p, n) + (1 - \hat{r}_N) B(w, z, p, n)\},
\]

where \(w = \exp(f + l_n + z + \varepsilon) + a \geq 0\) denotes the household’s cash-on-hand wealth (labor income plus savings) at the beginning of the period, \(R\) denotes the lifetime utility of a nonowner who decides to stay as a renter during the period, and \(B\) denotes the lifetime utility of a household that buys a house in the period.
3.2 Renter

A household that enters the period not owning a house and chooses to continue renting can choose only its next-period savings \(a' \geq 0 \). Thus, the value of \(R(w, z, p, n) \) is determined as follows:

\[
R(w, z, p, n) = \max_{a' \geq 0} \left\{ u(c, h^R) + \beta \chi_n \mathbb{E} \left[N(w', z', p', n-1) \mid z, p \right] \right\}, \tag{5}
\]

\[
s.t. \quad c = w - \frac{\chi_n}{1+r} a' \\
w' = \exp(f + l_{n-1} + z' + \varepsilon') + a'.
\]

3.3 Buyer

A household that decides to buy a house must choose the size of the house \((h') \), the amount of savings \((a') \), and the amount it borrows. The latter is determined by how much the household promises to pay next period \((b') \) and is given by \(b'q(h', a', z, p, h', n) \), where \(q \) denotes the market price of that mortgage (defined in Subsection 3.5). Thus, the expected discounted lifetime utility of a buyer satisfies

\[
B(w, z, p, n) = \max_{\{b' \geq 0, a' \geq 0, h'\}} \left\{ u(c, h') + \beta \chi_n \mathbb{E} \left[H(h', b', w', z', p', n-1) \mid z, p \right] \right\}, \tag{6}
\]

\[
s.t. \quad c = w + b'q(h', b', a', z, p, n) - I_{b' > 0} \xi_M - \frac{\chi_n}{1+r} a' - (1 + \xi_B)ph' + \epsilon(h', b', p, n), \\
w' = \exp(f + l_{n-1} + z' + \varepsilon') + a', \\
b'q(h', b', a', z, p, n) \leq \lambda ph', \tag{7} \\
h' \in \{h_1, ..., h_M\},
\]

where the indicator \(I_{b' > 0} \) takes a value of 1 if the individual buys the house with a mortgage and 0 otherwise, and \(H \) denotes the expected discounted lifetime utility of a household that enters the period as a homeowner. Equation (7) imposes a mortgage LTV limit \((\lambda) \).
3.4 Homeowner

A household that enters the period as a homeowner can (i) pay its current mortgage (if any), (ii) refinance its mortgage (or ask for a mortgage if it does not have one), (iii) default on its mortgage, or (iv) sell its house (and buy another house or rent). Thus, the value function H is given by the maximum of the values of these four options denoted by P, F, D, and S, respectively:

$$H(h, b, w, z, p, n) = \max \{ \hat{I}_P P(\cdot) + \hat{I}_F F(\cdot) + \hat{I}_D D(\cdot) + \hat{I}_S S(\cdot) \}$$

s.t. $1 = \hat{I}_P + \hat{I}_F + \hat{I}_D + \hat{I}_S$.

Mortgage Payer. If the household makes the current-period mortgage payment, its only remaining choice is a'. Then, the value of making the mortgage payment is given by

$$P(h, b, w, z, p, n) = \max \{ u(c, h) + \beta \chi_n \mathbb{E}[H(1 - \delta, w', z', p', h, n - 1) \mid z, p] \}$$

s.t. $c = w - b - \frac{x_n}{1+r} a' + \epsilon(h, b', p, n)$,

$$w' = \exp(f + l_{n-1} + z' + \epsilon') + a'$$

Mortgage Refinancer. In order to refinance, the household must pay its mortgage and choose a new next-period payment of its new mortgage $b' \geq 0$ (the household can choose to not have a mortgage, $b' = 0$). The household is also free to adjust its financial wealth. Thus the value of refinancing is given by

$$F(h, b, w, z, p, n) = \max_{b' \geq 0, a' \geq 0} \{ u(c, h) + \beta \chi_n \mathbb{E}[H(h, b', w', z', p', n - 1) \mid z, p] \}$$

s.t. $c = y - q^*(n)b + q(h', b', a', z, p, n)b' - \xi_P - I_{b' > 0} \xi_M + \epsilon(h, b', p, n) - \frac{x_n}{1+r} a'$,

$$w' = \exp(f + l_{n-1} + z' + \epsilon') + a',$$

$$b' \geq \frac{q(h', b', a', z, p, n)}{\lambda ph}.$$
Thus, the value of defaulting is given by

\[D(h, b, w, z, p, n) = \max_{a' \geq 0} \left\{ u(c, h^R) + \beta \chi_n \mathbb{E} \left[\psi N(w', z', p', n - 1) \mid z, p \right] \right\} \quad (12) \]

\[\text{s.t.} \quad c = w - \Phi(h, b, w, p) - \frac{\chi_n}{1 + r} a', \quad (13) \]
\[w' = \exp(f + l_{n-1} + z' + \varepsilon') + a'. \quad (14) \]

Note that after the default period, there is no debt \((b = 0)\) and therefore, there is no garnishment \((\Phi(h, b, w, p) = 0)\).

Seller. If the household sells its house, it can become a renter or it can buy another house. Thus, the value of selling the house is given by

\[S(h, b, w, z, p, n) = \max_{\hat{r}_S \in \{0, 1\}} \left\{ \hat{r}_S S^R(h, b, w, z, p, n) + (1 - \hat{r}_S) S^H(h, b, w, z, p, n) \right\}, \]

where \(S^R\) denotes the expected discounted lifetime utility of selling the house and becoming a renter, and \(S^H\) denotes the expected discounted lifetime utility of selling the house and buying another house.

If the seller chooses to become a renter, he can adjust only his financial wealth. Thus, its lifetime utility is given by

\[S^R(h, b, w, z, p, n) = \max_{a' \geq 0} \left\{ u(c, h^R) + \beta \chi_n \mathbb{E} \left[N(w', z', p', n - 1) \mid z, p \right] \right\} \quad (15) \]

\[\text{s.t.} \quad c = w - q^*(n)b - \xi_p + ph (1 - \xi_S) - \frac{\chi_n}{1 + r} a', \]
\[w' = \exp(f + l_{n-1} + z' + \varepsilon') + a'. \]

If the seller buys another house, he must also choose the size of the new house and the new
mortgage. Thus, the seller’s lifetime utility is given by

$$S^H(h, b, w, z, p, n) = \max_{\{v \geq 0, w' \geq 0, b'\}} \left\{ u(c, h') + \beta \chi_n \mathbb{E} \left[H(h', b', w', z', p', n - 1) \mid z, p \right] \right\}$$

subject to

$$c = w - q^*(n)b - \xi_P$$

$$+ ph(1 - \xi_S) + b'q(h', b', a', z, p, n) - I_{b' > 0} \xi_M - (1 + \xi_B)ph' + \epsilon(h', b', p, n) - \frac{\chi_n}{1 + r}a',$$

$$w' = \exp(f + l_{n-1} + z' + \epsilon') + a',$$

$$b'q(h', b', a', z, p, n) \leq \lambda ph',$$

$$h' \in \{h_1, ..., h_M\}.$$ (16)

3.5 Mortgages

When the household asks for a mortgage promising to pay b' next period, the amount it borrows is given by $b'q(h', b', a', z, p, n)$, where

$$q(h', b', a', z, p, n) = \left[\frac{\chi_n(q_{pay} + q_{prepay} + q_{default}) + (1 - \chi_n)q_{die}}{1 + r} \right]$$

and

$$q_{pay} = \mathbb{E} \left[\hat{I}_P(h', b', w', z', p', n - 1) (1 + (1 - \delta) q(h', b' (1 - \delta), a'', z', p', n - 1)) \mid z, p \right],$$

$$q_{prepay} = \mathbb{E} \left[\hat{I}_F(h', b', w', z', p', n - 1) + \hat{I}_S(h', b', w', z', p', n - 1) \right] q^*(n - 1)\mid z, p \right],$$

$$q_{default} = \mathbb{E} \left[\hat{I}_D(h', b', w', z', p', n - 1) \left[\frac{p'h'(1 - \xi_S) + \Phi(h', b', w', p')}{b'} \right] \mid z, p \right],$$

$$q_{die} = \mathbb{E} \left[\min \left\{ q^*(n - 1)b', \frac{p'h'(1 - \xi_S)}{b'} \right\} \mid z, p \right].$$

In the expressions above, $a'' = \hat{a}_P(h, b', w', z', p', n - 1)$ denotes the next-period optimal saving choice of a household that pays its mortgage next period (i.e., the solution of problem 9 above), and $\hat{I}_P, \hat{I}_F, \hat{I}_S,$ and \hat{I}_D denote the optimal choice of a homeowner (i.e., the solution of problem 8 above).

3.6 Equilibrium definition

An equilibrium is characterized by
(1) a set of value functions \(N, R, B, H, P, F, D, S, S^R, \) and \(S^H, \)

(2) rules for nonowners’ renting \(\hat{r}_N; \) renters’ savings \(\hat{a}_R; \) buyers’ savings \(\hat{a}_B, \) borrowing \(\hat{b}_B \) and housing \(\hat{h}_B; \) homeowners’ choices of paying the mortgage \(\hat{I}_P, \) refinancing \(\hat{I}_F, \) defaulting \(\hat{I}_D, \) and selling the house \(\hat{I}_S; \) mortgage payers’ savings \(\hat{a}_P; \) mortgage refinancers’ savings \(\hat{a}_R \) and borrowing \(\hat{b}_R; \) defaulters’ savings \(\hat{a}_D; \) sellers’ renting \(\hat{r}_S; \) seller-renters’ savings \(\hat{a}_S R; \) seller-buyers’ savings \(\hat{a}_S B, \) borrowing \(\hat{b}_S B \) and housing \(\hat{h}_S B, \)

(3) and a price function \(q, \)

such that:

(a) given a price function \(q; \) the policy functions \(\hat{r}_N, \hat{a}_R, \hat{a}_B, \hat{b}_B, \hat{h}_B, \hat{I}_P, \hat{I}_F, \hat{I}_D, \hat{I}_S, \hat{a}_P, \hat{a}_R, \hat{b}_R, \hat{a}_D, \hat{r}_S, \hat{a}_S R, \hat{a}_S B, \hat{b}_S B, \hat{h}_S B, \) and the value functions \(N, R, B, H, P, F, D, S, S^R, \) and \(S^H \) solve the Bellman equations (4)-(17).

(b) given policy rules \(\{\hat{a}_P, \hat{I}_P, \hat{I}_F, \hat{I}_S, \hat{I}_D\}, \) the price function \(q \) satisfies equation (18).

4 Calibration

We calibrate the model using U.S. data. Most parameter values are from previous studies. Whenever possible, we use as a reference the 2001 Survey of Consumer Finances (SCF).\(^\text{12}\) Table 1 presents the value of all parameters in the model.

\(^\text{12}\)We use households between 25 and 60 years of age that are not in the top 5 percentile of the wealth distribution. We choose the year 2001 because we calibrate our model without changes in the aggregate price of housing (we study such changes in section 7) and thus, we want to use data from before the larger swings in average U.S. house prices (the boom in real house prices had just begun in 2001).
Table 1: Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Definition</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>$0.65y_0$</td>
<td>Initial wealth</td>
<td>SCF</td>
</tr>
<tr>
<td>σ^2_ν</td>
<td>0.302</td>
<td>Variance of ν</td>
<td>Campbell and Cocco (2003)</td>
</tr>
<tr>
<td>$\rho_{e,\nu}$</td>
<td>0.115</td>
<td>Correlation e and ν</td>
<td>Campbell and Cocco (2003)</td>
</tr>
<tr>
<td>ρ_p</td>
<td>0.970</td>
<td>Persistence in p</td>
<td>Nagaraja, Browny, and Zhao (2009)</td>
</tr>
<tr>
<td>l</td>
<td>Income, life-cycle component</td>
<td>Kaplan and Violante (2010)</td>
<td></td>
</tr>
<tr>
<td>σ^2_ε</td>
<td>0.0630</td>
<td>Variance of ε</td>
<td>Kaplan and Violante (2010)</td>
</tr>
<tr>
<td>σ^2_{ε}</td>
<td>0.0166</td>
<td>Variance of e</td>
<td>Kaplan and Violante (2010)</td>
</tr>
<tr>
<td>f</td>
<td>-0.459</td>
<td>Income fixed effects</td>
<td>Storesletten, Telmer, and Yaron (2004)</td>
</tr>
<tr>
<td>r</td>
<td>0.020</td>
<td>Risk-free rate</td>
<td>Kocherlakota and Pistaferri (2009)</td>
</tr>
<tr>
<td>γ</td>
<td>2.00</td>
<td>Risk aversion</td>
<td>Standard in the literature</td>
</tr>
<tr>
<td>ξ_B</td>
<td>0.025</td>
<td>Cost of buying, hhds</td>
<td>Gruber and Martin (2003)</td>
</tr>
<tr>
<td>ξ_S</td>
<td>0.070</td>
<td>Cost of selling, hhds</td>
<td>Gruber and Martin (2003)</td>
</tr>
<tr>
<td>ξ_S</td>
<td>0.220</td>
<td>Cost of selling, bank</td>
<td>Pennington-Cross (2006)</td>
</tr>
<tr>
<td>ξ_M</td>
<td>0.15</td>
<td>Cost of signing mortgage</td>
<td>Board of Governors, Federal Reserve</td>
</tr>
<tr>
<td>ξ_P</td>
<td>0.070</td>
<td>Cost of prepaying mortgage</td>
<td>Board of Governors, Federal Reserve</td>
</tr>
<tr>
<td>δ</td>
<td>0.02</td>
<td>Payments decay</td>
<td>Average inflation</td>
</tr>
<tr>
<td>ϕ</td>
<td>∞</td>
<td>Non-recourse wealth</td>
<td>No recourse</td>
</tr>
<tr>
<td>λ</td>
<td>1</td>
<td>100 percent LTV limit</td>
<td>Positive down payment</td>
</tr>
</tbody>
</table>

As in Kaplan and Violante (2010), a period in the model refers to a year; households enter the model at age 25, retire at age 60, and die no later than at age 82. Survival rates are obtained from Kaplan and Violante (2010). With a retirement income replacement ratio of 75 percent, we replicate the mean income after retirement in the data. A household’s initial asset position is 65 percent of its initial income, which allows us to match the mean net asset position at age 25 in the SCF.

We feed into the model stochastic processes for income and prices estimated using micro data. We pin down the variance of house-price innovations (σ^2_ν) and the correlation of income and house-price innovations ($\rho_{e,\nu}$) to match the standard deviation of house-price growth and the correlation between house-price growth and income growth estimated by Campbell and Cocco (2003), 0.115 and 0.027, respectively. We use the estimate of the persistence of house prices (ρ_p) by Nagaraja, Browny, and Zhao (2009).

The parameters $\sigma_e, \sigma_\varepsilon$ and the life cycle component of the income process are calibrated
following Kaplan and Violante (2010). As in Storesletten, Telmer, and Yaron (2004), the fixed effect takes two values, -0.459 and 0.459.

We set $\gamma = 2$, which is within the range of accepted values in studies of real business cycles. Following Kocherlakota and Pistaferri (2009), we set $r = 2$ percent. We set the cost of buying and selling a house using estimates in Gruber and Martin (2003) and Pennington-Cross (2006). The costs of signing and prepaying a mortgage are the average costs reported by the Board of Governors of the Federal Reserve System. The depreciation of mortgage installments is set considering an inflation rate of 2 percent. We assume that there is no recourse (ϕ is sufficiently high) and that the household cannot borrow more than the value of the house it buys ($\lambda = 1$; this is the only LTV limit in the benchmark). We assume there are five house sizes the household can buy, which are evenly distributed between 2 and 10 (we show this is sufficient for accounting for the life cycle profile of the average house value).

We calibrate the remaining five parameter values (the size of the house available for rent, the mean price of houses, the discount factor, the nonhousing consumption weight in the utility function, and the probability of regaining access to the mortgage market after a default) to make five statistics from the model simulations approximate their data counterpart. The size of the house available for rent is the key parameter to match homeownership (SCF). The discount factor is the key parameter that allows us to match the median (nonhousing) savings-to-income ratio (SCF). The nonhousing consumption weight in the utility function and the mean price of houses are the key parameters to match the share of homeowners with mortgages and the median house value-to-median income ratio (SCF). The probability of regaining access to the mortgage market is the key parameter that allows us to match the median down payment (Paniza Bontas, 2010).

14We solve the model using linear interpolation with evenly distributed grid points. We use 10 grid points for b, 9 grid points for a, 7 grid points for the permanent income shock, 5 grid points for the temporary income shock, and 8 grid points for the price level. Expectations are computed using 20 Gauss-Legendre quadrature points over p', 10 points over z', and 7 points over $\epsilon p'$. We simulate the behavior of 5,000 households during their lifetime. Statistics are computed using Census data to assign population weights to each cohort.
15The probability of regaining access to the mortgage market determines the cost of defaulting in our model. Thus, this probability determines how much households can borrow and is useful to match the median down payment. There exist controversy about the extent to which a mortgage default prevents a household from obtaining a new mortgage or increases the defaulter’s borrowing cost. It is certainly true that some defaulting households can quickly obtain new loans, especially with significant down payments. Instead of trying to calibrate the controversial cost of defaulting, we choose to target the more easily measured level of down payments (which
Table 2 presents the fit of the targets obtained with our benchmark calibration and the implied parameter values. The model matches the targeted moments closely.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Homeowners with mortgages</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Median house value / median income</td>
<td>2.80</td>
<td>2.91</td>
</tr>
<tr>
<td>Median (saving/income)</td>
<td>0.85</td>
<td>0.77</td>
</tr>
<tr>
<td>Median down payment</td>
<td>0.18</td>
<td>0.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>h^R</td>
<td>1.43</td>
<td>Size rental house</td>
</tr>
<tr>
<td>α</td>
<td>0.9</td>
<td>Nonhousing weight in the utility</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>4.48</td>
<td>Mean house price</td>
</tr>
<tr>
<td>β</td>
<td>0.946</td>
<td>Discount factor</td>
</tr>
<tr>
<td>ψ</td>
<td>0.667</td>
<td>Probability default ends</td>
</tr>
</tbody>
</table>

5 Fit of Nontargeted Moments

In this section, we describe model predictions not targeted in the calibration regarding the demand for housing, the use of mortgage loans, and mortgage defaults. In terms of the demand for housing, our calibration targets (and matches reasonably well) the homeownership rate, the share of households with mortgages, and the median house value. Figure 2 shows that the model also captures changes in the demand for housing over the life cycle (SCF). Homeownership increases over the life cycle, since older households tend to be richer and thus are more likely to be able to afford ownership. Furthermore, the mean house value also increases over the life cycle. While the housing value is exogenous and independent of age, older households tend to buy more (or in the data, better) housing, making the mean house value increase over the life cycle.

in the model is closely related to the cost of defaulting).
Figure 2: Demand for Housing over the Life Cycle (nontargeted)

Note: The left panel presents the homeownership rate. The right panel presents the average house value ($p \times h$) for home owners.

Regarding the use of mortgage loans, Figure 3 shows that the model produces plausible implications for the distribution of mortgage down payments.16 Table 3 shows that mortgage payments in the data are higher than those in the model simulations. Notice, however, that mortgage payments in the data overstate the financial cost of mortgages because of the tax deductibility of interest payments (which is not a feature of our model). Finally, our model slightly overstates the mean home equity.17

16 Down payment data are not available in the SCF. We constructed the empirical distribution of down payments using data on combined LTV ratios at origination for the 2000-09 period presented by Paniza Bontas (2010).

17 Here, we use as reference from the data a statistic provided by CoreLogic, which collects data on house prices and mortgages. If the same statistic is computed using the 2001 SCF data, we obtain 42 percent. The CoreLogic measure of housing equity may be more accurate because it uses transaction data to estimate house values. The SCF measure relies on self-reported house price data.
Figure 3: Distribution of Down Payments

Source: The empirical distribution is constructed using data presented by Paniza Bontas (2010).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median payment / median Income</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Mean home equity / mean house price, mortgagees</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td>Default rate (%)</td>
<td>0.50</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Source: The homeowners with mortgages and payments data is from the SCF. The data on home equity is from CoreLogic. The default rate data is the calibration target presented by Jeske, Krueger, and Mitman (2013) and Mitman (2012).

The model also generates a plausible default rate. In particular, the default rate generated
by the model is close to the 0.5 percent targeted by Jeske, Krueger, and Mitman (2013) and Mitman (2012). They explain that the quarterly foreclosure rate was 0.4 percent between 2000 and 2006 and the ratio of mortgages in foreclosure eventually ending in liquidation was 25 percent in 2005. They argue that since a default in their model (as in ours) implies that the household relinquishes its house to the bank, the default rate in the simulations should be compared with the liquidation rate in the data. They also argue that since the default rate in the data is for a period of strong appreciation of house prices, they should target a higher default rate.\footnote{Later, in Figure 8, we illustrate how our model generates a lower default rate during a period of strong appreciation of house prices.}

Using data from Massachusetts, Foote, Gerardi, and Willen (2008) show that negative equity is a necessary but not a sufficient condition for default: Less than 10 percent of the homeowners with negative equity default on their mortgages. They also argue that income shocks play the role of trigger events for default. Figure 4 shows our model is consistent with their findings: Both income and home equity decline in the periods preceding default. The figure focuses on households that default and shows that their income is lower than the one of households (of the same age) that do not default. Furthermore, average defaulters’ income decreases during the three consecutive years prior to the defaults. The figure also shows that on average defaulters have lower home equity than nondefaulters even five years before default (for all periods considered, the blue-dashed line represents the mean equity of nondefaulter households with age equal to the mean age of defaulters), and mean defaulters’ home equity goes from almost zero to about negative 25 percent.
Figure 3 also shows that (as in the data) the majority of households in our stimulations choose to pay significant down payments, making their mortgages virtually default-free (this is also reflected in the very low default rate presented in Table 3). Thus, most mortgage loans are originated at a rate very close to the one that reflects the lenders opportunity cost, independently from the household’s characteristics. Nevertheless, modeling the mortgage rate as a function of the loan and the household’s characteristics is essential for obtaining a plausible distribution of down payments and for measuring how the down payment that allows households to pay the default-free interest rate changes with the policies we study.

Overall, the results presented above indicate that our framework is a reasonable quantitative model of (i) the demand for housing and mortgages and (ii) mortgage defaults. Thus, our framework could be a useful laboratory for the study of policies that could mitigate mortgage defaults. We next study the effects of such policies.

6 Economies with Prudential Policy

In this section we evaluate two regulations: recourse and maximum LTV limits. First, we show how each policy affects the long run equilibrium with constant aggregate house prices. Then, we show how different combinations of these policies would affect housing consumption, mortgage borrowing, and defaults.
6.1 Recourse Mortgages

In this subsection, we study model economies with recourse mortgages. Table 4 presents model simulations for different values of ϕ, which determines the level of nongarnishable financial wealth and thus, the degree of recourse in the economy (all other parameter values are the ones used in the benchmark calibration).

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0.5</th>
<th>0.1</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate</td>
<td>0.66</td>
<td>0.67</td>
<td>0.70</td>
<td>0.73</td>
<td>0.78</td>
<td>0.80</td>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>Mean house size (owners)</td>
<td>1.00</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.03</td>
<td>1.08</td>
<td>1.08</td>
<td>1.07</td>
<td>1.06</td>
</tr>
<tr>
<td>Median down payment</td>
<td>0.17</td>
<td>0.15</td>
<td>0.12</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Default rate (%)</td>
<td>0.59</td>
<td>0.75</td>
<td>0.77</td>
<td>0.79</td>
<td>0.58</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median payment / median income</td>
<td>0.12</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Median (equity/price), mortgagees</td>
<td>0.23</td>
<td>0.17</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note: House sizes are normalized to 1 in the benchmark.

Note that since we do not model the labor supply decision, we cannot study the effect of recourse mortgages on this decision. Results in previous studies indicate, however, that this effect is negligible (Chatterjee and Gordon, 2012; Chen, 2011; Li and Han, 2007). This is in part because people would choose to default for asset and income levels lower than the ones that make recourse operative.
Table 4 shows that the effect of the degree of recourse in the demand for housing (as represented by ownership and house sizes) is hump-shaped. The demand for housing first increases with the degree of recourse because a harsher recourse rule lowers the mortgage interest rate households pay for each LTV (Figure 5) making households more willing to ask for high-LTV mortgages (as reflected in the lower median down payment reported in the table). This allows households to buy larger houses sooner in their life cycle. However, with the harsher recourse rules in Table 4, households become more reluctant to ask for high-LTV mortgages. This occurs because with these recourse rules, defaulting becomes so onerous that households want to eliminate the possibility of default (the default frequency is zero in the simulations). In order to be able to afford lower LTV mortgages, households delay home purchases and choose smaller houses (since changes in the recourse rule only affect high-risk borrowers, there is no change in the median down payment reported in Table 4).

In addition, Table 4 shows that the relationship between the degree of recourse and the default rate is also hump-shaped. Somewhat surprisingly, for relatively mild recourse policies
(from $\phi = 4$ to $\phi = 1$ in Table 4), the default rate is higher when recourse is harsher. A harsher recourse policy increases the LTV chosen by households and may increase it enough to increase the default frequency. In particular, households that choose to rent in the economy without recourse choose to become homeowners with a high default risk when recourse is introduced.

But why would a household choose a higher LTV and assume more default risk when the punishment for defaulting is harsher? Using higher-LTV mortgages, a household can consume more housing sooner at the expense of exposing itself to costly defaults. The household dislikes defaults because of the associated costs (including, for instance, the cost of moving to a different house) and because future default decisions need not be optimal from an ex ante perspective. Two forces explain why a harsher recourse policy may increase a household’s benefit from assuming default risk.

First, with a harsher recourse policy, for a given increase in default risk, the household can lower further the mortgage LTV. This is illustrated by the flattening of the mortgage spread curve implied by harsher recourse policies in Figure 5. This flattening of the spread curve occurs because a harsher recourse policy reduces the relative importance of the LTV (compared with income) in the default decision.

Second, households dislike default risk less when default is more likely to be triggered by income shocks. Households would like to insure against negative income shocks, and mortgage defaults provide this insurance. Recall Figure 4 indicates that negative income shocks trigger defaults. Thus, mortgage defaults provide debt relief to households who suffer these shocks. In contrast, declines in the price of housing that could also trigger a mortgage default may have small negative welfare effects for households that do not plan to adjust their consumption of housing and may even increase welfare for homeowners who expect to buy larger houses in the future (see Section 8). Thus, households like less contracts that transfer resources to states with negative shocks to the price of housing (as defaultable mortgages do increasingly when the recourse rule is softer).

Table 4 also shows that eventually (from $\phi = 1$ to $\phi = 0.01$), increasing recourse reduces mortgage defaults. Intuitively, if the recourse policy is too harsh, households choose to decrease their exposure to default risk, which leads to a decrease in the default frequency. As previously
mentioned, if defaulting is sufficiently painful, households choose to eliminate the possibility of default, even at the expense of reducing housing consumption.

Our results indicate that while recourse policies have great potential for mitigating mortgage defaults, the implementation of these policies presents difficulties. On the one hand, a recourse policy that is too mild may increase default risk. On the other hand, a recourse policy that is too harsh may reduce the boost to housing consumption implied by recourse mortgages. Since the increase in default risk implied by mild recourse policies is the result of low LTVs at origination, this problem could be mitigated by imposing LTV limits for new mortgages. Next, we study the effect of introducing LTV limits with nonrecourse mortgages and later the effects of combining LTV limits with recourse mortgages.

6.2 LTV Limits

In this subsection, we solve the benchmark model but change only the LTV limit λ in constraints (7), (11), and (17) of the household’s problem. We now allow the household to borrow only a fraction of the value of the house it buys (the LTV limit), instead of 100 percent as in the benchmark. All other parameter values are the ones in the benchmark.

Table 5 shows that economies with a stricter LTV limit feature a significantly lower mortgage default rate. This occurs because with a stricter LTV limit, households are forced to have more home equity when they buy their house and, thus, are less likely to have sufficient negative equity to trigger a default in the future.
Table 5: Effects of LTV Limits, Long Run

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.64</td>
</tr>
<tr>
<td>Mean house size (owners)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Median down payment</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Default rate (%)</td>
<td>0.59</td>
<td>0.39</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>Median payment / median income</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Median (equity/price), mortgagees</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Note: House sizes are normalized to 1 in the benchmark.

Table 5 also shows that the impact of LTV limits on the demand for housing may be negligible. Economies with a stricter LTV limit feature a lower homeownership rate but the decline in ownership is not significant for limits higher than 80 percent. Similarly, LTV limits do not have a significant impact on house sizes. We identify two reasons why LTV limits may have negligible effects on housing demand in our simulations. First, in economies with LTV limits, young households save more to afford higher down payments. Thus, in general, LTV limits do not prevent households from buying the house they want. Second, LTV limits lower the interest rate households pay on their mortgage, making housing consumption more attractive. Mortgage interest rates are lower when the default probability is lower. LTV limits make it harder for a household that defaulted to buy a new house and, therefore, lower the default probability and the mortgage interest rate. However, we find that the second reason is not quantitatively important in our simulations: even with the 100 percent LTV limit in the benchmark, most households choose to pay significant down payments and thus do not pay a significant default premium in their mortgages (as reflected in the low default rate in the simulations).

Our findings shed light on current policy debates. For instance, in the United States, the proposed Qualified Residential Mortgage (QRM) requires higher interest rates for borrowers whose down payment is less than 20 percent of the house price.\(^20\) Thus, these rules could be

\(^20\)For QRM details, see “Summary of the Ability-to-Repay and Qualified Mortgage Rule and the Current Proposal.”
interpreted as a soft version of the LTV limits we study: While our LTV limits make it impossible (or prohibitively expensive) to borrow above the limit, the QRM rules imply an increased cost of borrowing with an LTV above 80 percent. Critics argue that QRM rules could have a significant negative effect on homeownership (see, for example, MBA, 2011). We find that eliminating mortgages with an LTV higher than 80 percent would reduce ownership by only 2 percentage points and would have a negligible effect on house sizes. Furthermore, less strict LTV limits would have negligible effects on ownership. Thus, our results cast doubt on the aforementioned criticisms.

6.3 Combining Recourse Mortgages and LTV Limits

Could the combination of recourse mortgages and LTV limits mitigate mortgage defaults and at the same time boost housing consumption? Previous subsections show that recourse mortgages could relax households’ borrowing constraints and thus increase housing consumption, but this may come at the expense of increasing the rate of mortgage defaults. In contrast, LTV limits would lower the default rate, but at the expense of worsening households’ borrowing constraints and thus decreasing housing consumption. In this subsection, we study the effects of combining these two policies.

Table 6 shows there may be important complementarities between recourse mortgages and LTV limits. For instance, the table shows that compared with the benchmark, the economy with the median-income recourse policy (ϕ = 1) features higher homeownership at the expense of a higher default rate. In contrast, the economy with an 80 percent LTV limit features a lower default rate at the expense of a lower ownership rate. The economy with both the median-income recourse policy and the 80 percent LTV limits features a higher ownership rate with a lower default rate, indicating that the combination of these two tools could succeed in the two most often cited goals of mortgage policies: promoting homeownership and containing default. Furthermore, the economy with both policies features a default rate even lower than in the economy with the 80 percent LTV limit alone. This shows that recourse policies that would lead to higher default rates in the no-LTV-limit benchmark may lead to a lower default rate in economies with LTV limits.
Table 6: Effects of Combining Recourse Mortgages and LTV Limits, Long Run

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>$\phi = 2$ & $LTV = 90%$</th>
<th>$\phi = 1$ & $LTV = 80%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate</td>
<td>0.66</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>Mean house size (owners)</td>
<td>1.00</td>
<td>1.02</td>
<td>1.00</td>
</tr>
<tr>
<td>Median down payment</td>
<td>0.17</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>Default rate (%)</td>
<td>0.59</td>
<td>0.36</td>
<td>0.04</td>
</tr>
<tr>
<td>Median payment / median income</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Median (equity/price), mortgagees</td>
<td>0.23</td>
<td>0.22</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Note: House sizes are normalized to 1 in the benchmark.

As previously discussed, the default rate may be higher in an economy with recourse mortgages because the level of home equity is lower with recourse mortgages. This is illustrated in Figure 6: For all ages, equity is significantly lower in the economy with the median-income recourse policy than in the benchmark. The figure also shows that, in contrast, in the economy with the median-income recourse policy and the 80 percent LTV limit, equity is higher than in the benchmark for all ages.
Figure 6: Equity in Economies with Different Policies

Note: Recourse allows for garnishment of all defaulters’ wealth above the median income.

Figure 7 shows how the economy with both the median-income recourse mortgages and the 80 percent LTV limit features a stronger demand for housing than the benchmark economy for almost all age groups. The homeownership rate is higher in the economy with the prudential policies, except for households younger than 27 years of age, for which the rate is only slightly lower. Furthermore, on average houses are larger in the economy with default-prevention policies than in the benchmark, as indicated by a higher mean house price.
Figure 7: Housing Demand in Economies with Different Policies

![Figure 7](image-url)

Note: The left (right) panel presents the homeownership rate (mean house price for homeowners). Recourse allows for garnishment of all defaulters’ wealth above the median income.

7 Prudential Policy and Large Swings in House Prices

In previous sections, we compared the mortgage default rate across model economies with different prudential policies and a constant aggregate house price. In this section, we study the evolution of the mortgage default rate during large swings in the aggregate price of housing \bar{p}, for economies with different prudential policies: (i) the benchmark economy (with nonrecourse mortgages and without LTV limits), (ii) an economy with an 80 percent LTV limit, (iii) an economy with recourse mortgages that allow for garnishment of all defaulters’ financial wealth above the median income level ($\phi = 1$), and (iv) an economy that combines these LTV and recourse rules. The previous section shows that the model economy with the combination of these prudential policies would feature a default rate significantly lower than the one in the benchmark economy. In this section, we test whether the default rate would remain low in the economy with these prudential policies after large swings in house prices.

Note: The median income recourse rule is the type of soft recourse rule that could be easier to implement. For instance, the U.S. Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 establishes that if a debtor’s income is above the median income amount of the debtor’s state, the debtor is subject to a means test that could force the debtor to file under Chapter 13 (under which a percentage of debts must be paid over a period of three to five years) as opposed to Chapter 7 (under which debts are paid only from existing assets).
Figure 8 presents results from two exercises assuming different changes in the aggregate house price (depicted in the two top panels of the figure). Because of the computational burden, for each exercise we follow the model economy for only four years. In both exercises the starting point is our benchmark economy with a constant aggregate house price \bar{p}. Changes in \bar{p} are unexpected and, once they occur, are believed to be permanent. The first exercise (left panels) assumes the aggregate house price declines over three years. The second exercise assumes the aggregate house price increases substantially over two years and then declines sharply to the starting level in one year. Thus, the second exercise allows us to study the effects of an aggregate price bust that was preceded by a boom.

The results presented in Figure 8 indicate that there may be important complementarities between recourse mortgages and LTV limits in preventing sharp increases in mortgage defaults (bottom panels) after large declines in housing prices. Economies with only recourse mortgages or only LTV limits may still experience very large increases in mortgage defaults after large declines in housing prices. The mortgage default rate is much lower in the economy with both recourse mortgages and LTV limits than in the economies with only one of these prudential policies.22

22It is difficult to compare model predictions from these experiments with the recent behavior of mortgage defaults in the United States (the foreclosure rate peaked slightly above 3 percent while the seriously delinquent rate peaked at 5.1 percent; Noeth and Sengupta, 2011). This is both because there were massive government interventions to help homeowners with negative equity and because banks may have delayed foreclosures to avoid recognizing losses. Some important government interventions include the National Foreclosure Mitigation Counseling program, the Making Home Affordable programs, and the Neighborhood Stabilization Program.
Without LTV limits, recourse mortgages may be particularly ineffective in preventing an increase in mortgage defaults (red dashed line). Section 6 shows the default rate may be higher in an economy with recourse mortgages than in the benchmark without recourse mortgages.
Figure 8 shows that after a large decline in the aggregate price of housing, the default rate may also increase more in the economy with recourse mortgages. The figure also shows that this may be explained by a more rapid increase in the proportion of homeowners with negative equity in the economy with recourse mortgages (middle panels).

The economy with only LTV limits resists the boom-bust shock with a mild increase in mortgage defaults (bottom right panel of Figure 8) but cannot avoid a very high default rate after the larger shock to the aggregate price of housing (bottom left panel of Figure 8). The default rate after the latter shock in the economy with both LTV limits and recourse mortgages is one third of the one in the economy with only LTV limits. This occurs in spite of a larger increase in the share of owners with negative equity in the economy with both prudential policies (left middle panel), because the cost of defaulting is larger in this economy. In addition, recall that as explained in Section 6, while the economy with only LTV limits suffers from lower housing consumption compared with the benchmark, the economy with both LTV limits and recourse mortgages enjoys higher housing consumption.

8 Welfare

In this section, we first discuss the ex ante welfare gain from being born in an economy with prudential regulations instead of being born in the benchmark economy without prudential regulations. We later discuss welfare gains from introducing prudential regulations in the benchmark economy. Throughout, we measure welfare gains as the implied permanent nonhousing consumption increase.

8.1 Ex ante Welfare Gain from Recourse Mortgages

In this subsection, we discuss the ex ante welfare gain from being born in economies with different recourse rules instead of being born in the no-recourse benchmark economy. Formally, the welfare gain is calculated as

$$E \left(\frac{N^P (w_0^i, z_0^i, p_0^i, T)}{N^B (w_0^i, z_0^i, p_0^i, T)} \right)^{\frac{1}{\alpha(1-\gamma)}} - 1,$$
where \(N^P \) denotes the value function of a nonowner in an economy with prudential regulations and \(N^B \) denotes the value function of a nonowner in the benchmark economy without prudential regulations. Both value functions are evaluated at the initial age (with a maximum of \(T \) periods of life time), at an stochastic initial income for household \(i \) equal to

\[
y^i_0 = \exp\left(f^i + l^i_0 + \varepsilon^i_0 + \epsilon^i_0 \right),
\]

at an stochastic initial house price for household \(i \) equal to

\[
p^i_0 = \exp\left(\log(\bar{p}) + \nu^i_0/\sqrt{1 - \rho^2_p} \right),
\]

and the initial cash-on-hand wealth of agent \(i \) is equal to \(w^i_0 = y^i_0 + a^i_0 \), where \(a^i_0 \) is calculated as in Table 1.

Table 7 shows that a household benefits from being born in an economy with recourse mortgages. Gains from recourse mortgages are hump-shaped with respect to the degree of recourse. In particular, welfare gains across recourse rules follow the same pattern that the homeownership rate follows (see Table 4) and are maximized by the rule that maximizes ownership. Recourse mortgages are beneficial because they expand the household’s borrowing opportunities (see Figure 5). However, as previously discussed, when recourse becomes too harsh, some households decide to continue renting to avoid the possibility of defaulting.

<table>
<thead>
<tr>
<th>Variable</th>
<th>0.04</th>
<th>0.17</th>
<th>0.32</th>
<th>0.62</th>
<th>0.94</th>
<th>0.56</th>
<th>0.32</th>
<th>0.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recourse, (\phi =)</td>
<td>0.5</td>
<td>0.1</td>
<td>0.05</td>
<td>0.025</td>
<td>0.01</td>
<td>0.04</td>
<td>0.17</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Note: CE means Consumption Equivalence units.

Our findings of welfare gains from recourse mortgages are against the arguments in a large literature (in law, history, and economics) that emphasizes how facilitating defaults can enhance
welfare because the ability to repudiate debts can play an important role in helping households deal with adverse shocks (see Athreya, Tam, and Young, 2011; Bolton and Jeanne, 2005; Grochulski, 2010, and references therein). As mentioned before, welfare gains from recourse mortgages arise because recourse expands the household’s borrowing opportunities. But how damaging are recourse mortgages for the households’ ability to deal with adverse shocks? In order to shed light on this question, Table 8 presents the value of insurance coefficients in the simulations. As in Blundell, Pistaferri, and Preston (2008) and Kaplan and Violante (2010), we define the insurance coefficient for shock x_{it} as

$$
\mu^x = 1 - \frac{\text{cov}(\Delta \log(c_{it}), x_{it})}{\text{var}(x_{it})},
$$

where the variance and covariance are taken cross-sectionally over the entire population.23 The insurance coefficient is interpreted as the share of the variance of shock x that does not translate into consumption growth.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0.5</th>
<th>0.1</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>House-price shock (%)</td>
<td>0.80</td>
<td>0.81</td>
<td>0.82</td>
<td>0.83</td>
<td>0.82</td>
<td>0.75</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Persistent shock (%)</td>
<td>0.29</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.36</td>
<td>0.36</td>
<td>0.32</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Transitory shock (%)</td>
<td>0.69</td>
<td>0.69</td>
<td>0.70</td>
<td>0.70</td>
<td>0.69</td>
<td>0.71</td>
<td>0.72</td>
<td>0.71</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 8 shows that the effects of introducing recourse mortgages on households’ ability to self-insure is hump-shaped with respect to the degree of recourse. The hump shape of the insurance coefficient for the house-price shock follows the hump shape of the equilibrium default frequency, peaking with the $\phi = 1$ recourse rule (there is garnishment only if the defaulter’s cash-on-hand wealth is above the median level). Moreover, there is a large decline in the house-price insurance coefficient when the severity of the recourse rule increases from $\phi = 0.5$ to $\phi = 0.1$, precisely the change in the recourse rule that triggers a large decline in the default rate (Table 4). Thus, our findings indicate that recourse rules that are successful in significantly lowering the default rate.

23Also as in Blundell, Pistaferri, and Preston (2008) and Kaplan and Violante (2010), when computing insurance coefficients, log consumption and log earnings are defined as residuals from an age profile.
may harm households’ ability to self-insure. In the next subsection, we show this is not the case when recourse mortgages are combined with LTV limits.

Table 8 also shows that the share of the variance of house-price shocks that translates into consumption growth is significantly smaller than the one for income shocks (even more so when compared with the insurance coefficient of persistent income shocks). Households that do not expect to adjust their housing consumption will not significantly adjust their nonhousing consumption after a house-price shock, because they expect the housing price to revert to its mean. This finding is consistent with the evidence presented by Sinai and Souleles (2005), who show that the risk of owning a house declines with the time the household expects to stay in its house.

Furthermore, note that there are two opposite effects of a negative house-price shock on non-housing consumption. On the one hand, a negative house-price shock may have a negative effect on homeowners’ wealth and, therefore, it may have a negative effect on nonhousing consumption. On the other hand, a negative house-price shock lowers the cost of housing consumption and, therefore, leaves more resources available for nonhousing consumption. Thus, households that expect to buy (sell) housing in the future typically benefit (are hurt) from a negative house-price shock and choose higher (lower) nonhousing consumption.

Figure 9 and Table 9 illustrate that a negative house-price shock may also have opposite effects on welfare. The figure and the table present average welfare gains from a 5 percent decline in house prices for different groups of households in the benchmark economy. Figure 9 illustrates how house-price declines tend to hurt older households which are likely to be net sellers of housing, but benefit younger households which are likely to be net buyers of housing. Table 9 shows that welfare gains are indeed concentrated among those likely to be net buyers of housing. In particular, welfare gains are larger for renters than for homeowners, and even renters who are old (>50 years of age) experience welfare gains (on average). The table also shows that among renters, those who are more likely to be able to afford buying a house (i.e., those with higher cash-on-hand wealth or expected future income) experience larger gains from the decline in house prices. In addition, Figure 9 shows that, as expected, welfare gains are larger when

24 In theory, households could still choose to lower nonhousing consumption if the substitution effect dominates the income effect.

25 Welfare gains do not include lenders’ capital losses, discussed in subsection 8.3.
households expect current low prices to be temporary (and thus expect to gain from a future price increase). These results resemble the findings presented by Glover, Heathcote, Krueger, and Ríos-Rull (2012) for asset prices declines during the Great Recession.

Figure 9: Welfare Effect Across Ages of a 5 Percent Decline in House Prices

Table 9: Welfare Effect of a 5 Percent Decline in House Prices

<table>
<thead>
<tr>
<th>Group</th>
<th>Young</th>
<th>Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.52</td>
<td>-0.84</td>
</tr>
<tr>
<td>Homeowners</td>
<td>0.75</td>
<td>-1.03</td>
</tr>
<tr>
<td>Renters</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>- Low cash-on-hand wealth</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>- High cash-on-hand wealth</td>
<td>0.65</td>
<td>0.62</td>
</tr>
<tr>
<td>- Low permanent component</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>- High permanent component</td>
<td>0.39</td>
<td>0.42</td>
</tr>
<tr>
<td>- Low persistent component</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>- High persistent component</td>
<td>0.58</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Note: “Young” households correspond to households that are younger than 50 years of age.
8.2 Ex ante Welfare Gains from LTV Limits

Table 10 shows that a household would prefer to be born in an economy with a less strict LTV limit. Recall that in our model endogenous borrowing constraints prevent households from consuming more housing. A stricter LTV limit likely to tighten these constraints. Table 10 also shows that about half of the welfare losses from being born in the economy with an 80 percent LTV limit could be compensated with a recourse rule that relaxes the household’s borrowing constraint. Recall also that since our model does not feature negative feedback from a higher default rate to the banking sector or house prices (Campbell, 2012; Campbell, Giglio, and Pathak, 2011), our measure of welfare gains from introducing LTV limits that reduce the mortgage default rate should be interpreted as a lower bound. Furthermore, in our model all gains from ownership arise because of the utility of living in a larger house. If we would model tax advantages from ownership, this could also lower the welfare cost of LTV limits. Overall, while we see our model as a useful benchmark for studying the effects of policies on the demand for housing, the use of mortgages, and mortgage default risk, we acknowledge the limitations of its predictions for welfare.

Table 10: Ex ante Welfare Gains from LTV Limits

<table>
<thead>
<tr>
<th>Variable (Welfare gains, %, in CE)</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>90% & $\phi = 2$</th>
<th>80% & $\phi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare gains (%, in CE)</td>
<td>-0.06</td>
<td>-0.16</td>
<td>-0.24</td>
<td>0.02</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

Note: CE means Consumption Equivalence units.

Table 11 shows that combinations of recourse mortgages and LTV limits that successfully reduce the frequency of mortgage defaults while increasing homeownership do not present significant changes in households’ ability to self-insure compared with the benchmark economy. Since economies with LTV limits have more home equity (see Table 5 and Figure 6), a softer recourse rule is sufficient to lower the default rate. Such a softer rule is still consistent with defaults by households that would require a large adjustment in nonhousing consumption to pay their mortgage.
Table 11: Insurance Coefficients with LTV Limits

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>LTV limit at 90%</th>
<th>LTV limit at 85%</th>
<th>LTV limit at 80%</th>
<th>LTV limit at 90% & ϕ = 2</th>
<th>LTV limit at 80% & ϕ = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>House-price shock (%)</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
<td>0.79</td>
<td>0.80</td>
<td>0.79</td>
</tr>
<tr>
<td>Persistent shock (%)</td>
<td>0.29</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>Transitory shock (%)</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.70</td>
<td>0.69</td>
<td>0.71</td>
</tr>
</tbody>
</table>

8.3 Welfare Gains from Introducing Prudential Regulations

In previous subsections, we discussed ex ante welfare gains (i.e., the expected welfare gains of newborn agents) from different default-prevention policies. In this subsection, we discuss welfare gains from introducing prudential policies for all households in the benchmark economy without these policies. Thus, we compute welfare gains considering the transition paths for each household in the benchmark economy. As in previous subsections, we focus on the relatively mild median-income recourse policy (ϕ = 1) and the commonly used 80 percent LTV limit. Figure 10 presents the distribution of welfare gains across households. The top panel of the figure presents welfare gains that are computed excluding lenders’ gains (losses) from the introduction of policies that lower (increase) the default probability. The other two panels show alternative methods of redistributing the lenders’ gains among households.

The top panel of Figure 10 shows that introducing recourse mortgages produces welfare gains for about half the households (without considering lenders’ capital gains). As explained before, households benefit from the improved borrowing conditions implied by recourse mortgages. However, mortgage debtors that anticipate a significant probability of default in the future dislike the sudden increase in the cost of defaulting implied by recourse mortgages (while this benefits lenders). Debtors’ losses from the change of their mortgages from nonrecourse to recourse could be eliminated by imposing recourse only on new mortgages. We do not do this exercise because it would imply introducing an additional endogenous state variable.

The top panel of Figure 10 also shows that LTV limits reduce welfare for the majority of households. Most households are worse off because LTV limits tighten the borrowing constraints. A small share of households expects to be able to afford higher down payments and benefits
from the lower mortgage rate implied by LTV limits. Again, since our model does not feature positive feedback from a lower default rate to the banking sector or house prices (Campbell, 2012; Campbell, Giglio, and Pathak, 2011), our measure of welfare gains from LTV limits (and recourse mortgages) should be interpreted as a lower bound.

We next include in our welfare analysis the lenders’ capital gains from the implementation of these policies. We find that implementation of median-income recourse mortgages produces a 3.97 percent increase in the value of lenders’ mortgage holdings. In contrast, implementation of the 80 percent LTV limit produces a small (0.01 percent) decline in the value of mortgage holdings. The joint implementation of both policies produces a 3.89 percent increase in this value.

The middle panel of Figure 10 presents welfare gains when lenders’ capital gains are equally distributed across households. For households that are alive (and thus are included in our calculations of welfare gains), the secondary-market price of a mortgage at the beginning of a period is given by

\[
b\tilde{q}(h, b, w, z, p, n) = I_{pay}^j(h, b, w, z, p, n)b \left[1 + (1 - \delta) q^j(h, b, 1 - \delta, \hat{a}^P_j(h, b, w, z, p, n), z, p, n) \right]
\]

\[
+ I_{prepay}^j(h, b, w, z, p, n)q^*(n) + I_{default}^j(h, b, w, z, p, n)p(h(1 - \xi_S)).
\]

Let \(M \) denote the number of households in the simulations and let the superscript \(j \in \{B, P\} \) denote benchmark (\(B \)) and alternative policy (\(P \)), respectively. The lump-sum transfer \(\tau \) received by all households when the new policy is introduced satisfies\(^{26}\)

\[
M\tau = \sum_{i=1}^{M} \left[b_i q^P(h_i, b_i, w_i + \tau, z_i, p_i, n_i) - b_i q^B(h_i, b_i, w_i, z_i, p_i, n_i) \right]. \quad (19)
\]

\(^{26}\)If there is more than one solution, we use the maximum \(\tau \) that satisfies equation (19).
The bottom panel of Figure 10 assumes that each household receives from its lender the transfer τ_i, which is equal to the increase in the value of the household’s mortgage. Thus, we use
the maximum τ_i that satisfies

$$
\tau_i = b_i q^P(h_i, b_i, w_i + \tau_i, z_i, p_i, n_i) - b_i q^B(h_i, b_i, w_i, z_i, p_i, n_i).
$$

Comparing the top panel with the middle panel, it is clear that including the lenders’ capital gains in the welfare calculations significantly changes the number of winners and losers from default-prevention policies. For instance, the share of households that loses from the introduction of the median-income recourse policy is reduced to 20 percent (from 50 percent in the case without compensations).

The greater welfare losses from the introduction of recourse mortgages are significantly mitigated with individualized transfers. For example, the 5 percent of households that suffer the larger welfare losses with the introduction of recourse mortgages experience losses above 1.3 percent without transfers, above 0.8 percent with constant transfers, and above only 0.1 percent with individualized transfers. Recall that transforming existing mortgages into recourse mortgages hurts households that are more likely to default. The default probability for these households is lowered the most by introducing recourse. Thus, the market price of these households’ mortgages increases the most with recourse. This explains why these households receive the largest individualized transfers. Recall also that one could introduce recourse mortgages without converting existing nonrecourse mortgages into recourse mortgages and thus eliminate these welfare losses.

9 Conclusions

We incorporated house-price risk and mortgages into a SIM model and showed that the model produces plausible implications for the demand for housing, mortgage borrowing, and default. We studied two policies often discussed as prudential regulations to mitigate mortgage defaults: recourse mortgages and LTV limits. We found there may be important complementarities between these two policies.

We first showed that recourse mortgages have great potential for lowering the frequency of defaults while boosting housing consumption and thus producing welfare gains. However, a
recourse policy that is too mild may increase default risk, while a recourse policy that is too harsh may reduce the boost to housing consumption implied by recourse mortgages and may also harm the households’ ability to self-insure.

We also found that these concerns about undesirable effects of recourse mortgages could be mitigated by combining a relatively mild recourse rule with LTV limits. We first showed that the negative effect of LTV limits on housing consumption may be small but LTV limits still reduce welfare for prospective homebuyers. We then showed that an economy that combines recourse mortgages with LTV limits results in a lower default rate and a stronger demand for housing without diminishing the households’ ability to self-insure. Furthermore, we showed that the combination of recourse mortgages and LTV limits prevents high default rates after sharp declines in the price of housing.

References

